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Abstract

In this paper a real-time method for generating signals of constrained amplitude and a given (arbitrary) spectrum is presented.
This technique is based on the concatenation of sinusoidal signals of suitably chosen frequencies in order to obtain a signal
with the desired sample autocovariance sequence as the number of samples tends to infinity. The effectiveness of the method
is demonstrated theoretically and via simulations.

1 Introduction

The problem of generating a waveform having specified
second order properties arises in many fields, see for ex-
ample Cule and Torquato (1999); Gujar and Kavanagh
(1968); Koutsourelakis and Deodatis (2005); Liu and
Munson (1982); Sheehan and Torquato (2001); Yeong
and Torquato (1998a,b). For example, in experiment de-
sign (Goodwin and Payne; 1977; Ljung; 1999) one typ-
ically obtains an optimal test signal specified in terms
of its spectral properties. This leads to the problem of
implementing a real signal with a specified spectrum,
or spectral density. Moreover, it is usual that the input
should also be constrained in its amplitude, i.e. the am-
plitude must lie in an interval [a, b] ⊂ ℝ. In general, fre-
quency domain techniques do not work properly with
this kind of constraint, and as such are translated into
an ‘equivalent’ power constraint under which the input
is designed to satisfy the conditions.

In many applications it is important to implement an in-
put signal which, within the constraints of its amplitude,
has maximum power. This is the case, for example, in
experiment design, where the quality of the estimation
typically increases with the signal to noise ratio. The
signal to noise ratio is obviously improved by choosing
an input with high power. Binary signals have precisely
this desirable property: their power is maximum for a
given amplitude constraint (Tan and Godfrey; 2001).

Several techniques have been proposed to design a bi-
nary signal with a given autocovariance (see e.g. van
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den Bos and Krol (1979); Boufounos (2007); Cule
and Torquato (1999); Gujar and Kavanagh (1968);
Koutsourelakis and Deodatis (2005); Liu and Munson
(1982); Rojas, Welsh and Goodwin (2007); Sheehan and
Torquato (2001); Yeong and Torquato (1998a,b) and the
references therein). For example, in Rojas, Welsh and
Goodwin (2007) a technique based on Model Predictive
Control (Goodwin et al.; 2001) is developed, where, for
each time instant, a finite horizon optimisation prob-
lem to find the optimal set of the next, say, T values
of the sequence such that the sampled autocovariance
sequence so obtained is as close as possible (in a pre-
scribed sense) to the desired autocovariance. One then
takes the first term of this optimal set for the sequence,
advances time by one step and repeats the procedure.

It is known, however, that binary processes cannot have
an arbitrary autocovariance sequence (De Carvalho and
Clark; 1983; Karakostas and Wynn; 1993; Masry; 1972;
McMillan; 1955). Therefore, in this paper we relax the bi-
nary constraint and concentrate on the problem of gener-
ating a sequence with bounded amplitude and prescribed
autocovariance. The algorithm proposed here provides
a quasi-stationary sequence whose sample autocovari-
ance sequence has guaranteed convergence for arbitrar-
ily prescribed spectral densities. The algorithm is very
fast and easy to implement, requiring from the user only
the ability to generate independent random variables
with a given distribution (for which several algorithms
are available (Devroye; 1986)). The resulting signal has
a crest factor (the quotient between its squared ampli-
tude and its power (Ljung; 1999)) of approximately 2,
while a binary signal has a crest factor of 1. In addition,
the algorithm works in real time, i.e., it is not necessary
to specify a priori the number of samples to be gener-
ated, and the method can be extended so that the de-
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sired spectrum can be modified during the execution of
the algorithm. In this case the generated signal would
have a spectrum equal to the last one being prescribed,
if this spectrum is kept fixed from some time on. This
is advantageous in some applications, such as adaptive
experiment design (Gerencsér and Hjalmarsson; 2005),
where the spectrum of the input is designed in real time,
based on a recursively estimated model.

To demonstrate the application of the algorithm, two ex-
amples, motivated by experiment design, are provided.
A typical input signal used in system identification is
bandlimited white noise (Ljung; 1999, Section 13.3). In
this paper we show how the proposed algorithm can be
used to generate this type of signal and also provide the
obtained spectral density to highlight how closely it ap-
proximates the desired spectral density. The second ex-
ample is inspired by recent work on experiment design
where it was shown that a more robust input for a par-
ticular class of systems is in fact one with a bandlim-
ited ‘1/f ’ spectrum (Rojas, Welsh, Goodwin and Feuer;
2007; Goodwin et al.; 2006). We again provide the spec-
tral density generated by the proposed algorithm as well
as that of the prescribed signal, for the purpose of com-
parison.

The paper is structured as follows. In Section 2 we
present the algorithm and provide a detailed explana-
tion. In Section 3 we prove convergence of the sample
autocovariance coefficients of the signal generated by
the algorithm to their desired values. Section 4 shows
the results of some numerical examples that illustrate
the quality of the signals generated by the algorithm.
We present conclusions in Section 5.

2 The Proposed Method

In this section we introduce the proposed method for
generating signals of constrained amplitude and pre-
specified spectral density. The idea of the method comes
from the following simple observation (inspired by Ex-
ample 10-4 of Papoulis (1991)):

Lemma 2.1 Let � ∈ ℒ1([−�, �],ℝ+
0 ) be such that

(2�)−1
∫ �
−� �(!)d! = 1. Let ! and � be independent

random variables, where ! has density �/2� and � is
uniformly distributed in [−�, �]. Then, {yt}t∈ℕ , where

yt :=
√

2 cos(!t+ �), is a sequence of random variables
of zero mean and spectral density �.

PROOF. By direct calculation we have

E yt =
√

2 E cos!tE cos�−
√

2 E sin!tE sin� = 0,

since E cos� = (2�)−1
∫ �
−� cos�d� = 0 and similarly

E sin� = 0. In addition,

E ytys = E cos(![t+ s]) E cos 2�

− E sin(![t+ s]) E sin 2�+ E cos(![t− s])

=
1

2�

∫ �

−�
cos(![t− s])�(!)d!,

which shows that {yt}t∈ℕ has spectral density �. □

Lemma 2.1 shows how to construct a signal having a
given spectral density and range [−

√
2,
√

2]. However,
the resulting stochastic process is not ergodic, since

1

n

n∑
t=1

yt =

√
2

n

n∑
t=1

cos(!t+ �) −−−−→
n→∞

0

but, as n→∞,

1

n

n∑
t=1

ytyt+m =
1

n

n∑
t=1

[cos(2!t+ !m+ 2�) + cos!m]

→ cos!m ∕= 1

2�

∫ �

−�
cos(!m)�(!)d!.

In fact, {yt}t∈ℕ is a purely predictable process (Papoulis;
1991). One way to overcome this problem is to split the
time into intervals, and to use different (independent)
random variables !, � for each interval. This suggests the
following algorithm to generate {yt}t∈ℕ having a desired
spectral density � ∈ ℒ1([−�, �],ℝ+

0 ) of total power 1:

(1) Choose integers 1 = n0 < n1 < ⋅ ⋅ ⋅ .
(2) Generate i.i.d. (independent and identically dis-

tributed) random variables !1, . . . , !L with density
�/2�, and i.i.d. variables �1, . . . , �L with uniform
distribution on [−�, �] (independent of !1, . . . , !L).

(3) For every t ∈ ℕ, define yt =
√

2 cos(!qt+�q), where
q is the unique integer such that nq−1 < t ≤ nq.

The performance of this method depends on the choice
of the integers {nq}q∈ℕ0

. We show below that a sufficient
condition for convergence of the algorithm is that the
strictly increasing sequence {nq}q∈ℕ0

⊆ ℕ (with n0 = 1)
satisfy the following conditions:

∞∑
q=1

(
nq − nq−1

q

)2

<∞. (1)

lim
q→∞

nq − nq−1 =∞. (2)

An example of such a sequence is

nq =

⌊
1 +

q∑
k=1

k


⌋
, 
 ∈ (0, 1/2). (3)
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Remark 2.1 The signal generated by the proposed
algorithm is evidently nonstationary. However, it is
quasi-stationary (Ljung; 1999), since its expected value

is bounded by
√

2 and, as established in the next section
(c.f. Theorem 3.1) its sample autocovariance coefficients
converge to the prescribed ones with probability 1. This
implies that its spectral density is well defined, in the
quasi-stationary sense described in Ljung (1999), and
equals the prescribed �.

It is important to remark that quasi-stationarity (and its
associated concept of spectral density) is a relaxation of
the concept of stationarity. Quasi-stationarity provides a
suitable framework for most applications, particularly in
relation to system identification and experiment design.
For more details, the reader is referred to Ljung (1999).

Remark 2.2 The algorithm presented in this sec-
tion has close connections to, so-called, Schroeder’s
method (Schroeder; 1970), which provides a simple rule
for generating multi-sinusoidal signals with low peak
factor. Indeed, (Schroeder; 1970) considered a multi-
sinusoid as an approximation of a frequency modulated
signal, whose spectrum (according to Woodward’s theo-
rem (Blachman and McAlpine; 1969)) is approximately
proportional to the distribution of its instantaneous
frequency. The algorithm proposed here is based on a
similar idea, since it constructs a signal from segments
of sinusoids whose frequencies are distributed according
to the spectral density �. This suggests the possibility of
extending the proposed technique to generate continuous
time ‘chirp’ signals with a prescribed spectrum. How-
ever, for reasons of space we will not pursue this idea in
the present paper.

Remark 2.3 There exist several techniques in the liter-
ature for generating signals with limited amplitude and a
prescribed spectrum. In addition to the references cited in
the Introduction, many researchers have proposed crest
factor minimization techniques (see, e.g., Schroeder
(1970); Guillaume et al. (1991) and the references
therein) which produce multi-sinusoidal signals with low
crest factor and prescribed amplitudes. While the method
proposed in this paper has some connections with these
techniques (c.f. Remark 2.2), it is not restricted to line
spectra (i.e., multi-sines). This can be seen as an advan-
tage in areas such as experiment design, because signals
with a continuous spectrum excite the entire frequency
range, thus providing some degree of robustness against
the lack of knowledge of the true system. The interested
reader is referred to (Ljung; 1999), where further com-
ments on the use of periodic and non-periodic signals in
system identification is provided.

3 Analysis of Convergence

In this section we study the convergence of the sample
covariance sequence of the signal generated by the algo-

rithm presented in Section 2, i.e., we establish that

RNm :=
1

N

N∑
t=m+1

ytyt−m, N ∈ ℕ, m ∈ ℕ0

converges almost surely to rm := 1
2�

∫ �
−� cos(!m)�(!)d!.

To this end, let us first define (for q ∈ ℕ)

Sq,m :=

nq+m∑
t=nq+1

ytyt−m, Wq,m :=

nq+1∑
t=nq+m+1

ytyt−m. (4)

We then have the following result:

Theorem 3.1 Consider the algorithm of Section 2,
where {nq}q∈ℕ0 ⊆ ℕ is a strictly increasing se-
quence (with n0 = 1) satisfying (1) and (2). Then,
limN→∞RNm = rm almost surely for every m.

PROOF. By (2) there is an M ∈ ℕ such that nq+1 −
nq > m for every q > M . Consider then the decomposi-
tion

RNm =
1

N

nM+1∑
t=m+1

ytyt−m +
1

N

nT∑
t=nM+1+1

ytyt−m (5)

+
1

N

N∑
t=nT+1

ytyt−m,

where T ∈ ℕ is such that nT + 1 ≤ N < nT+1. The first
term in the right side of (5) converges to 0 as N → ∞.
For the third term we also have that∣∣∣∣∣ 1

N

N∑
t=nT+1

ytyt−m

∣∣∣∣∣ < 1

nT

N∑
t=nT+1

∣ytyt−m∣

< 2
nT+1 − nT

nT
.

However, by part 2 of Lemma A.1 (see the Appendix),
(nT+1 − nT )/nT → 0. Therefore, the third term in (5)
also vanishes as N → ∞. Hence we need only focus on
the second term of the right-hand side of (5). Now (recall
the definitions in (4)),

1

N

nT∑
t=nM+1+1

ytyt−m

=
1

N

T−1∑
q=M+1

⎡⎣ nq+m∑
t=nq+1

ytyt−m +

nq+1∑
t=nq+m+1

ytyt−m

⎤⎦
=

1

N

T−1∑
q=M+1

(Sq,m +Wq,m). (6)
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By construction, {Sq,m}T−1q=M+1 and {Wq,m}T−1q=M+1

are sets of independent random variables, respec-
tively. For Sq,m, part 1 of Lemma A.2 implies that∑∞
q=M+1 Var {Sq,m}/q2 ≤

∑∞
q=M+1m

2/q2 < ∞, while

forWq,m, part 2 of Lemma A.2 and condition (1) implies

∞∑
q=M+1

Var {Wq,m}/q2 (7)

≤ (1 + r2m/2− r2m)

∞∑
q=M+1

(nq − nq−1 −m)2/q2

<∞.

Therefore,

lim
N→∞

1

N

T−1∑
q=M+1

(Sq,m +Wq,m − (nq+1 − nq −m)rm)

= lim
N→∞

T −M − 1

N

1

T −M − 1

⋅
T−1∑

q=M+1

(Sq,m +Wq,m − (nq+1 − nq −m)rm)

= lim
N→∞

T −M − 1

N
lim
T→∞

1

T −M − 1
⋅ (8)

T−1∑
q=M+1

(Sq,m + [Wq,m − (nq+1 − nq −m)rm]).

The first limit in (8) is zero, because for T > M + 1,
∣(T − M − 1)/N ∣ < T/(nT + 1), which tends to 0 as
T →∞ by part 1 of Lemma A.1. On the other hand, the
second limit in (8) is also zero, by Kolmogorov’s strong
law of large numbers (Chung; 2001, Theorem 5.4.1),
Lemma A.2 (see the Appendix) and (7) (together with
the analogous result obtained for Var {Sq,m}). There-
fore, expression (8) is equal to zero. Now,

lim
N→∞

1

N

T−1∑
q=M+1

(nq+1 − nq −m)rm

= rm lim
N→∞

1

N

T−1∑
q=M+1

(nq+1 − nq −m) (9)

= rm lim
N→∞

[
nT − nM+1

N
−mT −M − 1

N

]
.

The first term in brackets tends to 1, since

nT − nM+1

nT+1
<
nT − nM+1

N
≤ nT − nM+1

nT + 1
,

and both sides of this inequality tend to 1 as N → ∞
(by part 2 of Lemma A.1). The second term in brackets
in (9) tends to 0 by part 1 of Lemma A.1. This means

that (9) is equal to rm. Finally, combining (6), (8) and
(9) gives

1

N

nT∑
t=nM+1+1

ytyt−m

= lim
N→∞

1

N

T−1∑
q=M+1

(Sq,m +Wq,m − (nq+1 − nq −m)rm)

+ lim
N→∞

1

N

T−1∑
q=M+1

(nq+1 − nq −m)rm

= rm,

which concludes the proof. □

4 Numerical Examples

In this section we present two examples. The first ex-
ample deals with the problem of generating pseudo ran-
dom signals (i.e. pseudo white noise). The second exam-
ple relates to the generation of bandlimited ‘1/f ’ noise.
Such signals have recently been shown to possess impor-
tant robustness properties in experiment design (Rojas,
Welsh, Goodwin and Feuer; 2007).

4.1 Pseudo White Noise

Consider the problem of generating a signal of ampli-
tude

√
2 and flat spectral density, i.e., �(!) = 1. In order

to execute the algorithm of Section 2, we need to gener-
ate independent samples !1, !2, . . . with density 1/2� in
[−�, �]. This can be easily done in most programming
languages. For example, in Matlab one can use the com-
mand 2*pi*(rand(1)-0.5).

Figure 1 shows the sample spectral density and autocor-
relation of a signal generated with the proposed algo-
rithm (considering the sequence (3) with 
 = 0.49, and
100000 samples). Figure 2 shows part of the signal gen-
erated (in the time domain).

Figure 3 presents a histogram of the distribution of the
values of the generated signal. The distribution of such
values is consistent with the fact that the algorithm de-
livers blocks (of increasing length) of sinusoids of ran-
dom frequency and phase. Indeed, the empirical distri-
bution of the values of a sinusoid

√
2 cos(!t + �) (t ∈

ℕ), where ! is irrational, converges, by Weyl’s Equidis-
tribution Theorem (Körner; 1988), to the distribution
of A cosx, where x is uniformly distributed in [−�, �],

whose density is 1/�
√

2− x2 (for ∣x∣ <
√

2) (Papoulis;
1991, page 97).

Finally, Figure 4 exhibits the evolution of a typical re-
alization of the algorithm, by presenting the maximum
of the absolute values of the sample autocorrelation se-
quenceRtm for lags 1 ≤ m ≤ 50, as a function of the time
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Fig. 1. Sample spectral density and autocorrelation function
of a pseudo white noise signal generated by the proposed
algorithm.
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Fig. 2. Last 200 samples of a pseudo white noise signal gen-
erated by the proposed algorithm.

t. According to Theorem 3.1, this quantity should decay
to zero almost surely as t → ∞, in agreement with the
plot of Figure 4.

4.2 Bandlimited ‘1/f ’ Noise

Bandlimited ‘1/f ’ noise is defined by the following (uni-
lateral) spectral density:

�1/f (!) :=

⎧⎨⎩
�/!

ln! − ln!
, ! ∈ [!, !]

0, otherwise,

where !, ! ∈ ℝ+ (! < !). In this case, the proposed al-
gorithm can be implemented by generating the variables

−1.5 −1 −0.5 0 0.5 1 1.5
0

1000

2000

3000

4000

5000

6000

7000

Fig. 3. Histogram of 100000 samples of a pseudo white noise
signal generated by the proposed algorithm.
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Fig. 4. Evolution of the maximum of the absolute values of
the sample autocorrelation sequence Rt

m for lags 1 ≤ m ≤ 50,
as a function of the time t, for a typical realization.

!q as !q = !(!/!)x, where x is uniformly distributed
in [0, 1] (Devroye; 1986).

Figure 5 shows the ideal spectral density of bandlimited
‘1/f ’ noise for ! = 1, ! = 2, and the results obtained
with the proposed algorithm (for 
 = 0.499 and 10000
samples). This figure verifies the ability of the algorithm
to generate an amplitude constrained non-white noise
signal.

5 Conclusions

In this paper we have presented a novel method for gen-
erating signals of constrained amplitude with a speci-
fied spectral density. The algorithm is based on a block-
ing technique from probability. The algorithm is simple
and straightforward to implement. It generates signals
whose sample spectral density exhibits fast convergence
as verified by simulation studies. In addition, we have
established the convergence of the sample autocovari-
ance sequence of the signal generated by the algorithm
for arbitrary spectral densities.
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Fig. 5. Sample spectral density (red dotted line) and autocor-
relation function of a bandlimited ‘1/f ’ noise signal gener-
ated by the proposed algorithm. The ideal bandlimited ‘1/f ’
noise spectrum for ! = 1 and ! = 2 is also shown (solid blue
line).
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A Appendix: Technical Lemmas

Lemma A.1 Let {nq}q∈ℕ0 be a strictly increasing se-
quence in ℕ satisfying (1) and (2). Then,

1) limq→∞ q/nq = 0.
2) limq→∞(nq − nq−1)/nq−1 = 0 (or, equivalently,

limq→∞ nq/nq−1 = 1).

PROOF. 1) Let � > 0. By (2), there is an M ∈ ℕ such
that nq − nq−1 > 2/� for every q ≥M . Then,

∣∣∣∣ qnq
∣∣∣∣ =

∣∣∣∣∣ q

n0 +
∑Q−1
k=1 (nk − nk−1) +

∑q
k=Q(nk − nk−1)

∣∣∣∣∣
<

∣∣∣∣∣ q

1 +
∑Q−1
k=1 (nk − nk−1) + 2(q −Q+ 1)/�

∣∣∣∣∣
= �

∣∣∣∣∣ q

2(q −Q+ 1) + �+ �
∑Q−1
k=1 (nk − nk−1)

∣∣∣∣∣ .
The last expression can be made less than � for all q
sufficiently large. This establishes 1).

2) By (1), it must hold that limq→∞(nq − nq−1)/q = 0.
Combining this equation with 1) gives

lim
q→∞

nq − nq−1
nq−1

= lim
q→∞

nq − nq−1
q

q

q − 1

q − 1

nq−1
= 0.

□

Lemma A.2 Let N ∈ ℕ and m ∈ ℕ0. Then (c.f. (4)),

1) ESq,m = 0 and Var {Sq,m} =
∑nq+m
t,s=nq+1 r

2
∣t−s∣ ≤

m2 for all q ∈ ℕ.
2) If m < nq − nq−1 we have that EWq,m = (nq+1 −

nq−m)rm and Var {Wq,m} ≤ (nq−nq−1−m)2(1+
r2m/2− r2m).

PROOF. 1) Notice that Sq,m is a sum of products of
independent random variables (yt and yt−m). Therefore,
by Lemma 2.1,

ESq,m =

nq+m∑
t=nq+1

E ytyt−m =

nq+m∑
t=nq+1

E yt E yt−m = 0

and

Var {Sq,m} =

nq+m∑
t=nq+1

nq+m∑
s=nq+1

E ytyt−mysys−m

=

nq+m∑
t=nq+1

nq+m∑
s=nq+1

E ytys E yt−mys−m

=

nq+m∑
t=nq+1

nq+m∑
s=nq+1

r2t−s.

The proof is concluded by noting that r� = r−� and
∣r� ∣ ≤ r0 = (2�)−1

∫ �
−� �(!)d! = 1 for all � ∈ ℕ0.

2) If m < nq − nq−1, then the products ytyt−m in the
definition of Wq,m are related to the same random vari-
ables !q+1, �q+1. Hence, by Lemma 2.1,

EWq,m =

nq+1∑
t=nq+m+1

E ytyt−m = (nq+1 − nq −m)rm.

Now,

EW 2
q,m =

nq+1∑
t=nq+m+1

nq+1∑
s=nq+m+1

E ytyt−mysys−m

where, after some algebra,

E ytyt−mysys−m
= 4 E cos(!q+1t+ �q+1) cos(!q+1[t−m] + �q+1)

⋅ cos(!q+1s+ �q+1) cos(!q+1[s−m] + �q+1)

=
1

2
r2(t−s) +

1

2
r2m +

1

2
.

Therefore, using the fact that ∣r� ∣ ≤ 1 for all � ∈ ℕ0,

Var {Wq,m} = EW 2
q,m − [EWq,m]2

=
1

2

nq+1∑
t,s=nq+m+1

[r2(t−s) + r2m + 1]

− (nq+1 − nq −m)2r2m

≤ (nq+1 − nq −m)2
(

1 +
1

2
r2m − r2m

)
.

□
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