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Abstract— It is well known that if we intend to use a
minimum variance controller to stabilize a minimum phase
plant (with exactly one time delay), which is designed based
on a model obtained from an identification experiment, the
best experiment which can be performed on the system to
determine such a model (subject to output power constraints, or
for some specific model structures) is to use the true minimum
variance controller. This result has been derived under several
circumstances, first using asymptotic (in model order) variance
expressions but also more recently for ARMAX models of
finite order. In this paper we re-approach this problem by
using a recently developed geometric approach to variance
analysis, which is non asymptotic in model order, with which
we generalize some of the previous results established in the
literature. We also believe the new derivations to be more
transparent than earlier contributions.

I. INTRODUCTION

Research in experiment design has been substantial both
in the statistical literature [3, 19, 20] and in engineering [7,
11, 17, 21]. In particular, in the field of system identification
it has been noted since a long time [6] the importance of
focusing the problem of designing the experiment on the
particular application for which the model will be used,
e.g., prediction, control or simulation [13]. This gave rise
to the area of system identification for control [5, 9].

In case we were interested in designing a minimum
variance (MV) controller for a linear time invariant (LTI)
system, it has been established in the literature that under
several conditions, the model to be used for the MV design
should be identified in closed loop, using the MV controller
of the true system during the estimation stage [6, 10, 4, 8].
Specifically, this has been established under an output power
constraint, and for models of large order in [6, 4], and for
ARMAX models of finite order (subject to some degree and
factorization conditions) under general input-output power
constraints in [8].

Notice that the optimality of the MV controller does not
hold for all situations. For instance, it has been established
in [1] that for Box-Jenkins models, the best experiment to
be applied for identification purposes, under an input power
constraint, is an open loop experiment for a very general
class of cost functions (which includes the one involved in
the problem of designing a MV controller).

In this paper we reapproach the problem of designing an
experiment for the purpose of constructing a MV controller.
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To this end, we utilize a recently developed geometric
approach to variance analysis (see [14]). These techniques
allow us to work with models of finite order in a simplified
manner, and with them we will rederive and generalize some
results from [8] in a transparent way.

The geometric approach developed in [14] can be ex-
plained as follows. Let us assume that unknown system
parameters θ = [θ1 · · · θn] ∈ R1×n (vectors will be taken
as row vectors; we denote the true value by θo) are estimated
using a data set consisting of measured inputs and outputs
resulting in the parameter estimate θ̂N ∈ R1×n which has
the property that the (normalized) model error

√
N(θ̂N−θo)

becomes normal distributed as the sample size N of the data
set grows to infinity

√
N
(
θ̂N − θo

)
∈ AsN

(
0,AsCov θ̂N

)
(1)

The asymptotic covariance matrix AsCov θ̂N of the limit
distribution is a measure of the model accuracy. This is
reinforced by that, under mild conditions [13],

lim
N→∞

N · E
[
(θ̂N −Eθ̂N )T(θ̂N −Eθ̂N )

]
= AsCov θ̂N

In prediction error identification, which is the identification
method we will consider,

AsCov θ̂N = [〈Ψ, Ψ〉]−1 (2)

where Ψ : C → Cn×2 is the gradient with respect to
the estimated parameters of the one-step ahead predictor,
normalized by the inverse of the noise standard deviation, and
where 〈Ψ, Ψ〉 denotes the integral 1

2π

∫ π
−πΨ(ejω)Ψ∗(ejω)dω

(superscript ∗ denotes complex conjugate transpose). Fur-
thermore, our interest will not be the model parameters θ
themselves but some “system theoretic” quantity. We will let
such a quantity be represented by a differentiable function
J : R1×n → C1×q . Given an estimate θ̂N of θo, a natural
estimate of J(θo) is J(θ̂N ). Using Gauss’ approximation
formula and (2), it can be shown [13], that the asymptotic
covariance of J(θ̂N ) is given by

AsCov J(θ̂N ) = ΛT [〈Ψ, Ψ〉]−1
Λ (3)

where Λ is the derivative Λ , J ′(θo) ∈ Cn×q .
As shown in [14, 16], (3) can be given the geometric

interpretation that it is the projection of a given function onto
the space spanned by the elements of the predictor gradient
Ψ . This key insight is the core of the geometric approach we
will exploit in the current paper.

This paper is structured as follows. In Section II we
present the mathematical preliminaries of the geometrical
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Fig. 1. Block diagram of SISO LTI system with output feedback

approach to variance analysis, developed in [14, 16, 15],
which will be used in the sequel, together with the standing
assumptions which will be considered in the remainder of
the paper. Section III develops the core results of the paper,
related to the problem of experiment design for the design
of MV controllers. Finally, Section IV gives conclusions.

NOTATION

We will consider vector valued complex functions as row
vectors and the inner product of two such functions f, g :
C → C1×m is defined as 〈f, g〉 = 1

2π

∫ π
−πf(ejω)g∗(ejω)dω

where g∗ denotes the complex conjugate transpose of g.
Likewise, g denotes the complex conjugate of g. When f
and g are matrix-valued functions, we will still use the
notation 〈f, g〉 to denote 1

2π

∫ π
−πf(ejω)g∗(ejω)dω whenever

the dimensions of f and g are compatible. The L2-norm of
f : C → C1×m is given by ‖f‖ =

√
〈f, f〉, and its W -

weighted L2-norm is given by ‖f‖W =
√
〈Wf, f〉, where

W : C → R+
0 . The space Ln×m2 consists of all functions

f : C → Cn×m such that all elements of f have bounded
L2-norm and if f ∈ Ln×m2 , f is said to be an Ln×m2 -
function; when n = 1, the notation is simplified to Lm2 .
For f : C→ Cn×m, fi : C→ C1×m denotes the ith row of
f . If f ∈ Lm2 and S is a closed subspace of Lm2 , ProjS{f}
denotes the orthogonal projection of f on S. If Ψ ∈ Ln×m2

for some positive integers n and m, then SΨ denotes the
subspace to Lm2 generated by the span of the rows of Ψ .
For a finite dimensional subspace S to Lm2 , dimS is the
dimension of S.

For a differentiable function f : R1×n → C1×q , f ′(x̄)
is a n × q matrix with dfj(x)

dxi

∣∣
x=x̄

as ijth entry, the partial
derivative ∂f(x̄)

∂xi
is defined analogously.

For two matrices A and B, A > B (A ≥ B) denotes that
A−B is positive definite (semidefinite).

II. PRELIMINARIES

In this section we present the assumptions and math-
ematical preliminaries from [14] which are necessary for
developing the results of Section III.

A. System and model

Assumption 2.1: The true system is given by the single-
input single-output (SISO) LTI system Go(q) (q is the
forward shift operator) depicted in Figure 1 where ut and yt
represent the measured input and output, respectively, where

et and wt are zero mean white noise sequences with variance
λo and 1, respectively, and bounded moments of order 4 + δ
for some δ > 0. The LTI filter R represents the stable
minimum phase spectral factor of the reference signal rt,
and Ho is an inversely stable LTI filter that is normalized to
be monic, i.e., limz→∞Ho(z) = 1. The system Go includes
at least one unit time delay, and we assume the entire system
to be internally stabilized by the LTI controller K. �

Next, we introduce a quite general family of model
structures that will be covered.

Assumption 2.2: The system is modelled by

yt = T (q, θ)χt (4)

where T (q, θ) = [G(q, θ) H(q, θ)] is an LTI model of
the system and the noise dynamics, parameterized by the
vector θ ∈ R1×n, and where χt = [ut, et]T. The noise
model may also be independently parameterized by a sep-
arate vector η, and then we write H(q, η). This distinction
is only used when it has important implications and for the
general treatment we can consider the noise model H(q, θ).

The model parametrization is such that the true system is
in the model set, that is, there is a parameter θo such that

Go(q) , G(q, θo), Ho(q) , H(q, θo)

Finally, following the definitions in [13], the model structure
is uniformly stable and globally identifiable at θo. �

The type of model described above includes all standard
black-box model structures such as ARMAX, output error
and Box-Jenkins.

B. Geometric Approach to Variance Analysis

The main result in [14, 16] is the linking of (3) to
orthogonal projection which is embodied in the following
theorem.

Theorem 2.1 (Theorem A.2.5 in [14]): Suppose that J :
R1×n → C1×q is differentiable and let the asymptotic
covariance matrix AsCov J(θ̂N ) be defined by (3) where
Ψ ∈ Ln×m2 . Suppose that γ ∈ Lq×m2 is such that

Λ = 〈Ψ, γ〉 (5)

then

AsCov J(θ̂N ) =
〈
ProjSΨ{γ},ProjSΨ{γ}

〉T
(6)

where SΨ is the space spanned by the rows of Ψ .
In particular, when J is scalar,

AsVarJ(θ̂N ) = ‖ProjSΨ{γ}‖
2 (7)

The applicability of Theorem 2.1 for rewriting the asymp-
totic covariance matrix as (6) hinges on whether there exists
an L2-function γ such that (5) holds. Lemma A.2.6 in [14]
completely characterizes the family of such functions.

C. Asymptotic covariance matrix for the parameters

Under Assumptions 2.1 and 2.2, the asymptotic covariance
matrix AsCov θ̂N obtained in prediction error identification
can be written as (2) with Ψ being the prediction error
gradient [13]. By expressing the signal pair χt = [ut et]T



in terms of ξt = [wt et]T, which has a stable spectral factor
given by

Rχ :=
[
SoR −KSoHo

0 1

][
1 0
0
√
λo

]
(8)

where So(q) = 1/(1 + K(q)Go(q)) is the closed loop
sensitivity function, Ψ in (2) (which is closely related to the
prediction error gradient) is given by

Ψ(z) = T ′(z, θo)RSNR(z) (9)

where T ′(z, θ) =
[
∂G(z,θ)
∂θ

∂H(z,θ)
∂θ

]
, RSNR(z) =

Rχ(z)R−1
v (z) is a signal-to-noise spectral factor, and

Rv(z) =
√
λoHo(z).

D. Asymptotic covariance of LTI system properties

In this section we will derive an expression for the asymp-
totic covariance (3) of the estimate J(θ̂N ) of an arbitrary
differentiable quantity J : R1×n → C1×q when Ψ in (3)
is given by (9). While this can be done on a case by
case basis for different model structures using Theorem 2.1,
we will instead use (a generalization of) impulse response
coefficients as an intermediate parametrization in order to
obtain an expression that is valid regardless of the model
structure.

Take {Gk(z)}∞k=1 and {Hk(z)}∞k=1 to be two orthonormal
bases for H2 and for k = 1, 2, . . . define the orthonormal
functions

T2k−1(z) = [Gk(z) 0], T2k(z) = [0 Hk(z)] (10)

With τ = [τ1 τ2 · · · ], any transfer function T = [G H]
satisfying Assumption 2.1 can be parameterized as

T (z) = [G(z) H(z)] =
∞∑
k=1

τk Tk(z) (11)

With Gk(z) = Hk(z) = z−k, this corresponds to the usual
impulse response representation.

Also the original model (4), which is parameterized by the
vector θ, can be expressed through the parametrization (11):

T (z, θ) =
∞∑
k=1

τk(θ)Tk(z) (12)

or

G(z, θ) =
∞∑
k=1

gk(θ)Gk(z), H(z, θ) =
∞∑
k=1

hk(θ)Hk(z)

where gk = τ2k−1, hk = τ2k.
Theorem 2.2: Let the true system be given by To(z) =

[Go(z) Ho(z)], defined from a τo in the parametrization (11),
and suppose that the quantity Jτ (τo) ∈ C1×q is estimated
by J(θ̂N ) = Jτ (τ(θ̂N )) where τ(·) is the map from model
parameters θ to the system parameters τ .

Suppose that Jτ and τ(θ) are differentiable. Define SΨ ⊂
L2

2 to be the subspace spanned by the rows of (9), and define

∇Jτ (z) ,
∞∑
k=1

(
∂Jτ (τ)
∂τk

)∗
Tk(z)

∣∣∣∣
τ=τ(θo)

(13)

where RSNR is defined as in (8). Assume that ∇JτR−∗SNR ∈
Lq×2

2 , and that Jτ and τ are such that the chain rule applies:

J ′(θ) =
nτ∑
k=1

τ ′k(θ)
∂Jτ (τ(θ))

∂τk
(14)

Then the asymptotic covariance (3) of J(θ̂N ) can be ex-
pressed as

AsCov J(θ̂N ) (15)

=
〈
ProjSΨ

{
∇JτR−∗SNR

}
,ProjSΨ

{
∇JτR−∗SNR

}〉T
Notice that ∇Jτ is weighted by R−∗SNR(z−∗) which is a

spectral factor of the ratio Φv(z)Φ−1
χ (z). This ratio is known

from the expression

lim
m→∞

1
m

AsCov T (ejω, θ̂N ) = Φv(ejω)Φ−T
χ (ejω) (16)

derived in [12] and can be interpreted as the frequency-wise
noise to signal ratio.

E. An explicit expression of the asymptotic variance
The most complicated step of evaluating the variance

expression (15) is the projection onto the space SΨ . If an
orthonormal basis {Bk(z)}nk=1 of SΨ is known, then the
projection can be computed from

ProjSΨ{f}
∆=

n∑
k=1

〈f,Bk〉Bk

For some properties J , the asymptotic variance (15) can
be expressed directly as a function of an orthonormal basis
for the space SΨ , and this result is presented in the following
theorem.

Theorem 2.3: Consider the conditions of Theorem 2.2. If,
in addition, the condition

∂Jτ (τ)
∂τk

∣∣∣∣
τ=τ(θo)

= Tk(zo)α (17)

holds for some α ∈ C2×q and zo ∈ C such that∑∞
k=1 T ∗k (zo)Tk ∈ H2, then the asymptotic covariance can

be expressed as

AsCov J(θ̂N )

= αTR−T
SNR(zo)

n∑
k=1

BT
k (zo)Bk(zo) R−1

SNR(zo) α (18)

where {Bk}nk=1 is any orthonormal basis for the space SΨ .

F. Frequency response
For the covariance of the frequency response estimate, i.e.

J(θ) = T (ejω, θ), we obtain

Λ = T ′(ejω, θo) = Ψ(ejω)R−1
SNR(ejω)

where Ψ is given by (9). Theorem 2.3 can be applied to
obtain the covariance expression

AsCov T (ejω, θ̂N )

= R−T
SNR(ejω)

n∑
k=1

BT
k (ejω)Bk(ejω)R−1

SNR(ejω) (19)



where {Bk}nk=1 is any orthonormal basis for the space SΨ .
This expression has also been derived in [18] using the theory
of reproducing kernels.

III. MINIMUM VARIANCE CONTROL

When the true system Go is minimum phase with exactly
one pure time delay, the minimum variance (MV) controller
for the configuration in Figure 1 is given by

KMV(Go, Ho) =
Ho − 1
Go

and this controller produces the output yt = et with variance
λo. The performance of any controller K can be measured
by the variance of the output as compared to the optimal
white output et:

V (K) , E
[
(yt − et)2

]
Replacing the true system with an estimated model gives the
certainty equivalence controller KMV(G(q, θ̂N ), H(q, θ̂N )).
We will now analyze

J(θ̂N ) , V (KMV(G(q, θ̂N ), H(q, θ̂N )))

In [6, 4] it is shown that

δJ , lim
N→∞

N · EJ(θ̂N ) = ‖Xo‖2AsCov T (·,θ̂N )
(20)

where Xo =
√
λo
Ho

[
Ho−1
Go

−1
]

and where the expectation is
taken over the experimental conditions in the identification
experiment. In [6, 4], AsCov T (ejω, θ̂N ) is approximated
with the result (16) (asymptotic in model order), yielding

δJ ≈ δJho , m‖Xo‖2ΦvΦ−T
χ

(21)

where m is the model order (which may differ from the
number of estimated parameters). This δJho is subsequently
used for optimizing the experimental conditions, with the
result that the MV control is the optimal experiment, yielding
δJho = λom, provided that this experiment does not violate
any constraint on the experiment.

We will now re-examine (20) and instead use the exact
expression (19) for AsCov T (ejω, θ̂N ).

We will assume that the model structure is identifiable,
that the identification experiment is stable and persistently
exciting of sufficient order so that the prediction error
gradient Ψ , defined in (9), is in Ln×m2 (for some integers
n and m) and so that

〈Ψ, Ψ〉 > 0 (22)

The condition (22) implies that the dimension of SΨ , the
space spanned by the rows of Ψ , equals the number of rows
n of Ψ (see Lemma A.2.1 in [14]).

Now, take {Bk}nk=1 to be an orthonormal basis for the
subspace spanned by the rows of the predictor gradient (9)
and denote the elements of Bk by BGk and BHk so that Bk =
[BGk BHk ]. Notice that

1 = ‖Bk‖2 = ‖BGk ‖2 + ‖BHk ‖2 (23)

Now, replacing AsCov T (ejω, θ̂N ) in (20) by (19) yields

δJ = λo

n∑
k=1

∥∥ZoBGk + BHk
∥∥2

(24)

where

Zo =
√
λoHo

R

[
Ho − 1
Go

−K
]

(25)

and K is the controller used in the identification stage. To see
this, notice that when using an MV controller, So = 1/Ho,
and, by (19),

AsCov T (ejω, θ̂N ) =
λo|Ho|4

|R|2

[
1 0
K Ro√

λoHo

]
·

(
n∑
k=1

BT
k (zo)Bk(zo)

)[
1 K

0 Ro√
λoHo

]
Substituting this expression into (20) and using the decom-
position of Bk gives (24).

We will now analyze (24) by studying the structure of the
row space of the predictor gradient (9).

1) A global lower bound: Let nH be the number of
elements in θ = [θ1 · · · θn] that only appear in the noise
model H , and not in G, and let θk be such an element.
Then the kth row in T ′ will have the form [0 X] for some
transfer function X . Due to the structure of Rχ (see (8)),
it then follows that also the kth row of Ψ will have the
structure [0 X̃] for some transfer function X̃ , and hence
there will be nH rows in Ψ with this structure. This, together
with the linear independence of the rows of Ψ , by (22), in
turn implies that nH basis functions in {Bk} can be taken
of the form Bk = [0 BHk ] where, due to (23), ‖BHk ‖ = 1.
Without lack of generality, we may assume these to be the
first nH functions, which gives

δJ = λo

n∑
k=1

∥∥ZoBGk + BHk
∥∥2

= λo

nH∑
k=1

∥∥BHk ∥∥2
+ λo

n∑
k=nH+1

∥∥ZoBGk + BHk
∥∥2

≥ λo
nH∑
k=1

∥∥BHk ∥∥2
= λonH (26)

Thus it is not possible to reduce the loss in performance
below the number of parameters that only appear in the noise
model, scaled by the noise variance. This is consistent with
intuition - these parameters are identified using the driving
noise only and therefore there is a lower bound for the
accuracy with which these parameters can be identified.

2) An upper bound for the optimal performance: Let us
denote by δJ |MV the performance measure (20) when the
MV control is used in the identification experiment. In this
case Zo collapses to Zo = 0 and hence we have the following
upper bound for the minimum cost

min
K

δJ ≤ δJ |MV = λo

n∑
k=1

∥∥BHk ∥∥2 ≤ λon (27)



where the inequality follows from (23). Thus (27) provides
an upper bound for the minimum achievable δJ for any
model structure.

3) ARMAX models: Let us now specialize to ARMAX
models

A(q)yt = B(q)ut + C(q)et (28)

where

A(q) = 1 + a1q−1 + · · ·+ anaq−na

B(q) = b1q−1 + · · ·+ bnbq
−nb

C(q) = 1 + c1q−1 + · · ·+ cncq
−nc

a case studied in [8]. We order the parameters as θ =
[c1 · · · cnc a1 · · · ana b1 · · · bnb ]T . With the controller
given by K(q) = KN (q)/KD(q) for some polynomials
KN and KD and introducing the closed loop characteristic
polynomial Ac = AoKD+BoKN (where Ao and Bo denote
the true A and B polynomials) it is straightforward to show
that the predictor gradient Ψ is given by

Ψ =
1√
λo

 0
√
λo
Co

Γnc
−RBoKDCoAc

Γna −
√
λoKD
Ac

Γna
R AoKD
CoAc

Γnb −
√
λoKN
Ac

Γnb

 (29)

where Γn(q) = [q−1 · · · q−n]T .
Let us further assume MV control K = (Ho − 1)/Go =

(Co −Ao)/Bo which gives Ac = BoCo. Then

Ψ =
1√
λo


0

√
λo
Co

Γnc
−RBoC2

o
Γna −

√
λo
Co

Γna
R Ao
C2
o
Γnb −

√
λo(Co−Ao)
BoCo

Γnb

 (30)

Using Gram-Schmidt orthonormalization on the first nc rows,
we have that the first nc functions of an orthonormal basis
can be taken to have the structure

Bk = [0 BHk ], k = 1, . . . , nc

for some orthonormal BHk . Furthermore, the first min(na, nc)
elements of −

√
λo
Co

Γna are spanned by the elements of
√
λo
Co

Γnc . Thus, using Gram-Schmidt, one can append
min(na, nc) functions

Bk = [BGk , 0], k = nc + 1, . . . , nc + min(na, nc)
(31)

to obtain an orthonormal basis for the span of the first nc +
min(na, nc) rows of Ψ . By applying Gram-Schmidt to the
ensuing rows of Ψ one finally obtain an orthonormal basis
{Bk}nk=1 for the row space of Ψ .

As already mentioned, when MV control is used in the
identification experiment, Zo collapses to Zo = 0 and hence
(24) is in this case given by

δJ |MV = λo

n∑
k=1

∥∥BHk ∥∥2 ≤ λo(n−min(na, nc)) (32)

where the inequality follows from (23) and (31). Combining
(32) with (26), and using that n = na + nb + nc and that
nH = nc for ARMAX models, gives

λonc ≤ δJ |MV ≤ λo(na + nb + nc −min(na, nc)) (33)

Let us now further specialize to the case where

nc ≥ na, and Co −Ao = BoX (34)

for some polynomial X of finite order. Consider again (30).
Since the elements of − (Co−Ao)

BoCo
Γnb are spanned by the

elements of 1
Co
Γnc it follows that the last nb functions of

the orthonormal basis {Bk} have the same structure as (31).
But then the upper bound (32) can be refined to

δJ |MV ≤ λo(na + nb + nc − na − nb) = λonc

which when combined with the lower bound in (33), which
holds independent of the experimental conditions, gives that
MV control is optimal for identification of ARMAX systems
subject to (34).

We summarize our results in the following theorem.
Theorem 3.1: Consider the performance degradation cri-

terion (20) for certainty equivalence MV control. Suppose
that the system and experimental conditions are given by
Section II-A with the restrictions that the true system is
minimum phase and contains exactly one pure time delay.
Furthermore, assume that (22) holds. Then

i) regardless of the experimental conditions,

δJ ≥ λo nH (35)

where nH is the number of parameters that only appear
in the noise model.

ii) using MV control in the identification experiment,
results in a cost

δJ |MV ≤ λo n

where n is the number of estimated parameters.
Furthermore, for ARMAX models (28),
i’) using MV control in the identification experiment

results in a cost (20) that satisfies the bounds

λonc ≤ δJ |MV ≤ λo(na + nb + nc −min(na, nc))
(36)

ii’) MV control is optimal and yields the minimum achiev-
able cost δJ |MV = λo nc when

nc ≥ na, and Co −Ao = BoX

for some polynomial X of finite order.

Remarks 3.1:
i) We stress that the bound (35) is applicable to any

model structure. The bound is quite natural. The accu-
racy of parameters that only appear in the noise model
cannot be influenced by the input signal and thus limits
the modeling accuracy. This bound has previously been
established for the case of ARMAX models in Eqn. (7)
of [8] through lengthy calculations.



ii) Result ii’) in the theorem is a generalization of The-
orem 1 of [8] which covers the case Bo constant and
nc ≥ na.

iii) This theorem only holds in general when there are no
input/output power constraints, since the MV controller
might give an input which does not satisfy these
constraints. In fact, for Box-Jenkins models, it has been
shown in [1] that under input power constraints, the
best experiment should be performed in open loop.
However, if there is only an output power constraint,
i.e.,

1
2π

∫ π

−π
Φy(ejω)dω ≤ c

where1 c > λo, then the MV controller is feasible (and
thus optimal), since in this case

Φy =
∣∣∣∣GoHo

∣∣∣∣2 Φr + λo

and the performance loss, δJ |MV , does not depend
on the reference spectrum, hence the output power
constraint can be satisfied by making R small enough.

IV. CONCLUSIONS

In this paper we have utilized a recently developed ge-
ometric approach to variance analysis [18, 16, 15, 14], to
derive upper and lower bounds for the performance degra-
dation in minimum variance control due to the model error,
extending some recent results in [8], which at the same time
are generalization of previous results from [6, 4] to models
of finite order. We believe that the geometric approach to
variance analysis complements algebraic derivations such
those in [8], allowing new insights.
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