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Abstract— In this paper, the problem of experiment design for
the task of channel identification in cyclic prefixed orthogonal
frequency division multiplexing (CP-OFDM) systems is revis-
ited. So far, the optimal input sequences for least squares (LS)
channel identification with respect to minimizing the channel
mean square error (MSE) under an input energy constraint
have been derived. Here, we investigate the same problem
for the LS channel estimator, but when the design takes into
account an end performance metric of interest, namely, the
symbol estimate MSE. Based on some convex approximations,
we verify that optimal sparse preambles, i.e, input vectors
employing as many pilots as the channel length, for LS channel
estimation in its classical context are near optimal in the
aforementioned application-oriented context for the symbol
estimate MSE.

I. INTRODUCTION

Cyclic prefixed orthogonal frequency division multiplex-
ing (CP-OFDM) is currently enjoying popularity in both
wired and wireless communication systems [1], mainly be-
cause of its immunity to multipath fading, which allows
for a significant increase in the transmission rate [16].
Using the cyclic prefix (CP) as a guard interval, CP-OFDM
can transform a frequency selective channel into a set of
parallel flat channels with independent noise disturbances.
This greatly simplifies both the estimation of the channel and
the recovery of the transmitted data at the receiver. However,
these advantages come at the cost of an increased sensitivity
to frequency offset and Doppler spread. This is due to the fact
that, although the subcarrier functions are perfectly localized
in time, they suffer from spectral leakage in the frequency
domain. Moreover, the inclusion of the CP entails a loss in
spectral efficiency, which in practical systems can become
as high as 25% [1]. Nevertheless, despite its aforementioned
weaknesses, CP-OFDM is a mainstream system nowadays.

Recently, the application-oriented framework for pilot
design in communication systems has been introduced [10],
[11]. The origins of this design can be found in pre-existing
work in the system identification literature, e.g., in [5] and
references therein. This framework is mostly appropriate for
such a design since the training sequences are selected to
optimize a final performance metric of interest and not some
of the classical metrics quantifying the distance between the
estimated model and the true one, e.g., the mean square error
(MSE). To this end, it is imperative to reexamine all known
pilot sequences which are optimal for any communication
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system and for any estimation task, since it has been already
shown that this optimality does not carry over to the new
framework [10], [11].

The focus of this paper is on revisiting the preamble-
based channel estimation task in CP-OFDM systems, when
the pilot design is performed with respect to a specific end
performance metric of interest. The question of selecting
the pilot tones when using a least squares (LS) channel
estimator to minimize the symbol estimate MSE subject to a
training energy constraint is addressed. The case of a sparse
preamble, where as many subcarriers as the channel length
carry pilots, is examined when the signal-to-noise (SNR) is
in usual operating regimes. By approximating the training
design problem via a convex formulation, we verify that
optimal sparse preambles in the classical estimation setup
containing equipowered or equal pilots are near optimal in
the application-oriented setup.

As far as the LS channel estimation for CP-OFDM in the
classical setup is concerned, several results have previously
been derived for the case of the channel estimation MSE
metric, when the training design goal is to minimize the
latter metric subject to a training energy constraint. In [13],
it is shown that uniform spacing of Lh pilot tones (Lh

being the channel impulse response (CIR) length) is the
best choice given that the pilot tones are equipowered1.
Equispaced and equipowered pilot tones were shown in [2]
to be the optimal CP-OFDM preamble for a given training
energy that accounts only for the useful signal, excluding
the CP, while, including the CP, the pilot tones should
be equispaced and equal [7], [8]. Optimal full preambles
(all tones carry pilot symbols) with respect to the channel
estimation MSE and when the training energy accounts for
the CP can contain simply equipowered (not necessarily
equal) symbols. A method for constructing such vectors is
developed in [8].
Notation. Vectors and matrices are denoted by bold lowercase
and uppercase letters, respectively. Superscripts T and H

stand for transposition and conjugate transposition, respec-
tively. Also,  =

√
−1. | · | is the complex modulus or the

absolute value. For a matrix A, (A)i,j denotes its (i, j)th
entry and for a vector a, am or [a]m denotes its mth entry.
The expectation operator is denoted by E(·). Im denotes the
mth order identity matrix, while 0m×n and 1m×n are the
all zeros and all ones m×n matrices, respectively. C(m,n)
is the number of n-combinations over a set of cardinality

1This is no longer valid if there are suppressed (virtual) subcarriers. In
such a case, the optimal placement is non-uniform [12].



m. Moreover, � stands for the semidefinite cone partial
ordering, while ≥,≤ used with vectors denote elementwise
orderings. For a vector a, |a| is the vector of moduli or
absolute values of its entries. Finally, Da = diag(a), i.e.,
Da is a diagonal matrix having as main diagonal entries the
elements of the vector a.

II. SYSTEM MODEL

Given M subcarriers, the result of the orthogonal fre-
quency division multiplexing (OFDM) modulation of a (com-
plex) M × 1 vector x is

s =
1√
M

F
Hx,

where F is the M ×M DFT matrix, with entries (F)i,j =
e− 2π

M
ij , i, j = 0, 1, . . . ,M − 1. Prior to transmission, a CP

of length ν is prepended to the previous vector, to yield:

s′ =





0ν×(M−ν) Iν

· · · · · · · · · · · · · · · · · ·
IM



 s. (1)

Assume that the CP length is chosen to be the smallest
possible one, namely equal to the channel order: ν = Lh−1
[13]. Moreover, perfect timing and frequency synchroniza-
tion are assumed. The channel impulse response (CIR), h =
[
h0 h1 · · · hLh−1

]T
, is assumed to be constant over

the duration of an OFDM symbol. The input to the OFDM
demodulator, after the CP removal, can then be expressed as

r = Hs+w,

where H is the Toeplitz circulant matrix with its first row
given by

[
h0 01×(M−Lh)

hLh−1 · · · h2 h1

]
and

w is the noise at the receiver front end, assumed to be white
Gaussian with zero mean and variance σ2. The action of the
DFT then results in

y =
1√
M

Fr = DHx+ η, (2)

where Hm =
∑Lh−1

l=0 hle
− 2π

M
ml, m = 0, 1, . . . ,M − 1 is

the M -point channel frequency response (CFR) and η =
1√
M
Fw is the frequency domain noise, with the same

statistics as w.
In the sparse preamble case, let ILh

= {i0, i1, . . . , iLh−1}
denote the set of subcarrier indices corresponding to nonzero
pilots. The LS CIR estimate is

h̄ =F−1
Lh×Lh

H̆ILh
. (3)

Denoting as FM×Lh
the submatrix of F containing its first

Lh columns, FLh×Lh
is the submatrix of FM×Lh

with row
indices in ILh

and H̆ILh
is the subvector of H̆ with indices

in ILh
. Here, H̆ is the corresponding initially estimated CFR

vector computed as

H̆m = ytr
m/pm = Hm + ηtr

m/pm,

where divisions by the corresponding pilots are performed
only on the subcarriers with indices in ILh

. This implies

that only noise lies on the rest of the subcarriers. The final
LS CFR estimates are given in this case by

Ȟ = FM×Lh
h̄. (4)

III. OPTIMIZING THE TRAINING WITH RESPECT TO THE

SYMBOL ESTIMATE MSE

A desired end performance metric of interest in this paper
is the symbol estimate MSE. We assume the use of per
subcarrier zero forcing (ZF) symbol estimators. This cor-
responds to symbol estimates x̂m equal to ym/Ȟm for all
m. Moreover, we assume that the per subcarrier transmitted
symbols are independent and identically distributed with zero
mean and variance σ2

x and uncorrelated with the additive
white Gaussian noise (AWGN) at the front end of the
receiver. Then, the total symbol estimate MSE is given as
follows:

MSE(ZF) =

M−1∑

m=0

E

[∣
∣
∣
∣

ym

Ȟm

− xm

∣
∣
∣
∣

2
]

=

M−1∑

m=0

σ2
xE

[∣
∣
∣
∣

Ȟm −Hm

Ȟm

∣
∣
∣
∣

2
]

+ σ2E

[∣
∣
∣
∣

1

Ȟm

∣
∣
∣
∣

2
]

(5)

Depending on the probability distribution of |Ȟm|’s, (5)
may fail to exist. The MSE(ZF) will be finite if and only
if the probability distribution function (pdf) of |Ȟm| is
of order O(|Ȟm|2) for all m as Ȟm → 0. Under the
Gaussian assumption on η, (5) is actually infinite, so the LS
estimator gives rise to an ill-conditioned problem. In order
to obtain well-behaved channel estimators that will be used
in conjunction with the actual performance metrics, some
sort of regularization is needed. Some ideas for appropriate
regularization techniques to use may be obtained by mod-
ifying robust estimators (against heavy-tailed distributions),
e.g., by trimming a standard estimator, if it gives a value very
close to zero. An example of such a per subcarrier trimmed
estimator is given as follows:

Ĥm =

{
Ȟm, if |Ȟm| > χm

χmȞm/|Ȟm|, otherwise
, (6)

where χm is a regularization parameter to be tuned via cross-
validation or any other technique. The analysis of such an
estimator is beyond the scope of this paper.

Remark: The reader may observe that the definition of the
Ĥm preserves the continuity at |Ȟm| = χm. Additionally,
the event {Ȟm = 0} has zero probability since the distribu-
tion of Ȟm is continuous. Therefore, Ĥm can be arbitrarily
defined when Ȟm = 0, e.g., Ĥm = χm.

Assume a sufficiently small χm and a high SNR during
training. Then, it can be shown that the following perfor-
mance metric is a good variation/substitute of (5) in the
course of designing the optimal training:

[MSE(ZF)]0 =

M−1∑

m=0






σ2
x

E
[∣
∣Ȟm −Hm

∣
∣
2
]

E
[∣
∣Ȟm

∣
∣
2
] + σ2 1

E
[∣
∣Ȟm

∣
∣
2
]






(7)



We call this performance metric the zeroth order symbol
estimate MSE. Our analysis in this paper will be based on
this performance metric to facilitate the analytical treatment.

Remark: The obtained optimal preambles, as well as other
known preambles in the literature will be then numerically
compared against the exact symbol estimate MSE.

IV. THE SPARSE PREAMBLE CASE

Consider Ȟ . This can be expressed as follows:

Ȟ =FM×Lh
F−1

Lh×Lh
HILh

︸ ︷︷ ︸

H

+FM×Lh
F−1

Lh×Lh
D

−1
ps

ηtr
ILh

︸ ︷︷ ︸

z

=H + z, (8)

where ps is the Lh × 1 vector containing the nonzero pilot
tones and ηtr

ILh
is the Lh × 1 vector containing the noise

components on the subcarriers with nonzero pilots. Using
our previous assumptions, we can see that

E
[∣
∣Ȟm

∣
∣
2
]

= |Hm|2 + E
[

|zm|2
]

.

Note that by considering LS channel estimation we implicitly
assume that the prior distribution of H is unknown or, equiv-
alently, that H is a deterministic but otherwise unknown
quantity. Using this result, we obtain:

[MSE(ZF)]0 =
M−1∑

m=0

σ2
xE
[

|zm|2
]

+ σ2

|Hm|2 + E
[

|zm|2
] . (9)

Setting λm = E
[

|zm|2
]

and cm = |Hm|2 for all m, we
may differentiate the last expression with respect to λm to
obtain:

∂ [MSE(ZF)]0
∂λm

=
σ2
xcm − σ2

(cm + λm)2
, m = 0, 1, . . . ,M − 1.

These partial derivatives will be positive if σ2
xcm − σ2 > 0

for every m. Clearly, this can be guaranteed if we set the
SNR during the symbol estimation stage to a sufficiently high
value by appropriately selecting σ2

x. They will be negative
in the case of low SNR during data transmission.

We first focus in the case of low SNR defined by the
following inequality:

σ2
x < σ2

x =
σ2

max{c0, c1, . . . , cM−1}
. (10)

In this case,

∂2 [MSE(ZF)]0
∂λm∂λj

= 0, m 6= j

and

∂2 [MSE(ZF)]0
∂λ2

m

= −2
σ2
xcm − σ2

(cm + λm)3
> 0, ∀m

i.e., the Hessian of [MSE(ZF)]0 is positive definite with
respect to the λm’s. Our optimization problem can be

formulated as follows:

min{|[p
s
]k|}Lh−1

k=0

[MSE(ZF)]0

s.t.

Lh−1∑

k=0

|[ps]k|2 ≤ E , (11)

where in the consideration of the optimization variables we
have used the fact that both the objective and the constraints
are blind to the pilot phases. Moreover, we can write:

λm = σ2
Lh−1∑

i,j=0

e
2π(j−i)m

M

Lh−1∑

k=0

[
F−1

Lh×Lh

]

i,k

[

F−H
Lh×Lh

]

k,j

|[ps]k|2

=

Lh−1∑

k=0

σ2

|[ps]k|2

∣
∣
∣
∣
∣

Lh−1∑

i=0

[
F−1

Lh×Lh

]

i,k
e− 2π

M
im

∣
∣
∣
∣
∣

2

. (12)

Collecting all λm’s in one vector, we obtain the overdeter-
mined system:

λ = Aρ. (13)

Here, ρm = 1/|[ps]m|2,m = 0, 1, . . . , Lh−1 and (A)m,k =

σ2
∣
∣
∣
∑Lh−1

i=0

[
F−1

Lh×Lh

]

i,k
e− 2π

M
im

∣
∣
∣

2

for m = 0, 1, . . . ,M−1

and k = 0, 1, . . . , Lh − 1.
We now define the vector γ with entries

γm = |[ps]m|2,m = 0, 1, . . . , Lh − 1.

In order to solve (11) we can pose the following optimization
problem:

minb,γ,λ,ρ 1
T b

s.t. 1
Tγ ≤ E ,

γ ≥ 0,

λ = Aρ,

ρmγm ≥ 1, m ∈ Lh

σ2
xλm + σ2

cm + λm

≤ bm, m ∈ M (14)

where Lh = {0, 1, . . . , Lh−1} and M = {0, 1, . . . ,M−1}.
The last three constraints, as well as, the cost function are
convex. In order to solve this problem efficiently we need
to show that the last two sets of constraints can be written
as linear matrix inequalities (LMI). To this end, first notice
that for ρm,γm ≥ 0

ρmγm ≥ 1 ⇔
∥
∥
∥
∥

[
2

γm − ρm

]∥
∥
∥
∥
≤ γm + ρm [3]

⇔





γm + ρm 2 γm − ρm

2 γm + ρm 0
γm − ρm 0 γm + ρm



 � 0. [3]

The last constraint in (14) is convex for low SNR as shown
in this paper. Under condition (10), using the results from



[14] such constraint is equivalent to (for fixed m)






−σ2
x + bm + (σ2

xcm − σ2)z
(0)
m ≥ 0






1 1− z
(0)
m z

(1)
m

1− z
(0)
m −cm + λm − cmz

(0)
m bm − cmz

(1)
m

z
(1)
m bm − cmz

(1)
m z

(2)
m




 � 0

z
(0)
m ≤ 1

for some z
(0)
m , z

(1)
m , z

(2)
m ∈ R.

Combining these results, we obtain the following semidef-
inite optimization problem:

min 1
T b

s.t. 1
Tγ ≤ E ,

γ ≥ 0,

λ = Aρ,




γm + ρm 2 γm − ρm

2 γm + ρm 0
γm − ρm 0 γm + ρm



 � 0, m ∈ Lh

− σ2
x + bm + (σ2

xcm − σ2)z(0)
m ≥ 0, m ∈ M






1 1− z
(0)
m z

(1)
m

1− z
(0)
m −cm + λm − cmz

(0)
m bm − cmz

(1)
m

z
(1)
m bm − cmz

(1)
m z

(2)
m




 � 0,

m ∈ M
z(0) ≤ 1 (15)

where the minimization is with respect to
b,γ,λ,ρ, z(0), z(1), z(2) ∈ R

M .
Remark: In this paper, we focus on the case of the useful

training energy, i.e., ignoring the CP part. This choice is
justified due to the following reasons. First, the analysis will
be much simpler and the interest on the application-oriented
nature of the proposed design will be better highlighted. Sec-
ond, we do not gain much in terms of the channel estimation
MSE-training energy tradeoff if we consider the CP, as it has
been demonstrated both analytically and numerically in [8],
[9], while the occurring gain may come at the cost of a
high peak-to-average-power ratio (PAPR). Considering only
the useful training energy, we do not impose constraints on
the phases of the pilots, thus promoting a potentially lower
PAPR.

We now examine the case of sufficiently high SNR. This
occurs by selecting σ2

x as follows:

σ2
x > σ2

x =
σ2

min{c0, c1, . . . , cM−1}
. (16)

This choice leads to σ2
xcm − σ2 > 0, ∀m and

∂ [MSE(ZF)]0
∂λm

> 0, m ∈ M = {0, 1, . . . ,M − 1}.

The corresponding training optimization problem is for-
mulated as in (11). Notice that the objective is concave with
respect to the λm’s when (16) holds. To see this, observe
that

∂2 [MSE(ZF)]0
∂λm∂λj

= 0, m 6= j

and

∂2 [MSE(ZF)]0
∂λ2

m

= −2
σ2
xcm − σ2

(cm + λm)3
< 0, ∀m

i.e., its Hessian is negative definite. Nevertheless, the training
design problem can be written in this case as

minb,λρ,γ 1
T b

s.t. 1
Tγ ≤ E ,

λ = Aρ,

σ2
xλm + σ2 = bmcm + bmλm, m ∈ M

ρmγm = 1, m ∈ Lh

γ ≥ 0. (17)

To convexify the last formulation, we have to appropriately
handle the products ρmγm and bmλm. Relaxing the equality
ρmγm = 1 to ρmγm ≤ 1, we may use the Schur
complement to write:

[
1 ρm

γm 1

]

� 0.

The problem is that the left hand side matrix is not symmet-
ric. We may therefore consider its symmetric part, i.e.,

1

2

([
1 ρm

γm 1

]

+

[
1 ρm

γm 1

]T
)

� 0.

This approximation can be easily seen to correspond to
bounding ρmγm by (ρm + γm)2/4 and then requiring that
(ρm + γm)2/4 ≤ 1. As far as bmλm is concerned, we may
replace it by the auxiliary variable zm, while we may relax
this equality to the inequality zm ≥ bmλm. Using again the
same Schur-complement treatment as before, we obtain the
constraint

1

2

([
zm bm
λm 1

]

+

[
zm bm
λm 1

]T
)

� 0.

Given all the above approximations, Problem (17) can be
approximated by the following convex program:

min
γ

1
T b

s.t. 1
Tγ ≤ E ,

λ = Aρ,

σ2
xλm + σ2 = bmcm + zm, m ∈ M
1

2

([
1 ρm

γm 1

]

+

[
1 ρm

γm 1

]T
)

� 0,m ∈ Lh,

1

2

([
zm bm
λm 1

]

+

[
zm bm
λm 1

]T
)

� 0,m ∈ M,

γ ≥ 0, b ≥ 0, z ≥ 0, ρ ≥ 0 (18)

Note that the constraints γ ≥ 0, b ≥ 0, z ≥ 0 and ρ ≥ 0

have been added to keep the solution meaningful due to all
the approximations we encountered in the last formulation.

Remark: The constraints ρmγm ≤ 1 are nonconvex. The
corresponding semidefinite constraints that we introduced



in their position are convex approximations of them. The
constraints ρmγm ≥ 1 are instead convex. We could replace
them by ln(ρm)+ln(γm) ≥ 0. Having both the semidefinite
and the ln constraints in the last formulation, the problem
may become infeasible. We have tested that using either the
semidefinite or the ln constraints, the final symbol estimate
MSE performance is not affected, i.e., the corresponding
solutions produced by each of these programs behave in
approximately the same fashion.

Finally, the remaining SNR regime is defined by the
interval

σ2
x ≤ σ2

x ≤ σ2
x.

In this case, the Hessian of [MSE(ZF)]0 is indefinite. If for
some m, σ2

xcm − σ2 > 0, then the unconstrained minimum
value of the corresponding bm is σ2/cm. In the opposite
case, the minimum value is σ2

x. Nevertheless, formulation
(18) can be used in this case as well.

To determine the optimal pilot placement, a sequence of
C(M,Lh) optimization problems has to be solved, each one
corresponding to a different pilot placement and the best
solution to be adopted. This task implies high computational
complexity and hence, potentially, large delay. To resolve this
problem, we can follow two approaches. The first is to fix
the pilot placement to one for which we know its optimality
in the classical channel estimation setup, i.e., the equidistant
one and then solve the corresponding optimization problem
to determine the optimal energy allocation to the nonzero
pilots. The second leads to a closed form solution. We impose
a fairness condition, i.e., that all λm’s are equal to λ. It then
follows that the equidistant placement in combination with
equipowered pilot tones is an optimal solution. The optimal
pilot moduli in this case are given by

|[ps]k| = σ

√

1

λ
, k = 0, 1, . . . , Lh − 1. (19)

Remarks:
1) The choice of equidistant placement of the tones is

not only justified by the fairness condition. In practice, there
might be invertibility problems of FLh×Lh

based on any
other pilot placement.

2) The most important remark in this section refers to the
implementation of the corresponding convex approximations.
These approximations depend on the true CFR coefficients.
Nevertheless, their use is only to verify that the sparse
preamble with equidistant and equipowered pilots are near
optimal. Assuming that we knew the true second order
statistics of the CFR coefficients, we could replace |Hm|2
by E[|Hm|2] in the corresponding formulations. We follow
this approach in the simulation section. This strengthens even
more the near optimality of the aforementioned preambles,
since their performance is compared against a “genie-aided”
scheme.

V. SIMULATIONS

In this section we present numerical results to verify our
analysis. In all figures, h ∼ CN (0,C ), where Ci,j =
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Fig. 1. Sparse Preamble M = 128, Lh = 16 and χm = 0.2, ∀m:
[MSE(ZF)] with training energy equal to 30 dB.

rj−i, j ≥ i, with r = 0.9 and i.i.d. QPSK symbols
are assigned to all subcarriers. The energy during training
highlights how good the channel estimate is. The parameter
χm has been empirically selected to be 0.2. All schemes in
Figs. 1, 2 and 3 use the same χm for all m.

In Figs. 1 and 2, [MSE(ZF)] versus the SNR per subcarrier
during data transmission is presented for energy during
training equal to 30 dB, when M = 128, Lh = 16 and
M = 256, Lh = 64 respectively. “Optimal” is the preamble
vector produced by the formulations in this paper. The
sparse preamble with equidistant and equipowered pilots,
i.e., the “Equal Sparse”, is better than a sparse preamble
with equidistant and random pilots, i.e., the “Rand”, after
the SNR value per subcarrier equal to 0 (Fig. 1) and −5
dB (Fig. 2), while it coincides with the “Optimal” preamble.
Note that the performance of the “Rand” preamble seems
to be better in the low SNR regime. Nevertheless, notice
that the y-axis corresponds to the true symbol estimate MSE
and not to [MSE(ZF)]0. Additionally, the performance of the
random preamble quickly reaches a floor value, the existence
of which can be justified based on (9) as σ → 0.

Finally, Fig. 3 aims at highlighting a crucial point: the
preambles produced by the optimization problems in this
paper do not correspond to one with equal pilot moduli.
Instead, ignoring the corner effects (corner moduli), the
moduli produced are around the nominal line of equal
moduli. The mapped performance of such preambles through
the ZF symbol estimate MSE prism is approximately the
same with that of the equal pilot moduli preamble. In this
figure, M = 64, Lh = 16 and χm = 0.2, ∀m, while the
instantiation has been produced from a high SNR regime
solution due to formulation (18).

VI. CONCLUSIONS

In this paper, application-oriented preamble selection for
CP-OFDM systems has been investigated, when the em-
ployed channel estimator is the LS. We have highlighted
the fact that the application-oriented preamble selection
should be the appropriate way to perform training sequence
design in practice. Additionally, we have verified that for the
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Fig. 2. Sparse Preamble M = 256, Lh = 64 and χm = 0.2, ∀m:
[MSE(ZF)] with training energy equal to 30 dB.
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Fig. 3. Sparse Preamble M = 64, Lh = 16 and χm = 0.2, ∀m: Pilot
modulus vs. subcarrier index with training energy equal to 30 dB.

symbol estimate MSE based on per subcarrier ZF equalizers
performance metric, a class of near optimal sparse preambles
corresponds to equipowered pilots. This result is quite satis-
factory, since the aforementioned class of optimal preambles
is optimal even in the classical LS training design setup based
on the channel estimation MSE subject to a training energy
constraint. Nevertheless, using other types of equalizers or
channel estimators at the receiver or other assumptions in the
system, e.g., concerning the employed performance metrics
or the correlation of transmitted symbols, we may obtain
different classes of optimal preambles. This strengthens even
more the main contribution of this paper, i.e., the observation
that training sequence design should be performed with
respect to an end performance metric of interest rather than
in the classical channel estimation MSE setup.
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