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Abstract: Recently, the application-oriented framework for pilot design in communication
systems has been introduced. This framework is mostly appropriate for such a design since
the training sequences are selected to optimize a final performance metric of interest and not
some of the classical metrics quantifying the distance between the estimated model and the true
one, e.g., the mean square error (MSE). In this perspective, the known pilot sequences that
are optimal for any communication system and for any estimation task have to be reexamined.
In this paper, the problem of training pilot design for the task of channel estimation in cyclic
prefixed orthogonal frequency division multiplexing (CP-OFDM) systems is revisited. So far, the
optimal training sequences for least squares (LS) channel estimation with respect to minimizing
the channel MSE under a training energy constraint have been derived. Here, we investigate
the same problem for the LS channel estimator, but when the design takes into account an
end performance metric of interest, namely, the symbol estimate MSE. Based on some convex
approximations, we verify that the optimal full preamble, i.e, the preamble employing pilots
on all subcarriers, for LS channel estimation in its classical context are near optimal in the
aforementioned application-oriented context for the symbol estimate MSE in certain target
signal-to-noise ratio (SNR) operating intervals.

1. INTRODUCTION

Cyclic prefixed orthogonal frequency division multiplex-
ing (CP-OFDM) is currently enjoying popularity in both
wired and wireless communication systems [Andrews,
2007], mainly because of its immunity to multipath fading,
which allows for a significant increase in the transmission
rate [Van Nee et al., 2000]. Using the cyclic prefix (CP)
as a guard interval, CP-OFDM can transform a frequency
selective channel into a set of parallel flat channels with in-
dependent noise disturbances. This greatly simplifies both
the estimation of the channel and the recovery of the trans-
mitted data at the receiver. However, these advantages
come at the cost of an increased sensitivity to frequency
offset and Doppler spread. This is due to the fact that,
although the subcarrier functions are perfectly localized
in time, they suffer from spectral leakage in the frequency
domain. Moreover, the inclusion of the CP entails a loss in
spectral efficiency, which, in practical systems, can become
as high as 25% [Andrews, 2007]. Nevertheless, despite its
aforementioned weaknesses, CP-OFDM is a mainstream
system nowadays.

Recently, the application-oriented framework for pilot
design in communication systems has been introduced
in [Katselis et al., 2012a,b]. The origins of this design
can be found in pre-existing work in the system identifica-
tion literature, e.g., in [Hjalmarsson, 2009] and references
therein. This framework is mostly appropriate for such a
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design since the training sequences are selected to optimize
a final performance metric of interest and not some of
the classical metrics quantifying the distance between the
estimated model and the true one, e.g., the mean square
error (MSE). To this end, it is imperative to reexamine all
known pilot sequences which are optimal for any commu-
nication system and for any estimation task, since it has
been already shown that this optimality does mot carry
over to the new framework [Katselis et al., 2012a,b].

The focus of this paper is on revisiting the preamble-based
channel estimation task in CP-OFDM systems, when the
pilot design is performed with respect to a specific end
performance metric of interest. The question of selecting
the pilot tones when using a least squares (LS) channel
estimator to minimize the symbol estimate MSE subject
to a training energy constraint is addressed. The case of a
full preamble, where all subcarriers carry pilots, is exam-
ined. By approximating the training design problem via a
convex formulation, we verify that optimal full preambles
in the classical estimation setup containing equipowered
or equal pilots are near optimal in the application-oriented
setup for high signal-to-noise ratios (SNR).

As far as the LS channel estimation for CP-OFDM in the
classical setup is concerned, several results have previously
been derived for the case of the channel estimation MSE
metric, when the training design goal is to minimize the
latter metric subject to a training energy constraint. In
[Negi et al., 1998], it is shown that uniform spacing of Ly,
pilot tones (L being the channel impulse response (CIR)



length) is the best choice given that the pilot tones are
equipowered ! . Equispaced and equipowered pilot tones
were shown in [Barhumi et al., 2003] to be the optimal
CP-OFDM preamble for a given training energy that ac-
counts only for the useful signal, excluding the CP, while,
including the CP, the pilot tones should be equispaced and
equal [Katselis et al., 2010, 2009]. Optimal full preambles
with respect to the channel estimation MSE and when the
training energy accounts for the CP can contain simply
equipowered (not necessarily equal) symbols. A method for
constructing such vectors is developed in [Katselis et al.,
2009].

The rest of the paper is organized as follows: Section
2 presents the system model for CP-OFDM and some
results and definitions related to LS channel estimation in
that system. Section 3 introduces some useful observations
with respect to the symbol estimate MSE, while Section
4 investigates the optimal pilot design problem for the
symbol estimate MSE when the employed preamble is full.
Finally, simulations supporting the analysis in this paper
are presented in Section 5, while Section 6 concludes this
paper.

Notation. Vectors and matrices are denoted by bold low-
ercase and uppercase letters, respectively. Superscripts T
and ¥ stand for transposition and conjugate transposition.
The complex conjugate of a complex number z is denoted
by z*. Also, 3 = /—1. ||-|| is the Euclidean norm and |- | is
the complex modulus or the absolute value. For a matrix
A, (A); ; denotes its (7, j)th entry and for a vector a, a,,
or [a],, denotes its mth entry. The expectation operator
is denoted by E(:). I, denotes the mth order identity
matrix, while 0,,,,.,, and 1,,,..,, are the all zeros and all ones
m X n matrices, respectively. Moreover, = stands for the
semidefinite cone partial ordering, while > < used with
vectors denote elementwise orderings. For a vector a, |a|
is the vector of moduli or absolute values of its entries.
Finally, D, = diag(a), i.e., D, is a diagonal matrix having
as main diagonal entries the elements of the vector a.

2. SYSTEM MODEL

Given M subcarriers, the result of the orthogonal fre-
quency division multiplexing (OFDM) modulation of a
(complex) M x 1 vector  is
1
VM
where F is the M x M DFT matrix, with entries (F); ; =
6_3%“, 1,7 =0,1,..., M —1. Prior to transmission, a CP
of length v is prepended to the previous vector, to yield:

.’F'Ha:,

S =

s = S. (1)

Assume that the CP length is chosen to be the smallest
possible one, namely equal to the channel order: v = Lj, —
1 [Negi et al., 1998]. Moreover, perfect timing and fre-
quency synchronization are assumed. The channel impulse

response (CIR), h = [hg hy -~ hp, ]T, is assumed to

L This is no longer valid if there are suppressed (virtual) subcarriers.
In such a case, the optimal placement is non-uniform [Morelli et al.,
2001].

be constant over the duration of an OFDM symbol. The
input to the OFDM demodulator, after the CP removal,
can then be expressed as

r=™Hs+ w,
where H is the Toeplitz circulant matrix with its first
row given by [Rg O1x(ar—1,) Pr,—1 -+ ho hy] and w
is the noise at the receiver front end, assumed to be white
Gaussian with zero mean and variance o2. The action of
the DFT then results in

1

Yy \/M

where H,, = Y/ e %™ m = 0,1,...,M — 1
is the M-point channel frequency response (CFR) and
n= ﬁ}' w is the frequency domain noise, with the same

Fr=Dgyx+mn, (2)

statistics as w.

We focus now on the full preamble case. Denoting the
received vector during training by y*", the preamble vector
by p and the corresponding noise vector by 1", the CIR
estimate, in the LS sense, can then be computed as

h=(/MFl,,, H, (3)

where H,, = y'"/p, = H, +n' /p,, and Fyyp, the
M x Ly, left submatrix of F. Moreover, the final LS CFR
estimates are given by

.I;[ - FMXLh,i:L’ (4)

3. OPTIMIZING THE TRAINING WITH RESPECT
TO THE SYMBOL ESTIMATE MSE

A desired end performance metric of interest in this paper
is the symbol estimate MSE. We assume the use of per
subcarrier zero forcing (ZF) symbol estimators. This corre-

sponds to symbol estimates &,,, equal to y,,,/ H m for all m.
Moreover, we assume that the per subcarrier transmitted
symbols are independent and identically distributed with
zero mean and variance o2 and uncorrelated with the
additive white Gaussian noise (AWGN) at the front end
of the receiver. Then, the total symbol estimate MSE is

given as follows:

M-1 2
MSE(ZF) = Y E || dn 2 ]
m=0 Hm
M-1 N 2
H —-H
= O'gE ‘M + 0'2E [ = 1
m=0 m m

()

Depending on the probability distribution of |H,|’s, (5)
may fail to exist. The MSE(ZF) will be finite if and only
if the probability distribution function (pdf) of |H,,| is
of order O(|H,,|?) for all m as H,, — 0. To make our
analysis possible, we may use the following lemma:

Lemma 1. Given two random variables m, n and assuming
that n has support in [¢,4+00) for some € > 0, the mean
value of their ratio can be expressed as follows:

(i)
m Elm Z o (n—En)k
{n} E[[n]] <1 k::l( b | (E[n])[k] ]) » ©

if m,n are independent.
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if m,n are not independent.

Proof See the Appendix A. B

Under the Gaussian assumption on n, (5) is actually infi-
nite, so the LS estimator gives rise to an ill-conditioned
problem. In order to obtain well-behaved channel esti-
mators that will be used in conjunction with the actual
performance metrics, some sort of regularization is needed.
Some ideas for appropriate regularization techniques to use
may be obtained by modifying robust estimators (against
heavy-tailed distributions), e.g., by trimming a standard
estimator, if it gives a value very close to zero. An example
of such a per subcarrier trimmed estimator is given as
follows:

i - H, . if [H,|>xm
"™\ xmH,,/|H otherwise ’

where H m can be any estimator and y,, a regularization
parameter to be tuned via cross-validation or any other
technique. The analysis of such an estimator is beyond
the scope of this paper.

®)

m|7

Remark: The reader may observe that the definition of the

H . breserves the continuity at |E[ m| = Xm. Additionally,
the event {H,, =

distribution of H,,
arbitrarily defined when H

0} has zero probability since the
is continuous. Therefore, H,,
=0, e.g., H,_ =1.

can be

m

Assume that for given H,,’s we choose x,n, < |H,,|,Ym
and consider a high SNR during training. Then, applying
Lemma 1 to (5), it can be shown that the following
performance metric is a good approximation of (5):

MSE(ZE)], =

E UHm - Hmﬂ

M-1 1
D TPee) R G e A
I

We call this performance metric the zeroth order symbol
estimate MSE. Our analysis in this paper will be based
on this performance metric to facilitate the analytical
treatment.

Remark: The obtained optimal preamble, as well as other
known preambles in the literature will be then numerically
compared against the exact symbol estimate MSE.

4. THE FULL PREAMBLE CASE

Consider the full preamble case. Then, (4) can be written
as follows:

H = FMthFMthH+

M FMthFMthD ! tr

M

H z

=H + z, (10)
where in the case of H we have used the fact that the
channel length is known. Using our previous assumptions,
we can see that

4 12 2 2
E||A,| | = 1H,+B[lz.].
Note that by considering LS channel estimation we implic-
itly assume that the prior distribution of H is unknown

or, equivalently, that H is a deterministic but otherwise
unknown quantity. Using this result, we obtain:

MSEEZR), = 3 5 [2ul] +°
o

Setting A, = E [|zm|2] and ¢, = |H
may differentiate the last expression with respect to A,
to obtain:

O [MSE(ZF)],  o2c,, — o
These partial derivatives will be positive if o2¢,, — 02 > 0
for every m. Clearly, this can be guaranteed if we set the
signal-to-noise ratio (SNR) during the symbol estimation
stage to a sufficiently high value by appropriately selecting
o2. They will be negative in the case of low SNR during
data transmission.

We first focus in the case of low SNR defined by the
following inequality:

(11)

2
ml~ for all m, we

M —1.

m=20,1,...,

2 2 o
= . 12
00 <%z max{cg,Cy,...,Cp_1} (12)
In this case,
H? [MSE(ZF)], .
N, A
and
0* [MSE(ZF)], oc,, —o?
— _2 T m
OAZ, e, +a e 0 vm

i.e., the Hessian of [MSE(ZF)], is positive definite with
respect to the A,,’s. Our optimization problem can be
formulated as follows:

min  [MSE(ZF)],

(Pt
M—-1

st Y Ipl* <€, (13)
k=0

where in the consideration of the optimization variables
we have used the fact that both the objective and the
constraints are blind to the pilot phases. Moreover, by (10)
we can write:

o M-1 — —
g .
M X S 3 e
m 2
M k=0 Pyl i=0 j=0
52 M1 Ly—1 2
= S ilk—m) (14)
M? =0 |pk‘2 e




Collecting all A,,’s in one vector, we obtain:

A= A4p, (15)

where p,, = 1/|p,,|>,m = 0,1,...,M — 1 and (A)p 1 =
‘ 2

(02 /M) ‘Zf:h(;l 63%1(’“’”)‘ for m,k = 0,1,...,M — 1.

Notice that A is a Gramian matrix formed by inner

products from the set of vectors (o/M)[1,e?7/ME
eICT/M)Ln=DFT '} — 0 1,..., M — 1.

ey

We now focus on formulating an appropriate training
optimization problem. We define the vector v with entries
Yo = |Pml?,m =0,1,..., M —1. In order to solve (13) we
can pose the following optimization problem:

min 17b
by, Ap

st. 1Ty <€,
v 20,
A= Ap,
PmVm =1, meM
o2\ + o2
Gatm T 9 p 16

Cm + Am — m? m E M ( )

where M = {0, 1,..., M—1}. The last three constraints, as
well as, the cost function are convex. In order to solve this
problem efficiently we need to show that the last two sets
of constraints can be written as linear matrix inequalities
(LMI). To this end, first notice that for p,,,~,, > 0

2
Pm’Yle@H[,Y —p :|”S7m+pm

Tm + Pm 2 TYm — Pm
2 Ymtpm 0

= = 0.

The last constraint in (16) is convex for low SNR as shown
in this paper. Under condition (12), using the results from
[Nie, 2012] such constraint is equivalent to (for fixed m)

fai +b, + (aicm - 02)z§3> >0

1 1- z;‘,j) z%)
1-20 —¢ +X,—¢,29b, —¢,,z2V|~0
zgr}b) bm - c7nz1(71L) 27(5)

zfg) <1
for some zg), z%), z%) c R.

Combining these results, we obtain the following semidef-
inite optimization problem:

min 17b

st. 1Ty <€,
v >0,
A= Ap,

2 Y + P 0 =0, meM
Ym — Pm 0 Ym + Pm
—o024b,, +(c2c,, —02)z9 >0, meM
1 1- zgfi) zgll)

1— z§2> —c,, + A\, — cngg) b, — cngrll) =0,
2D b, —c,z\} 22

me M

20 <1 (17)

where the minimization is with respect to b,~, X, p, 29,
21 22 e RM,

We now examine the case of sufficiently high SNR. This
occurs by selecting o2 as follows:

0.2

2 S 52 —
0y > 05 = —; . 18
min{cg, ¢1,...,cn-1} (18)
This choice leads to o2¢,, — 0 > 0,¥m and
0 [MSE(ZF)],
T > 07 m € M

Therefore, the value of [MSE(ZF)], is minimized when the
A,,’s take on their lowest possible values. These values are
directly related to the available energy during training.
Letting the available training energy become arbitrarily
large is equivalent to letting A,,, — 0, Vm. Thus, we obtain:
M-1
2
MSE(ZF)]y > 0 D —.

m=0 M

(19)

Our optimization problem can be formulated as Prob-
lem (13). Notice that the objective is concave with respect
to the A,,’s when (18) holds. To see this, observe that

02 [MSE(ZF)],

AN, A
and
0?2 [MSE(ZF)], o2c, — o2
3)\7271 e + A ) <0, Vm

i.e., its Hessian is negative definite. Nevertheless, the
training design problem (13) can be written in this case as

bg}y}v 1o
st. 1Ty <&,
A= Ap,
02X, +o*=b,c, +b,N,, meM
PmYm =1, meM
v >0, (20)

To convexify the last formulation, we have to appropriately
handle the products p,,v,, and b, A,,. Relaxing the
equality p,,Ym = 1 to p,,¥,, < 1, we may use the Schur
complement to write:

Lopm| g
Ym 1|



The problem is that the left hand side matrix is not
symmetric. We may therefore consider its symmetric part,

ie.,
T
L L pm
= " = 0.
2([7m 1}‘+{7m 1 -

This approximation can be easily seen to correspond to
bounding Py Tm by (p,, +7.m)?/4 and then requiring that
(P, + Ym)?/4 < 1. As far as b,,\,, is concerned, we
may replace it by the auxiliary variable z,,,, while we may
relax this equality to the inequality z,, > b,,A,,. Using
again the same Schur-complement treatment as before, we
obtain the constraint

1({1z, b, zmme

Given all the above approximations, Problem (20) can be
approximated by the following convex program:

min17b
~

st 1Ty < €,
A= Ap,
o2\, +0* =b,c, + 2z, meM

T
L1 P L p,
(LA oL ] ) mo me

1({1z, b, zmme

¥>0, b>0, z>0, p>0 (21)

Note that the constraints v > 0,b >0,z >0 and p > 0
have been added to keep the solution meaningful due to all
the approximations we encountered in the last formulation.

Remark: The constraints p,,7v,, < 1 are nonconvex. The
corresponding semidefinite constraints that we introduced
in their position are convex approximations of them. The
constraints p,,7v,, = 1 are instead convex. We could
replace them by In(p,,) + In(v,,) > 0. We cannot have
both the semidefinite and the In constraints in the last
formulation because the problem may become infeasible.
We have tested that using either the semidefinite or the In
constraints, the final symbol estimate MSE performance is
not affected, i.e., the corresponding solutions produced by
each of these programs behave in approximately the same
fashion.

Finally, the remaining SNR regime is defined by the
interval L
15 < ai <o2.

In this case, the Hessian of [MSE(ZF)], is indefinite. If for

some m, o2¢,, —o? > 0, then the unconstrained minimum

value of the corresponding b,, is 0%/c,,. In the opposite
case, the minimum value is 7. Nevertheless, formulation
(21) can be used in this case as well.

Assume now that the minimum [MSE(ZF)], achieved by
any of the above convex approximation is denoted by
[MSE(ZF)],, and the corresponding vector of A,,’s by A. To
achieve this value or a lower value with some closed form
solutions, we note that any [MSE(ZF)], can be achieved at
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c!t = & = Optimal
5008 & = M =Equal Full {
M :: = @ =Rand
a5 :\
~
40 W
—_ N
o ~
T3 .: 1
™
NS li
Y o |
g 25 ‘t'
2 O~ -@--0=--0
~
15 -~ ‘e
10 e ]
LS8
5

=30 -20 -10 0 10 20
SNR per subcarrier (dB)

Fig. 1. Full Preamble with M = 128, L; = 16 and
Xm = 0.1, Vm: [MSE(ZF)] with training energy equal
to 30 dB.

the cost of an increased training energy by simply setting
A = min{Ag, Ay,..., A1} and requiring A, = A, Vm.
This can equivalently be thought as imposing a fairness
condition on the channel estimates, i.e., as requiring that
all channel estimates are constrained to suffer from the
same MSE. Then by (14) it follows that one possible
optimal choice of the pilot moduli corresponds to equipow-

ered pilots. The common modulus equals o/ Ly, /(MX).

Additionally, if we would like to minimize the CP energy,
then the pilots should be chosen to be equal, i.e., to have
the same phases or to be constructed by an algorithm
presented in [Katselis et al., 2009, 2012b]. Nevertheless,
the elimination of the CP energy comes at the cost of a
high PAPR [Katselis et al., 2012b].

5. SIMULATIONS

In this section we present numerical results to verify our
analysis. In all figures, h ~ CN(0,C), where C,; =
ri=t 4§ > 4, with » = 0.9 and ii.d. QPSK symbols
are assigned to all subcarriers. The energy during training
highlights how good the channel estimate is. The parame-
ter x,, has been empirically selected to be 0.1. All schemes
in Figs. 1 and 2 use the same x,, for all m.

In Fig. 1, [MSE(ZF)] versus the SNR per subcarrier
during data transmission is presented for energy during
training equal to 30 dB, when M = 128 and L; =
16. The full preamble with equipowered pilots is better
than a full preamble with random pilots after SNR per
subcarrier equal to—5 dB, while it coincides with the
preamble produced by formulation (17). Note that the
performance of the rand preamble seems to be better in the
low SNR regime. Nevertheless, the y-axis corresponds to
the true symbol estimate MSE and not to [MSE(ZF)]o.
Additionally, the performance of the random preamble
quickly reaches a floor value, the existence of which can be
justified based on (11) as 0 — 0. Fig. 1 is a first numerical
verification that performing our theoretical analysis based
on [MSE(ZF)], instead of [MSE(ZF)] can actually yield
valid results and conclusions.

Fig. 2 presents the corresponding results for M = 256 and
L;, = 64. The conclusions coincide with the those following
Fig. 1. An interesting observation is that the point that all
curves coincide has now been shifted to the left.
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Fig. 2. Full Preamble M = 256, L, = 64 and x,, =
0.1, Vm: [MSE(ZF)] with training energy equal to
30 dB.

6. CONCLUSIONS

In this paper, application-oriented preamble selection for
CP-OFDM systems has been investigated, when the em-
ployed channel estimator is the LS. We have highlighted
the fact that the application-oriented preamble selection
should be the appropriate way to perform training se-
quence design in practice. Additionally, we have verified
that for the symbol estimate MSE based on per subcarrier
ZF equalizers performance metrics, a class of near optimal
full preambles corresponds to equipowered pilots. This
result is quite satisfactory, since the aforementioned class
of optimal preambles is optimal even in the classical LS
training design setup based on the channel estimation
MSE subject to a training energy constraint. Nevertheless,
using other types of equalizers or channel estimators at
the receiver or other assumptions in the system, e.g.,
concerning the employed performance metrics or the corre-
lation of transmitted symbols, may lead to different classes
of optimal preambles. This strengthens even further the
main contribution of this paper, i.e., the observation that
training sequence design should be performed with respect
to an end performance metric of interest rather than in the
classical channel estimation MSE setup.

Appendix A. PROOF OF LEMMA 1

We first prove (ii). Assume that m,n are two random
variables and n has either no mass at zero or it has support
[0,4+00). Clearly, we can write:

m= E[m] + (m — E(m)) (A1)
n=E[n]+ (n— E(n)) (A.2)
Then,
el e |5l ) (5|

Using the Taylor series expansion theorem, we obtain:

n—Em\" | N~ Bln)*
(” Bl ) =1+ 2 D g

Combining the above results, the desired expression fol-
lows.

Moreover, (i) follows from (ii) by assuming independence
of the random variables.
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