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Abstract

A precursor to any advanced control solution is the step of obtaining an accurate
model of the process. Suitable models can be obtained from phenomenological rea-
soning, analysis of plant data or a combination of both. Here, we will focus on
the problem of estimating (or calibrating) models from plant data. A key goal is to
achieve robust identification. By robust we mean that small errors in the hypotheses
should lead to small errors in the estimated models. We argue that, in some cir-
cumstances, it is essential that special precautions, including discarding some part
of the data, be taken to ensure that robustness is preserved. We present several
practical case studies to illustrate the results.
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1 Introduction

The word robust has, in recent years become inextricably linked to advanced
control. This has been an important step with significant practical conse-
quences. However, by way of contrast, little has been explicitly written about
robust identification, although the idea is implicit in much of the previous
literature [32]. Nonetheless, robustness issues play a central role in successful
identification experiments.
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One way of thinking about robustness is that small changes in the working
hypotheses should lead to small changes in the end result. This may seem
rather obvious, but surprisingly, robustness issues are sometimes overlooked.
For example, we know of an industrial case study where a 40th order non-
minimum phase model was fitted to a particular plant. It subsequently turned
out that a more robust procedure showed that a much better description was
provided by a simple integrator plus time delay.

Robust Identification has been previously studied in Econometrics and Statis-
tics (see e.g. [24,21,13]). For example, estimation algorithms that consider the
presence of outliers in the data have been proposed (see e.g. [12]). On the other
hand, linear regression in the frequency domain has been proposed in Time
Series Analysis literature (see [22] and the references therein). Moreover, the
idea of using the data in a determined frequency range has been used in [23]
and [37] to deal with seasonal noise, trends, and aliasing. In [14] the term Fre-
quency band estimation was coined and employed in the testing of economic
hypotheses. Extension to the identification of static Errors in Variables models
with colored noise was presented in [38].

Here, we will suggest various strategies for robustifying solutions. Often, this
amounts to discarding some of the data or detuning the algorithm in some
way such that it is not overly sensitive to the hypotheses. Inevitably a price
is paid in terms of nominal performance. However, this is often essential to
achieve robustness.

The specific problems that we will study include

• selecting model class,
• sampling,
• experiment design,
• closed loop identification, and
• errors in variables identification.

2 Motivating practical case study

The system is a continuous metal caster which requires very good level control
in the mould to ensure that product quality is maintained at a high standard.
The system input is the position of a slide gate valve, and the output is the
height of molten metal in the mould.

The company had applied (non-robust) identification methods, to data col-
lected during normal operation, to obtain a model of the system for the pur-
pose of improving their control system. Their analysis recommended models
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of 4th and 5th order. When these models were used to design a controller, very
poor control was experienced. The problem was that the data was collected un-
der closed loop conditions with poor external excitation and significant output
disturbances. Under these conditions, there is a strong chance that identifica-
tion methods will simply estimate the negative inverse of the controller (or,
at least, a causal approximation to this transfer function).

To understand why this occurs, consider the simple feedback loop shown in
Figure 1.

One relationship between the input, ut and the output, yt is:

yt = Gout + vt (1)

However, there exists a second relationship between input and output via the
feedback path i.e.

ut = C[rt − yt] (2)

or

yt = − 1

C
ut + rt (3)

Thus, it appears that there are two possible models i.e. (1) or (3). Special
techniques exist that may rule out one of these possibilities. Some of these
techniques will be discussed in detail later in the paper. However, in the ab-
sence of special precautions, one will tend to estimate Go when rt dominates
vt, and −1/C when vt dominates rt and somewhere between Go and −1/C
when neither rt nor vt dominates.

In the continuous caster identification experiment, the estimates were indeed
strongly biased toward the negative inverse of the controller. This can be
clearly seen in Figure 2 were a Bode magnitude plot of the Empirical Trans-
fer Function Estimate (ETFE) [32] and −1/C are presented. In a subsequent
experiment, external excitation was applied to the system such that a reason-
ably large signal to noise ratio was obtained at a small number of frequencies.
In this particular case the external signal was added to the controller output
(plant input). The Bode magnitude response of the system to the test signal
can be seen in Figure 2 as indicated by the × symbols.

Paradoxically, by discarding most of the data and utilising only the data as-
sociated with the externally applied test frequencies in the identification al-
gorithm it is clearly seen by the dash-dot line in Figure 2 that the estimated
model is very similar to that of the theoretical model (dotted line).

This case study shows that thought must be given to the experiment and
data used. It is not sufficient to collect normal operating data and expect
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to model anything other than the negative inverse of the controller without
special care. Also, the example suggests that robustness can be enhanced by
discarding parts of the data. These ideas will be explained more fully below.

3 Selecting a model class

3.1 The role of physics

The first issue to be addressed in a system identification exercise is the specifi-
cation of the class of models to be fitted. Here the physics of the problem plays
a central role in achieving robustness. This does not mean that one necessar-
ily has to develop a large scale, distributed parameter model. Indeed, quite
to the contrary, a large scale model will typically contain far too many free
parameters to be calibrated. The key thing is to be able to capture the essen-
tial physics of the problem. There are many examples, where a simple physical
model would have saved a lot of subsequent difficulties in system identification.
Thus, our recommendation is to always begin with simple physical reasoning
to suggest a model structure. This will typically take the form of a set of
ordinary differential equations (possibly nonlinear and with time delays).

3.2 Which operator?

The most common operator used for discrete time models is the shift operator.
However, this operator can lead to robustness issues. This is because:

(1) shift operator parameters typically lack physical significance,
(2) shift operator models are usually associated with nontrivial numerical

problems. (The source of these difficulties is that a near perfect model,
with fast sampling, is invariably yt+1 = yt). More generally, with moder-
ately fast sampling, shift operator models have coefficients that approach
the Binomial coefficients,

(3) it is difficult to subsequently change the sampling period once a shift
operator model has been obtained.

By way of illustration of the above difficulties, we point to the following two
discrete time second order systems expressed in terms of the shift operator
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(equivalently, the z− Transform variable z):

G1(z) =
0.048(z + 0.9672)

z2 − 1.9025z + 0.9048
(4)

G2(z) =
0.048(z + 0.9672)

z2 − 1.9120z + 0.9048
(5)

Notice that the denominator coefficients are very near to (1,−2, 1) i.e. the
Binomial coefficients–see point (2) above. It may surprise the reader, that
these two models exhibit very different behaviour. Indeed, (4) is stable whilst
(5) is unstable. Yet, the only difference in these two discrete time models is
a subtle (0.5%) change in one of the coefficients!. Actually, (4) and (5) are
the exact discrete equivalents of the following two continuous time systems,
having zero order hold input and sampling period 0.1 seconds:

G1(s) =
1

s2 + s + 0.25
=

1

(s + 0.5)2
(6)

G2(s) =
1

s2 + s− 0.75
=

1

(s + 1.5)(s− 0.5)
(7)

In continuous time models we clearly see that the coefficients differ by 400%
and that (7) is unstable! More will be said about this example later. Our
recommendation is to either use continuous time descriptions or delta operator
based models. The latter has a close connection to continuous models as we
show in section 5.

4 Choice of sampling strategy

The next step is to choose a suitable sample period. A simple rule of thumb
is to sample as fast as possible and certainly one tenth of the dominant time
constant. One important point that is sometimes overlooked is that sampling
should always be preceded by low-pass (anti-aliasing) filtering to avoid folding
of high frequency noise back into the bandwidth of interest. Also, these Anti-
aliasing filters form part of the system description which needs to be accounted
for if one seeks high fidelity for rapidly changing (i.e. high frequency) inputs.
With high speed electro-mechanical systems anti-aliasing filtering is easily
carried out with analogue filters. However, filtering is more difficult for systems
with long time constants (as are typical for chemical process models). In the
latter case, anti-alias filtering can be performed digitally by sampling at a
higher rate than finally needed and then low pass filtering via digital filtering
techniques. (Of course, there will also be an analogue anti-aliasing filter at the
fast sampling rate) Note that, for robustness reasons, anti-aliasing filtering
should be conducted well above the maximum frequency of interest to avoid
introducing phase shifts or other contaminations in the range of interest.

5



5 Sampled data models for continuous time systems

We have argued in section 4 that one should choose sampling periods which
are relatively small compared to the dynamics of interest. However, this leads
to numerical issues as discussed in Section 3.2. These issues are mitigated by
the simple transformation of variables 1 :

δ =
q − 1

∆
(8)

This operator is known as the Delta Operator [34]. Moreover, one can readily
obtain an approximate discrete time model by replacing derivatives in the un-
derlying continuous time model by divided differences i.e. δ. The approximate
(derivative replacement) discrete time models corresponding to (4), (5) are

[δ2 + δ + 0.25]yt = ut (9)

[δ2 + δ − 0.75]yt = ut (10)

We see that these models inherit the informative large parameter difference
seen in the continuous model. This should be contrasted with the alterna-
tive shift operator models given in (4) and (5). This suggest that numerical
properties will be much improved in the delta form compared with shift oper-
ator models. For example, it can be shown that the conditioning number for
the least squares parameter estimation goes to ∞ (as ∆ → 0) in shift form
whereas it goes to 1 in delta form [34] (see also [20] regarding relative errors
due to zero dynamics.)

Thus, we strongly advocate the use of the Delta operator especially at fast
sampling rates. However, there has been some reluctance to use Delta do-
main models because it is (incorrectly) believed that difference operation will
be sensitive to noise. This is actually false since, Delta models are simply
a linear re-parameterization of shift operator models achieved by an origin
change. Thus, the alternative operator only affects numerical issues and has
no impact on sensitivity to noise. Indeed, the delta operator makes explicit
the dependence on differences which is always implicit in discrete models (but
alas hidden) in shift operator models.

Another confusion is that use of Delta operator is equivalent to use of “deriva-
tive replacement” as in (9) and (9). One should not confuse the model type
with the operator. Indeed, simple derivative replacement models will always
give a poor description if used in the vicinity of the sampling frequency. This
is because sampling inevitably involves folding (i.e. aliasing) of high frequency

1 ∆: sampling period.
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components back onto the range (0, π/∆) in the frequency domain. For exam-
ple if we assume that the continuous-time system frequency response G(jω)
goes to zero as |ω| → ∞, then the corresponding discrete-time frequency is:

Gq(e
jω∆) =

∞∑
`=−∞

[
(1− e−s∆)

s∆
G(s)

]
s=jω+j 2π

∆
`

(11)

The impact of the folding described in (11) is illustrated in Figure 3. This
figure shows a comparison of the Bode magnitude diagrams corresponding
to a second order system and the exact sampled-data model obtained for 3
different sampling frequencies.

The figure clearly illustrates the fact that, no matter how fast we sam-
ple, there is always a difference (near the folding frequency) between the
continuous-time model and the corresponding discretised model. A conse-
quence of the folding of high frequency dynamics back onto lower frequencies
is that additional zero dynamics are introduced into the corresponding sam-
pled data model. Thus, for example (9), (10) are more accurately described
as in the delta models presented earlier in equations (4) and (5). This suggest
that we should actually use models of the following form in delta domain (for
a second order system with zero order hold input)

[δ2 + δ + 0.25]yt = [βδ + 1]ut (12)

[δ2 + δ − 0.75]yt = [γδ + 1]ut (13)

The additional zero corresponds to the asymptotic sampling zero near z =
−1 in the discrete time models (4) and (5). Moreover, provided one samples
relatively quickly (say ten times the transients of interest), then β and γ in
(12) and (13) can be approximately fixed at the asymptotic value of −1 (in
the z− domain) or 0.5∆ (in the delta domain)[15,20].

The above ideas can be readily generalized. Indeed, there exists a comprehen-
sive theory describing additional sampling zeros of the type shown in (12) and
(13). Specifically, for small ∆, it can be shown that, for a system of relative
degree r, then (r− 1) additional sampling zeros appear which asymptotically
tend to the roots of the Euler Frobenius polynomials (see e.g. [11], [44], [45]).
This leads to an interesting follow up robustness question, namely, Should we
incorporate the sampling zeros in our model for identification purposes? Cer-
tainly, if one wishes to obtain small (relative) model errors in the vicinity of
the sampling frequency, then one has no choice but to include the sampling
zeros [47,19].

This is illustrated in the following example
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Example 5.1 Consider a second order linear system:

Go(s) =
β0

s2 + α1s + α0

(14)

where the continuous-time parameters are given by α1 = 3, α0 = 2, β0 = 2.
System identification was carried out assuming three different model struc-
tures:

SDRM: Simple Derivative Replacement Model. This corresponds to the struc-
ture, where continuous-time derivatives are simply replaced by divided dif-
ferences.

MIFZ: Model Including Fixed Zero. This model considers the presence of the
asymptotic zeros.

MIPZ: Model Including Parameterised Zero. This model also includes a sam-
pling zero, whose location has to be estimated.

The three discrete-time models can be represented in terms of the δ operator
as:

Gδ(γ) =
Bδ(γ)

γ2 + α1γ + α0

(15)

where:

Bδ(γ) =


β0 (SDRM)

β0(1 + ∆
2
γ) (MIFZ)

β0 + β1γ (MIPZ)

(16)

We use a sampling period ∆ = π/100[s] and choose the input uk to be a random
Gaussian sequence of unit variance. Note that the output sequence yk = y(k∆)
can be obtained by either simulating the continuous-time system and sampling
its output, or, alternatively, by simulating the exact sampled-data model in
discrete-time. Also note that the data is free of any measurement noise. The
parameters are estimated in such a way to minimise the following equation
error cost function:

J(θ) =
1

N

N−1∑
k=0

ek(θ)
2 =

1

N

N−1∑
k=0

(δ2yk − φT
k θ)2 (17)

where:

φk =


[−δyk, −yk, uk]

T

[−δyk, −yk, (1 + ∆
2
δ)uk]

T

[−δyk, −yk, δuk, uk]
T

(18)
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and

θ =


[α1, α0, β0]

T (SDRM)

[α1, α0, β0]
T (MIFZ)

[α1, α0, β1, β0]
T (MIPZ)

(19)

Note that, in this example, we are estimating the parameters using unfiltered
“equation errors”. In practice this is not recommended as it is generally ex-
tremely non robust. The reason is that equation error models emphasize fitting
at high frequencies and are thus very sensitive to high frequency model errors
including the issue of having the correct sampling zeros. To explain the origin
of the difficulty, consider a general transfer function model of the form:

Ao(q
−1)yt = Bo(q

−1)ut + wt (20)

where wt is zero mean white noise with variance σ2
w. Using Parseval’s Theorem

it is readily seen [32] that the equation error cost function tends to

J =
∫
|A|2|(Go −G)Φu|2dω +

∫ ∣∣∣∣ A

Ao

∣∣∣∣2 σ2
wdω

where Φu, Go = Bo

Ao
, and G = B

A
are the input spectrum ,the “true” system and

the model respectively. Now A(q−1) is, typically, high pass. Thus, we see that
the estimator fits the error between Go and G emphasizing high frequencies.
Consequently, if one wants to use an equation error estimator then one should
always use an appropriate filter, E(q−1), to focus the fit on the frequency range
of interest. With pre-filtering of yt and ut by E(q−1) the cost function becomes

J =
∫ ∣∣∣∣AE

∣∣∣∣2 |(Go −G)Φu|2dω +
∫ ∣∣∣∣ A

EAo

∣∣∣∣2 σ2
wdω (21)

The filter E(q−1) can thus focus the estimator in the frequency range of inter-
est. In the remainder of this example we will continue to use unfiltered equation
errors so as to emphasize the importance of using the correct sampling zeros
if a model with high fidelity at high frequency is desired. Table 1 shows the
estimation results in the delta domain. Note that the system considered is lin-
ear, thus, the exact discrete-time parameters (exact DT) can be computed for
the given sampling period. These are also given in Table 1. We see that, while
both models incorporating a sampling zero (MIFZ and MIPZ) are able to re-
cover the correct discrete model 9and hence the approximate continuous-time
parameters), when using SDRM the estimate β̂0 is clearly biased (by a factor
of almost 2 : 1).

The result in the previous example may be surprising since, even though the
SDRM converges to the continuous-time system as the sampling period goes
to zero, the estimate β̂0 does not converge to the underlying continuous-time
parameter. This estimate is asymptotically biased [45,47]. Specifically, we see
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that β0 is incorrectly estimated by a factor of 2 by the SDRM. This illustrates
the impact of not considering sampling effects on the sampled-data models
used for continuous-time system identification.

The above discussion and example suggest that one cannot, in general, ig-
nore the effect of folding in sampled data models. Indeed, one should include
the sampling zero dynamics which result from the folding of high frequency
components back into the range (0, π/∆). These ideas can also be extended
to the nonlinear case [46]. However, there is a further robustness issue to be
considered. Specifically, the high frequency components that are folded back
by sampling are likely to be ill-defined or non-stationary in practice due to
one’s inability to exactly describe systems at high frequencies. Hence, it seems
desirable to not place too much confidence in folded artifacts. For example,
the asymptotic sampling zero of (0.5∆δ+1) described in relation to (12), (13)
holds only under very precise conditions i.e. (i) that the input is generated by
a zero order hold and (ii) no under-modelled poles or zeros lie above π/∆. If
these assumptions do not hold then this can be a source of problems [47]. A
simple procedure for robustifying against this issue is discussed in the next
section.

6 Limited bandwidth estimation

Identification procedures can be robustified to the effects of high frequency
folding (including the presence of sampling zeros and anti-aliasing filters) by
simply avoiding estimators which focus on frequencies near the folding fre-
quency. This can be readily achieved in the frequency domain (for linear sys-
tems) as we show below. Similar ideas can be develop in the time domain.

One can readily perform robust Frequency Domain Maximum Likelihood (FDML)
estimation for linear models. The core idea is to convert the data to the fre-
quency domain and then carry out the identification over a limited range of
frequencies. This amounts to not using some parts of the data. This will reduce
nominal performance but can lead to substantial improvements in robustness.
Note, however, that one needs to carefully define the likelihood function in
this case. For example, the following result Note this result has been derived
in [31] for the scalar case, and in [33] for the multi-variable case.

Lemma 1 Assume a given set of input-output data {uk = u(k∆), yk = y(k∆)},
k = 0 . . . N , is generated by the following discrete-time model:

yk = Gq(q, θ)uk + Hq(q, θ)wk (22)

where wk is Gaussian discrete-time white noise (DTWN) sequence, wk ∼
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N(0, σ2
w).

The data is transformed to the frequency domain (ignoring transients) yielding
the discrete Fourier transforms U` and Y` of the input and output sequences,
respectively. Then the maximum likelihood estimate of θ, when considering
frequency components up to ωmax, is given by:

θ̂ML = arg min
θ

L(θ) (23)

where L(θ) is the negative logarithm of the likelihood function of the data given
θ, i.e.

L(θ) = − log p(Y0, . . . , Ynmax

∣∣∣θ)
=

nmax∑
`=0

|Y` −Gq(e
jω`∆, θ)U`|2

λ2
w|Hq(ejω`∆, θ)|2

+ log(πλ2
w|Hq(e

jω`∆, θ)|2) (24)

where λ2
w = ∆N σ2

w, and nmax is the index associated with ωmax.

222

Remark 2 Within the above framework, the logarithmic term must be in-
cluded in the log-likelihood function since this plays a key role in obtaining
consistent estimates of the true system. This term can be neglected only under
special circumstances e.g. if [31]:

• The noise model is assumed to be known. In this case Hq does not depend
on θ and, thus, plays no role in the minimisation (23); or

• The frequencies ω` are equidistantly distributed over the full frequency range
[0, 2π

∆
). This is equivalent to considering the full bandwidth case in (24),

i.e. nmax = N
2

(or N , because of periodicity). This yields:

2π

N

N−1∑
`=0

log |Hq(e
jω`∆, θ)|2 N→∞−−−−−−−→

∫ 2π

0
log |Hq(e

jω, θ)|2dω (25)

A standard result from Complex analysis (The Bode integral [17]) ensures
that the last integral is equal to zero for any monic, stable and inversely
stable transfer function Hq(e

jω, θ).

OOO

Using the cost function (24) it is straightforward to estimate the parameters.
Moreover, tests, see e.g. those reported in [45,47], show this to be a robust
strategy. The above ideas can also be extended to closed loop identification
(see [35]), and state-space multivariable systems [9].
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7 Robust experiment design

Having decided on the class of models and a suitable sampling strategy, then
the next step is to design a suitable robust experiment. We saw in the moti-
vating example of Section 2 that estimation under closed loop conditions is a
potential source of robustness problems. On the other hand, colleagues from
industry often tell us that the only acceptable experiment (to them) is one
performed in closed loop since this ensures that all safety and feedback mech-
anism are in place. Indeed in extreme circumstances, it is often said that the
experiment should not be detectable on the plant output records (at least as
far as plant operators are concerned). This goal can be given a mathematical
description by requiring that the plant output satisfy certain production ori-
ented constraints during the experiment. We will argue below that this type
of constraint invariably implies that the experiment should be conducted in
closed loop.

For simplicity of exposition we will develop the mathematical support for our
conclusions based on linear single input single output models. However, one
can reasonably expect that similar qualitative conclusions hold more generally
(i.e. for nonlinear models, etc.). Thus, consider a single input - single output
linear system of the form

S = {(Go, Ho) ∈ C : y(t) = Go(q
−1)u(t) + Ho(q

−1)w(t)} (26)

where C is the set of causal linear systems, q−1 is the unit delay operator
and Go(q

−1) = q−dḠo(q
−1) (Ḡo(0) = b0 6= 0, d ∈ N) 2 and {w(t)} is zero

mean white noise sequence with variance E{w(t)2} = σ2
w (note that σ2

w is also
the noise spectral density). We take Ho(q

−1) to be the stable minimum phase
spectral factor, and Ho(0) = 1. We consider Box-Jenkins models of the form

G(q−1, θ) = G(q−1, ρ), H(q−1, θ) = H(q−1, η) where θ =

ρ

η

. Notice that the

sub-parameter vector ρ refers only to G(q−1).

Under mild conditions, it is well known that, when using the Prediction Error
Method (PEM), [18, page 99], [32, page 282] we have:

√
N(θ̂N − θo)

d−→ N(0, Pθ) (27)

where the matrix Pθ (assumed non-singular) is given by:

Pθ = σ2
w

[
Ē{Ψ(t, θo)Ψ(t, θo)

T}
]−1

(28)

2 We take Ḡo(q−1) = B̄o(q−1)
Ao(q−1)

.
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and Ψ(t, θ) = −∂ε(t,θ)
∂θ

, ε(t, θ) = H(q−1, θ)−1[y(t)−G(q−1, θ)u(t)].

The covariance of the parameter θ̂N is usually approximated as cov
{
θ̂N

}
≈

1
N

Pθ for experiment design [32, Chapter 9] (N is the number of data points).

It is well known [32] that, for BJ models, the following is satisfied:

Ψ(t, θo) =

Ho(q
−1)−1Λρo(q

−1)u(t)

Ho(q
−1)−1Ληo(q

−1)w(t)


where

Λρo(q
−1) =

∂G(q−1, ρ)

∂ρ

∣∣∣∣∣
ρ=ρo

Ληo(q
−1) =

∂H(q−1, η)

∂η

∣∣∣∣∣
η=ηo

The information matrix for the full parameter vector is given by:

Mθ = NP−1
θ =

N

σ2
w

Ē{Ψ(t, θo)Ψ(t, θo)
T}

This can also be re-written using Parseval’s Theorem as 3 4 [32, page 291]:

Mθ =
N

σ2
w

1

2π

 A B

BT D

 (29)

where

A =
∫

G1G
H
1 Φu, B =

∫
G1G

H
2 Φuw,

D =
∫

G2G
H
2 σ2

w, G1 = H−1
o Λρo , G2 = H−1

o Ληo

From (29) and utilizing standard matrix algebra we have that the inverse of

3 Here, and in the sequel, we omit the limits of integration and the integration
variable. Unless, otherwise stated the limits of integration are from −π to π, and
the integration variable is ω.
4 We use the following notation: Φxy =

∑∞
τ=−∞Rxy(τ)e−jωτ , and Rxy(τ) =

Ē{x(t)y(t − τ)} = 1
2π

∫
Φxye

jωτdw for any pair of signals x(t) and y(t). We also
use Φx = Φxx.
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the covariance for ρ and η are given by:

2πσ2
w

N
P−1

ρ =
∫

G1G
H
1 Φu − β(Φuw)

2πσ2
w

N
P−1

η =
∫

G2G
H
2 σ2

w − γ(Φuw) (30)

where

β(Φuw) = BD−1BT , γ(Φuw) = BT A−1B (31)

Remark 3 Notice that β(Φuw) ≥ 0 since
∫

G2G
H
2 σ2

w (and its inverse) is a
positive definite matrix. Similarly, γ(Φuw) ≥ 0 since

∫
G1G

H
1 Φu (and its in-

verse) is a positive definite matrix.

OOO

For future use we next describe bounds on P−1
ρ .

Lemma 4 The inverse of the covariance for ρ (for any experiment ξ) is

bounded as follows: 2πσ2
w

N
P−1

ρ {ξ} ≥
∫

G1G
H
1

[
Φu − |Φuw|2

σ2
w

]
. Moreover, equality

holds if and only if there is a non-frequency dependent matrix Γ (of appropriate
dimensions) such that G1Φuw = ΓG2.

PROOF. This is a direct consequence of the Cauchy Schwarz inequality (see
[4], [5] for details).

222

Our goal in the sequel will be to compare open loop and closed loop exper-
iments. We will use Ξol and Ξcl to denote open and closed loop experiments
respectively. We define these classes below.

Consider a general class of experiments carried out with any linear time in-
variant feedback control law of the form

u(t) = Fo(q
−1)r(t)− Co(q

−1)y(t) (32)

where r(t) is a reference signal. This class includes open loop experiments
when we take Co(q

−1) = 0.

Under the control law (32), the closed loop satisfies

y(t) = GoFoSor(t) + SoHow(t)

u(t) = FoSor(t)− CoHoSow(t)
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where So(q
−1) is the sensitivity function given by [17, page 125]:

So(q
−1) =

1

1 + Go(q−1)Co(q−1)

The corresponding output, input and cross spectrum are given by

Φy = |GoFoSo|2Φr + |SoHo|2σ2
w

Φu = |FoSo|2Φr + |CoHoSo|2σ2
w

Φuw = −CoHoSoσ
2
w (33)

We can then define the classes of experiments of interest as follows:

Definition 1

Open loop: Ξol = {ξ ∈ Ξ : Co(q
−1) = 0}

Closed loop: Ξcl = {ξ ∈ Ξ : Co(q
−1) 6= 0}

(34)

OOO

With the above background we can now define what we mean by a good
experiment. Specifically:

Definition 2 The class Ξcl of experiments is said to be better (not worse)
than the class Ξol if and only if ∀ξc ∈ Ξcl,∃ξo ∈ Ξol such that 5

P−1
ρ {ξc} > P−1

ρ {ξo}
(
P−1

ρ {ξc} ≥ P−1
ρ {ξo}

)
(35)

OOO

The above definition uses a strong notion of optimality called Loewner opti-
mality [36, chapter 4] due to the association with the ordering of symmetric
matrices called The Loewner partial ordering (see e.g. [42]). This definition can
be extended to define a partial ordering (for the reduced vector ρ) amongst
experiments in the sense that [25]

ξ1

ρ

� ξ2 ⇔ P−1
ρ {ξ1} ≥ P−1

ρ {ξ2} ξ1, ξ2 ∈ Ξ (36)

where ρ is the vector of parameters of interest and Ξ is the allowable set of

experiments. When strict inequality holds in (36) we write ξ1

ρ
� ξ2.

Remark 5 Notice that ξ1

ρ

� ξ2 implies that ξ1 is preferable under any order
preserving (isotonic) criterion such as det {Pθ}, λmax{Pθ}, trace {Pθ}, etc.
OOO

5 A ≥ B and A > B signify A − B positive semidefinite and positive definite
respectively.
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Next, to obtain a meaningful design problem, it is necessary to place con-
straints on the allowable set of experiments. Based on our stated goal that
the experiment should have minimal impact on nominal production, we will
require that the experiment satisfy an output power constraint i.e. we require
that

Py :
∫

Φy ≤ K (37)

Note that this requirement is heuristically related to keeping the perceived
output variations small during the experiment. The constant K in (37) is
assumed to be strictly greater than the minimum achievable output variance.
In order to find an optimal solution we use the scalar function J(P−1

ρ ) which
is any isotonic (order preserving) function.

Our key conclusion is then summarized in the following recent result [4,5]
which generalizes results in [32]:

Theorem 6 For the system described in equation (26) and provided that a
BJ model is used and that the associated minimum variance controller is dif-
ferent from zero then the class of experiments Ξcl is better than the class of
experiments Ξol. Moreover, for any isotonic scalar design criterion, J(·) for
ρ, the optimal experiment is necessarily in the class Ξcl. 222

The above result is very strong since it shows that, if one constrains the output
power during an experiment, then one should always perform the experiment
in closed loop (for a general class of systems as stated in the Theorem). The
proof of this Theorem is based on the construction of a closed loop experiment
which is better than any given open loop experiment. Indeed, the closed loop
experiment needs only to satisfy the following:∫

|SoHo|2 <
∫
|Ho|2 (38)

where So is the closed loop sensitivity function.

Actually, we can gain a little more insight by examining this latter requirement
for the closed loop experiment. What this says is that the (mean square)
impact of disturbances during the (closed loop) experiment should be less in
closed loop than it would have been had the experiment been performed in
open loop. Indeed, the more we can reduce the impact of disturbances on
the output via feedback, then the greater “room” we make for the output
variations caused by the experimental test signal (within the limits imposed
by production constraints). This seems heuristically reasonable.

One might actually believe by examining (38) that the best experiment coin-
cides with making

∫
|SoHo|2 as small as possible. Indeed, the controller that
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makes the output variance as small as possible is commonly known as a mini-
mum variance controller. The design of such a controller depends on having a
detailed plant model. However, this introduces a further robustness problem
since, presumably, the purpose of the experiment is to learn (more) about
the plant model. (More will be said on this point later). However, this appar-
ent paradox is readily resolved (at least heuristically) by utilizing ideas from
traditional control theory. Specifically we know that |So| can be made small
over the frequencies where the relative model error is less than one. Hence,
prior knowledge about the system dictates the bandwidth over which we can
robustly obtain significant sensitivity reduction in experiment design. Indeed,
an iterative design procedure can be employed where one successively fits a
model (over a given bandwidth), then uses that model to design a controller
to achieve a slightly wider bandwidth and so on. This also is related to the
wind-surfer approach to adaptive control [10,30,29,26].

The key conclusion from the above reasoning is that, subject to the output
variations being constrained, we should always design the experiment so that
it is conducted in closed loop. We also conclude from the proof of Theorem 6
(see [4,5]) that the reference should be injected via S̄o where S̄oSo is all pass.
However, so far, we said nothing about the reference signal perturbations
themselves. Examination of the proof of Theorem 6 shows that a good option
is to use the best “open loop” test signal in conjunction with tight feedback
control. Here again we are confronted by a robustness issue, namely the best
open loop test signal typically depends on the nature of the system i.e. the very
thing that the experiment is aimed at learning. We are thus led to consider
more heuristic (and practical) issues. Practitioners who carry out experiments
often report that step type test signals are good, but typically do not excite
high frequencies terms adequately. On the other hand random signals such
as PRBS are also considered good, but typically have wasted energy at high
frequencies.

In the frequency domain, step type inputs have power that decays as 1/(freq.)2

(1/f2) whereas random signals have power that is constant over frequency.
The above line of reasoning implies that a signal having power that lies some-
where between 1/f2 and a constant might be a good open-loop test signal.
This suggests that a test signal with power that decays as 1/f (over a lim-
ited bandwidth) could be a good choice. Indeed, recent research has shown
that test signals having energy that decays as 1/(f) have remarkable robust-
ness properties in system identification. This claim is illustrated below for a
particular example.

As a specific illustration of the properties of (band-limited) 1/f noise, we refer
to an illustrative first order system having transfer function
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G(s) =
1

s/θ + 1
(39)

The optimal nominal (open loop) test signal for identification of this system
is well known to be a single sinusoid of frequency w∗ = θo where θo is the
a-priori estimate of θ. This is an intuitively pleasing result, i.e. one places the
test signal at the (nominal) 3dB break point. However, the result reinforces the
fundamental robustness difficulty associated with nominal experiment design,
namely, the optimal (open loop) test signal depends on the very thing that
the experiment is aimed at estimating.

An alternative, robust input design strategy is to assume that the a-priori
distribution of θ is anywhere in a compact set Θ. Then, robust experiment
design may be formulated as

ξ = min
ξ∈Ξ

max
θ∈Θ

J(P (θ), θ) (40)

where ξ is the experimental conditions (here the test signal), J(·) a suitable
scalar function of P (θ) the parameter variance matrix.

For the one parameter problem (39), we choose Θ = [θmin, θmax] and J(P (θ), θ)
as the relative error P (θ)/θ2. For θmin = 1 and θmax = 10.

For the above problem, the following key properties have been established in
[40]:

(i) Existence: There exists at least one optimal input.
(ii) Uniqueness: The optimal input is unique, and θ and θ do not belong to the

input spectrum.
(iii) Compact support: Every optimal input should have all its energy inside

[θ, θ].
(iv) Finite support: The optimal input has finite support in the frequency do-

main, and thus can be realised as a finite sum of sinusoids.

The robust optimal test signal obtained via the cost function (40) when the
a-priori range for θ is (0.1, 10) is given in reference [40].

A remarkable property (established in [40]) is that bandlimited ‘1/f ’ noise,
defined by the spectrum

φ1/f
u (ω) ,


1/ω

ln ω − ln ω
, ω ∈ [ω, ω]

0, otherwise

, (41)
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is near optimal. Here we take the frequency range as ω = θ and ω = θ. In
fact, it has been proven that the performance of bandlimited ‘1/f ’ noise is (at
most) a factor of 2:1 away from the performance of the true robust optimal test
signal. This is confirmed in Table 2 where different experiments are compared.

Note that the single sinusoid at ω = 1 is the nominal test signal if we take the
nominal parameter value as the geometric mean of θmin and θmax.

We see from Table 2 that 1/f noise is indeed an excellent input for robust
experiment design. This is further supported by recent research reported in
[39]. In practice, it is also desirable to keep the amplitude of the test signal
small. Thus, one may be interested in generating binary signals having a (band-
limited) 1/f spectrum. Methods for designing such test signals are described
in [41,8].

8 Estimation Procedures

We have argued above that the best experiment (when the ouput variations are
constrained) is a closed loop one. This leads to the obvious follow up question
“How should we estimate the parameters from closed loop data?”. This issue
has led to considerable consternation by practitioners. Indeed, some believe
that closed loop identification is extremely difficult and often impossible. We
will show below that, in fact, closed loop identification, when carried out
properly, is no more difficult than open loop identification.

Thus, consider the closed loop shown in Figure 1. To illustrate the ideas we
assume that the process of interest has the following linear model (extensions
to the nonlinear case are also possible):

yt = Gout + vt

vt = Howt (42)

where Go and Ho are linear transfer functions, and wt is a sequence of inde-
pendent random variables with zero mean value, variance σ2

w. We also, assume
that yt and ut are jointly quasi-stationary, that the model G for Go belongs to
the family of models G(θ), and that H (the model for Ho) belongs to a family
of models H(θ).

The equations describing the system in Figure 1 are

ut = C(q−1)[rt − yt] (43)

yt = Go(q
−1)ut + vt (44)

vt = Ho(q
−1)wt (45)

19



where wt is a white noise sequence. The closed loop system is assumed to be
stable. We further assume that at least one of the following two conditions
holds:

(1) There is a delay in both the process and the model (Go(0) = G(0) = 0)
and

(2) the true controller is strictly proper (C(0) = 0).

Also, we normalize the true noise transfer function Ho(q
−1), and the model

H(q−1) by requiring that

Ho(0) = H(0) = 1 (46)

The literature on identification basically offers two choices for closed loop
identification 6

• Direct: Here one treats ut and yt as if they were in open loop and estimates
G directly.

• Indirect 7 : Here the relationship between yt and rt is modeled and then Go

is obtained from this model. In the linear case, we use the model

yt =
GoC

1 + GoC
rt +

1

1 + GoC
vt (47)

and then extract an estimate of Go. Indeed (47) can be simply thought as
a potential model structure with some known parts (the parameters in C)
and some parts to be estimated (the parameters in Go). This is known as a
Taylor made parameterization.

Each of the above approaches has advantages and disadvantages. Specifically,

(1) Direct identification is impossible with open loop unstable systems (in
Box Jenkins form) since one has no way to ensure that the unstable
initial condition response remains bounded. Also, direct identification is
sensitive to being able to accurate specification of the noise model. Indeed,
we will show below that errors in the noise model lead to bias.

(2) Indirect identification is, on the other hand, sensitive to the fidelity of the
controller C. Thus, errors in the controller, e.g. due to saturation, will
cause bias errors.

6 There are some other alternatives in the available literature such as joint in-
put/output identification. However, all of them assume perfect knowledge of the
controller. Moreover, in most cases the controller must be linear.
7 Note that indirect identification is equivalent to direct identification of a (closed
loop) model having a particular parameterization.
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We take a short diversion to review known results [16,32] on identification via
PEM’s. We assume that the system under study has input ūt and output yt.
(The specific form of ūt and its relationship to ut will be described later.) We
conceptually model the relationship between ūt and yt by

yt = Gūt + Hwt (48)

where wt is notionally “white noise” and G and H are (independently) pa-
rameterized transfer functions. The PEM typically uses a cost function of the
form [32]:

V =
1

N

N∑
t=1

ε2
t (49)

where εt denotes the prediction error given by:

εt = H−1[yt −Gūt] (50)

The following results are standard for PEM identification (see [16,32]):

Lemma 7 The cost function V (θ) converges, almost surely, to

V̄ (θ) = Ē{ε2
t} =

1

2π

∫ π

−π
Φε(w)dw (51)

222

Lemma 8 The prediction error spectrum satisfies the following:

1

2π

∫ π

−π
Φε = σ2

w +
1

2π

∫ π

−π

1

|H|2
[
G̃ H̃

]
ΦX

G̃∗

H̃∗

 (52)

where ∗ denotes complex conjugate and

G̃ = Go −G (53)

H̃ = Ho −H (54)

ΦX =

 Φū Φūw

Φwū σ2
w

 (55)

222

Using the result (52) it is easy to see that if the spectrum ΦX is a positive
definite matrix for all frequencies, and that the true model (Go and Ho) are
contained in the family of models (G(θ) and H(θ)) a consistent estimate is
obtained. This condition has been called an informative experiment [16,32].
We also have the following result [16,32]:
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Lemma 9 The prediction error spectrum satisfies the following:

1

2π

∫ π

−π
Φε = σ2

w +
1

2π

∫ π

−π

1

|H|2
[
|G̃ + H̃ΦwūΦ

−1
ū |2Φū + |H̃|2Φr

w

]
(56)

where G̃, H̃ are as in (53), (54), and

Φr
w = σ2

w − ΦwūΦ
−1
ū Φūw (57)

222

Using (56), it can be readily seen that, when we have an erroneous noise model,
the resulting estimate of Go will have an asymptotic bias given by:

Bθ = H̃ΦwūΦ
−1
ū (58)

where H̃ is as in (54). Here, we have assumed that H, and G are independently
parameterized. This, also covers the case when a fixed noise model is used.
Using equation (58) we see that it is possible to obtain a consistent estimate
in the following two cases:

• When a sufficiently rich family of noise models H(θ) is used such that H =
Ho is achievable.

• When the cross-spectrum Φwū is (near) zero. (This is always the case with
open loop data but will generally be false for closed loop data when a direct
identification method is used).

Equation (56) also gives insight when the system model is misspecified i.e.
when there does not exist a G in the model class such that G̃ can be zero. In
this case, minimization of (51) can be viewed as an approximation problem
where the “weighted distance” between G and Go + H̃ΦwuΦ

−1
u is minimized

over the given model class.

9 Virtual Closed Loop Identification

We have seen in section 8 that both direct and indirect closed loop identifica-
tion have potential robustness issues. In this section, we describe a robustified
procedure that combines the best features of direct and indirect identification.

To explain the idea, consider a hypothetical controller, C̄, which is linear and
has the transfer function

C̄(q−1) =
P (q−1)

L(q−1)
(59)
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We use a fractional representation and express (59) in the equivalent form:

C̄(q−1) =
P (q−1)/E(q−1)

L(q−1)/E(q−1)
(60)

where E(q−1) is any stable polynomial. We also write

N(q−1) = E(q−1)− L(q−1) (61)

Next we form a filtered version of the reference signal via the following stable
operations on the measured signals ut and yt:

ūt = ut −
N(q−1)

E(q−1)
ut +

P (q−1)

E(q−1)
yt (62)

We can now use the virtual input, ūt, as a simple mechanism for choosing an
identification algorithm that lies anywhere in the range from direct to indirect.
To illustrate, we consider two extreme cases.

(1) When C̄ = P
L

is chosen as the true control law, then

ut =
P (q−1)

L(q−1)
[yt − rt] (63)

ūt = ut −
N

E
ut +

P

E
yt (64)

Substituting (63) into (64) gives

ūt = −
(
1− N

E

) (
P

L

)
[yt − rt] +

P

E
yt (65)

= −P

E
[yt − rt] +

P

E
yt (66)

=
P

E
rt (67)

Hence, in this case, ūt is simply a filtered version of the reference input.
Thus, if we use direct identification the system linking ūt to yt, we are,
in effect, using indirect identification between the filtered reference signal
P
E
rt and the output yt.

(2) Alternativelly, say we choose E(q−1) = L(q−1) (i.e. N(q−1) = 0) and
P (q−1) = 0, then from (62) we have that ūt = ut. Hence, in this case, ūt

is simply the true plant input. Thus, fitting a model between ūt and yt

corresponds to the usual direct identification method.

In the sequel, we will consider alternatives that lie between the above extremes.
Our principal interest here is when C̄(q−1) is not the true controller. Indeed,
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all we require is that C̄(q−1) stabilizes the system if it were to be applied to
the system (even if it is, in fact, not in the real closed loop!). When C̄(q−1) is
not the true controller, it is still easy to compute the equations linking ūt to
yt. Specifically, we have from (62) that yt and ūt are related by the following
Virtual Closed Loop (where we treat ūt as a given signal).

Plant model: yt = G(q−1)ut + vt

Virtual feedback: ut = N(q−1)
E(q−1)

ut − P (q−1)
E(q−1)

yt + ūt

(68)

where {vt} denotes the noise sequence and is assumed to satisfy vt = H(q−1)wt

for {wt} a white sequence.

Remark 10 The plant model G(q−1) in (68) could be unstable, nonlinear etc.
However, for (68) to be suitable for identification it is necessary that C̄(q−1)
stabilizes the plant model. OOO

Remark 11 Equations in (68) simply represent a particular parameterized
model linking ūt to yt where parts of the model are fixed and known (namely
N(q−1), E(q−1) and P (q−1)) and parts are unknown (namely the parameters
in G(q−1)). See (71) below. OOO

Finally, one can ask where do we get ūt from to drive (68). The answer is
again provided by (62) i.e.

ūt = ut −
N(q−1)

E(q−1)
ut +

P (q−1)

E(q−1)
yt (69)

Remark 12 When C̄(q−1) is not the true controller, then there will exist
residual correlations between the noise and ūt. This will, in turn, lead to resid-
ual bias errors if the associated noise model is erroneous. However, we can see
that one gains the advantages of both direct identification (i,e. ūt can be treated
as a known input into a particularly parameterized plant) and indirect identi-
fication can be performed since the virtual controller is exactly known. OOO

We next show that the use of a virtual closed loop has a beneficial effect
on estimation accuracy provided C̄ is chosen appropriately. In particular, we
wish to study the effect of the virtual closed loop on the correlation between
w and ūt and hence on the bias expression given in (58). The key difference
between direct identification and virtual closed loop identification is that direct
identification is based on the model

yt = Gout + Howt (70)

whereas, the virtual closed loop identification is based on (68) which can also
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be expressed as

yt =
GE

L

1 + GC̄
ūt +

H

1 + GC̄
wt = T yūt + H̄wt (71)

The key problems with (70) are

(1) One cannot run the model G in open loop if it is unstable.
(2) The presence of feedback means that ut and wt are potentially highly

correlated which is a source of robustness and bias problems.

On the other hand, the model
G E

L

1+GC̄
can be stable even if G is unstable. Also,

the correlations between ū and wt are potentially less than between ut and wt.
The implications of the above observations are explained in detail in [3,2,1].
In particular we argue in [2,1], that the bias resulting from virtual closed loop
identification has the form

Ĝ = Goλ̄− C̄−1(1− λ̄) (72)

where

λ̄ =
1

1 + κC∆H∆

(73)

where κ is a frequency dependent parameter, C∆ denotes the relative error in
the virtual controller i.e. the true controller Cl is expressed as

Cl = C̄(1 + C∆) (74)

and where H∆ denotes the error in the noise model, i.e.

H∆ = H̄ − H̄o (75)

Also note that κ is inversely proportional to the size of the reference signal
spectrum.

Remark 13 We see from (72) that the bias in the estimate will be small if
any of the following three conditions is satisfied

(1) H∆ is small (i.e. small noise model errors)
(2) C∆ is small (i.e. small errors between C̄ and the true controller).
(3) The reference signal dominates disturbances.
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OOO

Thus, the virtual closed loop method achieves the best features of both direct
and direct identification. We illustrate by a simple example:

Consider the following system:

Go(q
−1) =

bq−1

1− aq−1
(76)

with a = 0.8, and b = 0.2. This system is operated in closed loop with the
following nominal linear controller:

Cl(q
−1) =

0.3

1− q−1
(77)

However, the true controller operates in such a fashion that the input signal
saturates such that |ut| ≤ 5. Thus, the true controller, C, is actually nonlinear.
The reference signal rt is taken to be zero mean Gaussian white noise process
of variance σ2

r = 30. The noise wt is taken to be zero mean Gaussian white
noise process of variance σ2

w = 0.1 (σ2
w ≈ 5). The true noise model is given by

Ho(q
−1) =

1

1 + d1q−1 + d2q−2 + d3q−3 + d4q−4
(78)

where d1 = −1.992, d2 = 2.202, d3 = −1.841, and d4 = 0.8941.

In order to identify the process, we assume (incorrectly) that the noise model,
H, is an autoregressive AR model of first order. (This is, after all, not un-
reasonable, since the system is a first order transfer function). We then iden-
tify the process by using direct identification, and also by using the virtual
closed loop method with the virtual controller equal to the true controller
(but without saturation). For the Virtual Closed Loop (VCL) case, we use
a PEM to identify the virtual closed loop transfer function. (We use a filter
E = 1 − 0.95q−1). We then extract the estimate of the open loop model by
using the known relationship between the open and closed loop parameters.
We carried out 400 Monte-Carlo simulations for 3000 data points. The average
models so obtained are presented in table 3. We can see that, for this example,
the model obtained by using direct identification is not satisfactory – there is
a significant model misfit due to a poor noise model. Also, the model found by
indirect identification is poor. This is because the controller occasionally satu-
rates. On the other hand, the model obtained by using the virtual closed loop
method is extremely close to the true model. The reason for this improvement
is that the use of a virtual closed loop, reduces the bias due to the reduction
in the value of β. (see equation (72)).
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10 Errors in variables

A problem which is closely related to that of closed loop identification is that
of Errors In Variables (EIV)– see ([43,7] and the references therein). The core
idea in EIV estimation is that one does not know the exact form of the system
input but, maybe, has a noisy measurement of it. Thus, the system model
may be as in (1) but we only measure um

t where

um
t = ut + εt (79)

To illustrate the difficulties arising from EIV’s, say that vt in (1) is zero and
that Go is a scalar. Then, clearly

Go =
yt

ut

(80)

However, if we replace ut by um
t and use (79), then

Ĝ =
yt

ut + εt

=
Go

1 + 1
β

(81)

where β is a form of “signal to noise ratio” i.e.

β =
ut

ε
(82)

The above idea can readily extended to general estimation procedures e.g.
PEM’s etc.

We may summarize the above discussion by noting that significant bias errors
occur due to EIV issues whenever β (roughly the input signal to input noise
ratio) is small.

Special ways of analyzing data to minimize the impact of EIV’s can be found in
the literature (see e.g. [43,7,27,6]). Again, one should be aware of the potential
of sensitivity to the assumptions (i.e. lack of robustness) in these procedures.
One simple idea is to select those parts of the data where the EIV issue is
known to be small. For example, frequency and time selectivity has been suc-
cessfully used in the area of electromagnetic minerals exploration (see [28,27]).
Note again the idea of discarding data to enhance robustness. b

11 Conclusions

This paper has argued that robustness (i.e. insensitive to assumptions) is a
key aspect of system identification. This is not surprising in view of the fact
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that robustness plays a central role in many other areas including control.
We have shown that, if robustness is ignored, then models obtained via blond
application of identification procedures can bear little resemblance to reality.
On the other hand, we have argued that often robustness can be achieved by
relatively small modification to the algorithm e.g. by discarding some parts of
the data. The ideas have been illustrated with special emphasis on:

• selecting a model class,
• the effect of sampling on model aliasing,
• limited bandwidth estimation,
• robust experiment design,
• robust estimation for closed loop data, and
• robust estimation in the presence of errors in variables.

The ideas have been illustrated by several real world case studies. Finally, we
note that the ultimate test of robustness of an estimated model is through
validation (i.e. using the model in practice on data collected independently of
the identification experiment).

References
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Fig. 2. Results of the experiment in the frequency domain. ETFE (solid line), −1/C
(dashed line), Theoretical model (dotted line), Estimated model with the reduced
data (dash-dot line) and × - location of excitation frequencies.
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Fig. 3. Continuous (left)- and discrete-time (right) frequency response magnitudes
(vertical lines denote folding frequency of π/∆ for 3 different values of ∆).
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Table 1
Parameter estimates for a linear system

Parameters Estimates

CT Exact DT SDRM MIFZ MIPZ

α1 3 2.923 2.8804 2.9471 2.9229

α0 2 1.908 1.9420 1.9090 1.9083

β1 – 0.0305 – β0∆
2 = 0.03 0.0304

β0 2 1.908 0.9777 1.9090 1.9083
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Table 2
Relative Values of Cost for the Different Input Signals

max
θ∈Θ

[θ2M(θ, φu)]−1

Sinusoid at ω = 1 7.75

Bandlimited white noise 12.09

Bandlimited ‘1/f ’ noise 1.43

Min-max optimal input 1.00
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Table 3
Monte-Carlo comparison between VCL (PEM) and Direct (PEM) method for N =
3000 data points

σ2
w = 0.1 a b

True Values 0.8 0.2

Mean Value VCL Identification 0.7955 0.1990

Mean Value Direct Identification 0.8634 0.3041

Mean Value Indirect Identification 0.7746 0.1515
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