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Abstract— In this paper, we explore the problem of input
design for systems with quantized measurements. For the
input design problem, we calculate and optimize a function
of the Fisher Information Matrix (FIM). The calculation of the
FIM is greatly simplified by using known relationships of the
derivative of the likelihood function, and the auxiliary function
arising from the Expectation Maximization (EM) algorithm. To
optimize the FIM, we design an experiment using a recently
published method based on graph theory. A numerical example
shows that the proposed experiment can be successfully used
in quantized systems.

I. INTRODUCTION

In the present paper, we explore the problem of input
design for systems subject to quantized output data. This
problem is of relevance because of the many applications
where quantized systems are used. For example, quantized
systems are widely used in network control and wireless
communications, due to the restricted bandwidth of the
communication channels. In fact, due to constraints on the
communication channels, such as noise and limited band-
width, it is impossible to transmit data with infinite precision.
Thus, quantization is an effective way to reduce use of the
transmission resource, and meet the bandwidth constraint of
a communication channel. However, quantization is a lossy
compression method, hence the validity or performance of
parameter identification may be affected by quantization.
This could then result in the deteriorated performance of
adaptive control techniques.

In wireless communications, for example, quantized sys-
tem identification is crucial for echo cancellation and blind
communication channel estimation, see [11] and the refer-
ences therein. This means that quantized system identifica-
tion is very important as the use of wireless technologies is
now extensive in many areas of society, and it is expected
to increase.

Another type of quantized system is where the quantizer
can take only 2 possible values (binary signals). This kind
of configuration has attracted considerable attention. In fact,
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binary-valued (or quantized) sensors are commonly used in
practical systems. They are exemplified by switching sensors
for exhaust gas oxygen, photoelectric sensors for position,
Hall-effect sensors for speed and acceleration, gas content
sensors in the gas and oil industry, and distributed one-bit
wireless sensors. Particularly, for any remotely controlled
system, signal quantization is mandatory. Compared to reg-
ular sensors, binary-valued sensors are usually far more cost
effective. However, they provide very limited information on
the process.

In order to improve the estimation quality of the identified
quantized model, it is usually possible to manipulate the
input signal to be used during the identification experiment.
The input design problem has been widely studied, both in
the statistics literature [8], [9], [17] and in the engineering
literature [1], [10], [12], [14], [21]–[23], [32], primarily
focusing on linear systems. Some extensions to nonlinear
systems have been considered in [13], [15], [18], [29].

The problem of input design for quantized system has been
treated in previous works [5]–[7], [30]. The idea in [30] is to
establish conditions under which consistent estimates can be
obtained. In particular, they recommend the use of periodic
signals. Even though periodic inputs have shown to asymp-
totically achieve the Cramer-Rao lower bound (CRLB), their
use may be inadequate for tracking control applications [19].

In [7], the input design problem is carried out by us-
ing a worst-case framework, based on the set-membership
paradigm of uncertainty representation. There, the authors
assume uncertainty in the parameters, and extend a previous
work [6] from binary sensors to multilevel sensor thresholds.

The work [19] asserts that the input assuring strong
consistency of the estimates is a persistently exciting signal
of certain order r, as long as the quantizer is optimal in the
sense of minimizing the error between the measurement and
the input to the quantizer. However, the design of this signal
is not provided.

In this paper, we address the input design problem for the
identification of quantized systems. To this end, we consider
an approach recently proposed by the authors in [28], con-
sisting of a graph-theoretical technique leading to a convex
optimization problem. The missing ingredient needed for
using this approach is an estimate of the Fisher Information
Matrix (FIM) obtained when using a given (periodic) input;
such an estimate is proposed in this paper, based on the so-
called Fisher identity [20].

In our paper, we will consider that the true system is
known during the input design stage. This is a standard
assumption for most optimal input design methods, and it



is a previous and necessary step in order to perform robust
experiment design [24].

The remainder of this paper is as follows: In section
2 we describe the problem. In section 3, we recall how
to estimate the system subject to quantized measurements
using the Maximum likelihood (ML) estimator. In section 4,
we describe our method for input design. In section 5, we
describe an example showing the advantage of our method.
Finally, in Section 6, we draw conclusions.

II. STATEMENT OF THE PROBLEM

We focus on the problem of input design for quantized
output systems. In particular, we have a system as in Fig.
1. We consider the scheme where noise enters between the
linear system and the quantizer. A block diagram for the
setup is shown in Fig. 1. The noise, wt , is assumed to be
zero-mean Gaussian with variance σ2. We also assume that
σ2 is known.

Remark 1: Note that the assumption about the noise vari-
ance being known is only necessary for the experiment
design, and not for the estimation problem. As shown in
[11], the noise variance can also be estimated.
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Fig. 1. FIR system with quantized output.

The system can be described by

xt = ϕ
T
t θ +wt , wt ∼N (0,σ2)

yt = Q[xt ],
(1)

where xt is a scalar, the parameter vector θ is of dimension
q, ϕT

t is a matrix of dimension 1×q, and σ2 ∈R is the noise
variance. Q :R→ V represents a quantizer, which is a map
from the set of a scalars, to the finite set V = {v1,v2, · · · ,vM}
of scalars, i.e.

Q[x] =


v1 if x ∈Ω1

...
vM if x ∈ΩM

, (2)

where Ωi, i = 1, · · · ,M are subsets of R.
The problem of interest is to design the input UN :=

[u1 u2 . . . uN ]
T such that the parameter θ is better estimated

compared to any other input signal. To formulate the input
design problem, consider the FIM

IF = E
{

∂ l(θ)
∂θ

∂ l(θ)
∂θ T

}
∈ Rq×q, (3)

where
l(θ) = log p(YN |θ) (4)

is the log-likelihood function, with p(YN |θ) being the prob-
ability distribution of the data, YN = {y1, . . . ,yN}, given the

parameter θ . The FIM defines the maximal accuracy that an
unbiased estimator of θ , θ̂ , can achieve, due to the Cramér-
Rao bound [12]:

cov(θ̂)≥I −1
F . (5)

Given a matrix non-decreasing1 and convex function h :
Sq
+ → R, where Sq

+ corresponds to the space of symmetric
and positive-semidefinite matrices of dimension q× q, an
input design problem can be posed as

min
UN

h(IF)

s.t. 1
N ‖UN‖2

2 ≤ α,
(6)

where α > 0 is an upper bound on the available input
power. The input design procedure that we will describe in
Section IV takes the input power constraint implicitly into
account, by restricting the input to take values from a finite
alphabet.

III. BACKGROUND ON ML ESTIMATION BY USING THE

EM ALGORITHM WITH QUANTIZED OUTPUT DATA

The Maximum Likelihood (ML) estimation problem can
be posed as:

θ̂ = arg max
θ

l(θ), (7)

where the log-likelihood function l(θ) is given by (4).
For future reference we define XN = {x1, . . . ,xN}. For the
problem of interest here, we can write (4) as

l(θ) =
N

∑
t=1

lt(θ), lt(θ) = log p(yt |Yt−1,θ). (8)

Assumption 1: The input UN := {u1, . . . ,uN} is an exoge-
nous deterministic signal, and the FIR system is in open
loop. Notice that the system (of interest) is FIR, thus, lt(θ) =
log p(yt |Yt−1,θ) = log p(yt |θ) .

Assumption 2: The vector of parameters θ , the input (ut )
and the noise (wt ) satisfy regularity conditions guaranteeing
that the solution θ̂ of the optimization problem in (7)
converges (in probability or a.s.) to the true solution θ0.

The Expectation Maximization (EM) algorithm consists of
two steps: (i) the calculation of an auxiliary function (E-step)
and, (ii) the optimization of this auxiliary function (M-step).
The E-step is obtained by calculating function Q(θ , θ̂i):

Q(θ , θ̂i) :=
∫
Rn×N

log[p(XN ,YN |θ)]p(XN |YN , θ̂i)dXN . (9)

The M-step is then given by

θ̂i+1 = arg max
θ

Q(θ , θ̂i). (10)

In [11], it was shown that under the stated assumptions,
the estimate of the parameters can be found using the EM
algorithm. This algorithm is summarized in the following
theorem:

1h is a matrix non-decreasing function if h(A)≤ h(B) whenever A≤ B [4,
pp. 108].



Theorem 1: Consider the system given in (1), Assump-
tions 1 and 2, and the maximization problem stated in (10),
then the M-step of the EM algorithm is given by:

θ̂i+1 =

[
N

∑
t=1

ϕtϕ
T
t

]−1 N

∑
t=1

x̂t , (11)

where

x̂t = ϕ
T
t θ̂i +σ

I(1)t

I(0)t

, (12)

with I(0)t ∈ R, I(1)t ∈ R given by

I(0)t =
1√
2π

∫
S̃t

exp
{
−1

2
x̃2

t

}
dx̃t , (13)

I(1)t =
1√
2π

∫
S̃t

x̃t exp
{
−1

2
x̃2

t

}
dx̃t , (14)

and S̃t = {x̃t : Q[σ x̃t +ϕT
t θ̂i] = yt}.

Developing further the expressions for the integrals I(0)t ,
I(1)t , we can obtain:

I(0)t = 0.5 erf(S̃t/
√

2), I(1)t = −e−x2/2
√

2π

∣∣∣∣∣
S̃t

, (15)

where
erf(A ) =

2√
π

∫
A

e−u2
du.

IV. INPUT DESIGN

A. Input design via graph theory

In order to address the input design problem posed in
Section II, we restrict the input signal to be a realization
of a time-homogeneous Markov chain of finite memory
length, equal to q, taking values from a finite alphabet C
of cardinality c [28].

Remark 2: Notice that the Markov chain (of interest in
this paper) is run from a previously chosen node. This node is
chosen according to the stationary distribution of the Markov
chain. Thus, the Markov chain starts in “stationary” state.

Remark 3: While the requirement of stationarity is stan-
dard in input design, the constraint of being a Markov pro-
cess of finite memory may seem a bit restrictive. However,
as shown in [18], [28], since the quantized model has a
nonlinear FIR structure (i.e., the output yt depends on a finite
number of present and past values of ut ), this constraint is
actually not more restrictive than the one on stationarity (if
the memory length of ut is equal to the memory length of
the system). Forcing ut to belong to a finite alphabet, on the
other hand, is quite common in many application, e.g., in
communication systems.

Under the above mentioned conditions, the input signal
can be represented by its stationary probability mass function
(pmf) f (Uq). Furthermore, due to the requirement of station-
arity, it has been shown in [28] that the set of valid pmf’s
f (Uq) corresponds to the convex hull of pmf’s describing
prime cycles in a de Bruijn graph. To explain this fact in
more detail, we first need some definitions.

(ut−1, ut )
(1, 1)

(ut−1, ut )
(0, 0)

(ut−1, ut )
(1, 0)

(ut−1, ut )
(0, 1)

Fig. 2. de Bruijn graph derived from C q, with c= 2, q= 2, and C = {0, 1}.

The set C q of possible values for Uq is composed of
c elements, which can be viewed as nodes in a graph.
In addition, the transitions between the elements in C q,
as described by a stationary process of memory q, are
given by the feasible values of ut+q when we move from
(ut , . . . , ut+q−1) to (ut+1, . . . , ut+q), for t ≥ 0. The edges
between the elements in C q denote the possible transitions
between the states, represented by the nodes of the graph,
called a de Bruijn graph, GC q . Figure 2 illustrates this idea,
when c = 2, q = 2, and C = {0, 1}. From this figure we can
see that, if we are at node (0, 1) at time t, then we can only
end at node (1, 0) or (1, 1) at time t +1.

A prime cycle in a de Bruijn graph is an elementary cycle2

whose set of nodes do not have a proper subset which is an
elementary cycle [31, p. 678]. It can be shown that the prime
cycles of this de Bruijn graph allow us to describe the set
of possible stationary pmf’s of memory length q over C .
Specifically, for each prime cycle we can associate a pmf
f (i) corresponding to a uniform distribution with support in
the set of elements of the prime cycle [31, pp. 681]. Then, the
convex hull of the f (i)’s corresponds to the set of stationary
pmf’s over the graph [31, Theorem 6].

The prime cycles of the de Bruijn graph can be derived
from the elementary cycles of GC q−1 [31, Lemma 4], which,
in turn, can be determined using standard graph algorithms
[16], [26]. As an example, consider the graph in Figure 3.
One elementary cycle for this graph is (0, 1, 0). Using
Lemma 4 in [31], the elements of one prime cycle for the
graph GC 2 are obtained as a concatenation of the elements
in the elementary cycle (0, 1, 0), i.e., ((0, 1), (1, 0), (0, 1)).

The method for the design of input signals proposed in
[28] can now be described as follows:

1) Compute all the elementary cycles of GC q−1 .
2) Compute all the prime cycles of GC q by extending the

elementary cycles of GC q−1 .
3) Generate the input signals {u(i)t }

Nsim
t=0 by running the

2An elementary cycle is a sequence of vertices (v = v1, v2, . . . , vk = v)
such that each (vi, vi+1) is an edge of the graph, and where no vertex but
the first and last appears twice in the sequence.
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Fig. 3. de Bruijn graph derived from C q, with c= 2, q= 1, and C = {0, 1}.

prime cycles (Nsim must be sufficiently large as will
be described in the next subsection).

4) Approximate the information matrix I
(i)

F when using
u(i)t as input. This step will be described in more detail
in the next subsection.

5) Define γ := {α1, . . . , αn}, where n is the number of
prime cycles. Find γopt := {αopt

1 , . . . , α
opt
n } by solving:

γ
opt := arg min

γ∈Rn
h(I app

F (γ)) , (16)

where

I app
F (γ) =

n

∑
i=1

αi I
(i)

F , (17)

n

∑
i=1

αi = 1, (18)

αi ≥ 0 , for all i ∈ {1, . . . , n}. (19)

The procedure mentioned above computes γopt which
defines the optimal pmf f opt(Uq) =∑

n
i=1 α

opt
i f (i)(Uq). Notice

that I app
F (γ) in (17) is linear in the decision variables.

Therefore, the problem (16)-(19) is convex.
Finally, in order to generate the resulting input signal from

the optimal pmf f opt(Uq), it is necessary to find a transition
probability matrix satisfying the graph constraints and having
f opt as stationary distribution. One possible transition matrix
defined on the support of f opt, as described in [27], is:

P{ut |ut−1, . . . , ut−q+1}=
f (ut−q+1, . . . , ut)

∑
u∈C

f (ut−q+1, . . . , ut−1,u)
. (20)

The input signal is initialized by picking a node of the graph
at random, according to the distribution f opt, and the rest of
the sequence is simulated according to (20).

Remark 4: The computational complexity of the method
described here is mainly related with the computation of
elementary cycles. A time bound for the computation of
elementary cycles is given by O(cq(c+ 1)(ce + 1)), where
ce is the number of elementary cycles, given by [16, p. 77].

ce :=
cq−1

∑
i=1

(
cq

cq− i+1

)
(cq− i)! . (21)

As expected, the number of elementary cycles grows as c
and q increase. An approach to avoid the computation of the
entire set of elementary cycles is still an open problem and
topic of ongoing research.

B. Calculation of the Information Matrix

Lemma 1: For systems with quantized output data of the
form (1), we have that the FIM can be approximated by the
following expression:

IF ≈
2

πσ2Nsim

Nsim

∑
t=1

(
e−x2/2|S̃t

erf(x/
√

2)|S̃t

)2

ϕtϕ
T
t . (22)

Proof: We start off using the Fisher identity [20, p.80]
∂ l(θ)

∂θ

∣∣∣∣
θ=θ0

=
∂Q(θ ,θ0)

∂θ

∣∣∣∣
θ=θ0

(23)

where Q(θ ,θ0) is the auxiliary function arising from the EM
algorithm.

In [11], it was demonstrated that

∂Q(θ ,θ0)

∂θ

∣∣∣∣
θ=θ0

=
1
σ

N

∑
t=1

ϕt
I(1)t

I(0)t

. (24)

Following the same procedure as in [20, p.80], we can
evaluate (23) for each sample t = 1, . . . ,N obtaining

∂ lt(θ)
∂θ

∣∣∣∣
θ=θ0

=
∂Qt(θ ,θ0)

∂θ

∣∣∣∣
θ=θ0

, (25)

where lt is defined in (8), and Qt(θ ,θ0) can be written as

Qt(θ ,θ0) =
∫

S̃t

log[p(xt ,yt |θ)]p(xt |yt ,θ0)dxt . (26)

For the SISO case, the quotient I(1)t /I(0)t can be expressed
as:

I(1)t /I(0)t =−
√

2√
π

e−x2/2

erf(x/
√

2)

∣∣∣∣∣
S̃t

. (27)

Thus, we can write the FIM as

IF = E

{
∂ l(θ)

∂θ

∣∣∣∣
θ0

∂ l(θ)
∂θ T

∣∣∣∣
θ0

}

=
2

πσ2E


(

e−x2/2|S̃t

erf(x/
√

2)|S̃t

)2

ϕtϕ
T
t

 . (28)

Since xt and ϕt are asymptotically jointly stationary pro-
cesses, asymptotically uncorrelated (for sufficiently large
lags), by the Birkhoff-Khinchin ergodic theorem [25,
Lemma B.1], we can write (28) as:

IF = lim
N→∞

2
πσ2N

N

∑
t=1

(
e−x2/2|S̃t

erf(x/
√

2)|S̃t

)2

ϕtϕ
T
t . (29)

Expression (29) can be estimated by taking a large but finite
N, obtaining the expression in (22).

Remark 5: Notice that a more general case can be de-
veloped considering incomplete data. In particular, missing
data is a common type of incomplete data, and to calculate
the FIM we still can use the Fisher identity, but we need
to consider that the expectations in (9) are now taken
with respect to a different set of observations. However,
one important assumption to consider is that the missing
data mechanism is somehow independent of the coarsening
process, see e.g. [3].
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Fig. 4. Input realizations for memory length 2. Top: c = 2. Bottom: c = 4.

V. EXAMPLE

Here, we consider the following SISO FIR system:

xt = ϕ
T
t θ +wt ,

yt = Q[xt ],
(30)

where Q is a 2-bit quantizer, ϕT
t =

[
ut−1 ut−2

]
, θ =[

0.4 1
]T , and the noise variance is σ2 = 1. The extreme

values for Q are −7.5 and 7.5, with equally spaced output
values on [−7.5, 7.5].

We use the method presented in Section IV to design an
experiment for identifying θ in (30). For this purpose, we
consider an input with maximum amplitude 5, and different
scenarios, composed by memory length in {2, 3}, and c ∈
{2, 4}. We solve (16) for h(·) = tr{W (·)−1}, where

W =

[
4 3
3 4

]
. (31)

The approximation of each I
(i)

F in (17) is obtained by using
(22) with Nsim = 5 ·105. The problem is solved in Matlab
using the cvx toolbox [4].

Once the problem (16) is solved, we generate an input
signal of length N = 106 from the optimal pmf by running
a Markov chain based on (20). Typical input realizations for
memory length 2 are presented in Figure 4. To compare the
results, we compute h(IF) for each optimal input signal
using (22).

The results obtained for the different scenarios are pre-
sented in Table I. The results show that the experiment is
improved when we increase the number of possible values
for the input c. However, there is no significant improvement
when we increase the memory length of the stationary
process, in agreement with Footnote 3 (which says that a
memory length equal to q is optimal).

As a benchmark, we generate a binary white noise input
of length N and amplitude 5, and we compute h(IF) for this

TABLE I

h(IF ) FOR DIFFERENT VALUES OF c AND MEMORY LENGTH (OF THE

MARKOV CHAIN INPUT).

memory length � c 2 4
2 3.12 1.58
3 3.08 1.58

input using (22). The value we obtain is h(IF)= 3.75, which
is 16.8% worse than the worst result presented in Table I.
Therefore, for this example the proposed input design method
outperforms the result obtained with binary white noise.

VI. CONCLUSIONS

We have developed a novel approach to design input
signals for quantized systems. The advantage of our method
is that it gives a sequence of temporal input signals which
can easily be implemented for systems subject to output
quantization.

We have found that, in general, there is an improve-
ment when we consider our design compared to a simple
binary white noise signal. For a particular example, this
improvement is around 16.8% when compared with the
worst experiment obtained by our method. This result can
be further improved by increasing the size of the alphabet
for the input signal, at the expense of a higher computational
cost.

Future research includes robustifying the input design for
systems with quantized output against uncertainty in the
knowledge of the true system.
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