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Motivation and Definitions

Solving Linear Equations
Many problems in physics and engineering involve solving linear equations Lf = g,
where L is, e.g., a differential operator. Some questions are:

(1) Is there a solution of Lf = g?
(2) Is it unique?
(3) How does it change if g is slightly perturbed?

Transfer functions
In systems theory, signals are repre-
sented by elements of normed spaces
(ℓ2,ℓ∞,L2,L∞, . . . ), and systems are de-
scribed by operators between these spaces.

118 STABILITY AND PERFORMANCE OF FEEDBACK SYSTEMS

uncertainty. Indeed, this requirement was the original motivation for the development
of feedback systems. Feedback is only required when system performance cannot be
achieved because of uncertainty in system characteristics. The more detailed treatment
of model uncertainties and their representations will be discussed in Chapter 9.

For the moment, assuming we are given a model including a representation of un-
certainty which we believe adequately captures the essential features of the plant, the
next step in the controller design process is to determine what structure is necessary
to achieve the desired performance. Pre�ltering input signals (or open loop control)
can change the dynamic response of the model set but cannot reduce the e�ect of un-
certainty. If the uncertainty is too great to achieve the desired accuracy of response,
then a feedback structure is required. The mere assumption of a feedback structure,
however, does not guarantee a reduction of uncertainty, and there are many obstacles
to achieving the uncertainty-reducing bene�ts of feedback. In particular, since for any
reasonable model set representing a physical system uncertainty becomes large and the
phase is completely unknown at su�ciently high frequencies, the loop gain must be small
at those frequencies to avoid destabilizing the high frequency system dynamics. Even
worse is that the feedback system actually increases uncertainty and sensitivity in the
frequency ranges where uncertainty is signi�cantly large. In other words, because of the
type of sets required to reasonably model physical systems and because of the restriction
that our controllers be causal, we cannot use feedback (or any other control structure)
to cause our closed-loop model set to be a proper subset of the open-loop model set.
Often, what can be achieved with intelligent use of feedback is a signi�cant reduction
of uncertainty for certain signals of importance with a small increase spread over other
signals. Thus, the feedback design problem centers around the tradeo� involved in re-
ducing the overall impact of uncertainty. This tradeo� also occurs, for example, when
using feedback to reduce command/disturbance error while minimizing response degra-
dation due to measurement noise. To be of practical value, a design technique must
provide means for performing these tradeo�s. We will discuss these tradeo�s in more
detail later in section 5.5 and in Chapter 6.

To focus our discussion, we will consider the standard feedback con�guration shown
in Figure 5.1. It consists of the interconnected plant P and controller K forced by
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Figure 5.1: Standard Feedback Con�guration
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Motivation and Definitions (cont.)

Definitions
If E,F are vector spaces, a linear operator from E to F is a mapping T : E → F s.t.

T(λx+µy)=λTx+µT y for all x, y ∈ E and scalars λ,µ.

If E,F are normed, T is bounded if there is an M > 0 s.t. ∥Tx∥ É M∥x∥ for all x ∈ E. If so,

the norm of T is the smallest such M, i.e.,

∥T∥ := sup{∥Tx∥ : x ∈ E, ∥x∥ É 1}.

The kernel, Ker T, of T : E → F is the subspace {x ∈ E : Tx = 0}⊆ E, and the range of T,
R(T), is the subspace {Tx : x ∈ E}⊆ F.

The operator IE : E → E, given by IE (x)= x for all x ∈ E, is the identity operator on E.
When there is no ambiguity, it will be written simply as I.
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Motivation and Definitions (cont.)

Examples
1. Matrices

A matrix A ∈Rn×m corresponds to a linear operator A : Rm →Rn where Ax = Ax for
every x ∈Rm. If we consider the 2-norm on Rm and Rn, then ∥A∥ = sup∥x∥2=1 ∥Ax∥2
is the largest singular value of A.

2. Multiplication
Define M f on L2[a,b] by: (M f x)(t)= f (t)x(t), where f ∈ C[a,b]. M f is linear, and

∥M f x∥2 =
ˆ b

a
| f (t)|2|x(t)|2dt É max

τ∈[a,b]
| f (τ)|2

ˆ b

a
|x(t)|2dt = ∥ f ∥2∥x∥2,

so ∥M f ∥ É ∥ f ∥. In fact, ∥M f ∥ = ∥ f ∥ (by choosing an appropriate (xn)).

3. Integral operator
Let a,b, c,d ∈R, and k : [c,d]× [a,b]→R continuous. Then, define
K : L2[a,b]→ L2[c,d] as

(K x)(t)=
ˆ b

a
k(t, s)x(s)ds, c É t É d.

K is linear, and, by Cauchy-Schwarz, ∥K x∥2 É
(ˆ d

c

ˆ b

a
|k(t, s)|2dsdt

)
∥x∥2, so K is

bounded.

Cristian R. Rojas Topic 8: Linear Operators 5



Motivation and Definitions (cont.)

Examples (cont.)
3. Differential operator

Let D ⊆ C(R) be the space of differentiable functions f ∈ C(R) s.t. f ′ ∈ C(R). Then,

d
dx

: D → C(R)

is a linear operator, but it is not bounded (why?).

4. Shift operator
Define S on ℓ2 by:

S(x1, x2, x3, . . . )= (0, x1, x2, . . . ).

S is an isometry (i.e., ∥Sx∥ = ∥x∥ for all x ∈ ℓ2), so it is bounded and ∥S∥ = 1. We can
also define the backward shift operator S∗ on ℓ2 by S∗(x1, x2, x3, . . . )= (x2, x3, x4, . . . ),
which is bounded and s.t. ∥S∗∥ = 1, but it is not an isometry (why not?).
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Motivation and Definitions (cont.)

Theorem
Let E,F be normed spaces, and T : E → F be a linear operator. The following are
equivalent:

(1) T is continuous,

(2) T is continuous at 0,

(3) T is bounded.

Proof. Similar to the case for linear functionals.
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The Banach Space L (E,F)

Definition
Let E,F be normed spaces. L (E,F) is the space of bounded linear operators from E to F,
and L (E)=L (E,E).

If F is a Banach space, so is L (E,F) (similar to the proof that V∗ is Banach, in Topic 7).

The composition of operators A : E → F and B : F →G, BA, is BA(x)= B(Ax) for all x ∈ E.

Theorem. If A ∈L (E,F) and B ∈L (F,G), then BA ∈L (E,G), and ∥BA∥ É ∥B∥∥A∥.
Proof. BA is linear, and, since A,B are continuous, so is BA. Also,

∥BAx∥G = ∥B(Ax)∥G É ∥B∥∥Ax∥F É ∥B∥∥A∥∥x∥E , x ∈ E,

so ∥BA∥ É ∥B∥∥A∥.

Observation. This last result shows that L (E) is not only a normed space, but also a
normed algebra (since we have defined a product). If L (E) is complete, we say that it is a
Banach algebra.
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Inverses of Operators

Solving an equation Ax = y involves computing “x = A−1 y”.

Definition. Let E,F be normed spaces. A ∈L (E,F) is invertible if there is a B ∈L (F,E)
s.t. AB = IF and BA = IE . In this case, B is unique (why?) and is called the inverse of A,
A−1.

If E,F are Banach spaces, and A ∈L (E,F) is bijective, its inverse is necessarily bounded
(Banach-Schauder / Open mapping theorem) and linear (why?).

Examples
1. The shift operators S and S∗ on ℓ2 satisfy S∗S = I, but SS∗ ̸= I (why?), so S,S∗ are

not invertible.

2. The multiplication operator Mt on L2[0,1] given by (Mtx)(t)= tx(t) (0É t É 1) is
injective but not surjective:

Mtx = 0 implies tx(t)= 0, so x(t)= 0 (for almost all t).

However, there is no x ∈ L2[0,1] s.t. (Mtx)(t)= 1, since t 7→ 1/t ∉ L2[0,1].
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Inverses of Operators (cont.)

One way to produce inverses is as follows:

Theorem. Let E be a Banach space, and A ∈L (E) s.t. ∥A∥ < 1. Then I − A is invertible
(in the normed space L (E)), and

(I − A)−1 =
∞∑

n=0
An = lim

N→∞

(
I + A+ A2 +·· ·+ AN

)
.

Proof. Let x ∈ E. Then ((I + A+ A2 +·· ·+ An)x) is Cauchy: If m > n,∥∥∥∥∥ m∑
k=0

Ak x−
n∑

k=0
Ak x

∥∥∥∥∥=
∥∥∥∥∥ m∑

k=n+1
Ak x

∥∥∥∥∥É
m∑

k=n+1
∥A∥k∥x∥ É ∥A∥n+1

1−∥A∥ ∥x∥→ 0 as n,m →∞ (m > n), (∗)

so
∑n

k=0 Ak x → Tx. T is linear, and letting m →∞ in (∗) gives
∥∥∥Tx−∑n

k=0 Ak x
∥∥∥É ∥A∥n+1

1−∥A∥ ∥x∥, hence

Tx−∑n
k=0 Ak x is bounded, and so is T.
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Inverses of Operators (cont.)

Proof (cont.)

Also,
∥∥∥T −∑n

k=0 Ak
∥∥∥É ∥A∥n+1

1−∥A∥ , so
∑∞

k=0 Ak = T.

Finally, since ∥An x∥ É ∥A∥n∥x∥→ 0 as n →∞ (so lim An x = 0),

(I − A)Tx = (I − A) lim
∑n

k=0 Ak x = lim
∑n

k=0(Ak − Ak+1)x = x− lim(An+1x)= x,

and similarly T(I − A)= I. Therefore T = (I − A)−1.

Corollary. If E is a Banach space, the set of invertible operators on E is open in L (E).

Proof. Let A ∈L (E) be invertible. Then for every B ∈L (E) s.t. ∥B∥ É 1/∥A−1∥, we have that I + A−1B
is invertible, since ∥A−1B∥ É ∥A−1∥∥B∥ < 1, and [(I+A−1B)−1 A−1](A+B)= (I+A−1B)−1(I+A−1B)= I,
while (A+B)[(I + A−1B)−1 A−1]= A(I + A−1B)[(I + A−1B)−1 A−1]= AA−1 = I, so A+B is invertible and
it has inverse (A+B)−1 = (I + A−1B)−1 A−1. This means that every invertible element of L (E) has a
nbd of invertible elements, hence the set of invertible operators on E is open in L (E).
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Inverses of Operators (cont.)

Application to small gain theorem in control, and to structured SVD
A linear discrete-time system G : ℓ2 → ℓ2 is stable w.r.t. the ℓ2 norm if G ∈L (ℓ2).
The previous theorem allows us to derive a simple sufficient criterion for stability (w.r.t.
the ℓ2 norm) of feedback systems:

Theorem (Small Gain)
Consider two stable (w.r.t. the ℓ2 norm), causal and linear systems Σ1,Σ2 in a feedback
interconnection as shown below. The closed loop system, with d1,d2 as inputs and y1, y2
as outputs, is ℓ2-stable if ∥Σ1∥∥Σ2∥ < 1.
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+
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Inverses of Operators (cont.)

Application to small gain theorem in control, and to structured SVD (cont.)

Proof. The feedback interconnection yields, y2 =Σ2(d2 + y1)=Σ2d2 +Σ2Σ1d1 +Σ2Σ1 y2. This means
that the closed loop system is stable iff I −Σ2Σ1 is invertible, since in that case

y2 = [I −Σ2Σ1]−1(Σ2d2 +Σ2Σ1d1).

The previous theorem tells us that a sufficient condition for I −Σ2Σ1 to be invertible is that
∥Σ2Σ1∥ < 1, and this condition is fulfilled if ∥Σ1∥∥Σ2∥ < 1, since ∥Σ2Σ1∥ É ∥Σ1∥∥Σ2∥.

In multivariable control, Σ1 may correspond to a feedback loop, while Σ2 represents a
source of uncertainty in the plant being controlled. If only the norm of Σ2 were known,
the small gain theorem states that Σ1 should satisfy ∥Σ1∥∥Σ2∥ < 1 to ensure stability.

If Σ2 had a known structure, e.g., Σ2 = diag(δ1, . . . ,δn), one can define the structured
singular value µ(Σ1)= sup

{∥Σ2∥−1 : Σ2 = diag(δ1, . . . ,δn), ∥Σ1Σ2∥ Ê 1
}
, so the condition

µ(Σ1)< 1 implies that ∥Σ1Σ2∥ < 1 for all Σ2 = diag(δ1, . . . ,δn) with ∥Σ2∥ < 1, and thus, by
the small gain theorem, (Σ1,Σ2) is stable for those Σ2.
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Adjoint Operators

The transpose of a matrix A ∈Rn×n satisfies (Ax, y)= yT Ax = (AT y)T x = (x, AT y) for
x, y ∈Rn.
We can generalize the transpose to general normed spaces:

Theorem. Let A ∈L (E,F), where E,F are normed spaces. Then there is a unique
A∗ ∈L (F∗,E∗) s.t. 〈Ax, y∗〉F = 〈x, A∗ y∗〉E for all x ∈ E, y∗ ∈ F∗, and ∥A∥ = ∥A∗∥.
Proof. Fix y∗ ∈ F∗. x 7→ 〈Ax, y∗〉F is a linear functional on E. Also, |〈Ax, y∗〉| É ∥y∗∥∥Ax∥ É
∥y∗∥∥A∥∥x∥, so x 7→ 〈Ax, y∗〉F is a bounded linear functional, say, x∗ ∈ E∗. Define A∗ y∗ = x∗. A∗ is
unique and linear (why?). Furthermore, |〈x, A∗ y∗〉E | = |〈Ax, y∗〉F | É ∥y∗∥∥Ax∥ É ∥y∗∥∥A∥∥x∥, so
∥A∗ y∗∥ É ∥A∥∥y∗∥, i.e., ∥A∗∥ É ∥A∥, and if x0 ∈ E is non-zero, by Corollary 2 of Hahn-Banach, there is
a y∗0 ∈ F∗, ∥y∗0 ∥ = 1, s.t. 〈Ax0, y∗0 〉F = ∥Ax0∥, so ∥Ax0∥ = |〈x0, A∗ y∗0 〉E | É ∥A∗ y∗0 ∥∥x0∥ É ∥A∗∥∥x0∥, thus
∥A∥ É ∥A∗∥. Thus, ∥A∥ = ∥A∗∥.

A∗ is the adjoint of A. It can be shown that, when E,F are reflexive, A∗∗ = A.

Note. If E,F are inner product spaces, one can also define the inner product adjoint of
A ∈L (E,F) via (Ax, y)= (x, A∗ y) for all x ∈ E, y ∈ F; this differs from the normed adjoint
in that (αA)∗ =αA∗ for the inner product adjoint, while (αA)∗ =αA∗ for the normed
adjoint.
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Adjoint Operators (cont.)

Properties of the Adjoint
(1) I∗ = I.
(2) If A1, A2 ∈L (E,F), then (A1 + A2)∗ = A∗

1 + A∗
2 .

(3) If A ∈L (E,F) and α ∈C, then (αA)∗ =αA∗. For inner product adjoints,
(αA)∗ =αA∗.

(4) If A ∈L (E,F), B ∈L (F,G), then (A2 A1)∗ = A∗
1 A∗

2 .
(5) If A ∈L (E,F) and A has a bounded inverse, then (A−1)∗ = (A∗)−1.

Proof
Properties (1)-(4) are straightforward. Regarding (5), assume A ∈L (E,F) has a bounded inverse A−1.
To show that A∗ has an inverse, we will establish that A∗ is injective and surjective. If y∗1 , y∗2 ∈ F∗,
y∗1 ̸= y∗2 , then 〈x, A∗ y∗1 〉−〈x, A∗ y∗2 〉 = 〈Ax, (y∗1 − y∗2 )〉 ̸= 0 for some x ∈ E, so A∗ y∗1 ̸= A∗ y∗2 and A∗ is
injective. Now, given some x∗ ∈ E∗, and x ∈ E, Ax = y, we have 〈x, x∗〉 = 〈A−1 y, x∗〉 = 〈y, (A−1)∗x∗〉 =
〈Ax, (A−1)∗x∗〉 = 〈x, A∗(A−1)∗x∗〉, so x∗ ∈R(A∗), and also (A∗)−1 = (A−1)∗.
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Adjoint Operators (cont.)

Examples of inner product adjoints
1. Consider the multiplication operator on L2[a,b], (M f x)(t)= f (t)x(t):

(x, M∗
f y)= (M f x, y) ⇔

ˆ b

a
x(t)[M∗

f y](t)dt =
ˆ b

a
f (t)x(t)y(t)dt ⇔ [M∗

f y](t)= f (t)y(t).

2. Consider the integral operator K : L2[a,b]→ L2[c,d] with kernel k. Then

(x,K∗ y)= (K x, y) ⇔
ˆ b

a
x(t)[K∗ y](t)dt =

ˆ d

c
[K x](t)y(t)dt

=
ˆ d

c

ˆ b

a
k(t, s)x(s)y(t)dsdt

=
ˆ b

a
x(s)
ˆ d

c
k(t, s)y(t)dtds

⇔ (K∗ y)(t)=
ˆ d

c
k(s, t)y(s)ds.

3. The adjoint of the shift operator S on ℓ2 is the backward shift operator S∗ (exercise!).
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Self-Adjoint and Non-Negative Operators

Definition
Let H be a Hilbert space. A ∈L (H) is self-adjoint (or Hermitian) if A = A∗.
An operator A ∈L (H) is non-negative (A Ê 0) if (Ax, x)Ê 0 for all x ∈ H, and it is positive
if, in addition, (Ax, x)= 0 implies that x = 0. A É B means that (Ax, x)É (Bx, x) for all
x ∈ H.

Examples
1. The multiplication operator in L2[a,b] where f is real valued is self-adjoint, and

non-negative if f (x)Ê 0 for all x ∈ [a,b].
2. The integral operator in L2[a,b] with kernel k is self-adjoint iff k(t, s)= k(s, t),

t, s ∈ [a,b].

Theorem. If A ∈L (H) is self-adjoint, then ∥A∥ = sup∥x∥=1 |(Ax, x)|.
Proof (for real H). For every x ∈ H, ∥x∥ = 1, |(Ax, x)| É ∥Ax∥∥x∥ É ∥A∥, hence m := sup∥x∥=1 |(Ax, x)| É
∥A∥. On the other hand, (A(x± y), x± y)= (Ax, x)±2(Ax, y)+ (y, y), so

|(Ax, y)| = 1
4
|(A(x+ y), x+ y)− (A(x− y), x− y)| É m

4

(
∥x+ y∥2 +∥x− y∥2

)
É m

2

(
∥x∥2 +∥y∥2

)
.

Taking y= (∥x∥/∥Ax∥)Ax gives ∥x∥∥Ax∥ É m∥x∥2, or ∥Ax∥ É m whenever ∥x∥ = 1, so ∥A∥ É m.
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Self-Adjoint and Non-Negative Operators (cont.)

Theorem. If A ∈L (H), where H is a complex Hilbert space, and (Ax, x)= 0 for all x ∈ H,
then A = 0.

Proof. Since (A(x+ y), x+ y)= 0, we have that (A y, x)+ (Ax, y)= 0 for all x, y ∈ H. Replacing y by i y
yields i(A y, x)− i(Ax, y)= 0, i.e., (A y, x)− (Ax, y)= 0. Adding these expressions gives (A y, x)= 0, which
holds for every x, y ∈ H; therefore, A y= 0 for all y ∈ H, i.e., A = 0.

Corollary. If A ∈L (H) is non-negative, where H is a complex Hilbert space, then it is
also self-adjoint.

Proof. If A ∈L (H) is non-negative, (Ax, x) is real, so (x, A∗x)= (Ax, x)= (x, Ax), i.e., (x, [A− A∗]x)= 0
for every x ∈ H, so by the theorem above, A = A∗.
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Spectrum

Goal: Extend the concept of eigenvalues to linear operators on a Banach space E.

Motivating example: Separation of variables in PDEs
To solve the differential equation ẋ(t)= Ax(t), with x(t) ∈Rn, one can decompose the
matrix A as A = TDT−1, where D = diag(λ1, . . . ,λn) has the eigenvalues of A (assumed
distinct) and T = [v1 · · · vn] the corresponding eigenvectors as columns, which satisfy
Avk =λkvk for k = 1, . . . ,n. Then, re-defining x(t)= T y(t), one obtains ẏ(t)= D y(t), so
yk(t)= ck exp(λk t) and the general solution is

x(t)= c1v1 exp(λ1 t)+·· ·+ cnvn exp(λn t).

Consider now a partial differential equation (PDE) such as

∂y
∂t

= k
∂2 y
∂x2 heat equation in y(x, t); x, t ∈R

subject to an initial condition y(x,0) s.t. limx→±∞ y(x,0)= 0.

Cristian R. Rojas Topic 8: Linear Operators 24



Spectrum (cont.)

Motivating example: Separation of variables in PDEs (cont.)
This equation can be solved in a similar manner if one consider y(t)= y(·, t) as an
“infinite-dimensional vector” or function for each fixed t. Then, the PDE can be written as
ẏ= A y, where A is a linear operator satisfying

(A y(t))(x)= k
∂2 y(x, t)
∂x2 .

One can then diagonalize A by solving the equation Avλ =λvλ for vλ : x 7→ vλ(x), or
kv′′

λ
=λvλ, which gives vλ(x)= aλ exp(

p
λ/kx)+bλ exp(−pλ/kx). Under the given initial

condition, λ< 0, so the general solution of the PDE is, informally,

y(x, t)=
ˆ ∞

0

{
ã(λ)exp

(
i

√
−λ

k
x

)
+ b̃(λ)exp

(
−i

√
−λ

k
x

)}
exp(−λt)dλ,

where the functions ã, b̃ are determined from the initial condition y(·,0).

This is the standard method of separation of variables for solving PDEs! To formalize it,
one needs to extend the notion of eigenvalues and eigenvectors to infinite dimensional
spaces.
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Spectrum (cont.)

Some operators do not have eigenvalues! (λ’s for which (λI − A)x = 0 for some x ̸= 0).
Recall the shift operator S on ℓ2: S(x1, x2, . . . )= (0, x1, x2, . . . ) If Sx =λx, then x = 0!

Definition
The spectrum of A ∈L (E) is σ(A) := {λ ∈C : λI − A does not have an inverse in L (E)}.

σ(A) ̸= ;, and may have not only eigenvalues.

Example
Consider the multiplication operator M f ∈L (L2[a,b]) for an f ∈ C[a,b]. Then
σ(M f )=R( f ):

If λ ∉ f ([a,b]), then λI −M f has a bounded inverse M(λ− f )−1 , so λ ∉σ(M f ). Conversely, if
λ= f (t) for some t0 ∈ [a,b], and λI −M f had an inverse T ∈ L2[a,b], then consider a

sequence (xn) in L2[a,b], xn(t)Ê 0 s.t. xn(t)→ 0 for t ̸= t0 and
´ b

a |xn(t)|2dt = 1:
(λI −M f )xn → 0 but T(λI −M f )xn = xn, even though ∥xn∥ = 1! This means that
λ=σ(M f ).

Hence, σ(M f )=R( f ). However, for many f ’s, M f does not have eigenvalues (e.g.,
f (t)= t).
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Spectrum (cont.)

Theorem. σ(A) is compact, and it is contained in B(0,∥A∥).

Proof. Define F : C→L (E) as F(λ)=λI − A. Since ∥F(λ)−F(µ)∥ = |λ−µ|, F is continuous. Therefore,
since σ(A)= F−1(Gc), where G is the set of invertible operators in L (E), which is open, we have that
F−1(Gc) is closed.
Let |λ| > ∥A∥. Then, ∥λ−1 A∥ < 1, so I −λ−1 A is invertible, and hence λI − A is invertible. Therefore,
λ ∉σ(A). In other words, σ(A)⊆ B(0,∥A∥).

Since σ(A) is closed and bounded in C, it is compact (by Heine-Borel).

It can also be shown that σ(A) ̸= ; using complex analysis: if σ(A)=;, pick an f ∈L (E)∗
s.t. f (A−1) ̸= 0. It can be shown that g(λ)= f ([λI − A]−1) is analytic in λ ∈C. Since
g(λ)→ 0 as |λ|→∞, g is bounded and analytic, so by Liouville’s theorem (from complex
analysis), g = 0, which contradicts the fact that g(0)= f (A−1) ̸= 0, thus σ(A) ̸= ;.
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Spectrum (cont.)

Self-adjoint and non-negative operators have similar spectral properties to Hermitian
and positive semi-definite matrices, which can be deduced using the following lemma:

Lemma. If for a self-adjoint operator A ∈L (H), where H is a Hilbert space, there is a
δ> 0 s.t. ∥Ax∥ Ê δ∥x∥ for all x ∈ H, then A is invertible.

Proof. The inequality implies that T is injective (why?). Now, x ∈Ker A iff 0= (Ax, y)= (x, A y) for all
y ∈ H, i.e., iff x ∈R(A)⊥, so R(A)⊥ = {0}, that is, R(A) is dense in H. On the other hand, R(A) is closed,
since if (yn), yn = Axn , is a sequence in R(A) that converges to, say, y ∈ H, then (yn) is Cauchy, and so
is (xn) (by the stated inequality), so xn → x ∈ H, say, and by continuity y= Ax ∈R(A). Therefore, A is
bijective, and its inverse is bounded due to the inequality, so A is invertible.

Theorem. If A ∈L (H) is self-adjoint, then σ(A)⊆R. Furthermore, if A Ê 0, σ(A)⊆ [0,∞).
Proof. Since A = A∗, if λ= a+bi ∈σ(A), then ∥(A−λI)x∥2 = ∥Ax−ax∥2 +b2∥x∥2 for every x ∈ H, so
∥(A−λI)x∥ Ê |b|∥x∥. If b ̸= 0, then A−λI by the lemma above, so λ ∉σ(A) If A Ê 0, then for every λ< 0
one has that |λ|∥x∥2 = (−λx, x)É ([A−λI]x, x)É ∥(A−λI)x∥∥x∥ for every x ∈ H, so |λ|∥x∥ É ∥(A−λI)x∥,
and by the lemma above A−λI is invertible, hence λ ∉σ(A).
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Spectrum (cont.)

The previous result can be strengthened to

Theorem. If A ∈L (H) is self-adjoint, m := inf∥x∥=1(Ax, x), M := sup∥x∥=1(Ax, x), then
σ(A)⊆ [m, M], and m, M ∈σ(A).
Proof. Let λ> M. Since (Ax, x)É M(x, x) for all x ∈ H, we have that ∥(λI − A)x∥∥x∥ Ê (λx− Ax, x)Ê
(λ−M)∥x∥2, where λ−M > 0, or ∥(λI − A)x∥ Ê (λ−M)∥x∥, so λI − A is invertible, i.e., λ ∉σ(A). Similarly,
if λ< m then λ ∉σ(A), so σ(A)⊆ [m, M].
To prove that M ∈σ(A), consider the bilinear form a(x, y) := (Mx− Ax, y), which is symmetric (because
A is self-adjoint) and s.t. a(x, x)= (Mx, x)− (Ax, x)Ê 0 for all x ∈ H. Cauchy-Schwarz applied to a yields
|a(x, y)| É√

a(x, x)
√

a(y, y), or |(Mx− Ax, y)| É√
(Mx− Ax, x)

√
(M y− A y, y). Taking sup over ∥y∥ = 1, we

obtain

∥Mx− Ax∥ É C
√

(Mx− Ax, x) for all x ∈ H, (∗)

where C = sup∥y∥=1
√

(M y− A y, y). By definition of M, there is a sequence (xn) s.t. ∥xn∥ = 1 and
(Axn , xn)→ M. From (∗), ∥Mxn − Axn∥→ 0, so M ∈σ(A), since otherwise MI− A would be invertible, so
xn = (MI − A)−1(Mxn − Axn)→ 0, a contradiction. Similarly, m ∈σ(A).

Corollary. If A ∈L (H) is self-adjoint and σ(A)⊆ [0,∞), then A is non-negative.
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Infinite Matrices

Linear operators in infinite dimensions can be represented by infinite matrices,
resembling linear algebra.

Definition. Let E,F be separable Hilbert spaces, and A ∈L (E,F). The matrix of A with
respect to orthonormal bases (en) and ( fn) of E,F, respectively, is the array [a jk]∞j,k=1 of
complex numbers given by a jk = (Aek , f j).

It is difficult to determine from a matrix representation if an operator is bounded.
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Infinite Matrices (cont.)

Example (Linear system)
Let k ∈ C[−π,π] be 2π-periodic, and consider the integral operator K on L2[−π,π] given by

(K x)(t)=
ˆ π

−π
k(t− s)x(s)ds.

If (en)n∈Z denotes the Fourier basis of L2[−π,π], then

(K en)(t)=
ˆ π

−π
k(t− s)en(s)ds = 1p

2π

ˆ π

−π
k(s− t)einsds = eint

p
2π

ˆ π

−π
k(τ)e−inτdτ= cn en(t),

where cn is the n-th Fourier coefficient of k. Therefore, the matrix of K with respect to
(en) is [a jk] with a jk = (Aek , e j)= ckδ j−k :

[A]=



. . .
c−1 0

c0
0 c1

. . .


. (diagonal matrix)
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Next Topic

Optimization of Functionals
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Bonus: Applications of the Adjoint

Let A ∈L (E,F), where E,F are Hilbert spaces.

Theorem. Let y ∈ F. Then the vector x ∈ E minimizes ∥y− Ax∥ iff A∗Ax = A∗ y.
Proof. By the projection theorem, x ∈ E minimizes ∥y− Ax∥ iff (y− Ax, Ax̃)= 0 for all x̃ ∈ E. However,
(y− Ax, Ax̃)= (A∗[y− Ax], x̃), so the latter holds iff A∗[y− Ax]= 0.

Theorem (Fredholm Alternative). [R(A)]⊥ =Ker A∗.
Proof. x ∈Ker A∗ iff A∗x = 0, i.e., iff (x, A y)= (A∗x, y)= 0 for all y, that is, iff x ∈ [R(A)]⊥.

Corollary. Assume that R(A∗) is closed and y ∈R(A). The vector x ∈ E of minimum
norm s.t. Ax = y is given by x = A∗z, where z ∈ E is any solution of AA∗z = y.
Proof. Every x ∈ E satisfying Ax = y is of the form x = x0 +m, where Ax0 = y and m ∈Ker A. By
Fredholm’s Alternative, Ker A = [R(A∗)]⊥, and by the minimum norm theorem, the sought x ∈ E
satisfies x ⊥ [R(A∗)]⊥, or x ∈ [R(A∗)]⊥⊥ =R(A∗) (since R(A∗) is closed), so x = A∗z for some z ∈ E,
and plugging this expression into Ax = y gives AA∗z = y.

Cristian R. Rojas Topic 8: Linear Operators 35



Bonus: Applications of the Adjoint (cont.)

Example (control)
Consider a linear system of the form ẋ(t)= Ax(t)+Bu(t). We want to drive x(0)= 0 to

x(T)= x0 by designing a control input u(t) of minimum energy
ˆ T

0
u2(t)dt.

Let u ∈ L2[0,T]. We know that x(T)= ´ T
0 eA(T−t)Bu(t)dt, so let us define an operator

Φ : L2[0,T]→Rn as

Φu =
ˆ T

0
eA(T−t)Bu(t)dt.

The problem is to find a u ∈ L2[0,T] of minimum norm s.t. Φu = x0. Since D(Φ∗)=Rn, the
range of Φ∗ is finite dimensional, and hence it is closed, so by the last corollary we have
that the optimal solution is uopt =Φ∗z, where ΦΦ∗z = x0

. . . so we need expressions for Φ∗ and ΦΦ∗.
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Bonus: Applications of the Adjoint (cont.)

Example (control) (cont.)
For every u ∈ L2[0,T] and y ∈Rn,

(Φu, y)= yT
ˆ T

0
eA(T−t)Bu(t)dt =

ˆ T

0
yT eA(T−t)Bu(t)dt = (u,Φ∗ y),

so (Φ∗ y)(t)= BT eAT (T−t) y, and

ΦΦ∗ y=
ˆ T

0
eA(T−t)BBT eAT (T−t) ydt =

ˆ T

0
eA(T−t)BBT eAT (T−t)dt︸ ︷︷ ︸

∈Rn×n (Controllability Gramian)

y.

The optimal control is given by

uopt(t)= (Φ∗[ΦΦ∗]−1x0)(t)= BT eAT (T−t)
[ˆ T

0
eA(T−τ)BBT eAT (T−τ)dτ

]−1

x0,

assuming that the inverse exists. Notice that R(ΦΦ∗) corresponds to the states reachable
from the origin in T seconds/minutes/. . . , and that R(ΦΦ∗)=R(Φ) (why?).
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Bonus: Uniform Boundedness Principle

Together with the Hahn-Banach theorem, the Uniform Boundedness principle, the
Closed-Graph theorem and the Open Mapping theorem are considered to be the
cornerstones of Banach space theory.

Theorem (Uniform Boundedness Principle / Banach-Steinhaus)
Let F be a family of bounded linear operators from a Banach space X to a normed space
Y . If supA∈F ∥Ax∥ <∞ for every x ∈ X , then supA∈F ∥A∥ <∞.

Proof. Assume that supA∈F ∥A∥ =∞, and choose a sequence (An) in F s.t. ∥An∥ Ê 4n . Set x0 = 0 ∈ X
and, for n ∈N, choose xn ∈ X as follows: note that for every ∥ξ∥ É 3−n ,

max{∥An(xn−1 +ξ)∥,∥An(xn−1 −ξ)∥}Ê 1
2
∥An(xn−1 +ξ)∥+ 1

2
∥An(xn−1 −ξ)∥ Ê ∥Anξ∥,

so taking sup over ∥ξ∥ É 3−n shows that there is a ∥ξn∥ É 3−n s.t., say, ∥An(xn−1 +ξn)∥ Ê (2/3)3−n∥An∥;
choose xn = xn−1 +ξn . On the other hand, (xn) is a Cauchy sequence (why?), which converges to, say,
x ∈ X , and in addition, ∥x− xn∥ É (1/2)3−n , hence

∥An x∥ = ∥An(x− xn)+ An xn∥ Ê |∥An xn∥−∥An(x− xn)∥| Ê
∣∣∣∣ 2
3

3−n∥An∥− 1
2

3−n∥An∥
∣∣∣∣Ê 1

6
(4/3)n ,

which tends to ∞ as n →∞.
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Bonus: Uniform Boundedness Principle (cont.)

Application to divergence of Fourier series

From Topic 5, the Fourier series of an f ∈ C[−π,π], truncated to N terms, is

fN (x)=
N∑

n=−N
( f , en)en(x)= 1

2π

ˆ π

−π
f (x+ y)DN (y)d y, DN (y) := sin([N +1/2]y)

sin(y/2)
.

Define TN : C[−π,π]→R by TN f = fN (0)= (2π)−1
ˆ π

−π
f (y)DN (y)d y, whose norm is

∥TN∥ = (2π)−1
ˆ π

−π
|DN (y)|d y. However,

ˆ π

−π
|DN (y)|d y=

ˆ π

−π

∣∣∣∣ sin([N +1/2]y)
sin(y/2)

∣∣∣∣dyÊ 4
ˆ π

0

∣∣∣∣ sin([N +1/2]y)
y

∣∣∣∣d y= 4
ˆ (N+1/2)π

0
|sin(y)| dy

y

> 4
N∑

k=1

1
kπ

ˆ kπ

(k−1)π
|sin(y)|dy= 4

π

N∑
k=1

1
k
→∞ as N →∞,

so by the uniform boundedness principle: there is an f ∈ C[−π,π] s.t. fN (0) diverges.
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Bonus: Closed Graph Theorem

Definitions
• The graph of a function T : D(T)⊆ X →Y is G (T)= {(x,T(x)) ∈ X ×Y : x ∈D(T)}. If

X ,Y are vector spaces and T is linear, then G (T) is a linear subspace of X ×Y .
• If X ,Y are normed spaces, a norm can be introduced in X ×Y , e.g.,

∥(x, y)∥ = ∥x∥+∥y∥. An operator T : D(T)⊆ X →Y is closed if G (T) is closed in X ×Y ;
equivalently, T is closed iff whenever (xn) is a sequence in D(T) s.t. xn → x ∈D(T)
and yn := T(xn)→ y ∈Y , then y= T(x).

• An adjoint of a linear (but not necessarily bounded) operator T : D(T)⊆ X →Y is an
operator T∗ : D(T∗)⊆Y∗ → X∗ s.t. 〈Tx, y∗〉 = 〈x,T∗ y∗〉 for all x ∈D(T), y∗ ∈D(T∗).
Adjoints in general are non-unique, unless D(T) is dense in X , and D(T∗) consists of
those y∗ ∈Y∗ for which x 7→ 〈Tx, y∗〉 is bounded on D(T).

If T : D(T)→Y is linear and closed, where X ,Y are Banach spaces, D(T) is itself a
Banach space under the graph norm ∥x∥g := ∥x∥+∥T(x)∥, since x 7→ (x,T(x)) is an isometry
from D(T) to G (T), which is complete (why?). Also, T is bounded under this norm.

As 〈(x,−Tx), (T∗ y∗, y∗)〉 = 〈x,T∗ y∗〉−〈Tx, y∗〉 = 0, G ′(T∗)=G (−T)⊥ if D(T)⊆ X is dense,
where G ′(T∗) := {(T∗ y∗, y∗) : y∗ ∈D(T∗)} is the reversed graph of T∗, so T∗ is always
closed.
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Bonus: Closed Graph Theorem (cont.)

Lemma. Let T : X →Y be linear and closed, where X ,Y are Banach spaces. Then,
D(T∗)=Y∗.
Proof. First we will show that D(T∗) is weak∗-dense in Y∗. If not, there is a y ∈Y \{0} s.t. 〈y, y∗〉 = 0
for all y∗ ∈D(T∗). But then (0, y) ∈⊥G ′(−T∗)=G (T) (since G (T) is closed), i.e., T(0)= y ̸= 0, which is
impossible because T is linear.
Next we will show that D(T∗) is weak∗-closed, which implies that D(T∗)=Y∗. By Krein-Smulian, it
suffices to show that V =D(T∗)∩ {y∗ ∈Y∗ : ∥y∗∥ É 1} is weak∗-closed. Now, supy∗∈V |〈x,T∗ y∗〉| =
supy∗∈V |〈Tx, y∗〉| É ∥Tx∥, hence supy∗∈V ∥T∗ y∗∥ =: K <∞ by uniform boundedness. Thus, |〈Tx, y∗〉| =
|〈x,T∗ y∗〉| É K∥x∥ for all x ∈ X , y∗ ∈V ; since y∗ 7→ 〈Tx, y∗〉 is weak∗-continuous, |〈Tx, y∗〉| É K∥x∥ for
all y∗ in the weak∗-closure of V , V , i.e., x 7→ 〈Tx, y∗〉 is bounded on V , so V is weak∗-closed.

Theorem (Closed graph theorem)
Let T : X →Y be linear and closed, where X ,Y are Banach spaces. Then, T is bounded.
Proof. Assume T is unbounded. Then, there is a (xn) in X , ∥xn∥ = 1, s.t. ∥Txn∥→∞, but
supn |〈Txn , y∗〉| = supn |〈xn ,T∗ y∗〉| É ∥T∗ y∗∥. Thus, (Txn) is a point-wise bounded but norm-
unbounded family in X∗∗, which contradicts uniform boundedness. Thus, T is bounded.

Corollary (Hellinger-Toeplitz theorem)
Let T : H → H be a linear self-adjoint operator in a Hilbert space H. Then, T is bounded.
Proof. Let (xn) is in H, s.t. xn → x ∈ H and Txn → y ∈ H. For every z ∈ H, (Tx, z)= (x,Tz)= lim (xn ,Tz)
= lim (Txn , z)= (y, z), so Tx = y and T is closed. Then, by the closed graph theorem, T is bounded.
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Bonus: Open Mapping and Banach Inverse Theorems

Theorem (Banach inverse theorem)
Let T ∈L (X ,Y ), where X ,Y are Banach spaces. If T is bijective, then T−1 is continuous.

Proof. Since T : X →Y is bounded, its graph G (T) is closed in X ×Y : indeed, if (xn) is a sequence in X
converging to, say, x ∈ X , and (yn), where yn = Txn , converges to, say, y ∈Y , then by continuity y= Tx,
so G (T) is closed. Then, G (T−1)=G ′(T) is closed in Y × X , and by the closed graph theorem, T−1 is
continuous.

Corollary (Open mapping / Banach-Schauder)
Let T ∈L (X ,Y ) be surjective, where X ,Y are Banach spaces. Then, T is an open
mapping, i.e., T(U) is open in Y whenever U is open in X .
Proof. Define an equivalence relation on X , where x ∼ y iff x− y ∈Ker T. Since T is bounded,
Ker T ⊆ X is closed, so the set of equivalence classes, X /Ker T, is a Banach space with norm ∥[x]∥ :=
infk∈Ker T ∥x+k∥ (exercise!). T induces a bijective bounded linear operator T̄ : X /Ker T →Y by
T̄([x])= T(x), so by the Banach inverse theorem, T̄−1 is continuous, i.e., T̄ maps open sets onto open
sets. Also, T = T̄ ◦π, where π : X → X /Ker T, given by π(x)= [x], is linear, surjective and open (because
if ∥[x− y]∥ < ε, then ε> infm∈Ker T ∥x− y−m∥, so there is an m∗ ∈Ker T such that ∥x− y−m∗∥ < ε, thus
B([x],ε)⊆π(B(x,ε))), and the composition of open maps is open, hence T is open.
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Bonus: Spectral Theorem

Spectral theorems correspond to a class of results that allow one to “diagonalize” a linear
operator (thus resembling the eigenvalue decomposition result from linear algebra). Here
we will establish one version for self-adjoint operators, based on the following facts:

(1) Bounded monotone sequences of self-adjoint operators converge to a self-adjoint
operator.
Assume 0É A1 É A2 É ·· · É I, and let B = An+k − An for some n,k ∈N. Note that 0É B É I, so
Cauchy-Schwarz applies to the bilinear form (Bx, y); in particular, (Bx,Bx)2 É (Bx, x)(B2x,Bx)É
(Bx, x)(Bx,Bx), so ∥Bx∥2 = (Bx,Bx)É (Bx, x). Thus, ∥An+k x− An x∥2 É (An+k x, x)− (An x, x) for
every x ∈ H. Now, since ((An x, x))n∈N is a bounded monotone sequence in R, it converges, so
(An x) is Cauchy in H, and limn→∞ An x = Ax exists. A is linear, and by uniform boundedness, it
is bounded. Furthermore, letting n →∞ in (An x, y)= (x, An y) shows that A is self-adjoint.

Let R[t] (C[t]) be the set of polynomials in t with real (complex) coefficients. If p ∈C[t],
where p(t)= pn tn + pn−1 tn−1 +·· ·+ p1 t+ p0, one can define, for every A ∈L (H),

p̃(A)= pn An + pn−1 An−1 +·· ·+ p1 A+ p0I.
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Bonus: Spectral Theorem (cont.)

(2) Every operator A Ê 0 has a unique non-negative square root A1/2: (A1/2)2 = A.
Firstly, we can assume w.l.o.g., by scaling A, that 0É A É I. Consider the sequence of operators
(Tn)n∈N given by T1 = 0 and Tn+1 = Tn + (1/2)[A−T2

n] for n ∈N. Note that 0= T1 É I, T2 −T1 =
(1/2)A Ê 0, and that if 0É Tn É I and Tn É Tn+1, then I −Tn Ê 0, so 0É (1/2)(I −Tn)2 + (1/2)(I − A)
= I −Tn − (1/2)(A−T2

n)= I −Tn+1, i.e., Tn+1 É I, and Tn+2 −Tn+1 = Tn+1 + (1/2)[A−T2
n+1]−Tn−

(1/2)[A−T2
n]= (1/2)(Tn+1 −Tn)(I −Tn+1 + I −Tn)Ê 0, so Tn+1 É Tn+2. Hence, from (1), Tn → T,

where T = T + (1/2)[A−T2], or T2 = A. Let A1/2 := T.
Consider another operator B Ê 0 s.t. B2 = A. Then, BA = B3 = AB, so BAn = AnB for every n ∈N,
thus BTn = TnB, and taking n →∞, BA1/2 = A1/2B. Let M = (A1/2)1/2 and N = B1/2. Then, given
x ∈ H, let y= (A1/2 −B)x. We have that ∥M y∥2 +∥N y∥2 = (M2 y, y)+ (N2 y, y)= ([A1/2 +B]y, y)=
([A−B2]x, y)= 0, so M y= N y= 0 and M2 y= N2 y= 0, i.e., A1/2 y= By= 0, so ∥(A1/2 −B)x∥2 =
([A1/2 −B]2x, x)= ([A1/2 −B]y, x)= 0, that is, A1/2 = B.

(3) Let A,B be commuting non-negative, linear, bounded operators. Then, AB Ê 0.
From the proof of (2), since AB = BA, also AB1/2 = B1/2 A holds. Thus, for all x ∈ H, (ABx, x)=
(AB1/2B1/2x, x)= (B1/2 AB1/2x, x)= (AB1/2x,B1/2x)Ê 0.
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Bonus: Spectral Theorem (cont.)

The map φ : C[t]→L (H) given by φ(p)= p̃(A) is linear, multiplicative (i.e.,
φ(pq)=φ(p)φ(q)) and unital (i.e., φ(1)= I). φ is also order-preserving:

(4) If p ∈R[t] satisfies p(t)Ê 0 for all t ∈ [m, M], and the self-adjoint operator A satisfies
mI É A É MI, then p̃(A)Ê 0.
p can be factorized as p(t)= c

∏
j (t−α j )

∏
k(βk − t)

∏
l

[
(t−γl )2 +δ2

l

]
, where c > 0, α j É m É M É

βk and γl ,δl ∈R. By (3), we have that p̃(A)Ê 0.

Corollary. The map φ can be extended to C[m, M]. Moreover, if f ∈ C[m, M],
∥ f̃ (A)∥ É ∥ f ∥.
Proof. Since C[t] is dense in C[m, M], φ can be extended uniquely by continuity. The inequality
follows because, for every p ∈C[t], ∥p∥± p is a non-negative polynomial in [m, M], so ∥p∥I Ê±p̃(A), i.e.,
∥p∥ Ê ∥p̃(A)∥; this inequality extends by continuity to C[m, M].

The extension of φ to C[m, M] defines a functional calculus for operators, i.e., given a
self-adjoint A ∈L (H), and f ∈ C[m, M], f̃ (A) is another self-adjoint operator in H.
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Bonus: Spectral Theorem (cont.)

Given a self-adjoint operator A ∈L (H), where H is a separable Hilbert space, a cyclic
vector of A is an element ξ ∈ H s.t. lin{Akξ : k ∈N0}= lin{p̃(A)ξ : p ∈C[t]} is dense in H.

Next we present a version of the Spectral Theorem for self-adjoint operators in a
separable Hilbert space:

Spectral Theorem
If the self-adjoint operator A ∈L (H), where H is a separable Hilbert space, has a cyclic
vector ξ, then there is a unitary operator U : H → L2(l) identifying H with L2(l) for some
l ∈ C[m, M]∗, s.t. U AU∗ = Mt, where Mt : L2(l)→ L2(l) is the multiplication operator
(Mtx)(t)= t x(t) for t ∈ [m, M], and m, M ∈R are s.t. m∥x∥2 É (Ax, x)É M∥x∥2 for all x ∈ H.

L2(l) is the completion of C[m, M], with inner product ( f , g)= l( f g), where l ∈ C[m, M]∗
is positive (i.e., l( f )Ê 0 if f (t)Ê 0 for all t ∈ [m, M]). To ensure that ( f , f )> 0 if f ̸= 0, one
actually considers C[m, M]/N instead of C[m, M], where N = { f ∈ C[m, M] : l( f̃ 2)= 0}.

An operator A ∈L (E,F) is unitary if AA∗ = A∗A = I; thus, (Ax, A y)F = (x, y)E for all
x, y ∈ E.
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Bonus: Spectral Theorem (cont.)

Proof. Define the linear functional l ∈ C[m, M]∗ by l( f ) := ( f̃ (A)ξ,ξ) for all f ∈ C[m, M]. Note that l Ê 0,
since f (A)Ê 0 if f (x)Ê 0 on [m, M], and that ( f , g) := l( f g)= ( f̃ (A)ξ, g̃(A)ξ) defines an inner product in
C[m, M]/N, where N = { f ∈ C[m, M] : l( f̃ 2)= 0}. Denote by L2(l) the completion of C[m, M]/N.
Define the operator U : H → L2(l) by U p̃(A)ξ= p for all p ∈C[t], which specifies it on a dense set of H
(since ξ is cyclic). This operator is well defined, since p̃1(A)ξ= p̃2(A)ξ iff 0= ∥p̃1(A)ξ− p̃2(A)ξ∥2 =
l([p1 − p2]2), i.e., p1 − p2 ∈ N. Also, U has the following properties:

(1) U is isometric: (U p̃1(A)ξ,U p̃2(A)ξ)H = (p1, p2) for every p1, p2 ∈C[t].
(2) R(U) is dense in L2(l), since is contains all polynomials in [m, M] modulo N. This property,

together with (1), show that the extension of U to H by continuity is a unitary operator.
(3) (U Ap̃(A)ξ)(t)= tp(t)= t(U p̃(A)ξ)(t), so, by the density of the polynomials and the cyclic nature of

ξ, U Av = MtUv for all v ∈ H, i.e., U AU∗ = Mt . Note in particular that Uξ= 1.

Note. Assuming that A has a cyclic vector is not very restrictive, since otherwise one can
pick a ξ1 from a complete orthonormal sequence (en) in H, and define H1 = clin{Anξ :
n ∈N}; if H1 ̸= H, apply iteratively this procedure to (H1 ⊕·· ·⊕Hk−1)⊥, so H can be
written as a countable direct sum, H = H1 ⊕H2 ⊕·· · . The spectral theorem can then be
applied to each of these subspaces individually. By transfinite induction, it can be further
extended to general (non-separable) Hilbert spaces.
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Bonus: Generalized Functions

In many applications, the concept of a function needs to be extended in order to define
solutions of some functional (e.g., ordinary/partial differential) equations.

Example. The original motivation for P. Dirac to define his delta function was to find
eigenvectors of the linear operator T : C([a,b])→ C([a,b]) given by (T f )(x)= xf (x)
( f ∈ C([a,b])). Such an eigenvector fλ ∈ C([a,b]) should be the solution of (x−λ) fλ(x)= 0
for all x ∈ [a,b], which implies that f (x)= 0 for all x ̸=λ, i.e., f = 0. Thus, T has no
eigenvalues (in the ordinary sense).

Alternatively, we can notice that the eigenvalue equation is equivalent toˆ b

a
fλ(x)(x−λ)φ(x)dx = 0, for all φ ∈ C∞([a,b]),

where can be interpreted as finding a linear functional δ ∈ C∞([a,b])∗ s.t. δ[(T−λ1)φ]= 0
for all φ ∈ C∞([a,b]). Now, every φ can be written as φ(x)= (x−λ)φ̃(x)+φ(λ), where
φ̃ ∈ C∞([a,b]), so

δ(φ)= δ[(T −λ1)φ̃+φ(λ)1]=φ(λ)δ(1).

If we define δ(1)= 1, then δ should satisfy δ(φ)=φ(λ). This is the definition of a Dirac
delta at λ!

Note that δ cannot be related to a normal function f , as δ(φ)= ´ b
a f (x)φ(x)dx is not

possible; it is a generalized function. Thus, it is not possible to “evaluate” f (or δ) at a
point in [a,b], but it only makes sense as an extension of expressions like

´ b
a f (x)φ(x)dx.
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Bonus: Generalized Functions (cont.)

Formalization

Let K be the vector space of all infinitely differentiable functions φ : R→R of compact
support (i.e., φ(x)= 0 for all x ∈R outside some compact set). K is not a normed space, but
it becomes a topological vector space when endowed with this notion of convergence:

Definition. A sequence (φn) in K converges to φ ∈ K if there is a compact set C ⊂R s.t.
• φn(x)= 0 for all x ∈ Cc and n ∈N, and
• the sequences (φ(k)

n )n converge uniformly on C to φ(k) for all k ∈N0.

K , with this notion of convergence, is a test space, and its elements are test functions.

Definition. A continuous linear functional ℓ on the test space K is a generalized function
(or distribution) on R, where “continuity” means that if φn →φ in K then ℓ(φn)→ ℓ(φ).

Example. The Dirac delta function δλ (λ ∈R) is a generalized function on K , defined by
δλ(φ)=φ(λ) for all φ ∈ K (Exercise: prove that it is a continuous linear functional).

If a generalized function ℓ can be written as ℓ(φ)= T f (φ) := ´∞−∞ f (x)φ(x)dx (φ ∈ K),
where f : R→R is locally integrable (i.e., integrable on every bounded interval), then ℓ is
a regular generalized function. Otherwise, ℓ is a singular generalized function; e.g., δλ is
singular.
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Bonus: Generalized Functions (cont.)

Convergence of generalized functions. A sequence (ℓn) of generalized functions is
said to converge to ℓ if ℓn(φ)→ ℓ(φ) for every φ ∈ K .
The space of generalized functions, with this notion of convergence, is the topological
vector space K∗.

Operations on generalized functions. Since generalized functions are linear
functionals, their addition and scalar multiplication can be directly defined as

[ℓ1 +ℓ2](φ) := ℓ1(φ)+ℓ2(φ)

[λℓ](φ) :=λℓ(φ), φ ∈ K ,

for ℓ1,ℓ2,ℓ ∈ K∗, and λ ∈R.

If f : R→R is locally integrable and α ∈ C∞(R), then Tα f (φ)= ´∞−∞α(x) f (x)φ(x)dx =´∞
−∞ f (x)α(x)φ(x)dx = T f (αφ) for φ ∈ K , which motivates the definition of αℓ ∈ K∗ as

[αℓ](φ) := ℓ(αφ), α ∈ C∞(R), φ ∈ K .

Note. The multiplication of generalized functions is in general not well defined!

Cristian R. Rojas Topic 8: Linear Operators 50



Bonus: Generalized Functions (cont.)

Differentiation. If f : R→R is locally integrable and differentiable, and φ ∈ K , then by
integration by parts

T f ′ (φ)=
ˆ ∞

−∞
f ′(x)φ(x)dx = f (x)φ(x)

∣∣x→∞
x→−∞−

ˆ ∞

−∞
f (x)φ′(x)dx =−

ˆ ∞

−∞
f (x)φ′(x)dx =−T f (φ′),

which motivates the definition of the derivative ℓ′ ∈ K∗ of ℓ ∈ K∗ as

ℓ′(φ) :=−ℓ(φ′), φ ∈ K .

Since φ is infinitely differentiable, every generalized function is infinitely differentiable.
Also, if ℓn → ℓ, then we also have that ℓ(k)

n → ℓ(k) for every k ∈N (why?).

Example. Consider the step function µ : R→R,

µ(x)=
0, x < 0

1, x Ê 0.

Then, for each φ ∈ K , Tµ(φ)= ´∞0 φ(x)dx, so T′
µ(φ)=−´∞0 φ′(x)dx =φ(0)= δ0(φ). Thus,

the derivative of the step function is a Dirac delta at 0!

Generalized functions are very useful in the theory of ordinary and partial differential
equations, as well as in Fourier analysis (where Dirac deltas abound). Also, they can be
defined on other sets like Rn, C and T!
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Bonus: Application to SOS Optimization

Motivation: Minimization of (non-convex) polynomials subject to polynomial constraints:

min
x=(x1,...,xn)

p0(x)

s.t. pk(x)Ê 0, k = 1, . . . ,m
⇔

min
t∈R t

s.t. t− p0(x)Ê 0 for all x s.t. pk(x)Ê 0, k = 1, . . . ,m.

We need to characterize which polynomials p ∈R[x] are positive, i.e., p(x)Ê 0, either in Rn

or in a set defined by other polynomials, e.g., {x ∈Rn : pk(x)Ê 0 for all k = 1, . . . ,m}.

Definitions
- p ∈R[x] (x ∈Rn) is a sum-of-squares (SOS) polynomial if p(x)= (q(x))2 for some

q ∈R[x].
- The set of SOS polynomials in R[x] is denoted Σ2R[x].
- The set of polynomials p ∈R[x] which are non-negative in Rn is denoted P+(Rn).
- The quadratic module generated by a finite set of polynomials F = { f1, . . . , fN }⊆R[x]

is

QM(F)= ∑
f ∈F∪{1}

fΣ2R[x]=
{

q2
0(x)+ f1(x)q2

1(x)+·· ·+ fN (x)q2
N (x) : qk ∈R[x]

}
.

- A quadratic module is Archimedean if there is a C > 0 s.t. C− x2
1 −·· ·− x2

n ∈QM(F).
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Bonus: Application to SOS Optimization (cont.)

In general Σ2R[x]⊆P+(Rn), and both sets are typically strictly different (Hilbert, 1888).

While P+(Rn) may be difficult to characterize, the coefficients of SOS polynomials have a
simple, convex characterization (Parrilo, 2000): Since p ∈Σ2R[x] iff p(x)= q2(x), and a
polynomial q ∈R[x] can be written as a linear combination of monomials (e.g.,
q(x)= x2

1 +3x1x2 +4x2
2 = [1 3 4][x2

1 x1x2 x2
2]T =:αT m(x)), one has that

p(x)= m(x)T ααT︸ ︷︷ ︸
A

m(x).

The coefficients of p appear in A ⪰ 0. Conversely, if p(x)= m(x)T Am(x) for some matrix
A ⪰ 0, decomposing A as v1vT

1 +·· ·+vmvT
m yields p(x)= [vT

1 m(x)]2 +·· ·+ [vT
mm(x)]2, so

p ∈Σ2R[x].

Note. The decomposition p(x)= m(x)T Am(x) is not unique: x2
1 +2x1x2 + x2

2 can be

written as [x1 x2]

[
1 1
1 1

]
[x1 x2]T or [x1 x2]

[
1 2
0 1

]
[x1 x2]T ; however, the set of all A

that yield p is a linear subspace (e.g., {A ∈R2×2 : a11 = a22 = 1, a12 +a21 = 2}), so the
characterization of an SOS polynomial in terms of A is convex.
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Bonus: Application to SOS Optimization (cont.)

An impressive result, due to M. Putinar (1993), shows that, under mild conditions, the
set of polynomials which are strictly positive on a set DF := {x ∈Rn : f (x)Ê 0 for all f ∈ F}
defined by a finite set F ⊆R[x] can be characterized in terms of SOS polynomials:

Theorem (Putinar’s Positivstellensatz)
Consider a finite set F ⊆R[x], x ∈Rn, s.t. QM(F) is Archimedean. Then, every polynomial
strictly positive on DF is in QM(F).

In other words, every p which is strictly positive on DF can be written as

p(x)= p0(x)+ f1(x)p1(x)+·· ·+ fN (x)pN (x), F = { f1, . . . , fN },

where p0, . . . , pN are SOS polynomials, so if one fixes the degrees of these polynomials, it
is possible to characterize p in a convex manner!

The assumption of QM(F) being Archimedean implies that DF should be compact, and is
easy to fulfill by adding to F the polynomial C− x2

1 −·· ·− x2
n, with C Ê 1 sufficiently large.
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Bonus: Application to SOS Optimization (cont.)

Putinar’s Positivstellensatz is a purely algebraic result from real semi-algebraic
geometry, but we will provide a functional analytical proof, based on Hahn-Banach and
some spectral properties. However, first we need to generalize the notion of spectrum to a
set of operators, and establish the spectral mapping theorem :

Definition. Let A1, . . . , An ∈A ⊆L (H), where A is a commutative algebra of operators
on a Hilbert space H, i.e., a subset of L (H) s.t. if A,B ∈A and α ∈C, then AB = BA and
A+B,αA, AB ∈A . The joint spectrum of A = (A1, . . . , An) in A , denoted σ(A), is the set of
λ ∈Cn for which there exist no B1, . . . ,Bn ∈A s.t. B1(A1 −λ1I)+·· ·+Bn(An −λ1I)= I.
Note that σ(A)⊆σ(A1)×·· ·×σ(An).

If f : Cn →C is a polynomial of the form f (x)=∑
i1,...,in∈N0

αi1···in xi1
1 · · ·xin

n , and

A1, . . . , An ∈L (H) are commuting operators, let f̃ : L (H)n →L (H) be given by
f̃ (A)=∑

i1,...,in∈N0
αi1···in A i1

1 · · ·A in
n , where A = (A1, . . . , An) ∈L (H)n. This definition

extends to systems of polynomials f : Cn →Cm.

Theorem (Spectral Mapping)
Let A = {A1, . . . , An} be a subset of a commutative algebra of operators A on a Hilbert
space H, and f : Cn →Cm a system of polynomials. Then, f (σ(A))=σ( f̃ (A)).
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Bonus: Application to SOS Optimization (cont.)

Lemma. If A ∈L (H), and λ ∈ ∂σ(A), then there is a sequence (Tn) in L (H) s.t. Tn is
invertible and ∥Tn∥ = 1 for all n ∈N, and (A−λI)Tn → 0.
Proof. Since λ ∈ ∂σ(A), pick a sequence (λn) in σ(A)c s.t. λn →λ, and let Rn := (A−λn I)−1. Then,
Rn(A−λI)− I = Rn(A−λn I + (λn −λ)I)− I = (λn −λ)Rn . Then, (∥Rn∥) is unbounded; otherwise there is
an M > 0 s.t. ∥Rn∥ É M for all n, and ∥Rn(A−λI)− I∥ = |λn −λ|∥Rn∥→ 0, so ∥Rn∗ (A−λI)− I∥ < 1 for
some n∗, thus Rn∗ (A−λI) is invertible, and so is A−λI = (A−λn I)Rn∗ (A−λI), a contradiction. Thus,
assume that ∥Rn∥→∞, and let Tn := Rn /∥Rn∥, so ∥Tn∥ = 1. Then, ∥(A−λI)Tn∥ = ∥(A−λI)Rn∥/∥Rn∥ =
∥I/∥Rn∥+ (λn −λ)Tn∥ É 1/∥Rn∥+|λn −λ|∥Tn∥→ 0.

Proof of Spectral Mapping Theorem (Harte, 1972). If fk : Cn →C is a polynomial, then by the
remainder theorem, for every λ ∈Cn , f̃k(A)− fk(λ)I =∑

j B j (A j −λ j I) for some B1, . . . ,Bn ⊆A , so if
f (λ) ∉ f (σ(A)), then λ ∉σ(A), i.e., f (σ(A))⊆σ( f̃ (A)).

To prove the converse, we will show that if C = (C1, . . . ,Cm) ∈A m , and µ ∈σ(C)⊆Cm , then there exists
a λ ∈Cn s.t. (λ,µ) ∈σ(A,C). This is done by induction on n, so we will only consider n = 1:

Let N :=
{∑

j B j (C j −µ j I) : B1, . . . ,Bm ∈A
}
. Note that AN ⊆N for every A ∈A and that I ̸=N (since

µ ∈σ(C)), so A /N ̸= {[0]}. Define LA1 : A /N →A /N as LA1 ([B])= [A1B]. σ(LA1 ) ̸= ; is compact, so
pick a λ1 ∈ ∂σ(LA1 ). Then, by the lemma above, there is a sequence (Tn) of invertible operators in
A /N s.t. ∥[Tn]∥A /N = 1 for all n and ∥[(A1 −λ1 I)Tn]∥A /N = infN∈N ∥(A1 −λ1 I)Tn +N∥→ 0.
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Bonus: Application to SOS Optimization (cont.)

Proof (cont.)
Based on this result, we claim that (λ1,µ) ∈σ(A1,C), since otherwise there would be A′

1,C′
1, . . . ,C′

n ∈A

s.t. A′
1(A1 −λ1 I)+C′

1(C1 −λ1 I)+·· ·+C′
n(Cn −λn I)= I, hence for an arbitrary D ∈A we have that

D = A′
1(A1 −λ1 I)D+C′

1(C1 −λ1 I)D+·· ·+C′
n(Cn −λn I)D ∈ A′

1(A1 −λ1 I)D+N , but then ∥[D]∥A /N =
infN∈N ∥A′

1(A1 −λ1 I)D+N∥ É infN∈N ∥A′
1(A1 −λ1 I)D+ A′

1N∥ = infN∈N ∥A′
1[(A1 −λ1 I)D+N]∥ É

∥A′
1∥∥[(A1 −λ1 I)D]∥A /N , which contradicts the properties of (Tn). Thus, (λ1,µ) ∈σ(A1,C).

Therefore, in general, for every µ ∈σ( f̃ (A)) there is a λ ∈Cn s.t. (λ,µ) ∈σ(A, f̃ (A)). Since σ(A, f̃ (A))⊆
σ(A)×σ( f̃ (A)), λ ∈σ(A). We just need to show that µ ∈ f (λ). Consider the system of polynomials
g : Cn+m →Cm given by g(λ,µ)=µ− f (λ). Then, by our first result, µ− f (λ)= g(λ,µ) ∈ g(σ(A, f̃ (A)))⊆
σ( g̃(A, f̃ (A)))=σ(0)= {0}, i.e., µ= f (λ), so σ( f̃ (A))⊆ f (σ(A)).
In conclusion, f (σ(A))⊆σ( f̃ (A)) and σ( f̃ (A))⊆ f (σ(A)), thus σ( f̃ (A))= f (σ(A)).
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Bonus: Application to SOS Optimization (cont.)

Definition. Let K be a convex set in a vector space V . x ∈ K is an algebraic interior point
of K relative to V if for every v ∈V there is an ε> 0 s.t. x+ tv ∈ K for all t ∈ [0,ε]. The set
of all algebraic interior points of K is called the algebraic interior of K , aint K .

To establish Putinar’s Positivstellensatz, note that Eidelheit’s separating hyperplane
theorem can be modified to this “algebraic” version: If K1 and K2 are convex sets in a
real vector space V s.t. aint K1 ̸= ; and K2 ∩aint K1 =;. Let x0 ∈ aint K1. Then there is
a linear functional l : V →R s.t. l(x)É 0 for all x ∈ K2, l(x)Ê 0 for all x ∈ K1, and l(x0)> 0.
(Exercise!)

Lemma. 1 is an algebraic interior point of an Archimedean QM(F).
Proof. Since C− x2

1 −·· ·− x2
n ∈QM(F) for some C Ê 1, and QM(F) is a convex set,

• C− x2
i = C− x2

1 −·· ·− x2
n +∑

j ̸=i x2
j ∈QM(F) for all i = 1, . . . ,n.

• C± xi = 1
2 [(C−1)+ (C− x2

i )+ (xi ±1)2] ∈QM(F) for all i = 1, . . . ,n.

• If K ± q ∈QM(F) (q ∈R[x], K > 0), then K2 − q2 = 1
2K [(K + q)2(K − q)+ (K − q)2(K + q)] ∈QM(F).

• If K1 ± q1,K2 ± q2 ∈QM(F), then K1 +K2 − (q1 ± q2) ∈QM(F), and (C1+C2)2
4 ± q1 q2 = (C1+C2)2

4 ±
1
4 (q1 + q2)2 ∓ 1

4 (q1 − q2)2 ∈QM(F).
• From the previous properties, for every p ∈R[x] there is a K > 0 s.t. N ± p ∈QM(F) for all N Ê K ,

i.e., 1±εp ∈QM(F) for all ε ∈ [0,1/K]. Thus, 1 is an algebraic interior point of QM(F).
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Bonus: Application to SOS Optimization (cont.)

Proof of Putinar’s Positivstellensatz (Helton and Putinar, 2008)
Firstly notice that QM(F) is a convex set. Assume, to the contrary, that p is a strictly positive
polynomial in DF , but p ∉QM(F). By the modified separating hyperplane theorem, there is a linear
functional l on R[x] s.t. l(1)> 0, l(q)Ê 0 for all q ∈QM(F), and l(p)É 0; extend l algebraically to C[x].
Construct a Hilbert space L2(l) as the completion of C[x]/N, where N = {q ∈C[x] : l(q)= 0}, and
(q, r)= l(qr). Consider the tuple of multiplication operators M = (Mx1 , . . . , Mxn ) on L2(l) where
Mxk q(x)= xk q(x), which are self-adjoint and commute with each other. Furthermore, these operators
are bounded, since ([C− x2

1 −·· ·− x2
n]q, q)= l([C− x2

1 −·· ·− x2
n]q2)Ê 0 by the Archimedean property (i.e.,

[C− x2
1 −·· ·− x2

n]q2 ∈QM(F)) and this implies that (Mxk q, q)É C(q, q) for every q ∈C[x].
For every f ∈ F, since ( f̃ (M)p, p)= ( f p, p)Ê 0 for every p ∈C[x], thus f̃ (M) is non-negative, i.e.,
σ( f̃ (M))⊆ [0,∞), so the spectral mapping theorem implies that f (σ(M))=σ( f̃ (M))⊆ [0,∞) for all f ∈ F,
that is, σ(M)⊆DF .
Therefore, for every q ∈C[x] s.t. q(x)Ê 0 on DF , it holds by the spectral mapping theorem that σ(q̃(M))
= q(σ(M))⊆ [0,∞), so, by the Corollary in Slide 29, q̃(M) is non-negative, thus l(q)= (q,1)= (q̃(M)1,1)
Ê 0, i.e., l is a positive functional on R[x].
Since DF is compact, there is an ε> 0 s.t. p(x)Ê ε for all x ∈DF , so l(p)Ê εl(1)> 0, a contradiction.
Therefore, all strictly positive polynomials in DF belong to QM(F).
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Bonus: Application to SOS Optimization (cont.)

Example (from slides by C. Scherer and S. Weiland)

Consider the problem of testing whether the following polynomials are Hurwitz (i.e., have
all their roots inside the unit disk):

{s3 + (3−δ2
1 +δ2)s2 + (3+δ1)s+ (0.9+δ1δ2) : δ1 ∈ [−1,1], δ2 ∈ [−1,1]}.

By the Routh-Hurwitz criterion, this amounts to checking

3−δ2
1 +δ2 Ê 0, and

(3+δ1 +δ2)(3+δ1)− (0.9+δ1δ2)Ê 0

}
for all δ1,δ2 s.t. δ2

1 É 1 and δ2
2 É 1.

By Putinar’s Positivstellensatz, the positivity of the first condition is equivalent to

3−δ2
1 +δ2 = p0(δ1,δ2)+ p1(δ1,δ2)(1−δ2

1)+ p2(δ1,δ2)(1−δ2
2) (∗)

for some SOS polynomials p0, p1, p2 ∈Σ2R[δ1,δ2]. By setting upper bounds on the
degrees of these polynomials, (∗) corresponds to an LMI feasibility problem that can be
solved using standard convex optimization tools (CVX/Yalmip via Sedumi, SDPT3,
Mosek, . . . ).
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