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Orthonormal Sets

The notion of basis is very important, since it allows to define “coordinates” in a space,
thus allowing explicit computations in Hilbert spaces.

Definition
In an inner product space V , a family (eα)α∈I in V \{0} is an orthogonal set if eα ⊥ eβ for
α ̸=β. If also ∥eα∥ = 1 for all α ∈ I, (eα)α∈I is an orthonormal set. In case I is finite, N or
Z, (eα) is an orthogonal/orthonormal sequence.

Examples of orthonormal sets

1. In Cn, take the standard basis vectors.

2. In ℓ2, take (en)n∈N with en = (0, . . . ,0,1,0, . . . ). (The 1 is in the n-th position.)

3. In L2[−π,π], take (en)n∈Z, with en(t)= (2π)1/2eint for n ∈Z. (Fourier basis)
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Orthonormal Sets (cont.)

Definition
If (en) is an orthonormal sequence in a Hilbert space H, then, for every x ∈ H, (x, en) is

the n-th Fourier coefficient of x w.r.t. (en), and
∞∑

n=1
(x, en)en is the Fourier series w.r.t. (en).

Lemma
Let {e1, . . . , en} be an orthonormal set in an inner product space V ; λ1, . . . ,λn ∈C and

x ∈V . Then,

∥∥∥∥∥x−
n∑

k=1
λk ek

∥∥∥∥∥
2

= ∥x∥2 +
n∑

k=1
|λk − ck |2 −

n∑
k=1

|ck |2, where ck := (x, ek).

(Exercise!)

Since {e1, . . . , en} span lin{e1, . . . , en}, we have

Theorem
Let {e1, . . . , en} be an orthonormal set in an inner product space V . The closest point y of

lin{e1, . . . , en} to a point x ∈V is y=
n∑

k=1
(x, ek)ek , and ∥x− y∥2 = ∥x∥2 −

n∑
k=1

|(x, ek)|2.
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Orthonormal Sets (cont.)

Corollary
If x ∈ lin{e1, . . . , en}, then x =∑n

k=1(x, ek)ek , and ∥x∥2 =∑n
k=1 |(x, ek)|2.

αk = (x, ek)
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Bessel Inequality

Theorem (Bessel Inequality)
If (en) is an orthonormal sequence in an inner product space V , and x ∈V , then

∞∑
n=1

|(x, en)|2 É ∥x∥2.

Proof. For N ∈N,
∑N

k=1 |(x, ek)|2 = ∥x∥2 −
∥∥∥x−∑N

k=1(x, ek)ek

∥∥∥2 É ∥x∥2. Take N →∞.

We want to study the meaning of
∑∞

k=1(x, ek)ek .

Definition (Infinite sum in a normed space)
Let (xn) be a sequence in a normed space V . We say that

∑∞
n=1 xn converges and has sum

x (i.e.,
∑∞

n=1 xn = x) if
∑N

n=1 xn → x as N →∞, i.e.,
∥∥∥x−∑N

n=1 xn
∥∥∥→ 0 as N →∞.
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Bessel Inequality (cont.)

Theorem
Let (en) is an orthonormal sequence in a Hilbert space H, and let (λn) be a sequence in C.
Then

∑∞
n=1λn en converges in H iff

∑∞
n=1 |λn|2 <∞.

Proof

(⇒) Let x =∑∞
n=1λn en and xN =∑N

n=1λn en . Then, (xN , en)=λn for n É N, and taking N →∞ gives
(x, en)=λn . Then, by Bessel inequality:

∑∞
n=1 |λn |2 =∑∞

n=1 |(x, en)|2 É ∥x∥2 <∞.

(⇐) Assume that
∑∞

n=1 |λn |2 <∞, and let xN =∑N
n=1λn en . Then,

∥xN+P − xN∥2 =
∥∥∥∥∥ N+P∑

n=N+1
λn en

∥∥∥∥∥
2

=
N+P∑

n=N+1

∥∥λn en
∥∥2 =

N+P∑
n=N+1

|λn |2 → 0 as N →∞.

Therefore, (xn) is Cauchy, and it converges in H.

Observation
If H = L2[a,b], then the above convergence is in norm (or L2 convergence).
A different type is point-wise convergence:

∑∞
n=1 xn(t)= x(t) for all t ∈ [a,b].
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Total Orthonormal Sequences

Goal: When does
∑∞

n=1(x, en)en = x? ⇒ We need conditions on (en).

Observation
The approximation error y= x−∑∞

n=1(x, en)en satisfies (y, ek)= 0 for all k. Thus, we
could ensure that

∑∞
n=1(x, en)en = x if y= 0 is the only vector s.t. (y, ek)= 0 for all k.

Definitions
• An orthonormal set A in an inner product space V is maximal if the only point in V

which is orthogonal to every x ∈ A is 0, i.e., A cannot be extended to a larger
orthonormal set.

• A set A in a normed space V is total (or fundamental) if its span is dense in V .
• If A is a total orthonormal set in an inner product space V , every x ∈V can be

written as x =∑
e∈A (x, e)e, and A is called an orthonormal basis of V .

Note. By Bessel’s inequality, given x ∈V and an orthonormal set A, since
∑

e∈A |(x, e)|2 É
∥x∥2, at most a countable number of terms (x, e), as e runs over A, can be non-zero: for
every n ∈N, the number of terms s.t. |(x, e)|2 > 1/n can be at most n∥x∥2, and
{e ∈ A : (x, e) ̸= 0}=⋃

n∈N{e ∈ A : |(x, e)|2 > 1/n}, which is at most countable. Thus, sums like∑
e∈A (x, e)e and

∑
e∈A |(x, e)|2 can be reduced to sums over sequences.
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Total Orthonormal Sequences (cont.)

Theorem. If A is an orthonormal set in a Hilbert space H, the following are equivalent:
(1) A is total.
(2) ∥x∥2 =∑

e∈A |(x, e)|2 for all x ∈ H.
(3) (x, y)=∑

e∈A (x, e)(e, y) for all x, y ∈ H.
(4) A is maximal.

If H is an incomplete inner product space, then (1)-(3) are still equivalent, and they imply
(4), but not conversely (see bonus slides for an example).

Proof
(1) ⇔ (2): For a given x ∈ H, sort the elements of {e ∈ A : (x, e) ̸= 0} into a sequence (en). Then, take N →∞ in∑N

n=1 |(x, en)|2 = ∥x∥2 −
∥∥∥x−∑N

n=1(x, en)en
∥∥∥2

.

(1) ⇒ (3): As before, let N →∞ in
∑N

n=1(x, en)(en , y)=
(∑N

n=1(x, en)en , y
)
, and recall the continuity of the

inner product.
(3) ⇒ (2): (2) is a special case of (3), where x = y.
(2) ⇒ (4): If A is not maximal, take a nonzero x ⊥ A. Then ∥x∥2 > 0=∑

e∈A |(x, e)|2.
(4) ⇒ (1): Given an x ∈ H,

∑
e∈A (x, e)e is convergent (due to the completeness of H), and x−∑

e∈A (x, e)e is
orthogonal to every e ∈ A, so by maximality of A, x =∑

e∈A (x, e)e, which implies that A is an
orthonormal basis.

Only the implication (4) ⇒ (1) requires H to be complete.

Remarks. By Zorn’s Lemma, every inner product space V has a maximal orthonormal
set A (why?). Also, if V is complete, clin A =V ; otherwise V = clin A⊕ (clin A)⊥, so
(clin A)⊥ ̸= {0} and there is an x ∈ (clin A)⊥ of unit norm, so A∪ {x} is also orthonormal,
contradicting the maximality of A.
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Total Orthonormal Sequences (cont.)

Separability in Inner Product Spaces

Theorem. Let H be an inner product space. Then,

(1) If H is separable, then every orthonormal set in H is countable.

(2) If H contains a total orthonormal sequence, then H is separable.

Proof
(1) If A ⊆ H is an orthonormal set, distinct points x, y ∈ A are at a distance ∥x− y∥ =√

(x− y, x− y)=p
2, so if A were uncountable, a set dense in H would be uncountable too.

(2) If (en) is a total orthonormal set, consider the set D, consisting of all linear combinations
λ1 e1 +·· ·+λn en where n ∈N and λk = ak + ibk with ak ,bk ∈Q for k = 1, . . . ,n. D is a countable
set dense in H (why?).

Observation: A separable Hilbert space is isomorphic to Cn (for some n) or to ℓ2 (see
bonus slides for proof).

See bonus slides for examples of non-separable Hilbert spaces.
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Orthogonal Complements

We can use orthogonality to decompose a Hilbert space.

Definition
Let H be a Hilbert space. The orthogonal comple-
ment of E ⊆ H is E⊥ := {x ∈ H : x ⊥ E}.

Theorem
For every subset E of a Hilbert space, E⊥ is a
closed linear space. (Exercise!)

E⊥

E

The projection theorem gives the following characterization of E⊥:

Lemma
Let M be a linear subspace of an inner product space V , and let x ∈V . Then x ∈ M⊥ iff
∥x− y∥ Ê ∥x∥ for all y ∈ M.
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Orthogonal Complements (cont.)

Definition
Let M, N ⊆V , where V is a vector space. V is the direct sum of M and N, denoted
V = M⊕N, if every x ∈V has a unique decomposition x = y+ z, where y ∈ M and z ∈ N.

Theorem
Let M be a closed linear subspace of a Hilbert space H. Then, H = M⊕M⊥.

Proof. Let x ∈ H. Assume that M ̸= {0} (otherwise the result is trivial). Take y ∈ M as the unique
minimizer of infm∈M ∥x−m∥, and z := x− y. By the projection theorem, z ∈ M⊥.
If x = y′+ z′, with y′ ∈ M and z′ ∈ M⊥, then (x− y′)⊥ M, so by the projection theorem, y′ = y, which
proves the uniqueness of the decomposition.

Corollary
If M is a closed linear subspace of a Hilbert space H, then (M⊥)⊥ = M.

Proof. By definition, M ⊆ (M⊥)⊥. Let x ∈ (M⊥)⊥, and write it as x = y+ z with y ∈ M and z ∈ M⊥. Since
x ⊥ M⊥, 0= (x, z)= (y+ z, z)= (y, z)+∥z∥2 = ∥z∥2, so z = 0 and x ∈ M.
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Classical Fourier Series

Let en(t) := (2π)−1/2eint, t ∈ [−π,π], n ∈Z. We want to prove that (en)n∈Z is total in
L2[−π,π].

We need to show that clin{en : n ∈Z}= L2[−π,π]. It is known that the closure of C[−π,π]
is L2[−π,π], so it is enough to show that for every f ∈ C[−π,π] there is a sequence in
clin{en : n ∈Z} converging to f . An obvious choice is fN =∑N

n=−N ( f , en)en, but it is easier
to work with

Fm = 1
m+1

( f0 + f1 +·· ·+ fm), m = 0,1, . . . (Césaro sum of the fN ’s)

Since ( f , en)= (2π)−1/2
ˆ π

−π
f (t)e−intdt, we have

Fm(t)= 1
2π

ˆ π

−π
f (τ)Km(t−τ)dτ, where Km(x) := 1

m+1

m∑
N=0

N∑
n=−N

e−inx. (Fejér kernel)

Cristian R. Rojas Topic 5: Orthogonal Expansions 17



Classical Fourier Series (cont.)

Fejér Kernel properties:

(1) Km(x)Ê 0 for all x ∈R, m = 0,1,2, . . .

(2)
ˆ π

−π
Km(x)dx = 2π, for m = 0,1,2, . . .

(3) For all 0< δ<π,

(ˆ −δ

−π
+
ˆ π

δ

)
Km(x)dx → 0

as m →∞. (see bonus slides for proofs)

Therefore, (Km/2π) is a Delta sequence (it “con-
verges” to a Dirac delta).

K8(x)

K5(x)

K2(x)

x

We will prove a strong result: lim
m→∞ sup

t∈[−π,π]
| f (t)−Fm(t)| = 0.

⇒ ∥ f −Fm∥2
2 =
ˆ π

−π
| f (t)−Fm(t)|2dt É 2π sup

t∈[−π,π]
| f (t)−Fm(t)|2 → 0 as m →∞. (L2 convergence)
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Classical Fourier Series (cont.)

Take a δ> 0 (to be defined more precisely later):

| f (t)−Fm(t)| =
∣∣∣∣ 1
2π

ˆ π

−π
[ f (t)− f (τ)]Km(t−τ)dτ

∣∣∣∣
É 1

2π

ˆ π

−π
| f (t)− f (τ)|Km(t−τ)dτ

= 1
2π

(ˆ
|t−τ|>δ−πÉτÉπ

+
ˆ t+δ

t−δ

)
| f (t)− f (τ)|Km(t−τ)dτ.

For the first integral, we use the fact that f is bounded, i.e., there is an M > 0 s.t.
supt∈[−π,π] | f (t)| É M, hence

1
2π

ˆ
|t−τ|>δ−πÉτÉπ

| f (t)− f (τ)|Km(t−τ)dτÉ 2M
2π

(ˆ −δ

−π
+
ˆ π

δ

)
Km(τ)dτ. (This is negligible as m →∞.)
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Classical Fourier Series (cont.)

For the second integral, we need to recall uniform continuity:

Definition (reminder). Given metric spaces (X ,dX ) and (Y ,dY ), f : X →Y is uniformly
continuous if for every ε> 0 there is a δ> 0 s.t. for all x, y ∈ X , dX (x, y)< δ implies
dY ( f (x), f (y))< ε.

Reminder. By Heine-Cantor’s theorem, given metric spaces (X ,dX ) and (Y ,dY ), if X is
compact and f : X →Y is continuous, then f is uniformly continuous.

Let ε> 0. Then, take δ as in the definition of uniform continuity, so

1
2π

ˆ
|t−τ|<δ−πÉτÉπ

| f (t)− f (τ)|Km(t−τ)dτÉ ε

2π

ˆ
|t−τ|<δ−πÉτÉπ

Km(t−τ)dτÉ ε.

Therefore: sup
t∈[−π,π]

| f (t)−Fm(t)| < M
2π

(ˆ −δ

−π
+
ˆ π

δ

)
Km(τ)dτ+ε→ ε as m →∞.

and since ε> 0 was arbitrary, taking ε→ 0 gives lim
m→∞ sup

t∈[−π,π]
| f (t)−Fm(t)| = 0.
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Classical Fourier Series (cont.)

We have actually proved

Theorem (Fejér)
Let f : [−π,π]→C be continuous, sn( f ) be the n-th partial sum of its Fourier series, and
σn( f ) be the arithmetic mean of s0( f ), . . . , sn( f ). Then σn( f )→ f uniformly as n →∞.

Notice that sn( f ) does not always converge point-wisely to continuous f . (An example is
provided in the bonus slides of Topic 8!)

A similar result (proven analogously, with a different kernel) is

Theorem (Weierstrass theorem)
Let f : [a,b]→R be continuous, where −∞< a < b <∞. For every ε> 0 there is a
polynomial p s.t. supt∈[a,b] | f (t)− p(t)| < ε.

Cristian R. Rojas Topic 5: Orthogonal Expansions 21



Next Topic

Least Squares Estimation

Cristian R. Rojas Topic 5: Orthogonal Expansions 22



Outline

Orthonormal Sets

Bessel Inequality

Total Orthonormal Sequences

Orthogonal Complements

Classical Fourier Series

Bonus Slides

Cristian R. Rojas Topic 5: Orthogonal Expansions 23



Bonus: Example of Maximal Non-Total Orthonormal Sets

In every incomplete inner product space V there are maximal orthonormal sets which are
not total, i.e., whose closed linear span is not the entire space:

Proof. First note that if every proper, closed subspace M of V is s.t. M⊥ ̸= {0}, then V is complete.
Indeed, assume that V is incomplete, and let V̂ be the completion of V . Pick an x ∈ V̂ \V , and let
M̂ = {x}⊥ in V̂ . Then, M̂∩V is closed in V (because M̂ is closed in V̂ ). If x ⊥V , then d(x,V )= ∥x∥ > 0,
and V would not be dense in V̂ ; thus, M̂∩V ̸=V , and there is a y ∈V s.t. (x, y) ̸= 0, which we can
normalize so that (x, y)= 1.
Note that M̂∩V is dense in M̂. Indeed, let z ∈ M̂ and let (xn) be a sequence in V s.t. xn → z (which
exists because V = V̂ ). Let x′n = xn − (xn , x)y; then x′n ∈V , (x′n , x)= (xn , x)− (xn , x)(y, x)= 0 so that x′n ∈ M̂,

and ∥x′n − z∥ É ∥xn − z∥+|(xn , x)|∥y∥→ 0+|(z, x)|∥y∥ = 0, thus x′n → z. Then, (M̂∩V )⊥∩V = (M̂∩V )⊥∩V
= M̂⊥∩V = lin{x}∩V =;, so M = M̂∩V is the sought proper, closed subspace of V .
Now, assume every maximal orthonormal set in an incomplete V is a basis, and let M be a closed,
proper subspace of V s.t. M⊥ = {0}. Let B be a maximal orthonormal set in M, and extend it to a
maximal orthonormal set B∪B1 for V . Assume B1 ̸= ;, and let x1 ∈ B1; since M⊥ = {0}, there is a y ∈ M
s.t. (y, x1) ̸= 0. As B∪B1 is a basis, y= ∑

k ck yk +∑
k dk xk (yk ∈ B, xk ∈ B1). Now, z =∑

k dk xk =
y−∑

k ck yk ∈ M, but xk ⊥ B for all k, hence z ⊥ B. As B is maximal in M, z = 0, so (y, x1)= d1 = 0, a
contradiction. Hence, B1 =;, B is a maximal orthonormal set for V , so B is a basis for V , i.e., M =V , a
contradiction. Thus, V contains a non-total maximal orthonormal set.
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Bonus: Example of Maximal Non-Total Orthonormal Sets (cont.)

From this result, every incomplete inner product space has maximal non-total
orthonormal sets. Here is a specific example:

Let V = ℓ2, and denote by (en) its standard orthonormal basis. Consider the linear
subspace Y ⊆V spanned by A = {a, e2, e3, . . . }, where a :=∑∞

k=1(1/k)ek . Then, B =
{e2, e3, . . . } is a maximal orthonormal set in Y , because if x =α1a+∑N

k=2αk ek ∈Y is
orthogonal to B (why is it enough to consider such an x?), then 0= (x, eN+1)=α1/(N +1),
and 0= (x, ek)=αk for k = 2, . . . , N, hence x = 0. However, clin B does not include a, so B is
a maximal orthonormal set for Y which is not total in Y .
Note, however, that Y does have an orthonormal basis, which can be obtained by
applying Gram-Schmidt to A (see Homework 3!).

Cristian R. Rojas Topic 5: Orthogonal Expansions 25



Bonus: Characterization of Separable Hilbert Spaces

Definition. Two Hilbert spaces H,K are isomorphic if there is a bijective mapping
U : H → K s.t., for all x, y ∈ H and α ∈C, U(x+ y)=U(x)+U(y), U(αx)=αU(x) and
(U(x),U(y))= (x, y). Such a mapping is a unitary linear operator.

Theorem. Every separable Hilbert space is isomorphic to Cn for some n ∈N, or to ℓ2.

Proof. Assume H is a separable Hilbert space, so it has a total orthonormal sequence. Suppose first
that such sequence is finite, say, {e1, . . . , en}. Then, x =∑n

k=1(x, ek)ek for each x ∈ H. Let U : H →Cn be
given by U

(∑n
k=1λk ek

)= (λ1, . . . ,λn); U is bijective and linear, and if x =∑n
k=1 xk ek , y=∑n

k=1 yk ek ,
we have that (x, y)=∑n

k=1 xk yk = (U(x),U(y)), so U is unitary and H is isomorphic to Cn .
If the total orthonormal sequence is infinite, say, (ek)k∈N, define the mapping U : H → ℓ2 by U(x)=
(λk)k∈N, where x =∑∞

k=1λk ek . U is linear and unitary (as in the finite case), hence injective. By the
characterization of total orthonormal sequences, U(x) ∈ ℓ2, and if (λk)k∈N ∈ ℓ2,

∑∞
k=1λk ek converges

to an x ∈ ℓ2, so U is surjective. Thus, H is isomorphic to ℓ2.
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Bonus: Examples of Non-Separable Hilbert Spaces

1. ℓ2(R): The space of all f : R→R s.t. E f = {x ∈R : f (x) ̸= 0} is countable and∑
x∈E f

f 2(x)<∞ (this sum is well defined, why?), with inner product ( f , g)=∑
x∈E f ∩Eg f (x)g(x). ℓ2(R) is a Hilbert space (Exercise! Hint: countable unions of

countable sets are countable). Also, the functions f y ∈ ℓ2(R), with f y(x)= 1 if x = y
and f y(x)= 0 otherwise, are an uncountable orthonormal system, so ℓ2(R) is
non-separable.

2. Almost-periodic functions: In an attempt to extend the classical Fourier series to
non-periodic functions in R, the following definition has been coined:

f : R→C is almost-periodic (AP) if it is the uniform limit of functions
∑n

k=1 ak eiλk t,
with λ1, . . . ,λn ∈R. The set E of AP functions is a vector space, with inner product
( f , g)= limT→∞(2T)−1 ´ T

−T f (t)g(t)dt (modulo an equivalence relation). The
completion of E is a Hilbert space, but not all its elements can be identified as
functions (e.g.,

∑∞
k=1(1/k)eit/k). Also, (eλt)λ∈R is an uncountable orthonormal

system in E, so E is non-separable.
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Bonus: Proofs of Properties of Fejér Kernels

Letting z = eix , the Fejér kernel can be written, for every x not a multiple of 2π, as

Km(x)= 1
m+1

m∑
N=0

N∑
n=−N

z−n = 1
m+1

m∑
N=0

zN − z−N−1

1− z−1 = 1
(m+1)(1− z−1)

[
1− zm+1

1− z
− z−1 − z−m−2

1− z−1

]

= 1
(m+1)(1− z−1)

[
1− zm+1

1− z
+ 1− z−m−1

1− z

]
= 2− zm+1 − z−m−1

(m+1)(|1− z|2)
=

sin2
(

(m+1)x
2

)
(m+1)sin2 ( x

2
) . (∗)

This, and the continuity of Km , directly proves Property 1.

Since
ˆ π

−π
einxdx = 2π if n = 0 and = 0 otherwise,

ˆ π

−π
Km(x)dx = (m+1)−1 ∑m

N=0
∑N

n=−N

ˆ π

−π
einxdx =

(m+1)−1 ∑m
N=0 2π= 2π, which establishes Property 2.

Finally, note that if x ∈ [−π,−δ)∪ (δ,π], then sin2(x/2)Ê sin2(δ/2)> 0. Thus, by (∗), for this range of
values of x, 0É Km(x)É (m+1)−1 sin−2(δ/2), so

0É
(ˆ −δ

−π
+
ˆ π

δ

)
Km(x)dx É 2π

m+1
sin−2(δ/2)→ 0 as m →∞,

which proves Property 3.
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Bonus: Orthogonal Polynomials

Orthonormal sequences composed only of polynomials are very useful in applied
mathematics, physics and engineering, due to their ease of computation.

Definition. A sequence (pn)n∈N0 of polynomials, where pn has degree n, is orthogonal
on (a,b) (which can be infinite) with respect to the weight function w : (a,b)→∞, if
(pn, pm) := ´ b

a w(x)pn(x)pm(x)dx = 0 whenever n ̸= m. If cn := ´ b
a w(x)p2

n(x)dx = 1 for all
n, they are also orthonormal.

Orthogonal polynomials can be easily generated via the Gram-Schmidt procedure (see
Homework 3!).

Examples
• Legendre polynomials (w ≡ 1 on (−1,1), cn = 2/(2n+1)):

p0(x)= 1, p1(x)= x, p2(x)= (1/2)(3x2 −1), p3(x)= (1/2)(5x3 −3x), . . .
• Laguerre polynomials (w(x)= e−x on (0,∞), cn = 1):

p0(x)= 1, p1(x)= 1− x, p2(x)= (1/2)(x2 −4x+2), p3(x)= (1/6)(−x3 +9x2 −18x+6), . . .
• Hermite polynomials (w(x)= e−x2

on (−∞,∞), cn =p
π2nn!):

p0(x)= 1, p1(x)= 2x, p2(x)= 4x2 −2, p3(x)= 8x3 −12x, . . .
• Chebyshev polynomials (w(x)= 1/

√
1− x2 on (−1,1), c0 =π, cn =π/2 for n > 0):

p0(x)= 1, p1(x)= x, p2(x)= 2x2 −1, p3(x)= 4x3 −3x, . . .

By definition, pn is orthogonal to every polynomial of degree lower than n, and
lin{1, x, . . . , xn}= lin{p0, . . . , pn} (why?).
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Bonus: Orthogonal Polynomials (cont.)

Let (pn)n∈N0 be a sequence of orthogonal polynomials over (a,b) with respect to w. Then,
(pn)n∈N0 enjoys many interesting properties. Here are just a couple of them:

Property 1 (Moments). Let µi := ´ b
a xiw(x)dx (i ∈N0). Then,

pn(x)∝ det



µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
. . .

...
µn−1 µn · · · µ2n−1

1 x · · · xn


.

Proof. As lin{1, x, . . . , xn}= lin{p0, . . . , pn}, (monic) pn is of the form pn(x)= xn −mT (x)α, where
m(x) := [1, . . . , xn−1]T and α ∈Rn minimizes ∥xn −mT (x)α∥2 (why?). Thus, α satisfies Hα=µ, with
α := [α0, . . . ,αn−1]T , µ := [µn , . . . ,µ2n−1]T , and H ∈Rn×n s.t. Hi, j =µi+ j . This equation can be extended

to

[
H 0

mT (x) 1

][
α

pn(x)

]
=

[
µ

xn

]
, and Cramér’s rule implies the result.

Property 2 (Zeros). The roots of pn (n Ê 1) are all real, simple, and lie in (a,b).
Proof. Let qr (x)= (x− x1)(x− x2) · · · (x− xr ) consist of all the roots of pn(x)= 0 in (a,b) (including their
multiplicities). Then, qr has degree r, and it has sign changes wherever pn does in (a,b). Thus,
pn(x)qr (x) does not change sign in (a,b), so

´ b
a w(x)pn(x)qr (x)dx ̸= 0. This can only be true if r = n,

because pn is orthogonal to all polynomials of lower degree (why?). Now, assume that some root, say,
x1, is multiple. Then, we can write pn(x)= (x− x1)2r(x), where r has degree n−2. However,
pn(x)r(x)= [pn(x)/(x− x1)]2 Ê 0, so

´ b
a w(x)pn(x)r(x)dx > 0, which is again a contradiction (since pn is

orthogonal to any lower degree polynomial); hence, multiple roots cannot occur.
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Bonus: Orthogonal Polynomials (cont.)

Property 3 (Three-term recurrence). If (pn) is orthonormal, then
pn+1(x)= (Anx+Bn)pn(x)−Cn pn−1(x), where An = an+1/an, Cn = an+1an−1/a2

n and
Bn = (an+1/an)[bn+1/an+1 −bn/an], with ak and bk being the coefficients of the k-th and
(k−1)-th degree terms of pk(x), respectively.

Proof. With An = an+1/an , qn(x) := pn+1(x)− An xpn(x) is a polynomial of degree at most n, so
qn =αn pn +·· ·+α0 p0 for some α0, . . . ,αn ∈R. By orthogonality, αk = ´ b

a w(x)pk(x)qn(x)dx =´ b
a w(x)pk(x)pn+1(x)dx− An

´ b
a w(x)pk(x)xpn(x)dx = 0 for k = 0,1, . . . ,n−2. Thus, the three-term

relation holds with Bn =αn and Cn =−αn−1. Now, write xpn−1(x)= (an−1/an)pn(x)+ qn−1(x), where
qn−1(x) has degree at most n−1, so Cn = An

´ b
a w(x)pn(x)xpn−1(x)dx = (Anan−1/an)

´ b
a w(x)p2

n(x)dx

+An
´ b

a w(x)pn(x)qn−1(x)dx = Anan−1/an . Finally, Bn is obtained by equating the n-th degree terms
of the three-term relation. Note also that the result is valid for n = 0 if we define a−1 := p−1(x) := 0.

Property 4 (Christoffel-Darboux relation). If (pn) is orthonormal, then
(an/an+1)[pn+1(x)pn(y)− pn+1(y)pn(x)]= (x− y)

∑n
i=0 pi(x)pi(y) for all x, y ∈R.

Proof. Multiplying Property 3 by pn(y) yields pn+1(x)pn(y)= (An x+Bn)pn(x)pn(y)−Cn pn−1(x)pn(y).
Exchanging x and y, subtracting this identity from the previous one, and multiplying by 1/An gives

(x− y)pn(x)pn(y)= A−1
n [pn+1(x)pn(y)− pn+1(y)pn(x)]− A−1

n−1[pn(x)pn−1(y)− pn(y)pn−1(x)].

Summing these equations over 0,1, . . . ,n, and taking a−1 = 0, proves the result, as A−1
n = an /an+1.

Property 4 gives a convenient formula for the kernel Gn(x, y) :=∑n
i=0 pi(x)pi(y)

appearing, e.g., in the error from approximating a function in terms of (pn).

Other properties of (pn) follow from the Sturm-Liouville theory (see Young’s book).
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