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Completeness

A property that many important metric spaces share is completeness: a sequence that
seems to converge, actually does. This, however, does not always hold (recall the ℓ0
example from last topic). This property is what distinguishes R from Q!

Definition
(xn) is a Cauchy sequence in a metric space (X ,d) if, for every ε> 0, there is an N ∈N s.t.
for all n,m Ê N, d(xn, xm)< ε.
(X ,d) is a complete metric space if every Cauchy sequence in X is convergent.

Observation
Every convergent sequence in a metric space is a Cauchy sequence (exercise!).
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Completeness (cont.)

Example 1
R and C are complete, while Q is not: take xn = 1+1/1!+1/2!+·· ·+1/n!; (xn) is a Cauchy
sequence in Q, since it is convergent in R (and hence Cauchy), but its limit in R is e,
which is not rational (see bonus slides for proof).

Example 2
Consider C[0,1], with inner product (x, y) = ´ 1

0 x(t)y(t)dt.
This space is not complete: consider the sequence (xn) in the
figure. This sequence is Cauchy, since d(xn, xm) < ε when
n,m > 1/ε. However, (xn) is not convergent: for every x ∈
C[0,1],

d2(xn, x)=
ˆ 1/2

0
|x(t)|2dt+

ˆ 1/2+1/n

1/2
|xn(t)− x(t)|2dt

+
ˆ 1

1/2+1/n
|1− x(t)|2dt,

thus d(xn, x) → 0 means that x(t) = 0 for t < 1/2 and x(t) = 1
for t > 1/2, but then x cannot be continuous!
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Completeness (cont.)

Completeness and Closedness

Recall: in a metric space, a set is closed if it contains the limits of its convergent
sequences (this means that such a set is “closed with respect to taking limits”).
Unfortunately, this property is relative, i.e., it depends on the underlying topological
space in which it is embedded.

Example. Q is not closed in R, but it is closed in Q.

Reason: Q has more convergent sequences as part of R than as part of Q.

Completeness is a property that resembles closedness, but is intrinsic/hereditary, i.e., it
only depends on the set itself, not on the space in which it is embedded (unfortunately it
can only be defined on metric spaces, not on general topologies). It is based on an
intrinsic property of convergent sequences, that of being Cauchy (which only depends on
the distances between elements of the sequences, not on other points of the space).

In fact, a complete subset of a metric space is always closed (why?), no matter the
underlying space, and conversely, a closed subset of a complete space is always complete
(this is part of Homework 2!).
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Completeness (cont.)

Theorem
Cn and ℓ2 are complete metric spaces.
Proof (for ℓ2). Most completeness proofs follow these steps:

(1) Take a Cauchy sequence (xn).
(2) Postulate a candidate limit x.
(3) Show that x belongs to the metric space.
(4) Show that xn → x.

Steps:
(1) Pick a Cauchy sequence (xn) in ℓ2, where xn = (xn

1 , xn
2 , . . . ).

(2) Consider a fixed index k. Since (xn) is Cauchy, for a given ε> 0 there is an N ∈N s.t. |xn
k − xm

k |
É

√∑∞
s=1 |xn

s − xm
s |2 = d(xn , xm)< ε when n,m Ê N. Hence, (xn

k )n is Cauchy in C, so it converges
to, say, xk . Therefore, consider the candidate limit x = (x1, x2, . . . ).
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Completeness (cont.)

Proof (cont.)

(3) We will show that xn − x ∈ ℓ2 for some n. As xn ∈ ℓ2, this implies that x = xn − (xn − x) ∈ ℓ2.
Since (xn) is Cauchy, given ε> 0 there is an N ∈N s.t. d(xn , xm)< ε for n,m Ê N. Fix M ∈N. Then,
for n,m Ê N,

M∑
k=1

|xn
k − xm

k |2 É
∞∑

k=1
|xn

k − xm
k |2 = d2(xn , xm)< ε2.

Taking the limit m →∞, we obtain
∑M

k=1 |xn
k − xk |2 É ε2, and taking M →∞ we finally obtain

∥xn − x∥2 =∑∞
k=1 |xn

k − xk |2 É ε2, hence xn − x ∈ ℓ2, and x ∈ ℓ2.

(4) We have shown in Step 3 that there is an N ∈N s.t. ∥xn − x∥ É ε for n Ê N, so xn → x.

We have proven that every Cauchy sequence in ℓ2 is convergent. This means that ℓ2 is complete.

Cristian R. Rojas Topic 4: Hilbert and Banach Spaces 7



Completeness (cont.)

Definition
Hilbert Space: Inner product space which is complete (as a metric space).
Banach Space: Normed space which is complete (as a metric space).

Every Hilbert space is a Banach space, but not conversely. E.g., ℓ∞ is a Banach space, but
not a Hilbert space, since the ℓ∞-norm does not satisfy the parallelogram law (exercise!).

Examples

1. The ℓp spaces (for 1É p É∞) are Banach spaces. Of them, only ℓ2 is a Hilbert space.

2. Every finite-dimensional normed space is Banach (prove it! this follows from
Homework 2). In particular, Rn is a Banach space for every p-norm (1É p É∞).

If V is a Banach space, and M is a closed subspace of V , then the quotient normed space
V /M is also a Banach space (exercise!).
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The Space L2[a,b]

We have seen that C[0,1] with inner product (x, y)=
ˆ 1

0
x(t)y(t)dt is not complete. The

problem lies in requiring that the elements of C[0,1] should be continuous functions.
Removing this requirement leads to

Definition
Let −∞É a < b É∞. L2[a,b] is the vector space of Lebesgue measurable functions
f : [a,b]→C s.t.

´ b
a | f (t)|2dt <∞, with inner product (x, y)= ´ b

a x(t)y(t)dt.

Subtlety
(x, x)= ´ b

a |x(t)|2dt = 0 for some x ̸= 0! (e.g.,
´ b

a |x(t)|2dt = 0 if x(t) ̸= 0 only for finite # of t’s).

To solve this, define an equivalence relation on L2[a,b]:

x ∼ y iff
ˆ b

a
|x(t)− y(t)|2dt = 0.

This relation is compatible with the operations in L2[a,b] (i.e., for all λ ∈C, if x1 ∼ x2
and y1 ∼ y2, then x1 + y1 ∼ x2 + y2, λx1 ∼λx2 and (x1, y1)= (x2, y2)).
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The Space L2[a,b] (cont.)

Digression (Density and separability)
Let X be a topological space, and D ⊆ X . D is dense in X if D = X , i.e., if every point in X
can be approximated arbitrarily well by points in D.
E.g., Q is dense in R, and the set of polynomials in [a,b] is dense in C[a,b] (this will be
proven in Topic 5).

A topological space is separable if it contains a countable subset which is dense in it.
Many proofs in functional analysis can be simplified if the underlying space is separable.

Alternative characterization of separability for normed spaces:
A normed space V is separable iff there is a countable l.i. subset B ⊆V s.t. clin B =V .

Proof. If B = {en : n ∈N} is a countable l.i. subset of V s.t. clin B =V , one can form the set D,
consisting of all linear combinations λ1 e1 +·· ·+λn en where n ∈N and λk = ak + ibk with ak ,bk ∈Q for
k = 1, . . . ,n, which is a countable set dense in V . Conversely, if D = {xn : n ∈N} is a countable dense
subset of V , consider the set B formed by adding, inductively, xn to B (by calling it, e.g., em) iff
{e1, . . . , em} is l.i.; the resulting set B is l.i. and clin B =V .
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The Space L2[a,b] (cont.)

Examples of separable spaces

1. C is separable: a countable dense set in C is {x+ i y : x, y ∈Q}. Thus, R is separable
too.

2. ℓp (1É p <∞) is separable:
The set M of sequences of the form x = (x1, . . . , xn,0,0, . . . ) for some n ∈N, and xk ∈Q,
is countable and dense in ℓp (exercise!).

3. ℓ∞ is not separable:
Let A ⊆ ℓ∞ be the set of sequences x = (x1, x2, . . . ) where xk ∈ {0,1}. Each x ∈ A can be
mapped to a number x̂ = x1/2+ x2/22 + x3/23 +·· · ∈ [0,1]. The mapping is bijective
(except for the countable set of numbers with finite binary expansion, since they can
be written in more than one way: e.g., 0.1= 0.01111 . . . in binary form), and [0,1] is
uncountable, so A is uncountable. If x, y ∈ A and x ̸= y, then ∥x− y∥∞ = 1, hence
every dense set in ℓ∞ must be uncountable (why?).
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The Space L2[a,b] (cont.)

It can be proven that L2[a,b] is a Hilbert space, and that C[a,b] is a dense subspace of
L2[a,b].

Similarly, we can define the Banach spaces Lp[a,b] (1É p É∞) of Lebesgue measurable

functions x : [a,b]→C s.t.
´ b

a |x(t)|pdt <∞ (for p <∞) or ess supt∈[a,b]|x(t)| <∞ (for
p =∞), with norm

∥x∥p :=


(ˆ b

a
|x(t)|pdt

)1/p

, 1É p <∞,

ess sup
t∈[a,b]

|x(t)|, p =∞.

Note. The essential supremum of a Lebesgue measurable function f : [a,b]→C is
ess supt∈[a,b] f (t) := inf{supt∈[a,b] g(t) : g ∼ f }, where g ∼ f iff

´ b
a |g(t)− f (t)|dt = 0, so it is

independent of the representative f of class [ f ] being chosen.
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The Closest Point Property

Do you remember the “projection theorem” from geometry? (the shortest distance from a
point to a plane is achieved by the perpendicular) This result is fundamental in Rn, and it
also holds in Hilbert spaces!

Definition
A subset A of a real vector space is convex if,
for all x, y ∈ A and 0ÉλÉ 1, λx+ (1−λ)y ∈ A.

Definition
In an inner product space V , x, y ∈V are orthogonal, denoted x ⊥ y, if (x, y)= 0. x is
orthogonal to a subset S ⊆V , x ⊥ S, if x ⊥ s for all s ∈ S.

Lemma (Pythagorean theorem)
If x, y are orthogonal in an inner product space, then ∥x+ y∥2 = ∥x∥2 +∥y∥2. (Exercise!)
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The Closest Point Property (cont.)

Theorem (Closest point property)
Let M be a non-empty closed convex set in a real Hilbert
space V . For every x ∈ V there is a unique point y ∈
M which is closer to x than any other point of M (i.e.,
∥x− y∥ = inf

m∈M
∥x−m∥).

y is called the projection of x onto M.

x

δ

M

y

Why closed and convex?

M

δ

x

M

δ

x

δ

x

δδ

M

(No y) (A unique y) (Infinitely may y’s)

In a Banach space there may be infinitely many closest points, or none at all.
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The Closest Point Property (cont.)

Proof
(1) Existence:

Let δ= infm∈M ∥x−m∥, which is finite (because M ̸= ;). Then, for each n ∈N there is a yn ∈ M s.t.
∥x− yn∥2 É δ2 +1/n. We will show that (yn) is Cauchy: For n,m,

∥(x− yn)− (x− ym)∥2 +∥(x− yn)+ (x− ym)∥2 = 2∥x− yn∥2 +2∥x− ym∥2 (parallelogram law)

< 4δ2 +2
(

1
n
+ 1

m

)
,

or ∥yn − ym∥2 < 4δ2 +2
(

1
n
+ 1

m

)
−4

∥∥∥x−
( yn + ym

2

)∥∥∥2

< 4δ2 +2
(

1
n
+ 1

m

)
−4δ2

(
because M is convex, so

yn + ym
2

∈ M
)

< 2
(

1
n
+ 1

m

)
,

so (yn) is Cauchy, and it converges, say, to y ∈ M (since M is closed). Taking the limit n →∞ in
∥x− yn∥2 É δ2 +1/n, we obtain ∥x− y∥ É δ, so ∥x− y∥ = infm∈M ∥x−m∥.
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The Closest Point Property (cont.)

Proof (cont.)
(2) Uniqueness:

Let y1, y2 ∈ M be s.t. ∥x− y1∥ = ∥x− y2∥ = δ. Then (y1 + y2)/2 ∈ M, so ∥x− (y1 + y2)/2∥ Ê δ. By the
parallelogram law,

∥y1 − y2∥2 = 2∥x− y1∥2 +2∥x− y2∥2 −4
∥∥∥x− y1 + y2

2

∥∥∥2
É 2δ2 +2δ2 −4δ2 = 0.

Therefore, y1 = y2.
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The Closest Point Property (cont.)

Corollary (Projection Theorem)
If, in the theorem, M is a closed convex set, then y ∈ M is the minimizer of ∥x−m∥ over
all m ∈ M iff (x− y,m− y)É 0 for all m ∈ M.

Proof. Assume that y is the minimizer, but that there is an m ∈ M s.t. (x− y,m− y)= ε> 0. Let
yα := (1−α)y+αm for α ∈ [0,1]; since M is convex, yα ∈ M. Then,

∥x− yα∥2 = (1−α)2∥x− y∥2 +2α(1−α)(x− y, x−m)+α2∥x−m∥2,

which is differentiable in α, with derivative −2(x− y,m− y)=−2ε< 0 at α= 0, so for α sufficiently
small, ∥x− yα∥2 < ∥x− y∥2, which contradicts the optimality of y.

Conversely, assume that (x− y,m− y)É 0 for all m ∈ M. Then, for every m ∈ M, m ̸= y,

∥x−m∥2 = ∥x− y+ y−m∥2 = ∥x− y∥2 +∥y−m∥2 −2(x− y,m− y)> ∥x− y∥2.

Note. If M is a closed linear subspace, the condition above becomes (x− y)⊥ M (why?).
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Banach Fixed Point Theorem

Let (X ,d) be a metric space. A mapping A : X → X is a contraction with rate 0Éα< 1 if
d(Ax, A y)Éαd(x, y) for all x, y ∈ X .

Theorem (Banach Fixed Point Theorem)
Every contraction mapping A on a complete metric space X has a unique fixed point, i.e.,
Ax = x has a unique solution x in X .
Also, if Y is another metric space, and λ 7→ Aλ is a weak∗-continuous mapping in Y ,
where Aλ is a contraction with rate α, i.e., for every x ∈ X and λ0 ∈Y ,
limλ→λ0 d(Aλ(x), Aλ0 (x))= 0, then the fixed point of Aλ is continuous in λ.

Proof
(1) Existence: Take x0 ∈ X , and define by induction xn = A(xn−1)= An(x0) for every n ∈N. If m Ê n,

d(xn , xm)= d(An(x0), Am(x0))Éαnd(x0, xm−n)Éαn
m−n−1∑

k=0
d(xi , xi+1)Éαnd(x0, x1)

m−n−1∑
k=0

αk É αnd(x0, x1)
1−α ,

hence (xn) is Cauchy, so it converges to, say, x ∈ X . Now, a contraction is continuous (why?), so
A(x)= A(limn→∞ xn)= limn→∞ A(xn)= limn→∞ xn+1 = x, thus x is a fixed point of A.
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Banach Fixed Point Theorem (cont.)

Proof (cont.)
(2) Uniqueness: Assume that A(x)= x and A(y)= y for some x, y ∈ X . Then d(x, y)= d(A(x), A(y))

Éαd(x, y), where 0Éα< 1, so d(x, y)= 0, i.e., x = y.

(3) Continuity: Note that, if xλ is the fixed point of Aλ,

d(xλ, xλ0 )= d(Aλ(xλ), Aλ0 (xλ0 ))

É d(Aλ(xλ), Aλ(xλ0 ))+d(Aλ(xλ0 ), Aλ0 (xλ0 ))

Éαd(xλ, xλ0 )+d(Aλ(xλ0 ), Aλ0 (xλ0 )),

so d(xλ, xλ0 )É (1−α)−1d(Aλ(xλ0 ), Aλ0 (xλ0 ))→ 0 as λ→λ0.
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Banach Fixed Point Theorem (cont.)

Application: Initial value problems

A standard application of the Banach fixed point theorem is to the existence and
uniqueness of solutions to initial-value ordinary differential equations (compare it to the
Cauchy-Peano existence theorem from Topic 1!):

Theorem (Picard iterations)
Consider n continuous functions f i : X →R, where X is an open and connected subset of
Rn+1 containing (x0, y0

1 , . . . , y0
n). Assume that each f i satisfies the Lipschitz condition∣∣ f i(x, y1, . . . , yn)− f i(x, y′1, . . . , y′n)

∣∣É M max
i=1,...,n

∣∣yi − y′i
∣∣ , i = 1, . . . ,n.

Then, there is a δ> 0 such that the system of differential equations

dyi
dx

= f i(x, y1, . . . , yn), i = 1, . . . ,n,

has a unique solution y1 =ϕ1(x), . . . , yn =ϕn(x), for x ∈ [x0 −δ, x0 +δ], such that

ϕ1(x0)= y1, . . . , ϕn(x0)= yn.

Proof
The system of differential equations, together with the initial conditions, can be written as

ϕi (x)= y0
i +
ˆ x

x0
f i (t,ϕ1(t), . . . ,ϕn(t))dt, x ∈ [x0 −δ, x0 +δ], i = 1, . . . ,n.
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Banach Fixed Point Theorem (cont.)

Proof (cont.)
Due to continuity, there is a K > 0 such that

∣∣ f i (x, y1, . . . , yn)
∣∣É K (i = 1, . . . ,n) for all (x, y1, . . . , yn) ∈ X

and i = 1, . . . ,n. Let δ> 0 be such that Mδ< 1 and

(x, y1, . . . , yn) ∈ X if |x− x0| < δ and |yi − y0
i | < Kδ for all i = 1, . . . ,n.

Let C⋆ be the metric space of tuples ϕ= (ϕ1, . . . ,ϕn) of continuous functions ϕ1, . . . , ϕn on
[x0 −δ, x0 +δ] such that

∣∣∣ϕi (x)− y0
i

∣∣∣É Kδ for i = 1, . . . ,n, endowed with the metric

d(ϕ,ϕ′)=max
x,i

∣∣∣ϕi (x)−ϕ′i (x)
∣∣∣ .

Then, C⋆ is complete (exercise!) and the mapping A : C⋆→ C⋆ defined by ψ= Aϕ, where

ψi (x)= y0
i +
ˆ x

x0
f i (t,ϕ1(t), . . . ,ϕn(t))dt, x ∈ [x0 −δ, x0 +δ], i = 1, . . . ,n

is a contraction mapping. Indeed, ϕ= (ϕ1, . . . ,ϕn) ∈ C⋆ and x ∈ [x0 −δ, x0 +δ], then∣∣∣ψi (x)− y0
i

∣∣∣= ∣∣∣∣ˆ x

x0
f i (t,ϕ1(t), . . . ,ϕn(t))dt

∣∣∣∣É Kδ, i = 1, . . . ,n,

so ψ= Aϕ also belongs to C⋆. Also, if ψ= Aϕ and ψ′ = Aϕ′, where ϕ,ϕ′ ∈ C⋆, then∣∣∣ψi (x)−ψ′
i (x)

∣∣∣= ˆ x

x0

∣∣ f i (t,ϕ1(t), . . . ,ϕn(t))− f i (t,ϕ
′
1(t), . . . ,ϕ′n(t))

∣∣dt É Mδmax
j

|ϕ j (x)−ϕ′j (x)|, i = 1, . . . ,n,

thus d(ψ,ψ′)< d(ϕ,ϕ′), so A is a contraction. Hence, by the Banach fixed point theorem, ϕ= Aϕ has a
unique solution in C⋆, which is also the unique solution of the system of differential equations.
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Banach Fixed Point Theorem (cont.)

Application: Value iteration in dynamic programming

Consider a Markov chain (xn) on a finite set X s.t. P{xn+1 = j|xn = k,an = a}= p jk(a),
where (an) is a sequence of actions on a finite set A. The problem is to find ak′ , as a

function of xn′ , s.t. E
{∑∞

n=1α
nR(xn)

}
is maximized, where R : X →R+0 is a reward

function.

To solve this, define the value function V (x)=max(a1,a2,... )

[
R(x)+

∞∑
n=2

αnE{R(xn)}

]
,

which satisfies the dynamic programming (DP) equation

V (x)= R(x)+αmax
a∈A

∑
k∈X

V (k)pkx(a).

Once V is found, the optimal action is aopt(x) := arg maxa∈A
∑

k∈X V (k)pkx(a).

To solve the DP equation, one can use the value iteration algorithm:

(1) Let V0(x) := 0.

(2) For n = 1,2, . . . , let Vn(x) := R(x)+αmax
a∈A

∑
k∈X

Vn−1(k)pkx(a).
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Banach Fixed Point Theorem (cont.)

Application: Value iteration in dynamic programming (cont.)

The value iteration algorithm yields a sequence of value functions (Vn) that converges to
the unique solution of the DP equation, since it is defined by a contraction mapping!

Indeed, define the Bellman operator A : C(X )→ C(X ) as A(V )(x) := R(x)+
αmaxa∈A

∑
k∈X V (k)pkx(a). Then, for V1,V2 ∈ C(X ),

|A(V1)(x)− A(V2)(x)| =α
∣∣∣∣∣max

a∈A

∑
k∈X

V1(k)pkx(a)−max
a∈A

∑
k∈X

V2(k)pkx(a)

∣∣∣∣∣
Éαmax

a∈A

∣∣∣∣∣ ∑
k∈X

V1(k)pkx(a)− ∑
k∈X

V2(k)pkx(a)

∣∣∣∣∣
Éαmax

a∈A

∑
k∈X

|V1(k)−V2(k)|pkx(a)

Éαmax
k∈X

|V1(k)−V2(k)|,

so A is a contraction.

Cristian R. Rojas Topic 4: Hilbert and Banach Spaces 26



Next Topic

Orthogonal Expansions
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Bonus: Irrationality of e

Euler’s number is defined as e :=
∞∑

n=0
1/n!. We will show that e is irrational.

Assume, to the contrary, that e is rational, and in particular that e = a/b where a,b ∈N. Let

x = b!

(
e−

b∑
n=0

1
n!

)
.

Notice that:

(1) x = b!
∑∞

n=b+1 1/n!> 0.

(2) x = b!

(
a
b
−

b∑
n=0

1
n!

)
= a(b−1)!−

b∑
n=0

b!
n!

is an integer.

(3) For n Ê b+1,
b!
n!

= 1
(b+1) · · ·n É 1

(b+1)n−b , so

x =
∞∑

n=b+1

b!
n!

<
∞∑

n=b+1

1

(b+1)n−b =
∞∑

n=1

1
(b+1)n

= 1/(b+1)
1−1/(b+1)

= 1
b
< 1,

which is a contradiction, since there is no integer between 0 and 1, so e is irrational.
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Bonus: Completion of Metric Spaces

Let (X ,d) be a metric space. If X is not complete, it can be “embedded” into a complete
metric space (X̃ , d̃), i.e., there exists a complete metric space (X̃ , d̃) and a mapping
T : X → X̃ which is an isometry, that is, s.t. d̃(T(x),T(y))= d(x, y) for all x, y ∈ X , and s.t.
R(T) is dense in X̃ . Such an (X̃ , d̃) is a completion of (X ,d).

Theorem. Every metric space (X ,d) has a unique completion, up to isometry, i.e., if X̃
and X ′ are two completions of X , they are isometric.

Proof
(1) Existence: Let (xn) and (x′n) be two Cauchy sequences in X . (xn) and (x′n) are said to be

equivalent, (xn)∼ (x′n), if d(xn , x′n)→ 0 as n →∞. Let X̃ consist of all equivalence classes of
Cauchy sequences in X , and define the metric d̃ as d̃((xn), (yn))= limn→∞ d(xn , yn). This metric
is well defined since |d(xn , yn)−d(xm , ym)| É d(xn , xm)+d(yn , ym)→ 0 as n,m →∞, and if
(xn)∼ (x′n) and (yn)∼ (y′n), then |d(xn , yn)−d(xn , y′n)| É d(xn , x′n)+d(yn , y′n)→ 0 as n →∞. d̃ is a
metric because (i) if d̃((xn), (yn))= 0 then d(xn , yn)→ 0, so (xn)∼ (yn), (ii) d(xn , yn)= d(yn , xn), so
taking n →∞ gives d̃((xn), (yn))= d̃((yn), (xn)), and (iii) d(xn , yn)É d(xn , zn)+d(zn , yn), so n →∞
gives d̃((xn), (yn))É d̃((xn), (zn))+ d̃((zn), (yn)).
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Bonus: Completion of Metric Spaces (cont.)

Proof (cont.)
An isometry T : X → X̃ is given by T(x)= (xn) with xn = x for all n. Clearly, d̃(T(x),T(y))= d(x, y).
Now, take an (xn) in X̃ , and let ε> 0. There is an N ∈N s.t. d(xn , xN )< ε for all n Ê N; then,
(yn) ∈R(T) given by yn = xN satisfies d̃((xn), (yn))= limn→∞ d(xn , xN )É ε, so R(T) is dense in X̃ .

To prove the completeness of X̃ , consider a Cauchy sequence (x̃n) in X̃ , where x̃n = (x̃n
k )k . Since

R(T) is dense in X̃ , for every x̃n there is a ỹn = ( ỹn
k )k in R(T), with ỹn

k = yn ∈ X , s.t. d̃(x̃n , ỹn)
< 1/n, and d̃( ỹn , ỹm)É d̃( ỹn , x̃n)+ d̃(x̃n , x̃m)+ d̃(x̃m , ỹm)< 1/n+ d̃(x̃n , x̃m)+1/m, so ( ỹn) is Cauchy.
Consider x̃ = (yn); since d(yn , ym)= d̃( ỹn , ỹm), x̃ is Cauchy, so x̃ ∈ X̃ , and d̃(x̃n , x̃)É d̃(x̃n , ỹn)+
d̃( ỹn , x̃)< 1/n+ limk→∞ d(yn , yk)→ 0 as n →∞, so x̃n → x̃ and X̃ is complete.

(2) Uniqueness: If (X ′,d′) is another completion of (X ,d), with T′ being an isometry of X into X ′,
then for every x′, y′ ∈ X ′ there are sequences (x′n), (y′n) in R(T′), i.e., for all n, x′n = T′(xn) and
y′n = T′(yn) for some xn , yn ∈ X , s.t. x′n → x′ and y′n → y′. Hence,
|d′(x′, y′)−d′(x′n , y′n)| É d′(x′, x′n)+d′(y′, y′n)→ 0 as n →∞. Since R(T′) and R(T) are isometric
to X , for each x′, y′ ∈ X ′ there are Cauchy sequences (x̃n), ( ỹn) in R(T), where x̃n = T(xn) and
ỹn = T(yn) for all n, whose limits x̃, ỹ are uniquely defined and satisfy d̃(x̃, ỹ)= d′(x′, y′), so X̃ and
X ′ are isometric.
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Bonus: Completion of Metric Spaces (cont.)

Application to R as a completion of Q
The previous theorem yields a constructive means to complete a metric space. In
particular, the set of rational numbers Q can be completed by constructing the set of all
Cauchy sequences in Q. This is a representation (model) of the set of real numbers, R.

All operations in R can be defined point-wisely: given x = (xn), y= (yn) ∈RN,

d(x, y) := [(|xn − yn|)],
x± y := [(xn ± yn)], x · y := [(xn · yn)], etc.
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