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Motivation and Definitions

Inner product spaces are useful (and easy to handle), but are not the only spaces of
interest in system theory (e.g., C[a,b], H∞, . . . more on this last space later in the course).
The metrics of these other spaces cannot be induced by inner products, but it is still
possible to define a norm on them.

Definition
Let V be a real (complex) vector space. A norm on V is a mapping ∥ ·∥ : V →R+0 s.t., for all
x, y ∈V and λ ∈R (C),

(i) ∥x∥ > 0 if x ̸= 0, and ∥0∥ = 0,

(ii) ∥λx∥ = |λ|∥x∥,

(iii) ∥x+ y∥ É ∥x∥+∥y∥. (triangle inequality)

(V ,∥ ·∥) is a normed space.

Example
Let X be a topological space, and C(X ) := { f : X →C : f is continuous and bounded}. C(X )
is then a vector space, and we can define the supremum norm ∥ f ∥∞ := supx∈X | f (x)|.
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Motivation and Definitions (cont.)

Example
Consider the vector space Rn. For x ∈Rn, its p-norms are defined as

∥x∥1 := |x1|+ · · ·+ |xn|,
∥x∥p := (|x1|p +·· ·+ |xn|p

)1/p , p ∈ [1,∞)

∥x∥∞ :=max {|x1|, . . . , |xn|}.

Difficulty: How to prove the triangle inequality for 1É p <∞?

For 1É p É∞, let 1É q É∞ be s.t. 1/p+1/q = 1, and take x, y ∈Rn

Hölder inequality:
n∑

k=1
|xk yk | É ∥x∥p∥y∥q (with equality iff

|xk |p
∥x∥p

p
= |yk |q

∥y∥q
q

for all k)

Minkowski inequality: ∥x+ y∥p É ∥x∥p +∥y∥p

(See bonus slides for proofs of these inequalities.)
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Motivation and Definitions (cont.)

Example
Let 1É p <∞. ℓp is the normed space of all sequences x = (xk) s.t.

∑∞
k=1 |xk |p <∞,

together with the norm

∥x∥p :=
( ∞∑

k=1
|xk |p

)1/p

, x = (xk) ∈ ℓp .

For p =∞ we define ℓ∞ as the normed space of all bounded sequences x = (xk) (i.e., there
is an M > 0 s.t. |xk | É M for all k), with the norm

∥x∥∞ := sup
k∈N

|xk |, x = (xk) ∈ ℓ∞.

Observation
For p <∞, the properties of the ℓp norm rely on an extension of Minkowski’s inequality.

Exercise: Prove that ∥ ·∥∞ satisfies the triangle inequality.
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Motivation and Definitions (cont.)

Theorem
In a normed space (V ,∥ ·∥), the function d : V ×V →R+0 given by d(x, y) := ∥x− y∥ is a
translation-invariant metric (i.e., for every x, y, z ∈V , d(x+ z, y+ z)= d(x, y)).

Proof. For every x, y, z ∈V ,
(1) d(x, y)Ê 0, and d(x, y)= 0 iff ∥x− y∥ = 0, or equivalently, iff x = y.
(2) d(x, y)= ∥x− y∥ = |−1|∥x− y∥ = ∥y− x∥ = d(y, x).
(3) d(x, z)= ∥x− z∥ = ∥x− y+ y− z∥ É ∥x− y∥+∥y− z∥ = d(x, y)+d(y, z).

Thus, d is a metric, and d(x+ z, y+ z)= ∥x+ z− y− z∥ = ∥x− y∥ = d(x, y), so it is translation-invariant.

Consequence
A normed space is a metric space, and inherits its topological/convergence properties.

Exercise: Prove that in a normed space V , the norm ∥ ·∥ : V →R+0 is continuous.
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Motivation and Definitions (cont.)

Theorem
In a real normed space V , the addition + : V ×V →V and scalar multiplication
· : R×V →V are continuous operations (with respect to the product topologies of V ×V
and R×V , respectively).

Proof (for scalar multiplication; for addition the proof is similar)
Let ε> 0, and fix λ ∈R and x ∈V . For every µ ∈R and y ∈V ,

∥λx−µy∥ = ∥λx−µx+µx−µy∥ É |λ−µ|∥x∥+|µ|∥x− y∥.

Then, if we define the open sets

Uλ :=
{
µ ∈R : |µ−λ| <min

(
1,

ε

2(1+∥x∥)

)}
, Vx :=

{
y ∈V : ∥y− x∥ < ε

2(1+|λ|)
}

,

we have that for µ ∈Uλ and y ∈Vx : |µ| < |λ|+1 and

∥λx−µy∥ < ε

2
∥x∥

1+∥x∥ +µ ε

2(1+|λ|) < ε

2
+ ε

2
= ε.
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Closed Linear Subspaces

Some properties that hold for finite dimensional normed spaces are not always valid in
infinite dimensions. E.g., in Cn, linear subspaces are always closed (i.e., if (xn) is a
sequence in a linear subspace, and xn → x, then x belongs to that subspace).

Example
Let ℓ0 be the set of sequences (xn) in ℓ2 which have only a finite number of nonzero
terms. Then ℓ0 is a linear subspace of ℓ2, but it is not closed: Take
xk := (1,1/2,1/3, . . . ,1/k,0,0, . . . ) ∈ ℓ0. Then, xk → x := (1,1/2,1/3, . . . ) ∈ ℓ2, because

∥xk − x∥ =
√√√√ ∞∑

n=k+1
1/n2 −−→ 0.

However, all the terms in x are nonzero, so x ∉ ℓ0.
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Closed Linear Subspaces (cont.)

Theorem
The closure of a linear subspace (of a normed space) is also a linear subspace.

Proof. Let F be a linear subspace of V , and take x, y ∈ F. Every nbd of x has an element of F, so there
is a sequence (xn) in F s.t. xn → x (similarly, there is a yn → y). Since addition and scalar
multiplication are continuous, xn + yn → x+ y and λxn →λx for every λ, and these limits belong to F
(because it is closed). Hence, F is a linear subspace.

Reminder
Let V be a normed space, and let A ⊆V . The linear span of A, lin A, is the set of all
(finite) linear combinations of points in A, i.e.,

lin A =
{

m∑
n=1

λnan : m ∈N; λ1, . . . ,λm ∈R; a1, . . . ,am ∈ A

}
,

or, equivalently, the intersection of all linear subspaces that contain A.

Definition. The closed linear span of A, clin A, is the intersection of all closed linear
subspaces containing A.
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Closed Linear Subspaces (cont.)

Theorem
Let V be a normed space. For every A ⊆V , clin A is the closure of lin A.

Proof. Since the closure of lin A is a closed linear subspace that contains A, it has to contain clin A.
Conversely, clin A is closed and contains lin A, thus clin A ⊇ lin A; to see this, note that if x ∈ [clin A]c ,
then there is a nbd of x completely contained in [clin A]c (because this set is open), so x ∉ lin A. This
shows that clin A = lin A.

In finite dimensional vector spaces, topological issues are exactly the same as in Rn:

Theorem. Every two norms in a real or complex finite dimensional space V generate the
same topology.

Proof (for R). Let {e1, . . . , en} be a basis of V , and define the norm ρ
(∑n

k=1λk ek
)

:=
√∑n

k=1λ
2
k for all

λ1, . . . ,λn ∈R. We will show that for every norm ∥ ·∥ on V there exist K1,K2 > 0 s.t.

K1ρ(x)É ∥x∥ É K2ρ(x)

for every x ∈V (i.e., every open set in (V ,ρ) is open in (V ,∥ ·∥), and vice versa).
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Closed Linear Subspaces (cont.)

Proof (cont.)

1. (∥x∥ É K2ρ(x))
If x =∑n

k=1λk ek , then

∥x∥ =
∥∥∥∥∥ n∑

k=1
λk ek

∥∥∥∥∥É
n∑

k=1

∥∥λk ek
∥∥=

n∑
k=1

|λk |
∥∥ek

∥∥É
√√√√ n∑

k=1
λ2

k

√√√√ n∑
k=1

∥ek∥2 = K2ρ(x),

where we can take K2 :=
√∑n

k=1 ∥ek∥2.

2. (K1ρ(x)É ∥x∥)
We will prove that infx ̸=0 ∥x∥/ρ(x)> 0. Since both norms scale with x =∑n

k=1λk ek , we can restrict

ourselves to the compact set K =
{
(λ1, . . . ,λn) :

∑n
k=1λ

2
k = 1

}
(where ρ(x)= 1). On K , infx∈K ∥x∥ =

minx∈K ∥x∥ > 0, since otherwise there is an x0 =∑n
k=1λ

0
k ek s.t. ∥x0∥ = 0, i.e., x0 = 0, which means

that {e1, . . . , en} are l.d., which is a contradiction. Therefore, we can take K1 = infx∈K ∥x∥ > 0.
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Closed Linear Subspaces (cont.)

Corollary (Heine-Borel theorem for normed spaces)
In a finite-dimensional normed space (V ,∥ ·∥), a set A is compact iff it is closed and
bounded.

Proof
The norm ρ (from the proof of the previous theorem) makes (V ,ρ), and thus (V ,∥ ·∥), homeomorphic to
Rn , so A is closed in (V ,∥ ·∥) iff it is closed in (V ,ρ). Also, since K1ρ(x)É ∥x∥ É K2ρ(x) for every x ∈V , A
is bounded in (V ,∥ ·∥) iff it is bounded in (V ,ρ). Heine-Borel can then be applied.
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Closed Linear Subspaces (cont.)

Theorem. The closed unit ball B(0,1) := {x : ∥x∥ É 1} in an infinite-dimensional normed
space X is not compact.

Proof. Assume that B(0,1) is compact; we will show that dim X <∞. As (B(x,2−1))x∈X is an open
cover of B(0,1), there are x1, . . . , xN ∈ B(0,1) s.t. B(0,1)⊆⋃n

k=1 B(xk ,2−1). Since B(xk ,2−1)=
xk +2−1B(0,1), it follows that B(0,1)⊆ B(0,1)⊆Y +2−1B(0,1), where Y = lin {x1, . . . , xN }. Thus,

B(0,1)⊆Y +2−1[Y +2−1B(0,1)]=Y +2−2B(0,1)⊆ ·· · ⊆Y +2−3B(0,1).

In general, B(0,1)⊆Y +2−nB(0,1) for every n ∈N, so each x ∈ B(0,1) can be written as x = yn + xn ,
where yn ∈Y and xn ∈ B(0,2−n). As xn → 0, we have that yn → x, and x ∈Y =Y (by Homework 2, every
finite-dimensional subspace of a normed space is closed). This shows that B(0,1)⊆Y , which implies
that X ⊆Y , thus X =Y , so dim X = dimY = N <∞.

Notation. Let V be a vector space, A,B ⊆V and x ∈V . Then, x+ A := {x+ y : y ∈ A} and
A+B := {x+ y : x ∈ A, y ∈ B}.
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Quotient Spaces

Let V be a vector space over F, and M ⊆V a subspace. One can define an equivalence
relation on V by x ∼ y iff x− y ∈ M (“x and y are equivalent modulo M”). This relation
partitions V into equivalence classes / cosets, corresponding to the translates [x] := x+M.

Definition. The quotient space V /M is the vector space consisting of the cosets [x] of M
in V , with the operations [x]+ [y]= [x+ y] and α[x]= [αx] for all x, y ∈V and α ∈ F.
The co-dimension of M in V is the dimension of V /M.

Exercise: Prove that these operations are well-
defined, that V /M is a vector space, and that, if
dimV <∞, then dimV /M = dimV −dim M.

If V is a normed space, and M ⊆ V is a closed sub-
space, V /M can be turned into a normed space with

∥[x]∥ := inf
m∈M

∥x+m∥, x ∈V .

The assumption that M is closed is needed to ensure that ∥[x]∥ > 0 if [x] ̸= [0].

Exercise: Prove that this is a norm on V /M.
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Application: Input-Output Stability

Consider the following feedback interconnection:

�
�

�
�

� �

d1

d2

+
+

+

+
+

+

y1∑1

∑2

y2

d1, d2, y1 and y2 are signals, while Σ1 and Σ2 are systems, i.e., mappings between signal
spaces. A signal f is a real sequence, i.e., f : N→R, and its truncation fτ : N→R

(τ ∈N0 :=N∪ {0}) is

fτ(n) :=
 f (n), n É τ,

0, n > τ.

(Note that truncated sequences lie in ℓ0.)

We want conditions on Σ1 and Σ2 to ensure that the feedback interconnection is stable.
To this end, we first need to define stability. . .
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Application: Input-Output Stability (cont.)

Definition. Let Σ be a system with input u and output y, i.e., y=Σ(u). Σ is stable (with
respect to the norm ∥ ·∥ in ℓ0) if there is a gain function γ : R+0 →R+0 which is continuous,
non-decreasing and s.t. γ(0)= 0 and

∥yτ∥ É γ(∥uτ∥), for all τ ∈N0.

To study the stability of a feedback interconnection, we need some more definitions:

Definitions

(a) The graph of Σ is GΣ := {(u, y) : y=Σ(u)}.

(b) The inverse graph of Σ is GI
Σ := {(y,u) : y=Σ(u)}.

(c) GΣ and GI
Σ are subsets of an underlying normed space X , called the ambient space,

where a norm can be defined as: ∥(u, y)τ∥ := ∥uτ∥+∥yτ∥ (here, (u, y)τ = (uτ, yτ)).

(d) A feedback interconnection (Σ1,Σ2) is well-defined if, for all pairs of signals (d1,d2),
there exist signals y1, y2 s.t. y1 =Σ1(d1 + y2) and y2 =Σ2(d2 + y1).
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Application: Input-Output Stability (cont.)

Theorem (Separation of graphs)
A well-defined interconnection (Σ1,Σ2) is stable iff there is a gain function γ s.t.

x ∈GI
Σ2

=⇒ ∥xτ∥ É γ(dτ(x,GΣ1 )), for all τ ∈N0, (∗)

where dτ(x,GΣ) := infz∈GΣ
∥(x− z)τ∥.

To understand this fundamental theorem, consider the following figure:

The graph of Σ1 is the subset of the Cartesian space
of input-output pairs (u, y), where y=Σ1(u).
Similarly, the inverse graph of Σ2 consists of those
pairs (u, y) where u =Σ2(y).
The graph separation theorem says that (Σ1,Σ2) is
stable if these two graphs do not intersect each other,
except at the origin, and that the separation between
these graphs should increase as one goes further away
from the origin.

u

y

Graph of Σ1

Inverse
graph of Σ2

If the systems are not known exactly, stability can be guaranteed by imposing disjoint
regions where the graphs of and are known to lie, as shown, e.g., by the shaded cones.
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Application: Input-Output Stability (cont.)

Proof
Since the interconnection is well-defined, given (d1,d2) there are signals y1, y2 s.t. y1 =Σ1(d1 + y2)
and y2 =Σ2(d2 + y1). Then, let

x = (y2, y1 +d2) ∈GI
Σ2

,

z = (y2 +d1, y1) ∈GΣ1 ,

so ∥(x− z)τ∥ = ∥(−d1,d2)τ∥ = ∥(d1,d2)τ∥, and (∗) becomes equivalent to∥∥(y2, y1 +d2)τ
∥∥É γ

(∥∥(d1,d2)τ
∥∥)

, for all τ ∈N0,

or, alternatively, to ∥∥(y2)τ
∥∥+∥∥(y1 +d2)τ

∥∥É γ
(∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥)

, for all τ ∈N0.

If (Σ1,Σ2) is stable, then there is a gain function γ̃ s.t.
∥∥(y1)τ

∥∥+∥∥(y2)τ
∥∥É γ̃

(∥∥(d1)τ
∥∥+∥∥(d2)τ

∥∥)
for all

τ ∈N0.
Therefore,∥∥(y2)τ

∥∥+∥∥(y1 +d2)τ
∥∥É ∥∥(y2)τ

∥∥+∥∥(y1)τ
∥∥+∥∥(d2)τ

∥∥É γ̃
(∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥)+∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥ ,

and the right-hand side becomes γ
(∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥)

if we take γ(x) := γ̃(x)+ x. Hence (∗) holds.
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Application: Input-Output Stability (cont.)

Proof (cont.)
Conversely, if (∗) holds, we have that, by the triangle inequality for the norm,∥∥(y1)τ

∥∥+∥∥(y2)τ
∥∥É ∥∥(y1 +d2)τ

∥∥+∥∥(−d2)τ
∥∥+∥∥(y2)τ

∥∥
= ∥∥(y1 +d2)τ

∥∥+∥∥(d2)τ
∥∥+∥∥(y2)τ

∥∥
É γ

(∥∥(d1)τ
∥∥+∥∥(d2)τ

∥∥)+∥∥(d2)τ
∥∥

É γ
(∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥)+∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥

É γ̃
(∥∥(d1)τ

∥∥+∥∥(d2)τ
∥∥)

,

where we have defined γ̃(x) := γ(x)+ x. This shows that (Σ1,Σ2) is stable.
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Application: Input-Output Stability (cont.)

Remarks

(a) This simple result pioneered the use of functional analysis in control theory. See,
e.g.,

W.S. Levine. The Control Handbook, 2nd Ed., CRC Press, 2011,

M.G. Safonov. Stability and Robustness of Multivariable Feedback Systems, MIT Press, 1980.

(b) In spite of its simplicity, the graph separation theorem contains as special cases
most sufficient conditions for stability, such as the small gain theorem, passivity
theory, the Nyquist criterion, the Popov circle criterion, Lyapunov stability and
integral quadratic constraints!

(c) The robustness of stability in feedback connections was intensively studied in the
1980’s. Based on the graph separation theorem, a natural approach was developed
by A.K. El-Sakkary in 1985 based on the so-called “gap metric” on the ambient space
where the graphs of Σ1 and Σ2 lie. However, this metric is not easy to compute, so
later G. Vinnicombe developed a new metric, the “ν-gap” in 1993, which induces the
same topology as the gap metric but is computationally more tractable.
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Next Topic

Hilbert and Banach Spaces
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Bonus: Proof of Hölder and Minkowski’s Inequalities

Theorem (Young’s inequality) For all a,b Ê 0, where 1/p+1/q = 1,

ab É ap

p
+ bq

q
,

with equality iff ap = bq .

Proof. Consider the figure to the right. The curve satis-
fies η= ξp−1 or ξ= η1/(p−1) = ηq−1. The areas S1 and S2
are given by

S1 =
ˆ a

0
ξp−1dξ= ap

p
, S2 =

ˆ b

0
ηq−1dη= bq

q
.

It is clear from the figure that ab É S1 +S2, which im-
plies the inequality. Equality holds iff b = ap−1 = ap/q , or
equivalently, iff ap = bq (since p/q = p(1−1/p)= p−1). ξa

b

η

η
=
ξ
p−
1

S2

S1
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Bonus: Proof of Hölder and Minkowski’s Inequalities (cont.)

Proof of Hölder’s inequality:
n∑

k=1
|xk yk | É ∥x∥p∥y∥q

The inequality is trivial if ∥x∥p = 0 or ∥y∥q = 0. Otherwise, let us divide the inequality by the
right-hand side, giving

∑n
k=1 |x̃k ỹk | É 1, with x̃k = xk /∥x∥p and ỹk = yk /∥y∥q . This expression follows

from Young’s inequality, since

n∑
k=1

|x̃k ỹk | É
n∑

k=1

( |x̃k |p
p

+ | ỹk |q
q

)
= 1

p
∥x̃∥p

p + 1
q
∥ ỹ∥q

q = 1
p
+ 1

q
= 1,

with equality iff
|xk |p
∥x∥p

p
= |yk |q

∥y∥q
q

for all k.
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Bonus: Proof of Hölder and Minkowski’s Inequalities (cont.)

Proof of Minkowski’s inequality: ∥x+ y∥p É ∥x∥p +∥y∥p
n∑

k=1
|xk + yk |p

É
n∑

k=1
|xk ||xk + yk |p−1 +

n∑
k=1

|yk ||xk + yk |p−1

É
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

|xk + yk |p
)1/q

+
(

n∑
k=1

|yk |p
)1/p (

n∑
k=1

|xk + yk |p
)1/q

(Hölder’s ineq., with (p−1)q = p)

= (∥x∥p +∥y∥p
)∥x+ y∥p/q

p .

Since the left side is ∥x+ y∥p
p , diving both sides by ∥x+ y∥p/q

p and noting that p− p/q = p(1−1/q)= p/p
= 1 gives Minkowski’s inequality.
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Bonus: Hierarchy of ℓp Spaces

Theorem
If 1É p1 < p2 É∞, then ℓp1 ⊆ ℓp2 .

Proof
Take x ∈ ℓp1 . Then, ∥x∥p1

p1 =∑∞
k=1 |xk |p1 <∞, so there exists an N ∈N s.t. |xk |p1 < 1 for all k Ê N, or,

equivalently, |xk | < 1. Therefore, |xk |p2 = |xk |p1 |xk |p2−p1 < |xk |p1 for all k Ê N, so

∞∑
k=1

|xk |p2 =
N−1∑
k=1

|xk |p2 +
∞∑

k=N
|xk |p2 <

N−1∑
k=1

|xk |p2 +
∞∑

k=N
|xk |p1 <∞.

This means that x ∈ ℓp2 , so in general we have that ℓp1 ⊆ ℓp2 .
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