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Mathematical Methods in Signals, Systems and Control

• Disposition: 8 credits, 10 topics, 13 lectures

• Teacher: Cristian R. Rojas, crro@kth.se

• Web page:
https://people.kth.se/~crro/Math_Methods2025/Math_Methods.html

• Objectives:
- Introduction of mathematical tools essential for understanding results from control theory,

signal processing and communications.
- Focus in aspects of functional analysis, specifically basics of Hilbert and Banach spaces.

Theory will be complemented with examples from robust control, game theory, model
reduction, estimation/filtering theory and system identification.

• Textbook: N. Young. An Introduction to Hilbert Space. CUP, 1988.

• Complements:
- D. G. Luenberger. Optimization by Vector Space Methods. Wiley & Sons, 1969.
- E. Kreyszig. Introductory Functional Analysis with Applications. Wiley & Sons, 1989.
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Mathematical Methods in Signals, Systems and Control (cont.)

• Evaluation:
- Assignments (80 %)
- Project (20 %): Analysis of a particular application or extension of the theory presented in

a recent publication from the areas of control, signal processing or communications,
preferably related to the student’s own research, with a 15 min presentation of the main
ideas/results of that publication.

• Schedule:
1. Introduction
2. Inner product spaces
3. Normed spaces
4. Hilbert and Banach spaces
5. Orthogonal expansions, classical Fourier series
6. Estimation and optimization in Hilbert spaces
7. Dual spaces, Hahn-Banach theorem
8. Linear operators
9. Optimization of functionals

10. Application to H∞ control theory
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Mathematical Methods in Signals, Systems and Control (cont.)

• Expectations:

• The contents are not easy. Do not try to do the assignments the day before the deadline.

• Attending the lectures: not compulsory but highly recommended. This is not a long
distance course!

• You develop understanding by working hard on the exercises (in assignments and slides).
Do not be afraid to ask the teacher if lost or believe there are missing steps. Also, do not
expect that the material is self-contained in the slides: just as in research, dare to check
the course book and other references!

• Regarding the assignments:
• only results proven in class/slides can be used to solve the problems,
• the explanations/proofs should be rigorous,
• deadlines should be met,
• discussion is encouraged, but the assignments are individual.

• (Constructive) feedback welcome! The teacher may not know if there are missing
concepts/prerequisites/... until it is too late, unless you inform him.
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Motivation

Functional Analysis = Linear algebra in infinite dimensions (“function spaces”)

Historical motivations: Integral equations, foundations of quantum mechanics.

Example (integral equation)
ˆ 1

0
K(x, y) f (y)d y= g(x), K : [0,1]× [0,1]→R, g : [0,1]→R continuous and known

find: f : [0,1]→R continuous.

discretization:
n−1∑
j=0

K(i/n, j/n) f n
j

1
n
= g(i/n), i = 0, . . . ,n−1. do f n

j ’s approximate f for

large n? in what sense?

Example:

x1 + x2 + x3 +·· · = 1

x2 + x3 +·· · = 1

x3 +·· · = 1

...

System of equations with no solution, but truncation (i.e., mak-
ing xn = xn+1 = ·· · = 0 for some n) suggests x1 = x2 = ·· · = 0!

Not only algebraic aspects matter in ∞ dimensions, but
also topological/analytical aspects.
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The Big Picture

Space = “set with structure” (algebraic, geometrical, order-theoretical,
topological, . . . )

Hilbert

Banach

inner
product

normed

metric
topological

vector
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Preliminaries

• A Dictionary

• Sets

• Quantifiers

• Mappings

• Mathematical Induction

• Families and Sequences

• Countability

• Equivalence Relations and Partitions

• Order Relations

• Supremum and Infimum

• Axiom of Choice, Zorn’s Lemma, . . .
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A Dictionary

Definition: precise, unambiguous description of the meaning of a mathematical term.

Theorem: mathematical statement proved using rigorous mathematical reasoning; in a
mathematical paper, this term is often reserved for the most important results.

Lemma: minor result whose sole purpose is to help in proving a theorem. It is a stepping
stone on the path to proving a theorem. Some lemmas can take on a life of their own.

Corollary: result in which the (usually short) proof relies heavily on a given theorem.

Proposition: proved, often interesting result, but less important than a theorem.

Conjecture: statement that is unproved, but is believed to be true.

Claim: assertion that is then proved. It is often used like an informal lemma.

Axiom/Postulate: a statement that is assumed to be true without proof; these are the
basic building blocks from which all theorems are proved.

Identity: mathematical expression giving the equality of two (often variable) quantities.
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Sets

Sets = collection of objects

;: empty set
a ∈ A (b ∉ A): a (b) is (not) an element of A
A = B: A and B are equal, i.e., a ∈ A if and only if a ∈ B
A ⊆ B: A is a subset of B, i.e., a ∈ A implies that a ∈ B
A ⊊B: A is a proper subset of B, i.e., A ⊆ B but A ̸= B
A∪B: union of A and B, i.e., {x : x ∈ A or x ∈ B}
A∩B: intersection of A and B, i.e., {x : x ∈ A and x ∈ B}
A∩B =;: A and B are disjoint
A \ B: difference of A and B, i.e., {x : x ∈ A and x ∉ B}
Ac : complement of A, i.e., X \ A, where X = universe set (objects of interest)
P (A): power set of A, i.e., {B : B ⊆ A}
A×B: Cartesian product of A and B, i.e., {(x, y) : x ∈ A and y ∈ B}
N: set of natural numbers, i.e., {1,2,3, . . . }
Z: set of integers, i.e., {. . . ,−2,−1,0,1,2, . . . }
Q: set of rational numbers, i.e., {a/b : a,b ∈Z,b ̸= 0}
R: set of real numbers
C: set of complex numbers, i.e., {a+bi : a,b ∈R}

A set with only one element is called a singleton.
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Quantifiers

Two types of quantifiers:

- Universal: “for all/every” (∀)

- Existential: ”there exists/is” (∃)

Example lim
n→∞an = a ⇔ ∀ε> 0, ∃N ∈N, ∀n Ê N, |an −a| < ε

⇔ for all ε> 0 there is an N ∈N such that for all n Ê N, |an −a| < ε

Negation ¬(∀x, P(x)) ⇔ ∃x, ¬P(x) “not for all x, P(x)” is equivalent to “there is
an x such that P(x) does not hold”

¬(∃x, P(x)) ⇔ ∀x, ¬P(x) “there is no x such that P(x)” is equivalent
to “for all x, P(x) does not hold”

Quantifiers are not commutative in general
For example, “∀ε> 0, ∃N ∈N, . . .” is not the same as “∃N ∈N, ∀ε> 0, . . .”, because in the
first sentence, N is implicitly a function of ε, i.e., everything to the right of “∀ε> 0” is a
function of ε (a bound variable); in the second sentence, N is not a function of ε.
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Quantifiers (cont.)

Bound variables are restricted to the domain (or scope) of their quantifiers
For example, in the definition of limit, “∀ε> 0, ∃N ∈N, ∀n Ê N, |an −a| < ε”, n is a bound
variable, which has meaning only after its quantifier (“∀n . . .”). This means that we can
replace “n” by any other label and keep the same meaning of the sentence:
∀ε> 0, ∃N ∈N, ∀p Ê N, |ap −a| < ε.
This is the reason why “limn→∞ an” and “limp→∞ ap” mean the same.

Writing advice:

• Avoid symbols (∀, ∃, ∋) if possible (see P.R. Halmos, “How to write mathematics”).

• Avoid “any”: it is ambiguous in English; can mean “every” or “some”, depending on
context.

Some abbreviations
“iff” = if and only if
“w.l.o.g.” = without loss of generality
“w.r.t.” = with respect to
“s.t.” = such that
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Mappings

Let X ,Y be sets, and A ⊆ X .
A mapping (function, transformation, operator, . . . ) f from A into Y is a subset R of
A×Y , s.t. for every x ∈ A, there is a unique y ∈Y , denoted f (x) (image of x under f ), for
which (x, f (x)) ∈ R.
A =: D( f ) is the domain of f , and Y is its codomain.

f : D( f )→Y

x 7→ f (x) D(f )

x

f

f (x)

X Y

R(f )

R( f ) := {y ∈Y : y= f (x) for some x ∈D( f )}: range of f
f (M) := {y ∈Y : y= f (x) for some x ∈ M}: image of M ⊆D( f ) under f
f −1(N) := {x ∈D( f ) : f (x) ∈ N}: preimage of N under f

idX : X → X : identity function on M: idX (x)= x for all x ∈ X
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Mappings (cont.)

A mapping f is

- injective (one-to-one) if for every x1, x2 ∈D( f ), x1 ̸= x2 ⇒ f (x1) ̸= f (x2),

- surjective (onto) if R( f )=Y ,

- bijective if it is injective and surjective. In this case, there exists an inverse mapping
f −1 : Y → X given by f −1(y)= x if f (x)= y (why?).

Additional functions
Restriction of f : X →Y to B ⊆ X :

f |B : B →Y s.t. f |B(x)= f (x) for all x ∈ B

Extension of f : X →Y to C ⊇ X :
f̃ : C →Y s.t. f̃ (x)= f (x) for all x ∈ X

Composition of f : X →Y and g : Y → Z:
g ◦ f : X → Z given by (g ◦ f )(x)= g( f (x)) for every x ∈ X

Notation. Given a set Y , and a fixed y ∈Y , a function f : X →Y s.t. f (x)= y for all x ∈ X
is sometimes denoted by the same symbol y (or a stylized version).
Also, f (x)≡ y means that f (x)= y for all x.
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Mathematical Induction

A standard tool for proving/defining statements that hold “for every n ∈N”.
To introduce it, consider the Peano axioms, which state that N is a set satisfying

1. 1 ∈N (where 1 := {;}),
2. if n ∈N, then n+ := n∪ {n} ∈N (n+ is the successor of n),
3. if S ⊆N, 1 ∈ S and if n+ ∈ S whenever n ∈ S, then S =N

(principle of mathematical induction: establishes the minimality of N),
4. n+ ̸= 0 for all n ∈N, and
5. if n,m ∈N, and n+ = m+, then n = m.

From these axioms it follows that a proposition P(n) holds for every n ∈N if

1. Base step: P(1) is true, and
2. Inductive step: If P(n) is true, then P(n+)= P(n+1) is also true.

This procedure is known as mathematical induction.

Example. Let S(n)= 1+2+·· ·+n for n ∈N; let us prove that S(n)= n(n+1)/2 by
induction on n ∈N. First, S(1)= 1= 1 · (1+1)/2, so the statement is true for n = 1. If
S(n)= n(n+1)/2 for some n = m, then S(m+1)= S(m)+m+1= m(m+1)/2+m+1=
(m+1)(m+2)/2= (m+1)([m+1]+1)/2, so the statement is true for n = m+1. Then, by
induction, the statement is true for every n ∈N.

See bonus slides to a generalization to arbitrary sets: transfinite induction!
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Families and Sequences

A sequence (xn) in X is a function f : N→ X that assigns xn = f (n) for all n ∈N.
N is the index set of the sequence.

Generalization
A family (xα)α∈I in X is a function f : I → X s.t. xα = f (α) for all α ∈ I. I = index set.
A subfamily is obtained by restricting f to a subset of I.

If F = (Bα)α∈I is a family of subsets of X :⋃
F := ⋃

α∈I
Bα := {x ∈ X : x ∈ Bα for some α ∈ I}: union of the family (Bα)α∈I⋂

F := ⋂
α∈I

Bα := {x ∈ X : x ∈ Bα for all α ∈ I}: intersection of the family (Bα)α∈I

Notation. We will use (·) to denote families, sequences and, in general, ordered/indexed
sets. {·} is used for general (un-sorted/un-indexed) sets.

Exercise: Let f : X →Y , and (Aα), (Bβ) families of subsets of X , Y , respectively. Prove
that f (

⋃
α Aα)=⋃

α f (Aα), f (
⋂
α Aα)⊆⋂

α f (Aα), f −1(
⋃
βBβ)=⋃

β f −1(Bβ) and
f −1(

⋂
βBβ)=⋂

β f −1(Bβ). Find examples of strict inclusion in the 2nd relation.
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Countability

A set M is finite if there exists a bijection f : {1, . . . ,n}→ M for some n ∈N; in this case, the
cardinality of M is |M| = n. Otherwise, M is infinite.

A set M is countable if it is finite or if there exists a bijection f : N→ M, i.e., we can
“enumerate” the set as M = {m1,m2,m3, . . . }.

Otherwise, M is uncountably infinite.

Theorem. The union of a countable number of countable sets is countable.
Proof. W.l.o.g. consider the countably infinite case. Let the sets be An = {a1

n ,a2
n ,a3

n , . . . } for n ∈N
(assumed w.l.o.g. to be pairwise disjoint, i.e., An ∩ Am =; whenever n ̸= m), and let A =⋃∞

n=1 An . We

can enumerate A as {a1
1,a2

1,a1
2,a3

1,a2
2,a1

3, . . . }, i.e., ai
n is the

[
(n+i−2)(n+i−1)

2 +n
]
-th entry of A.

Corollary. Q is countable.
Proof. Q=⋃

n∈N An , where An = {x ∈Q : x = a/n for some a ∈Z} for each n ∈N.

Theorem. R is uncountably infinite.
Proof. (Cantor diagonal argument) We will show that a subset of R, [0.1], is uncountable. Assume, to
the contrary, that {a1,a2, . . . } is an enumeration of [0,1], where an = 0.an

1 an
2 an

3 . . . is the decimal
expansion of an (n ∈N); since, e.g., 0.999 · · · = 1, assume w.l.o.g. that each decimal expansion is infinite.
Define a new number b = 0.b1b2b3 · · · ∈ [0,1], where bn = 1 if an

n ̸= 1 and bn = 0 otherwise for all n ∈N.
Then b ∉ {a1,a2, . . . }, since bn ̸= an

n for every n. Thus, [0,1] is uncountable.
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Equivalence Relations and Partitions

If X ,Y are sets, R ⊆ X ×Y is a relation in X ×Y . (x, y) ∈ R can be written as R(x, y) or
xR y.
An equivalence relation on X is a relation R on X × X s.t., for all x, y, z ∈ X ,

a) R(x, x) (reflexivity),
b) R(x, y) ⇒ R(y, x) (symmetry),
c) R(x, y) and R(y, z) ⇒ R(x, z) (transitivity).

In this case, R(x, y) is written as x ∼ y.

A partition of a set X is a collection of pairwise disjoint subsets of X , (Xα), s.t. X =⋃
α Xα.

An equivalence relation R on X induces a partition on X :
For x ∈ X , let [x] := {y ∈ X : x ∼ y} (equivalence class, or coset, of
x); any such y ∈ [x] is a representative of [x]. [x], [y] are either
disjoint or equal, and the union of all equivalence classes is X .
Hence, {[x] : x ∈ X } is a partition of X .
Conversely, every partition of X induces an equivalence rela-
tion on X (how?).
The set of cosets of X is called quotient set, and is denoted X /R.

X
[a]

[b]

[c] = [g]

[d]

[e]

[f ]
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Equivalence Relations and Partitions (cont.)

Example 1: Rational numbers

A natural way to define Q is as a quotient set of {(a,b) ∈Z2 : b ̸= 0}, where (a,b)∼ (c,d) iff
ad = bc; this represents the idea that a/b = c/d, even though division is not defined for all
pairs of integers. Then, we can define

[(a,b)]± [(c,d)] := [(ad±bc,bd)]

[(a,b)] · [(c,d)] := [(ac,bd)]

[(a,b)] / [(c,d)] := [(ad,bc)].

Note. One needs to verify that these operations are well defined! E.g., if (a1,b1)∼ (a2,b2)
and (c1,d1)∼ (c2,d2), does (a1d1 +b1c1,b1d1)∼ (a2d2 +b2c2,b2d2) hold? This is the
same as [a1d1 +b1c1]b2d2 = [a2d2 +b2c2]b1d1, or (a1b2)d1d2 +b1b2(c1d2)=
(a2b1)d1d2 +b1b2(c2d1), which holds because a1b2 = a2b1 and c1d2 = c2d1.
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Equivalence Relations and Partitions (cont.)

Example 2: Complex numbers

The algebraic way to define C is as a quotient ring: let R[x] be the set of polynomials in x
with real coefficients, together with the operations of addition and multiplication (a ring).
Let I be the subset of R[x] consisting of all polynomials of the form p(x)(x2 +1), where
p(x) ∈R[x]. Then, for p(x), q(x) ∈R[x], let p(x)∼ q(x) iff p(x)− q(x) ∈ I. Since x2 +1 is a
polynomial of degree 2, by polynomial division we can always write for p(x) ∈R[x]

[p(x)]= [a+bx],

where a,b ∈R. Given p, q ∈R[x], where [p(x)]= [a1 +b1x] and [q(x)]= [a2 +b2x], we can
define several operations in R[x]/∼, such as

[p(x)]± [q(x)] := [p(x)+ q(x)]

[p(x)] · [q(x)] := [p(x) · q(x)]

[p(x)] / [q(x)] :=
[

a1a2 +b1b2

a2
2 +b2

2
+ b1a2 −a1b2

a2
2 +b2

2
x

]
(if [q(x)] ̸= [0])

The last definition ensures that
[

q(x) ·
(

a1a2+b1b2
a2

2+b2
2

+ b1a2−a1b2
a2

2+b2
2

x
)]

= [p(x)] (Exercise:

verify this!).

These operations coincide with those of complex numbers a1 +b1 i and a2 +b2 i, where i
satisfies i2 +1= 0 (recall the definition of I). Thus, we can define C as R[x]/∼!
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Equivalence Relations and Partitions (cont.)

Example 3: Grassmannian spaces and Riccati differential equations

Equivalence relations can be employed to study Riccati differential equations (used in
estimation and control theory) as linear differential equations!

The Grassmannian Gr(k,Rn) (k É n) is the set of all k-dimensional linear subspaces of
the vector space Rn. Since each such subspace can be written as span M for some
M ∈Rn×k of full column rank, and span M = span M′ iff M = M′N for some non-singular
N ∈Rk×k , we can define the equivalence relation M ∼= M′ iff M = M′N for some
non-singular N ∈Rk×k , and represent Gr(k,Rn) as the quotient set Rn×k /∼=.

A symmetric Riccati differential equation (in X = X (t)) has the form

Ẋ = X DX − X A− AT X −C,

where A,C,D, X ∈Rn×n, and in particular C,D, X are symmetric and positive definite.
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Equivalence Relations and Partitions (cont.)

Example 3: Grassmannian spaces and Riccati differential equations (cont.)

Setting X (t)=: N(t)M−1(t) for some N(t) and M(t), and noting that
d
dt

(AB)= ȦB+ AḂ

and

MM−1 = I ⇒ ṀM−1 +M
d(M−1)

dt
= 0 ⇒ d(M−1)

dt
=−M−1ṀM−1,

we can write the Riccati equation as

ṄM−1 −NM−1ṀM−1 = NM−1DNM−1 −NM−1 A− AT NM−1 −C

⇔ N−1Ṅ −M−1Ṁ = M−1DN −M−1 AM−N−1 AT N −N−1CM

⇔ N−1(Ṅ + AT N +CM)= M−1(Ṁ+DN − AM).

Grouping those terms starting with M−1 and those starting with N−1, we can force this
equation to hold by solving these two separate equations:

Ṅ + AT N +CM = 0
Ṁ+DN − AM = 0

⇔
[

Ṅ
Ṁ

]
=

[
−AT −C
−D A

][
N
M

]
.
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Equivalence Relations and Partitions (cont.)

Example 3: Grassmannian spaces and Riccati differential equations (cont.)

Notice that, using the equivalence relation defined previously,[
X
I

]
=

[
NM−1

I

]
=

[
N
M

]
M−1 ∼=

[
N
M

]
,

so the solution X of the Riccati equation can be identified with an element of Gr(n,R2n),
and its evolution is dictated by a linear differential equation on a Grassmannian space![

Ṅ
Ṁ

]
=

[
−AT −C
−D A

][
N
M

]
.
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Order Relations

A partial order on a set X is a relation É on X × X s.t., for all x, y, z ∈ X ,

a) x É x, (reflexivity)
b) x É y and yÉ x ⇒ x = y, (anti-symmetry)
c) x É y and yÉ z ⇒ x É z. (transitivity)

x É y can also be written as yÊ x. (X ,É) is a partially ordered set (or poset).
If all x, y ∈ X are comparable, i.e., either x É y or yÉ x (or both), then É is a linear (or
total) order, and (X ,É) is called a chain (or totally ordered set).

Examples

- (R,É) is a totally ordered set.

- If A is a set and X ⊆P (A), then (X ,⊆) is a partially ordered set.

- Rn is a partially ordered set with element-wise ordering (i.e., given x, y ∈Rn, x É y iff
xi É yi for all i = 1, . . . ,n).

- If Sn is the set of real symmetric n×n matrices, A,B ∈Sn and A ⪯ B iff B− A is
positive semi-definite, then (Sn,⪯) is a partially (but not totally) ordered set.

- Majorization: For x, y ∈Rn, x ⪯ y iff
∑k

i=1 x̄i É
∑k

i=1 ȳi for all k = 1, . . . ,n, where
x̄ = (x̄1, . . . , x̄n) is a reordering of the entries of x in descending order.
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Order Relations (cont.)

Distinguished elements of a poset (X ,É)

- If a ∈ X is s.t. a É x (x É a) for all x ∈ X , it is the least/minimum (greatest/maximum)
element of X ; it is unique, but not guaranteed to exist.

- If every non-empty S ⊆ X has a minimum element, then X is well ordered.

- An a ∈ X s.t. x É a (a É x) for x ∈ X only if x = a is a minimal (maximal) element of X .

- An a ∈ X s.t. a É x (x É a) for all x ∈ E ⊆ X is a lower (upper) bound of the set E in X .

- The supremum (infimum) a ∈ X of a set E ⊆ X , denoted sup E (inf E), is its least
upper bound (greatest lower bound); it is not guaranteed to exist for general posets.

In a linearly ordered set, the concepts of minimal and least (maximal and greatest)
coincide.

Even in a chain, a set may have a supremum (infimum) but no maximum (minimum).
E.g., the set (0,1)⊆R has infimum 0 and supremum 1, but no minimum nor maximum,
since 0 and 1 do not belong to that interval.
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Least Upper Bound Property of R

A set E ⊆R is bounded from above (below) if there is an M ∈R s.t. x É M (M É x) for all
x ∈ E; M is an upper (lower) bound of E.

E is bounded if it is bounded from above and bounded from below.

In contrast to Q (set of rational numbers), R possesses the least upper bound property:

“If E ̸= ; is bounded from above, then it has a supremum in R, sup E.”

E upper bounds

The least upper bound property of R implies:

- The completeness of R (see bonus slides).

- The Archimedean property of R (and of Q):
“For every positive x ∈R, there is an n ∈N s.t. x > 1/n.”

(Otherwise, if n É 1/x for all n ∈N, then supNÉ 1/x <∞, so by definition of sup, there
is an m ∈N s.t. supN−1É m É supN, but then supNÉ m+1, a contradiction!)

For a function f : X →R, we denote supx∈X f (x) := sup f (X ) and infx∈X f (x) := inf f (X ).
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Least Upper Bound Property of R (cont.)

A real sequence (xn)n∈N is monotone if it is non-decreasing (xn É xn+1 for all n ∈N) or
non-increasing (xn Ê xn+1 for all n ∈N).

Theorem. A real monotone sequence (xn)n∈N has a limit in [−∞,∞] (:=R∪ {±∞}).
Proof. Assume w.l.o.g. that (xn)n∈N is non-decreasing, and consider the set X = {xn : n ∈N}. If X is not
bounded from above, then for every M > 0 there is an xN Ê M, so xn Ê M for all n Ê N; thus
limn→∞ xn =+∞. Otherwise, set x = sup X . For every ε> 0 there is an N ∈N s.t. x−ε< xN É x, and
hence x−ε< xn É x for all n Ê N; thus, x = limn→∞ xn .

Given a real sequence (xn)n∈N, (supmÊn xm)n∈N
is non-increasing and (infmÊn xm)n∈N is non-
decreasing, hence

limsup
n→∞

xn := lim
n→∞

(
sup
mÊn

xm
)
,

liminf
n→∞ xn := lim

n→∞
(

inf
mÊn

xm
)

exist (in [−∞,∞]).

In fact, lim
n→∞xn exists iff limsup

n→∞
xn = liminf

n→∞ xn.
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Axiom of Choice, Zorn’s Lemma, . . .

Sometimes one needs to appeal to a non-constructive axiom (or one of its equivalents).

A choice function for a set X is a function f that assigns to each non-empty subset E of X
an element of E: f (E) ∈ E.

• Axiom of Choice: For every set there is a choice function.

• Zorn’s Lemma: Suppose that every chain inside a non-empty partially ordered set
X has an upper bound in X . Then X has at least one maximal element.

• Hausdorff’s Maximal Principle: Every partially ordered set contains a maximal
chain (i.e., one which is not contained in a larger chain).

• Well-Ordering Theorem: Every set can be well-ordered, i.e., an order relation can
be found for a set s.t. the resulting poset is well-ordered.

These axioms cannot be proven/disproven from the other axioms of standard
(Zermelo-Fraenkel) set theory, and they are equivalent to each other (see bonus slides).

Note. These axioms are implicitly used in many derivations in analysis, e.g., whenever
one creates an infinite sequence without directly specifying its elements. However, in
some proofs we will explicitly appeal to them.
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Axiom of Choice, Zorn’s Lemma, . . . (cont.)

Application: Existence of bases of vector spaces

In a vector space V , a Hamel basis (or simply, basis) is a linearly independent subset
B ⊆V (i.e., every finite subset of B is linearly independent), s.t. every x ∈V can be written
as a linear combination of finitely many elements of B.

Theorem. Every vector space V ̸= {0} has a Hamel basis.

Proof. Let M be the set of all linearly independent subsets of V . Since V ̸= {0}, there is an element
x ̸= 0 in V , so {x} ∈ M and hence M is non-empty. Set inclusion defines a partial order in M. Every
chain in M has an upper bound in M, namely, the union of all the elements in the chain (why is this
set in M?). By Zorn’s lemma, M has a maximal element B. We will show that B is a Hamel basis for V .
Indeed, since B ∈ M, it is a linearly independent subset of V . Also, let Y be the set of all elements of V
which can be written as finite linear combinations of elements of B. Then, Y =V , since otherwise
there would be a z ∈V \Y , and B∪ {y} would be a linearly independent set larger than B, contradicting
the maximality of B.
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Point Set Topology

Motivation
Let f : Rn →Rn.

a

f

l

X
Y

x

f (x)

B(a, δ)
f(B(a, δ))

B(l, ε)

lim
x→a

f (x)= l

⇔ “For every ε> 0 there exists a δ> 0 s.t. ∥x−a∥ < δ ⇒ ∥ f (x)− l∥ < ε.”

⇔ “For every B(l,ε) there exists a B(a,δ) s.t. f (B(a,δ))⊆ B(l,ε).”

Exact distances do not matter for limits, only balls B(x0, r) := {x ∈Rn : ∥x− x0∥ < r} !

In fact, we can replace the balls by more general sets: open sets!
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Point Set Topology (cont.)

Definition
Let X be a set. A topology τ on X is a collections of subsets of X s.t.

a) ;, X ∈ τ,
b) if (Uα)α∈I is a family of elements of τ, then

⋃
α∈I

Uα ∈ τ, (arbitrary unions)

c) if U1, . . . ,Un ∈ τ, then
n⋂

i=1
Ui ∈ τ. (finite intersections)

The elements of τ are called open sets of the topological space (X ,τ).
The subsets K ⊆ X s.t. K c is open are called closed sets.
A neighborhood (nbd) of a point x ∈ X is an open set containing x.

Interior, closure, boundary
Given a set S ⊆ X :

- Interior of S (int S): set of all the points in S which
have a nbd contained in S.

- Closure of S (S): set of all points x in X s.t. every nbd
of x contains at least one point in S.

- Boundary of S (∂S): ∂S := S \ int S.
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Point Set Topology (cont.)

Exercise: Show that S is the intersection of all closed sets containing S (i.e., the smallest
closed set containing S), and that int S is the union of all open sets contained in S.
Exercise: Prove that a set S is open iff S = int S, and that S is closed iff S = S.

Limits of sequences
A sequence (xn) in X is convergent if there is an x ∈ X (limit of (xn)) s.t for every nbd U of
x, there is an N ∈N s.t. xn ∈U for all n Ê N. Here we write “xn → x”.

Limits (topological version)
Given topological spaces (X ,τX ), (Y ,τY ), and f : X →Y :

lim
x→a

f (x)= l
def⇐=⇒ for every nbd V of l, there is a nbd U of a s.t. f (U \{a})⊆V

===⇒ for every (xn) in X \{a} s.t. xn → a, it holds that f (xn)→ l.

f is continuous at a ∈ X if lim
x→a

f (x)= f (a), and it is continuous if this holds for every a ∈ X .

In general: f : X →Y is continuous iff f −1(V ) is open for every open set V ⊆Y . (why?)

Exercise: Prove that if (xn) lies in a closed set K ⊆ X , and converges to x ∈ X , then x ∈ K .
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Point Set Topology (cont.)

x ∈ X is an accumulation (cluster or limit) point of a subset A of a topological space X if
every nbd of x contains points of A other than x (note: x does not need to belong to A).
In fact, A ⊆ X is closed iff it contains the set of its accumulation points (why?).
Also, the closure of A ⊆ X is the union of A and all of its accumulation points (why?).

Relative topology
If (X ,τ) is a topological space and A ⊆ X , we can construct
a topology ν for A, called the relative topology of τ to A, as
follows: U ∈ ν iff U =V ∩ A for some V ∈ τ.
(A,ν) is called a subspace of (X ,τ).

A property of a set A ⊆ X is said to be topological if it can
be defined only in terms of A and its relative topology; we
will see later two important topological properties: com-
pactness and connectedness.

A homeomorphism is a function f : A → B between topological spaces, which is
continuous and bijective, with a continuous inverse; homeomorphisms preserve
topological properties.
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Point Set Topology (cont.)

We typically restrict attention to topological spaces (X ,τ) satisfying additional properties:

Separation axioms
T1: For every distinct x, y ∈ X , there is a nbd

of x not containing y.

T2: (Hausdorff) For every distinct x, y ∈ X ,
there are disjoint nbd’s of x and y.

T3: T1 + regular (i.e., for all x ∈ X and closed
set C not including x, there are disjoint
open sets U ,V s.t. x ∈U and C ⊆V ).

T4: T1 + normal (i.e., for every disjoint closed sets C,D ⊆ X , there are disjoint open sets
U ,V ⊆ X s.t. C ⊆U and D ⊆V ).

Axioms of countability

• First-countable: Every x ∈ X has a countable nbd base (i.e., a sequence N1 ⊇ N2 ⊇ ·· ·
of nbd’s of x s.t. for every nbd U of x there is an Ni ⊆U).

• Second-countable: There is a countable base (i.e., a countable family of open sets
U = (Ui) s.t. every open set U is the union of some subfamily of U ).
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Point Set Topology (cont.)

Most topologies in the course are Hausdorff and first-countable, except for weak∗-
convergence (which is Hausdorff but not first-countable in general).

Examples of topologies
Our best source of examples will come from metric spaces, but here are simple examples:

• Given a set X , suppose we regard every subset of X as open. This leads to the
discrete topology of X : every subset is both open and closed, so every subset
coincides with its closure. This space is T4.

• As another extreme example, given a set X , let τ= {;, X } (trivial/indiscrete
topology); the closure of every non-empty subset is X .

• Let X = {a,b} and τ= {;, {b}, {a,b}}; the closed sets are then ;, X and {a}, and the
closure of {b} is X . This space is not T1 (why?).

• Consider [0,1] with the usual topology. The family of open sets
((x−1/n, x+1/n))x∈Q∩[0,1],n∈N is countable and every open set is a union of sets from
this family, so [0,1] is second-countable. Also, given x, y ∈ [0,1], x < y,
(x−ε, x+ε)∩ [0,1] and (y−ε, y+ε)∩ [0,1] (with ε= (y− x)/2) are disjoint nbd’s of x
and y, so [0,1] is Hausdorff.

Cristian R. Rojas Topic 1: Introduction and Preliminaries 37



Point Set Topology (cont.)

Sequential definitions
For first-countable spaces (which include metric, normed and inner-product spaces),
several topological definitions can be re-written in terms of sequences. For example:

1. int S = {x ∈ S : for every xn → x there is an N ∈N s.t. xn ∈ S if n Ê N} (why?).

2. x ∈ X is a limit point of S iff there exists a sequence in S \{x} which converges to x,
i.e., x can be approximated arbitrarily well by elements of S other than itself (why?).

3. S = {x ∈ X : there is a sequence in S with limit x}, i.e., S contains S and all its limit
points (why?).

4. S is closed iff every convergent sequence in S has a limit in S (why?).

5. lim
x→a

f (x)= l iff for every sequence (xn) in X with limit a, it holds that f (xn)→ l
(why?).

6. f : X →Y is continuous at a iff f (xn)→ f (a) for every sequence (xn) in X with limit
a (why?).
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Metric Spaces

Given a set X , a metric d is a function d : X × X →R+0 s.t. for all x, y, z ∈ X ,

a) d(x, y)= 0 iff x = y,
b) d(x, y)= d(y, x) (symmetry),
c) d(x, z)É d(x, y)+d(y, z) (triangle inequality).

(X ,d) is a metric space.

A metric space defines a topology based on its balls B(x,λ) := {y ∈ X : d(x, y)<λ}.
A set U is open if for every point x ∈U , there is a ball B(x,λ)⊆U for some λ> 0.
A set U is bounded if there is an M > 0 s.t. d(x, y)< M for all x, y ∈U .

Examples
1. Real line: X =R, d(x, y)= |x− y|.
2. Euclidean space: X =Rn, d(x, y)= ∥x− y∥2 =

√
(x1 − y1)2 +·· ·+ (xn − yn)2.
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Metric Spaces (cont.)

Examples (cont.)

3. Function space: X = C[a,b] := C([a,b]) := { f : [a,b]→R : f is continuous}
d( f , g)= max

t∈[a,b]
| f (t)− g(t)|.

Proof of triangle inequality: Let x, y, z ∈ C[a,b], then

d(x, z)= max
t∈[a,b]

|x(t)− z(t)|

= max
t∈[a,b]

|x(t)− y(t)+ y(t)− z(t)|

É max
t∈[a,b]

{|x(t)− y(t)|+ |y(t)− z(t)|}

É max
t∈[a,b]

|x(t)− y(t)|+ max
r∈[a,b]

|y(r)− z(r)|

= d(x, y)+d(y, z).
a b

x

y
d(x, y)

The topology of a metric space is always T4 and first-countable (home work!).

Notation. In general, if X ,Y are topological spaces, C(X ,Y ) is the space of continuous
functions from X to Y ; in particular, C(X ) := C(X ,R) (or := C(X ,C), depending on context).
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Compactness

Goal
Generalize the result that a continuous f : [a,b]→R achieves its maximum in [a,b].

Definition
A set K ⊆ X is compact if for every family of open sets
(Uα)α∈I s.t. K ⊆ ⋃

α∈I Uα (open cover of K), there is
a finite subfamily (U1, . . . ,Un) of (Uα)α∈I (sub-cover)
s.t. K ⊆⋃n

i=1 Ui .

K

(Uα)α∈I
U1 U2

U3

...

Alternative characterization (finite intersection property)
If (Cα)α∈I is a family of closed subsets of K s.t. every finite number of them has a
nonempty intersection, then

⋂
α∈I Cα is nonempty (home work!).

Sequential compactness (equivalent to compactness for metric spaces; see bonus slides)
Every sequence (xn)n∈N in K has a convergent subsequence (xnk )k∈N with limit in K .

Heine-Borel Theorem (see bonus slides for proof)
K ⊆Rn is compact iff it is closed and bounded.
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Compactness (cont.)

Examples of non-compact sets

• Q is non-compact: it is not bounded (take (xn)n∈N with xn = n: no subsequence is
convergent (why?)). It is also not closed in R, since every nbd of an irrational number
contains rational numbers, so Q ̸=Q=R; this implies also that no bounded interval
in Q is compact either.

• (0,1) is not compact: consider the open sets Un = (0,1−1/n)⊆ (0,1), n ∈N. Every
x ∈ (0,1) belongs to at least some Un (just take n large enough so that 1−1/n > x, or
n > 1/(1− x), hence

⋃
n∈NUn = (0,1). However, no finite subfamily covers (0,1):

assume (Uni )i=1,...,N is such a subcover, where Un1 ⊆Un2 ⊆ ·· · ⊆UnN ; but then⋃N
i=1 Uni =UnN , which does not contain [1−1/nN ,1)⊆ (0,1).

From the sequential characterization perspective, notice that the sequence with
xn = 1−1/(n+1) ∈ (0,1) is convergent in R to 1 ∉ (0,1), so every subsequence is also
convergent to 1, i.e., there is no convergent subsequence in (0,1).
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Compactness (cont.)

Compactness and continuity
Let f : X →Y be continuous, where X and Y are topological spaces. Then, if K ⊆ X is
compact, so is f (K).
Proof. Let (Vα)α∈I be an open cover of f (K). Let Uα := f −1(Vα) for all α ∈ I. Then (Uα)α∈I is an open
cover of K . Since K is compact, there is a finite subcover, say, Uα1 , . . . ,Uαn . Then Vα1 , . . . ,Vαn is a
finite subcover of f (K). This means that f (K) is compact.

Corollary (Weierstrass’ theorem)
Let f : K →R be continuous, where K is compact. Then f achieves its maximum.
Proof. We know that f (K)⊆R is compact, i.e., closed and bounded. Since f (K) is bounded, let
M = sup f (K)<∞, and consider a sequence (yn) in f (K) converging to M. As f (K) is compact, M ∈ f (K).
Then there is an x ∈ f −1(K), which achieves the maximum.

Compactness and uniform continuity (Heine-Cantor)
Given metric spaces (X ,dX ) and (Y ,dY ), if X is compact and f : X →Y is continuous,
then f is uniformly continuous, i.e., given ε> 0, there is a δ> 0 s.t. for all x, y ∈ X s.t
dX (x, y)< δ, we have dY ( f (x), f (y))< ε (see bonus slides for proof).
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Compactness (cont.)

Application: Fundamental Theorem of Algebra
Let P(z)=∑n

k=0 ak zk , where n ∈N and a0, . . . ,an ∈C, an ̸= 0. Then P(z)= 0 for some z ∈C.

Proof. Assume w.l.o.g. that an = 1, and let µ= inf{|P(z)| : z ∈C} ∈R. If |z| = R, then

|P(z)| Ê Rn[1−|an−1|R−1 −·· ·− |a0|R−n] R→∞−−−−−→∞,

so there is an R0 s.t. |P(z)| >µ if |z| > R0. Since z 7→ |P(z)| is continuous on {z ∈C : |z| É R0}, which is
compact, it follows that |P(z0)| =µ for some z0. Assume that µ> 0. Let Q(z)= P(z+ z0)/P(z0), which
satisfies Q(0)= 1, |Q(z)| Ê 1, and is of the form Q(z)= 1+bk zk +·· ·+bn zn , where bk ̸= 0. Choose θ ∈R
and r > 0 so that eikθbk =−|bk | and rk |bk | < 1. Then, |1+bkrk eikθ | = 1− rk |bk |, so

|Q(reiθ )| É 1− rk{|bk |− r|bk+1|− · · ·− rn−k |bn |}.

Thus, for r small enough, |Q(reiθ )| < 1: a contradiction. Thus, µ= 0 and hence P(z0)= 0.
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Compactness (cont.)

Example: Arzelà-Ascoli theorem and differential equations
The concept of compactness can be well characterized for some function spaces:

F ⊆ C(X ), where X is a metric space, is:

- pointwisely bounded if for every x ∈ X there is an Mx > 0 s.t. | f (x)| É Mx for all f ∈F ;

- equicontinuous if for every ε> 0 and x ∈ X there is a δ> 0 s.t. for all f ∈F and y ∈ X
for which d(x, y)< δ, it holds that | f (x)− f (y)| < ε.

Theorem (Arzelà-Ascoli) (See bonus slides for proof)
Let X be a compact metric space. Then, every sequence in F ⊆ C(X ) has a uniformly
convergent subsequence in C(X ) iff F is pointwisely bounded and equicontinuous.

The next result uses Arzelà-Ascoli’s theorem to establish existence of solutions to ODEs:

Cauchy-Peano existence theorem. Let I = [t0, t0 +β]⊆R, Ω= B(x0, r)⊆Rn, and
suppose f : I ×Ω→Rn is continuous. Then there is a solution to the ODE ẋ(t)= f (t, x(t)),
x(t0)= x0, on C([t0, t0 +α]), where α=min{β, r/M} and M =max(t,x)∈I×Ω | f (t, x)|.
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Compactness (cont.)

Example: Arzelà-Ascoli theorem and differential equations (cont.)

Proof. The idea is to construct approximations to the solution via forward Euler’s method:

exact solution

     Euler's method

For each k ∈N, partition Iα := [t0, t0 +α] into k subintervals of equal length α/k. Set x(t0)= x0, and
inductively define xk(t)= xk(tl−1)+ f (tl−1, xk(tt−1))(t− tl−1) on (tl−1, tl ), where tl = t0 +αl/k. One can
check that ∥xk(t)− xk(τ)∥ É M|t−τ| for t,τ ∈ Iα, so ∥xk(t)− x0∥ É r on Iα. This bound also implies that
{xk}k∈N is equicontinuous and pointwisely bounded, hence by Arzelà-Ascoli’s theorem there exists a
x∗ ∈ C(Iα) and a subsequence (xki )i∈N converging uniformly to x∗.
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Compactness (cont.)

Example: Arzelà-Ascoli theorem and differential equations (cont.)

It remains to prove that x∗ solves the ODE. Since xk is piecewise linear, it can be written as

xk(t)= x0 +
ˆ t

t0
ẋk(τ)dτ.

Define ∆k(t) := ẋk(t)− f (t, xk(t)) on Iα \{t0, . . . , tk}, and ∆k(tl )= 0 for l = 0, . . . ,k. Observe that

maxt∈Iα ∥∆k(t)∥ k→∞−−−−→ 0, due to the uniform continuity of f on the compact set Iα×Ω (by
Heine-Cantor), and that since |t− tl−1| <α/k, ∥xk(t)− xk(tl−1)∥ É M|t− tl−1| < Mα/k, and for k ∈N,
l ∈ {1, . . . ,k} and t ∈ (tl−1, tl ), ∥ẋk(t)− f (t, xk(t))∥ = ∥ f (tl−1, xk(tl−1))− f (t, xk(t))∥. Thus,

xki (t)= x0 +
ˆ t

t0
ẋki (τ)dτ= x0 +

ˆ t

t0
[ f (τ, xki (τ))+∆ki (τ)]dτ.

Taking i →∞ and using the uniform continuity of f yields x∗(t)= x0 +
ˆ t

t0
f (τ, x∗(τ))dτ, so x∗ satisfies

the ODE.
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Product Topologies

Product topologies

To define continuity of operations like sum and product,
we need to define the topology of Cartesian products X ×
Y , where (X ,τX ) and (Y ,τY ) are topological spaces.
The standard way is to define the product topology: a set
W ⊆ X ×Y is open iff for every (x, y) ∈ X ×Y there are
nbd’s of x and y, U ∈ τX and V ∈ τY , s.t. U ×V ⊆W .

This definition extends naturally to the product of a finite number of topological spaces.

See bonus slides for extensions to arbitrary families of topological spaces.
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Connectedness

Another important topological notion is the property that a set may or not be decomposed
into separate pieces. This will allow us to generalize the mean value theorem.

Definition. A topological space X is connected if it
is not the union of 2 disjoint non-empty open sets.

Theorem. E ⊆R is connected iff:
for every x, y ∈ E, z ∈R, if x < z < y then z ∈ E.

Proof. Assume there are x, y ∈ E and z ∈ R, s.t. x < z < y,
but z ∉ E. Then can be decomposed as E = {E∩ (−∞, z)}∪
{E ∩ (z,∞)}, where the two sets in brackets are disjoint,
open and non-empty, so E is disconnected.

A, B, C, A∪C, B∪C, A∪B∪C are connected;

A∪B is not

Conversely, assume E is disconnected, i.e., E = A∪B, where A and B are disjoint, open and non-empty.
Pick a ∈ A and b ∈ B, assuming w.l.o.g. that a < b. Let x = sup A∩ [a,b]. If x ∈ A, then there exists an
ε> 0 s.t. x+ε ∉ B and x+ε< b (since A is open), so a < x+ε< b and x+ε ∉ E; in case x ∉ A, it cannot
belong to B (since B is open, and every nbd of x contains points of A), so a < x < b and x ∉ E.

Thus, all connected subsets of R are of the form (a,b), (a,b], [a,b) or [a,b] !
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Connectedness (cont.)

Connectedness and continuity
Let f : X →Y be continuous between topological spaces X and Y . Then, if K ⊆ X is
connected, so is f (K).
Proof. If f (K) were disconnected, then f (K)= A∪B for some disjoint non-empty open sets A and B.
By continuity, f −1(A) and f −1(B) are open, disjoint and non-empty, and K ⊆ f −1(A)∪ f −1(B), so K
would be disconnected.

A direct consequence of the previous theorems is

Intermediate value theorem
If a,b ∈ R, a < b, and f : [a,b] → R is continuous,
then for every γ ∈ R between f (a) and f (b), there
exists a c ∈ (a,b) s.t. f (c)= γ.

This is the basis of the bisection method for solv-
ing f (x)= 0, which constructs a sequence of subin-
tervals of decreasing length at whose ends f
takes alternate signs; the intermediate value the-
orem guarantees that these intervals contain one
root of f ! x

y= f (x)

a b

y= γ

c

f (a)

f (b)

y
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Connectedness (cont.)

A stronger concept of connectedness is path-connectedness:

A topological space X is path-connected if, for every x, y ∈ X
there exists a path from x to y, i.e., a continuous function
f : [0,1]→ X s.t. f (0)= x and f (1)= y.

A path-connected space is necessarily connected (home work!), but not conversely.

Counterexample: “topologist’s sine curve”

T = {(x,sin(1/x)) : x ∈ (0,1]}∪ {(0,0)}.

(Why is it a counterexample?)

However, every open connected subset U of Rn

is path-connected, and, moreover, a path be-
tween every two points in U made of a finite
number of straight segments (contained in U)
can always be found (why?).
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Next Topic

Inner Product Spaces
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Bonus: Equivalent Forms of the Axiom of Choice

Hausdorff’s maximal principle ⇒ Zorn’s lemma
Assume that every chain inside a partially ordered set X has an upper bound. By the maximal
principle, X has a maximal chain C. Then C has an upper bound m ∈ X , but due to the maximality of
C, m ∈ C (otherwise m could be attached to C, contradicting its maximality), so it is the largest
element of C. Furthermore, since C is a maximal chain, m is a maximal element of X , as otherwise
there would exist an m′ Ê m, m′ ̸= m, and C∪ {m′} would be a larger chain than C.

Zorn’s lemma ⇒ Well-ordering theorem
Let X be a set, and consider the set S of all the well-ordered subsets of X . S contains ; and all
singletons of X , so it is non-empty. If A,B ∈ S, we say that A É B if (i) A is a subset of B, (ii) there is an
element of B, x, s.t. A = {a ∈ B : a < x}, and (iii) for all x, y ∈ A, x É y in A iff x É y in B. For every chain
C ⊆ S,

⋃
C is an upper bound of C, so by Zorn’s lemma, there is a maximal well-ordered set E ∈ S.

Then, E contains all of X , since otherwise there would be an x ∈ X \ E, and E∪ {x} would be a larger
well-ordered set in S (where we define e < x for all e ∈ E). This concludes the proof.

Well-ordering theorem ⇒ Axiom of choice
Let X be a set. By the well-ordering theorem, X can be turned into a well-ordered poset, i.e., every
non-empty set E ⊆ X has a minimum element. Let f be a function that assigns to each such E its
minimum element; then, f is a choice function for X . This establishes the axiom of choice.
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Bonus: Equivalent Forms of the Axiom of Choice (cont.)

Axiom of choice ⇒ Hausdorff’s maximal principle (difficult bit)
Let (X ,É), with X ̸= ;, be partially ordered, and consider the collection P of all chains in X , with set
inclusion as partial order. If C ∈ P is non-maximal, then there is a chain in X larger than C, so we can
choose, using the axiom of choice, an x ∈ X \ C s.t. C∪ {x} is a chain; set C+ := C∪ {x}. If C is maximal,
set C+ := C. Note also that the union of a chain Γ⊆ P (i.e., a chain of chains in X ) is again a chain in
X , which corresponds to an upper bound of Γ.

A subset N ⊆ P is said to be a tower if it satisfies the following properties:

(i) If C ∈ N, then C+ ∈ N,
(ii) If Γ⊆ N is a chain, then

⋃
Γ is in N.

Note that P itself is a tower, and that the intersection of a family of towers is a tower. In particular,
the intersection of all tower subsets of P is the smallest tower; call it M.

We will show that M is a chain; with this fact, from property (ii) we know that m =⋃
M is the largest

chain in M, and by property (i), m+ = m, so m is a maximal chain in X .

Call an element C ∈ M comparable if for every D ∈ M either D ⊆ C or C ⊆ D holds. To prove that M is a
chain, we must show that every element of M is comparable. For this we need the following lemmas:
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Bonus: Equivalent Forms of the Axiom of Choice (cont.)

Lemma 1. Assume C ∈ M is comparable. If D ∈ M and D ⊆ C but D ̸= C, then D+ ⊆ C.
Proof. Assume C ⊆ D+ but C ̸= D. Then D ⊆ C ⊆ D+ but C is different from D and D+, contradicting
the fact that D+ is constructed by adjoining a single element of X to D.

Lemma 2. Assume C ∈ M is comparable. For every D ∈ M, either D ⊆ C or D ⊇ C+.
Proof. Let N = {D ∈ M : D ⊆ C or D ⊇ C+}; we will show that N = M. Since M is the smallest tower, it
suffices to show that N is a tower. Given D ∈ N, we have that (1) D ⊆ C but D ̸= C, (2) D = C or (3)
D ⊇ C+. In (1), D+ ⊆ C by Lemma 1, so D+ ∈ N; in (2) and (3), D+ ⊇ C+ so again D+ ∈ N. Next, assume
Γ⊆ N is a chain, and let E =⋃

Γ. If every D ∈Γ is a subset of C, then E ⊆ C so E ∈ N; otherwise, some
D ∈Γ contains C+, so E ⊇ C+ and again E ∈ N. Thus, both properties (i) and (ii) hold, hence N is a
tower.

Let M∗ be the set of all comparable elements of M. We will show that M∗ is a tower, so it has to be
equal to M (as M is the smallest tower). If C is comparable and D ∈ M, by Lemma 2 either D ⊆ C or
C+ ⊆ D. In both cases D is comparable to C+, so C+ is comparable. Next, assume Γ⊆ M∗ is a chain,
and let D =⋃

Γ. Given E ∈ M, either C ⊆ E for all C ∈Γ, so D ⊆ E, or else E ⊆ C for some C ∈Γ, so E ⊆ D.
Thus D is comparable, so M∗ is indeed a tower.
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Bonus: Transfinite Induction

This is a generalization of mathematical induction to arbitrary well-ordered sets; recall
that by the axiom of choice, every set can be well-ordered.

Transfinite Induction. Let X be a well-ordered set, and P(x) a proposition defined for
all x ∈ X . Assume that if P(y) is true for all y< x, then P(x) is true. Then, P(x) is true for
all x ∈ X .
Proof. Let E be the set of all x ∈ X for which P(x) is false, and assume that E is non-empty. Since X is
well-ordered, E has a minimum element, say, e. Then, P(y) is true for all y< e, so P(e) must be true,
contradicting the assumption that E is non-empty. This concludes the proof.

Note. Transfinite induction does not require a base case (n = 1), but its inductive step
needs P(y) to hold for all y< x, whereas in ordinary induction the case “n−1” suffices.
Reason: there are well-ordered sets that contain elements without an “predecessor”; e.g.,
in X =N∪ {N}, where x <N for all x ∈N, there is no x ∈ X s.t. x+1=N, so ordinary
induction can never “reach” the last element in X .

If X =N with its usual order, transfinite induction corresponds to complete/strong
induction.

This result can sometimes yield more intuitive proofs than Zorn’s lemma.
Exercise: Prove by transfinite induction that every vector space has a Hamel basis.
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Bonus: Compactness vs. Sequential Compactness

Theorem. The following statements are equivalent for a metric space K :

(1) K is compact.

(2) K is sequentially compact.

Proof
(1) =⇒ (2): Assume that (xn)n∈N is a sequence in K which has no convergent subsequence. Then, for
every i ∈N, let Uxi be a nbd of xn s.t. xn ∉Uxi for all n ̸= i (such a nbd exists since otherwise there
would be a subsequence of (xn)n∈N converging to xi ). Also, for every x ∈ K \{x1, x2, . . . }, let Ux be a nbd
of x contained in K \{x1, x2, . . . } (such a nbd exists for the same reason as before). Thus, (Ux)x∈K is an
open cover of K , and since K is compact by (1), there is a finite subcover {U1, . . . ,UN } of K ; since each
xn can belong to at most one such Ui , the sequence (xn)n∈N can take at most N values, which
contradicts the assumption that it has no convergent subsequence. Therefore, K is sequentially
compact.

(2) =⇒ (1): For this we need the following preliminary results:
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Bonus: Compactness vs. Sequential Compactness (cont.)

Lemma (Lebesgue’s Number Lemma). Let K be a sequentially compact metric space,
and (Uα)α∈I an open cover of K . Then, there is an r > 0 (Lebesgue number of the cover)
s.t. for every x ∈ K , B(x, r) belongs to at least one Uα.
Proof. Assume that the claim is false, i.e., that for every n ∈N, there exists an xn ∈ K
s.t. B(xn ,1/n)∩U c

α ̸= ; for each α ∈ I. Let x be the limit of some convergent subsequence of (xn). Pick
some α ∈ I s.t. x ∈Uα, and choose some r > 0 for which B(x, r)⊆Uα. Next, select n large enough so that
1/n < r/2 and d(x, xn)< r/2. It follows that B(xn ,1/n)⊆ B(x, r)⊆Uα, contrary to the selection of xn . This
establishes the result.

Lemma. A sequentially compact metric space K is totally bounded, i.e., for every ε> 0
there is a finite set {x1, . . . , xN }⊆ K s.t. K ⊆⋃N

i=1 B(xi ,ε) (ε-net of K).
Proof. Assume there is an ε> 0 for which no ε-net of K exists. Take some x1 ∈ K and, inductively, let
xi+1 ∈ K \

⋃i
k=1 B(xi ,ε) for i ∈N. By construction, d(xi , x j )> ε for all i ̸= j, so there is no convergent

subsequence of (xi )i∈N, which contradicts the sequential compactness of K .

(2) =⇒ (1) (cont.):
Let (Uα)α∈I be an open cover of K , and denote by r the Lebesgue number of this cover. Then, by total
boundedness of K is a finite set of balls {B(xi , r) : i = 1, . . . , N} which cover K , each of which is
completely contained inside one Uα, say, B(xi , r)⊆Uαi . Thus, {Uαi: i = 1, . . . , N} is a finite subcover of
K , so K is compact.
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Bonus: Completeness of the Real Numbers

A sequence (xn)n∈N in a metric space (X ,d) is said to be a Cauchy sequence if, for every
ε> 0, there is an N ∈N s.t. d(xn, xm)< ε for every n,m Ê N.
(X ,d) is a complete metric space if every Cauchy sequence (xn)n∈N in X has a limit (in X ).

Theorem. The real line, (R,d) with d(x, y)= |x− y|, is a complete metric space.
Proof. Take a real Cauchy sequence (xn)n∈N. For ε= 1, there is an n ∈N s.t. |xn − xN | < 1 for all n Ê N;
thus |xn | Émax{|x1|, . . . , |xN−1|, |xN |+1} for all n, so limsupn→∞ xn exists and is finite. Let
x = limsupn→∞ xn . Then, given ε= 1/k > 0 (for some k ∈N), there is an N1 = N1(k) ∈N
s.t. x É supmÊN1 xm É x+ε, so there is an N2 = N2(k)Ê N1 for which

x−1/k É sup
mÊN1

xm −1/k É xN2 É sup
mÊN1

xm É x+1/k,

i.e., |xN2 − x| É 1/k, hence there is a subsequence (xnk )k∈N which converges to x. However, given ε> 0,
there is an N ∈N s.t. |xn −xm | < ε/2 for all n,m Ê N, hence picking N large enough so that |xnk −x| < ε/2
for all nk Ê N shows that |xn − x| É |xn − xnk |+ |xnk − x| < ε for all n Ê N; this means that xn → x.

Cristian R. Rojas Topic 1: Introduction and Preliminaries 60



Bonus: Proof of Heine-Borel Theorem

K ⊆Rn compact =⇒ K closed and bounded:
Let (xk)k∈N be a sequence in K with limit x ∈Rn . Since K is compact, there is a convergent
subsequence (xki )i∈N with limit in K ; however, every subsequence should converge to the same limit,
hence x ∈ K . Thus, by the second Exercise in Slide 34, K is closed.
If K were unbounded, one could create a sequence as follows: pick x1 ∈ K , and for every i > 1, choose
xi ∈ K s.t. ∥xi∥ Ê ∥xi−1∥+1. This sequence does not have a convergent subsequence, since
∥xi − x j∥ Ê

∣∣∥xi∥−∥x j∥
∣∣Ê 1 for all i, j ∈N, which contradicts the assumption that K is compact. Hence,

K must be bounded.

K ⊆Rn closed and bounded =⇒ K compact:
Consider a sequence (xk)k∈N in K . Since K is bounded, K ⊆ [−M, M]n =: I0 for some M > 0. Partition
I0 into 2n hyper-cubes ([−M,0]n , [0, M]n , etc.). At least one of these should contain an infinitude of
xk ’s; call such subset I1. By further partitioning I1 into hyper-cubes, and choosing one with an
infinitude of xk ’s as I2, . . . , we build a sequence of sets I0 ⊃ I1 ⊃ ·· · .
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Bonus: Proof of Heine-Borel Theorem (cont.)

Define a subsequence (xki )i∈N s.t. xki ∈ I i for all i.

The l-th component of the sequence, (xl
ki

)i∈N, satisfies∣∣xl
ki

− xl
k j

∣∣ É M · 2−N whenever i, j Ê N, so (xl
ki

)i∈N is a

Cauchy sequence, and hence convergent (since R is com-
plete; see Slide 60); define x = (x1, . . . , xn) ∈ Rn where xl =
limi→∞ xl

ki
. Now,

∥∥x− xki

∥∥
2 =

n∑
l=1

(
xl − xl

ki

)2 i→∞−−−−−→ 0,

so (xki )i∈N is convergent with limit x ∈Rn .

I0

K

I1

I2

x1

x2

x3

x

Furthermore, since K is closed, then, by the second Exercise in Slide 34, x ∈ K . Thus, every sequence
in K has a convergent subsequence in K , so K is compact.
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Bonus: Proof of Heine-Cantor Theorem

Theorem (Heine-Cantor). Given metric spaces (X ,dX ) and (Y ,dY ), if X is compact
and f : X →Y is continuous, then f is uniformly continuous.

Proof
Assume that f is not uniformly continuous. Then there is an ε> 0 s.t. for all n ∈N there are points
xn , yn ∈ X for which dX (xn , yn)< 1/n but dY ( f (xn), f (yn))> ε. Since X is compact, (xn) has a
subsequence (xnk ) converging to, say, x. Since

dX (ynk , x)É dX (ynk , xnk )+dX (xnk , x)→ 0 as k →∞,

(ynk ) is also converging to x. Therefore, due to the continuity of f ,

dY ( f (xnk ), f (ynk ))É dY ( f (xnk ), f (x))+dY ( f (x), f (ynk ))→ 0,

which contradicts the fact that dY ( f (xn), f (yn))> ε for all n. This proves that f is uniformly
continuous.
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Bonus: Proof of Arzelà-Ascoli Theorem

Theorem (Arzelà-Ascoli)
Let X be a compact metric space. Then, every sequence in F ⊆ C(X ) has a uniformly
convergent subsequence in C(X ) iff F is pointwisely bounded and equicontinuous.

Proof.
(⇐) Assume F is pointwisely bounded and equicontinuous. Since X is compact, there is a finite set of
balls, {B(xn

i ,1/n) : i = 1, . . . ,K(n)}, which covers X for every n ∈N. The set {xn
i }i,n is countable and dense,

i.e., for every ε> 0 and x ∈ X , there is an xn
i s.t. d(x, xn

i )< ε; let D = (xi )i∈N be an enumeration of {xn
i }.

Consider a sequence ( fn)n∈N in F . We can construct a convergent subsequence on C((xi )i∈N) as
follows: Due to uniform boundedness, ( fn(x1))n∈N is bounded, so it has a convergent subsequence
( f1,n(x1))n∈N. Now, ( f1,n(x2))n∈N is also bounded, so it has a convergent subsequence ( f2,n(x2))n∈N.
Proceeding in this way, we construct several sequences ( f i,n)n∈N for i ∈N; the “diagonal” subsequence
( fn,n)n∈N is thus convergent for all xi ’s. We will now show that it is uniformly convergent on X . Fix
some ε> 0. By equicontinuity, for every x ∈ X there is a δx > 0 s.t. for all y1, y2 ∈ B(x,δx) and n ∈N,
d(y1, y2)< δ implies | fn,n(y1)− fn,n(y2)| < ε/3; the family (B(x,δx))x∈X covers X , so by compactness
there is a finite subcover {B(xk ,δxk ) : k = 1, . . . , M}.
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Bonus: Proof of Arzelà-Ascoli Theorem (cont.)

Pick some yk ∈ B(xk ,δxk )∩D for each k, and take δ :=min{δx1 , . . . ,δxM }. Fix x ∈ X and pick the
respective yk ∈ B(x,δ). There exists a N ∈N s.t. for all n,m Ê N, | fn,n(s)− fm,m(s)| < ε/3 for all
s ∈ {y1, . . . , yM } (take N as the maximum of the N ’s needed for | fn,n(yk)− fm,m(yk)| < ε/3, as k runs
from 1 to M). Note that N does not depend on x. Then, if n,m Ê N,

| fn,n(x)− fm,m(x)| É | fn,n(x)− fn,n(yk)|+ | fn,n(yk)− fm,m(yk)|+ | fm,m(yk)− fm,m(x)| < ε

3
+ ε

3
+ ε

3
= ε.

Thus, ( fn,n(x))n∈N is a Cauchy sequence for every x ∈ X (see Slide 60), so it converges to, say, f (x).

Taking m →∞ in the above inequality yields | fn,n(x)− f (x)| < ε, so ( fn,n)n∈N is uniformly convergent to

f . Finally, by equicontinuity, for every ε> 0 and x ∈ X , there is a δ> 0 s.t. for all y ∈ X , d(x, y)< δ

implies | fn,n(x)− fn,n(y)| < ε; hence taking n →∞ yields | f (x)− f (y)| < ε, so f ∈ C(X ).

(⇒) Assume every sequence in F ⊆ C(X ) has a uniformly convergent subsequence in C(X ). If F is not
pointwisely bounded, then there is an x ∈ X and a sequence ( fn)n∈N in F with Mn := | fn(x)|
s.t. Mn+1 > Mn +1; hence | fn(x)− fm(x)| Ê |Mn −Mm | > 1 for all n,m ∈N, n ̸= m, so there is no
convergent subsequence, a contradiction. Thus, F is pointwisely bounded.
To prove that F is equicontinuous, fix ε> 0. Since F , the closure of F in C(X ), is compact, F can be
covered by finitely many balls B( f i ,ε/3), i = 1, . . . ,K . Choose x ∈ X . For each f i , there is a δi > 0
s.t. d(x, y)< δi implies | f i (x)− f i (y)| < ε/3. Let δ :=min{δ1, . . . ,δK }. Every f ∈F belongs to some
B( f i ,ε/3), so d( f i , f )< ε/3. Then, if d(x, y)< δ,

| f (x)− f (y)| É | f (x)− f i (x)|+ | f i (x)− f i (y)|+ | f i (y)− f (y)| É ε

3
+ ε

3
+ ε

3
= ε,

which shows that F is equicontinuous.
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Bonus: More on Product Topologies

Extension to Cartesian products of an arbitrary family {(Xα,τα)}α∈I of topological spaces:∏
α∈I Xα is the set of all functions x on I s.t. xα ∈ Xα for each α ∈ I;

a set W ⊆∏
α∈I Xα is open iff for every x ∈∏

α∈I Xα there are nbd’s of xα, Uα ∈ τα, for
each α ∈ I, s.t. Uα ̸= Xα for only finitely many α’s, and

∏
α∈I Uα ⊆W .

Note. The reason for this strange definition is that the product topology is then the
weakest topology (i.e., with fewest open sets) s.t. each projection function
πα : Πβ∈I Xβ→ Xα defined by πα(x)= xα, is continuous.
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Bonus: More on Product Topologies (cont.)

Product topologies are linked to “pointwise convergence”:
E.g., for I =R and Xα =R for all α ∈ I,

∏
α∈I Xα is the set of functions f : R→R; the open

sets are generated by sets of the form { f : | f (x)− f0(x)| < ε} (i.e., open balls in τα for α ∈R)
and finite intersections of them.

Products of Hausdorff topologies are also Hausdorff: if f , g ∈∏
α∈I Xα are distinct, then

fβ ̸= gβ for some β ∈ I, so f and g have respective nbd’s {h : | fβ−hβ| < ε} and
{h : |gβ−hβ| < ε}, with ε< | fβ− gβ|/2, that do not contain the other point.

An important result concerning products of compact sets is the following:

Tychonoff’s theorem
Every product of compact spaces is compact.
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Bonus: More on Product Topologies (cont.)

Proof
Let (Kα)α∈I be a family of compact spaces, and F a family of closed sets in K =∏

α∈I Kα having the
finite intersection property, FIP (i.e., the intersection of every finite subfamily of F is nonempty). We
will show that

⋂
F ̸= ; to establish that K is compact.

Zorn’s lemma allows us to extend F to a family F0 of (not necessarily closed) subsets of K which is
maximal with respect to the FIP. The projections πα : K → Kα (given by πα(x)= xα) of the sets of F0
onto Kα form a family Fα

0 of sets in Kα having the FIP, and, since Kα is compact, there is a point pα
which is in the closure of every set of Fα

0 . Let p be point in K whose α-th coordinate πα(p) is pα for
each α ∈ I. We will show that p is in the closure of every set of F0, and therefore is in every set of F ,
which will finish the proof.

Accordingly, let U be a nbd of p in K . There are, by definition of product topology, α1, . . . ,αn and open
sets Uαi ⊆ Kαi , i = 1, . . . ,n, s.t. p ∈⋂n

i=1π
−1
αi (Uαi )⊆U. Hence, pαi ∈Uαi , so Uαi intersects every set of

F
αi
0 . But then π−1

αi (Uαi ) intersects every set of F0, so it belongs to F0 (due to maximality). Similarly,⋂n
i=1π

−1
αi (Uαi ) ∈F0, and so U ∈F0. Thus U intersects every set of F0, and since U was an arbitrary

nbd of p, p must be in the closure of every set of F0.
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Bonus: Topological Proof of the Infinitude of Primes

This is a curious topological proof that the number of primes is infinite, due to H.
Furstenberg (1955). Try to understand it and fill in the gaps:

Theorem. There are infinitely many primes.

Proof. Define in Z a topology τ based on arithmetic progressions

Sa,b = {b+an : n ∈Z}= (. . . ,b−2a,b−a,b,b+a,b+2a, . . . ),

where a set U is open iff U =; or if for every x ∈U there is an a ∈Z s.t. Sa,x ⊆U.
For every prime p, Mp = Sp,0 consists of all multiples of p. Mp is closed because its complement in Z
is the union of the other arithmetic progressions with difference p. Now let A be the union of all the
progressions Mp . If the number of primes is finite, then A is a finite union of closed sets, hence closed.
However, all integers except −1 and 1 are multiples of some prime, so the complement of A is {−1,1},
which is obviously not open, thus A cannot be closed. This contradiction shows that A cannot be a
finite union of Mp ’s, so there are infinitely many primes.
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