

EL3370 Mathematical Methods in Signals, Systems and Control

Homework 2

Division of Decision and Control Systems
School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Instructions (read carefully):

- The exercise sets are *individual*: even though discussion with your peers is encouraged, you have to provide your own personal solution to each problem.
- The solutions to some problems can possibly be found by searching in math books other than the main course book. *Try to avoid such practice*: the only way to understand the topics in the course is by working hard on the problems by yourself.
- To prove statements in the exercises, use only the notation, definitions and results proven (not those given as exercises) in the lectures.

1 p-norms

Prove that, for every $x \in \mathbb{R}^n$, $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.

2 Closed linear subspace of ℓ_{∞}

Let c_0 denote the linear subspace of ℓ_{∞} comprising all sequences (x_n) that tend to zero as $n \to \infty$. Prove that c_0 is closed in ℓ_{∞} with respect to $\|\cdot\|_{\infty}$, and that it is the closed linear span of $\{e_n : n \in \mathbb{N}\}$, where e_n is the sequence with n-th term 1 and all other terms equal to zero.

3 Finite-dimensional subspaces

Prove that every finite-dimensional linear subspace of a (real or complex) normed space is closed.

Hint: If $\{x_1, \ldots, x_n\}$ span the linear subspace, and $y \notin \lim\{x_1, \ldots, x_n\}$ it is enough to show that $\inf_{a_1, \ldots, a_n \in \mathbb{R}} \|y - a_1 x_1 - \cdots - a_n x_n\| > 0$ (why?). The norm inside the inf can be seen as a norm defined only on $\lim\{y, x_1, \ldots, x_n\}$, so one could use the equivalence of finite-dimensional norms to lower bound this quantity by a strictly positive number.

4 Existence of optimal approximation

Let X be a (real or complex) normed space, and let x_1, \ldots, x_n be linearly independent vectors in X. Given a fixed $y \in X$, show that there are coefficients a_1, \ldots, a_n minimizing $||y - a_1x_1 - \cdots - a_nx_n||$.

Hint: Use the fact stated in Problem 3. Note that closedness is not enough to establish this result: you may need to rely on compactness (closedness + boundedness, in the case of finite-dimensional linear spaces). To use compactness, consider a bounded subset of $\lim\{x_1,\ldots,x_n\}$ where the minimizer might lie.

5 Different topologies in C[0,1]

Prove that in C[0,1] the norms $||x||_{\infty} = \max_{0 \le t \le 1} |x(t)|$ and $||x||_2 = \sqrt{\int_0^1 |x(t)|^2 dt}$ induce different topologies, *i.e.*, find a sequence of functions (x_n) such that $||x_n||_{\infty} = 1$ for all $n \in \mathbb{N}$, but $||x_n||_2 \to 0$ as $n \to \infty$.

6 Closedness and completeness

Show that a closed linear subspace of a complete metric space is itself complete (with respect to the same metric). Deduce then that $(c_0, \|\cdot\|_{\infty})$, the normed space of sequences (x_n) in ℓ_{∞} such that $x_n \to 0$ as $n \to \infty$ (see Problem 2), is a Banach space.

Note: Assume that ℓ_{∞} is complete.

7 Completeness of C(X)

Recall the complex normed space C(X), consisting of all bounded continuous functions $f: X \to \mathbb{C}$, where X is a topological space, with norm $||f||_{\infty} = \sup_{x \in X} |f(x)|$. Show that C(X) is a Banach space.

Hint: Follow the steps of a standard completeness proof. Note that, as part of that proof, you need to establish that if (f_n) is a sequence in C(X), and $f_n \to f$ uniformly in X (i.e., $\sup_{x \in X} |f_n(x) - f(x)| \to 0$ as $n \to \infty$), where $f: X \to \mathbb{C}$ is the limit function, then f must be continuous. To prove this, notice that

$$|f(x_1) - f(x_2)| \le |f(x_1) - f_n(x_1)| + |f_n(x_1) - f_n(x_2)| + |f_n(x_2) - f(x_2)|.$$

The first and last terms can be bounded due to the uniform convergence of (f_n) , and to bound the middle term use the fact that f_n is continuous.

8 Optimization in Hilbert Space

Using the projection theorem, solve the finite-dimensional problem:

$$\begin{aligned} \min_{x \in \mathbb{R}^n} & x^T Q x \\ \text{s.t.} & A x = b, \end{aligned}$$

where $Q = Q^T \succ 0$ (non-singular), $A \in \mathbb{R}^{m \times n}$ (m < n) and $b \in \mathbb{R}^m$. Assume that A has full (row) rank.

Do not use Lagrange multipliers, KKT conditions or similar techniques.

Hint: At some point of your derivation, you may need to characterize the orthogonal complement of the nullspace of A, i.e., those $x \in \mathbb{R}^n$ such that $(x,v)_Q = 0$ for all $v \in \mathbb{R}^n$ such that Av = 0, where $(x,y)_Q = y^TQx$. To this end, notice that, for every $w \in \mathbb{R}^m$, $0 = w^TAv = w^TAQ^{-1}Qv = (Q^{-1}A^Tw,v)_Q$, so the nullspace of A consists exactly of those $v \in \mathbb{R}^n$ that are orthogonal to the columns of $Q^{-1}A^T$.