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Instructions (read carefully):

• The exercise sets are individual : even though discussion with your peers is encouraged, you
have to provide your own personal solution to each problem.

• The solutions to some problems can possibly be found by searching in math books other than
the main course book. Try to avoid such practice: the only way to understand the topics in
the course is by working hard on the problems by yourself.

• To prove statements in the exercises, use only the notation, definitions and results proven
(not those given as exercises) in the lectures.
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1 p-norms

Prove that, for every x ∈ Rn, limp→∞ ∥x∥p = ∥x∥∞.

2 Closed linear subspace of ℓ∞

Let c0 denote the linear subspace of ℓ∞ comprising all sequences (xn) that tend to zero as n → ∞.
Prove that c0 is closed in ℓ∞ with respect to ∥ · ∥∞, and that it is the closed linear span of
{en : n ∈ N}, where en is the sequence with n-th term 1 and all other terms equal to zero.

3 Finite-dimensional subspaces

Prove that every finite-dimensional linear subspace of a (real or complex) normed space is closed.

Hint: If {x1, . . . , xn} span the linear subspace, and y /∈ lin{x1, . . . , xn} it is enough to show that
infa1,...,an∈R ∥y − a1x1 − · · · − anxn∥ > 0 (why? ). The norm inside the inf can be seen as a norm
defined only on lin{y, x1, . . . , xn}, so one could use the equivalence of finite-dimensional norms to
lower bound this quantity by a strictly positive number.

4 Existence of optimal approximation

Let X be a (real or complex) normed space, and let x1, . . . , xn be linearly independent vectors in
X. Given a fixed y ∈ X, show that there are coefficients a1, . . . , an minimizing ∥y − a1x1 − · · · −
anxn∥.

Hint: Use the fact stated in Problem 3. Note that closedness is not enough to establish this
result: you may need to rely on compactness (closedness + boundedness, in the case of finite-
dimensional linear spaces). To use compactness, consider a bounded subset of lin{x1, . . . , xn}
where the minimizer might lie.

5 Different topologies in C[0, 1]

Prove that in C[0, 1] the norms ∥x∥∞ = max0⩽t⩽1 |x(t)| and ∥x∥2 =
√∫ 1

0
|x(t)|2dt induce different

topologies, i.e., find a sequence of functions (xn) such that ∥xn∥∞ = 1 for all n ∈ N, but ∥xn∥2 → 0
as n → ∞.

6 Closedness and completeness

Show that a closed linear subspace of a complete metric space is itself complete (with respect to
the same metric). Deduce then that (c0, ∥ · ∥∞), the normed space of sequences (xn) in ℓ∞ such
that xn → 0 as n → ∞ (see Problem 2), is a Banach space.

Note: Assume that ℓ∞ is complete.

7 Completeness of C(X)

Recall the complex normed space C(X), consisting of all bounded continuous functions f : X → C,
where X is a topological space, with norm ∥f∥∞ = supx∈X |f(x)|. Show that C(X) is a Banach
space.
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Hint: Follow the steps of a standard completeness proof. Note that, as part of that proof, you need
to establish that if (fn) is a sequence in C(X), and fn → f uniformly in X (i.e., supx∈X |fn(x)−
f(x)| → 0 as n → ∞), where f : X → C is the limit function, then f must be continuous. To prove
this, notice that

|f(x1)− f(x2)| ⩽ |f(x1)− fn(x1)|+ |fn(x1)− fn(x2)|+ |fn(x2)− f(x2)|.

The first and last terms can be bounded due to the uniform convergence of (fn), and to bound the
middle term use the fact that fn is continuous.

8 Optimization in Hilbert Space

Using the projection theorem, solve the finite-dimensional problem:

minx∈Rn xTQx
s.t. Ax = b,

where Q = QT ≻ 0 (non-singular), A ∈ Rm×n (m < n) and b ∈ Rm. Assume that A has full (row)
rank.

Do not use Lagrange multipliers, KKT conditions or similar techniques.

Hint: At some point of your derivation, you may need to characterize the orthogonal complement
of the nullspace of A, i.e., those x ∈ Rn such that (x, v)Q = 0 for all v ∈ Rn such that Av = 0,
where (x, y)Q = yTQx. To this end, notice that, for every w ∈ Rm, 0 = wTAv = wTAQ−1Qv =
(Q−1ATw, v)Q, so the nullspace of A consists exactly of those v ∈ Rn that are orthogonal to the
columns of Q−1AT .
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