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Feedback Control and Youla Parameterization
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Feedback Control and Youla Parameterization

Goal: Design a controller that drives the output as close to the reference as possible.

Disturbance

| Toput '
Reference—=()—» Contéollel npu Plglt 0 Output
<— Noise
Concerns:
1. Reference: Output should be equal to reference.
2. Disturbance:  Disturbance should not affect output.
4. Noise: Noise should not perturb output.
5. Input: Input should lie within prescribed limits.
6. Stability: Closed loop should be stable.
7. Robustness: Model errors should not affect performance nor stability.
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Feedback Control and Youla Parameterization (cont.)

If Z{ref} =: R(z), Z{noise} =: N(z), Z{disturb.} =: D(z), Z{in.} =: U(z) and Z{out.} =: Y (2):

}ZZ; D.N=0 = % =:T(2) (complementary sensitivity)
ZEZ R.N=0 - m =1-T()=:5() (sensitivity)
f]z; D.N=0 - %ZZ))C(Z) =:8;(2) (input sensitivity)
gz; D.N=0 - % =:Su(2) (control sensitivity)

A control loop is internally stable if all these sensitivities are stable.
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Feedback Control and Youla Parameterization (cont.)

Many of the concerns can be traded-off by imposing, e.g., that

o T(e'”) = 1 for small w,
o T(e'?) = 0 for large o,
o the closed loop is internally stable.

This can be achieved by requiring that C yields a stable closed loop and minimizes

IW1(1-=Dlloo + IWaT'lloo = sup [W1(2)[1-T(2)]| + sup [Wa(2)T(2)l. (W1, Wy: weights)
lz1=1 l21=1

To parameterize all stabilizing controllers C, the following result is useful:

Theorem (Youla/affine parameterization) (see bonus slides for proof)
Assume that G is stable. Then C yields an internally stable loop iff the Youla parameter
Q :=C/(1+GC) is stable. Furthermore, all sensitivity functions are affine functions of .
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Approaches to Hy, Control
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Approaches to H,, Control

(a) Nehari problem (Hy, approximation) < we will follow this approach!
(b) Nevanlinna-Pick problem (H, interpolation)

(¢) Polynomial methods (H. Kwakernaak)

(d) Chain scattering (H. Kimura)

(e) Riccati equations (“DGKF” paper)

(f) Linear matrix inequalities (P. Gahinet & P. Apkarian, C. Scherer)

(g) Differential games (T. Basar and G. J. Olsder)

(h) Krein space techniques
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The Big Picture
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The Big Picture

Our goal is to obtain the minimizer, over all @ € Heo, of |7 — GQlloo, where T',G € Loo(T)
(T:={z€C: |z| =1}). Now,

min |7-GQlloo= _ min aHG;lT—QIIOO (G =G1Gp, where GO,GZ)1 EHOO,\GI(ei“’)I2 = a2 = constant)
QeHoo Q=GpReHwo

. -1 -1 5
= min @ " [GI Tlstable + [GI Tlunstable — @ H o
Q=GpReHo

= ~ min a H [GI_IT]unstable _Q” , where QI € HOOa[G;lT]unstable EHtJ;o
Q'=Q-167 Tlggaple *

~afr

, where I’ is a Hankel operator. (Nehari’s theorem)

[GEIT]unstable [GEIT]unstable

In this topic, we will define the appropriate H), spaces, the inner-outer factorization
(G =G1Gp), Hankel operators, Nehari’s theorem, and how to compute the minimizer!
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Hardy Spaces
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Hardy Spaces

Definition

For 1< p <oo, the Hardy space H), is the normed space of analytic functions f on the
open unit disk D :={z € C: |z| < 1}, for which the norm

1 T iy p 1/p
IFllp = sup (%/”wre ) dw)

<r<1

is finite. H, is the space of bounded analytic functions f on D, with norm

Ifllco :=suplf(2)l= sup |f(re'®)l.
zeD —T<SW<T
Osr<1

Remark. For 1< p <q <oco, Hy 2 Hy: indeed, for fixed r € [0,1), with f,(w) := f(rei‘“), S0
fr € Lql-n,7]; Holder’s inequality yields [7_|f(re’®)Pdw = If-I5 = I1-fFll1 <

Il gug-p I lgrp = @Y PG e, 1 frllp < @mYP=VA| £, 4. In particular,
Hy,<Hgog<H;.
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Hardy Spaces (cont.)

We can identify elements of Hj, with functions in L(T)! (T:=0D={z€C: |z]=1})

Theorem. For every f € Hp (1< p <oo0) the radial limit f(ei‘”) =lim,_,1_ f(rei“') exists
for almost every w € [-m, 7], and indeed fELp(F), with IIfHLp = Hflal-

(See bonus slides for proofin the case 1 < p < o0)

Remarks
1. Hp can be identified with a closed subspace of L, (T), and hence it is a Banach space.

2. Hp can be defined as the subspace of those f € L, (T) whose negative Fourier
coefficients vanish, i.e., f(e'”)=Y02 _Jane'™ with

(7 o i
api= — / fe)e " dw=0 forn<0.
2n J_»

Those f’s can be extended to D as f(z) = z?f:o anz" for z€D.

3. Due to this identification, we see that the dual of H, (1< p <o0) is Hg, where
1/p+1/g=1.
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Hardy Spaces (cont.)

In particular, Hyg is a Hilbert space, since it is a closed subspace of Lo(T), and we can
define the projection operator from Lo(T) onto Hg as

o0 . (] .
. inw inw
Py : n} ape'"” — E Oane .
o e

) .
Hp can also be identified with £9,by: )" aze”e€Hy < (ag,ay,...)€la.
n=0

Hé‘ is the orthogonal complement of Hg in Lo(T), i.e., f € Hé‘ iff it has the form

. 1 .
wy — mnw
fe®)y=) ~_ane™.

RH)p and RL) are those subspaces of Hj, and L, (T) consisting of those functions which
are real-rational (i.e., quotients of polynomials with real coefficients).
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Hardy Spaces (cont.)

For some derivations, we will need the following technical lemma:

Lemma. If f € Hy \ {0}, then f(ei“’) # 0 almost everywhere, and ffﬂ loglf(ei‘“)ldw > —00.

Proof (Helson and Lowdenslager, 1958)
If f(z) = ;O=0 apz" is non-zero, by multiplying it by some z™ (m € N) we assume w.l.o.g. that ag # 0.

Consider the affine subspace C = {z — f(2)[1+b1z+ -+ b;ypz™]: meN;bq,...,by € C} < Hg; note that
0¢ C, because if h € C, h(0) = ag # 0. By the closest point property, there is a g € C of smallest norm.

Given AeCand meN, g+ 12" gl2 =1 +A2)lgl? +2Re

"7 . o
(A27i) / 1g(!®)2e™ @ d e |, but since
J=m

g+1zMmgeC and g has minimum norm in C, jfﬂ |g(e’®)|2eiMm® de = 0 for all m €N, and taking the
conjugate the same holds for all —m € N; thus, |g(e“‘")\2 =g0>0, since g #0.

Assume f(z)=0on aset ECT. Define h: T—Cas h(z)=00on T\ E, and h(z) = \g(z)\/@ on E. Then,
heLo(T)and (F,h)=0 for all F € C (since F also vanishes on E), and by continuity, (¥,z) =0 for all
FeC,s00=(g,h)=2m"! [5lge’)dw=2m~1/gom(E) (where m is the Lebesgue measure), hence
E has measure zero.

Now, for £ >0, let A = % . logllf (e'®)2 + eldw and y = A —logl|f|% +£]. Then, since . ly(ei‘“)dm =0,
e¥ can be approximated arbitrarily well by polynomials of the form |1+b1e™® +---+ b, '™ ©|2 (recall
Topic 5), so

1 1 [T 1/ 1/
exp{% /105[\f\2+£]}= %/ exp(M)dw = o /ew(|f|2+5)> o /ewlﬂ2 2[}"n(f?|\FH2 =80>0.
p - P p €

The monotone convergence theorem, for € — 0, yields f_ﬂﬂ loglf(ei“’)lzdw > —00. O
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Hardy Spaces (cont.)

Inner-Outer Factorization

El-2)e"1-3) El-2e"1-3) (1-2:"hHa-3z71
Example: = . .
(z71-05)z"1-06) (1-2z"1)1-3z71) (z71-0.5)(z"1-0.6)
“inner function” “outer function”
(constant modulus =1 in T) (all poles and zeros outside D)
Definitions

An inner function is an H, function with unit modulus almost everywhere in T.
An outer function is an f € Hy that can be written as

1 4 iw+ X
f(z):aexp(—/ ¢ Zk(e“”)dw), zeD,
21 J_y ei® — 5

where & is a real valued integrable function, and |a| = 1.

Remark: An outer function cannot have zeros in D.
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Hardy Spaces

Inner-Outer Factorization (cont.)

Theorem (Beurling). Let f € Hy be nonzero. Then, f = f7 - fo, where f7 is inner and fp
is outer. This factorization is unique up to a constant of unit modulus.

Proof idea: Take k =log|f| in the definition of outer function. O
Corollary (Riesz factorization theorem)

f € Hy iff there are g,h € Hg s.t. f = gh and |l gy = 18llH, 171y -

Proof. Since f = f1fp, where f7 is inner and f( is outer, let g = \/fp and h = \/fp []. O
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Hankel Matrices and Operators
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Hankel Matrices and Operators

A causal discrete-time linear system G is defined by the relation

o) i
Ye= ) 8hUs-p = ). &-hUp, tEZ,

k=0 k=—00
or, in matrix form,
0
0
y_1 81 8o u_q
Yo 1= g1 g O “0
y1 ] ) u1
81 8o
81

Toeplitz form describing G
(infinite matrix, constant along its diagonals)
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Hankel Matrices and Operators (cont.)

If we constrain the input (u¢)e7 so that uz =0 for £ >0, and project (y¢)ez onto £o(Z4)
(i.e., only focus on y; for ¢ = 0), we obtain

g0 81 82

Y0 uo

8 8
Y1 ! 2 8 U-1| Hankel operator, T'g, with symbol G =
Y217 gy g3 - u-2 ZZ":ngzk, relating past inputs u € £9(Z-) to

future outputs y € £9(Z4).

infinite Hankel matrix
(constant along its anti-diagonals)

If R is the reversion operator on Lo(T), R (Zioz_ooakzk) = Zoz_ooa_kzk, and Mg is the

multiplication operator on Lo(T) by G, Mg f =Gf, then I can be seen as an operator on
Hgy:

Ig= PH2MGR)H2.
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Hankel Matrices and Operators (cont.)

Note that if G(z) = g1z + gzz2 +--- is the transfer function of a system described by

X441 =Axt +Buy State-space representation

¥t =Cuxy, (with state x; € R™)

then G(z) = C(z~11 - A)~1B, and the Hankel matrix of 2~ 1G(z) is

g1 82 83 - CB CAB CA2B ... c
g2 83 &4 CAB CA%B CA®B CA
= = 2
g3 &4 - “|ca2B cadB . = |ca?| |B AB A®B
W lo—C"
controllability operator

Wo: C"—lg
observability operator

This means that the Hankel operator can be decomposed into a controllability operator
(mapping past inputs to initial state xg) and an observability operator (mapping the
initial state to future outputs).
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Hankel Matrices and Operators (cont.)

Norm of '
Assume that G is controllable and observable, i.e., that ¥, is surjective and ¥, is
injective, respectively. Since I'q = ¥, ¥, we have, for every x € {9,

ITqxl? = (Caa,Tax) = (WoWex, Vo Wer) = (WiW,Wex, Vex) = (Wi Wy, ),
where y = W x. Hence

IIFG||2= sup (¥Y;Woy,y)= sup yT[‘I’;‘l’o]y= sup yT[‘I’;‘I’o]Jﬂ
=¥ T Wi 1y<1

cX cX
lixll gy <1 el gy <1

The last step is due to that y = ¥ x for some x € £9 s.t. x| <1 iffyT[‘Pc‘{’;‘]‘ly <1,
which holds since minxdz’y:\ycx ||x||2 = yT[‘}’c ‘I—’z]_ly. This follows from a result in the
bonus slides of Topic 8, which states that the minimizer x°P* satisfies x°P* = Wz for some
ZeC sty =W Wiz, ie, 2P = W W, W11y, hence 1282 = yT[W, W 11y (note
that the assumption that Z(\¥.) = C" holds because G is controllable).

Cristian R. Rojas  Topic 10: Application to Hoo Control Theory 21



Hankel Matrices and Operators (cont.)

Norm of I'; (cont.)
Now,

Le:=W ¥:=x A*BBT(AT)
Lo=W;¥, =X (AT)kcTcak

L.-AL AT =BBT

are solutions of: Lo-ATL,A=cTC.

(Lyapunov equations)

Therefore:
ITgl?=  max yTLoy (x=L;1%y)
yTLly<1

= rFax xTL%/zLOL%/Qx Easy eigenvalue problem
xtx<1

= Amax(LY2L,LY?)
= Amax(LcLol

Note. Amax(AB) = Amax(BA), since ABx = Amaxx can be written as the set of equations
Ay = AmaxX, Bx =y, or equivalently, BAy = AmaxYy, and vice versa.
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Nehari’s Theorem
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Nehari’s Theorem

Notice that if I' = Pgy, Mg R is a Hankel operator, then
1T =1Pr, MgRI < IPg, I MgllIRI = lI8lloo-

The following result establishes a deep connection between H, problems and Hankel
operators:

Theorem (Nehari)
If T is a bounded Hankel operator on Hy, then there is a g € Loo(T) s.t. I'= Py, MgR I
2

and [glleo = ITIl.

Remark: Two symbols g,k € Loo(T) give the same Hankel operator iff their nonnegative
Fourier coefficients coincide, i.e., g(z) = X352 g,2" and h(z) = Zf:_oohkzk, with

gy, =hy, for all £ = 0. Thus, Nehari’s theorem establishes the greatest lower bound on the
oo-norm of a g € L (T) whose projection onto Hy is fixed.
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Nehari’s Theorem (cont.)

Corollary
Given g € Loo(T), we have that [T'gll = minheHi llg = hlloo, Wwhere Héo is the space of
o0

those f(z) = Z];iioo n 2% which are analytic and bounded in {z€ C: |z]| > 1}.

Given I', the problem of finding a symbol for I" of minimum norm, i.e.,
ITI =inf{lglloo: & € Loo(T) is a symbol for T},

is called the Nehari extension problem.
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Nehari’s Theorem (cont.)

Proof of Nehari’s theorem

We already know that if g is a symbol for T, then |T'|| < || glloo. Our goal then is to show that there is a
symbol for which we achieve equality. As the nonnegative Fourier coefficients of g are fixed, we need
to determine the negative ones, which amounts to extend I' to a Hankel operator on Lg. We will do
this by extending a related functional from Hy to Ly.

The entries of the matrix of T are a4+, :=(I'z",2™) = (T2 1). Therefore,

N M N M
(F Y ba2", Yy Wzm)= (F > b Y em2™ 1.
n=0 m=0

n=0 m=0

+
Denote (Z%:() cmz”‘) = Z%:Oﬁzm. Then, for polynomials f1, fo we can define the functional

a(f1f2) = Tf1.f3) = Tfifa, 1),
which satisfies |a(f1 /)l < [TllIf1ll21f2l2-
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Nehari’s Theorem (cont.)

Proof of Nehari’s theorem (cont.)
By Riesz Factorization theorem, every f € H1 can be factorized as a product of Hg functions f7, f2, and
polynomials are dense in Hg, so @ can be extended uniquely to @: H; — C, by @(f) = a(f1f2) = (I’fl,f2+).

Furthermore, |a(f)| < [ITlllif1l2llf2lle = ITIIf 11, so lall < [Tl

Since H7 is a subspace of L1, by Hahn-Banach there is an extension @ of @ to L1 s.t. [|all = @[ < |IT|.

g )

Since the dual of L1(T) is Loo(T), @ = fe")h(e')dw for some & € Loo(T), with [|2]eo = @l < [IT]l.
-7

Now, for all n,m =0,

T .
Anim :(F2n+m’1):d(zn+m):/ el(n+m)wh(ew))dw'
-7

Therefore, h(z) = ):Zq’:ioohkzk with A_, =a, forall n =0, and ||Allco < |IT.

This means that by taking g(e’®) = h(e "), we obtain the desired symbol for I'. O
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Nehari’s Theorem (cont.)

How can we compute the optimal symbol g € Loo(T)?

Theorem (Sarason)

If T is a bounded Hankel operator on Ho, and f € Ho is nonzero and s.t.

ITfllg =ITINf ll2, then there is a unique symbol g € Loo(T) for I' of minimum norm,
lglloo = ITIl, and it is given by g = 'f/Rf. Moreover, Ig(ei‘“)l is constant almost
everywhere.

Proof. Let g € Loo(T) be s.t. glloo = ITll, and recall that I'f = PH2 MgRf. Therefore,

T ANz = ITfll2 = 1Py MgRfll2 < IMgRfli2 < lgloollRf N2 = TN l2-

Since the leftmost and rightmost sides coincide, we have equality throughout. Therefore,
HPH2Mng||2 =|lgRfllg,i.e., gRf €Hy,s0of =gRf, or g =Tf/Rf, which shows that g is unique.

Moreover, since |gRfll2 = lIgllooIRf 2, it follows that Ig(ei“’)\ is constant almost everywhere. O
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Nehari’s Theorem (cont.)

How can we find an f € Hg s.t. |[Tfllg =ITIIfl2?

Let yg € R" achieve the maximum in |I'g || = max YT ly<1 yTLoy

(How? Let y = L21/2y and solve the eigenvalue problem: max_ 5T 3 <1yTL1/2L L1/2y )

The sought f is s.t. y9 = WY, and to achieve equality in |[T'f|lg = [T|lIfll2 it must have
minimum norm. From the derivation at the end of Slide 21, this implies that

f=P:L o,

or: f, =BT(ATY* L1y, for k= 0 (and zero otherwise), i.e., f(z) =zBT (z 711 - AT) 1L 1y
Also, Tf(2) = (Wo P )(2) = (Woy0)2) = £ | CARyo2F = 271C(z 711 - A) Ly, so

Tf)2) _ (Foyo)2) _ Cz1-4)"1y,
(Rf)=2) fz™h BT(I-AT)-1L 1y,

g(z)=
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H, Control Example
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H, Control Example

27142
z71-09°
We want to control it so that the transfer function 7' from reference to output becomes

Consider the system: G(z) =

Bode Diagram

1 z'+03

T(z) = ,
@=55T 08

i.e., we want the closed loop to be slightly
faster than G, and with static gain
T =1.

Using the Youla parameterization, we

Magnitude (dB)

can impose these constraints by mini- 0
mizing

inf [|T-G .
QgII_IOOH Qlloo

10
Frequency (rads)
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H, Control Example (cont.)

Let’s compute the optimum of

1271403 27142

652108 z1_0. 9Q(2)

inf
QeHoo

[e¢]

=:J

Step 1: Factorize poles and zeros in D

z
65:1-08 21-09

-1 -1
1271403 27l4s Q(g)” _

1+2:71 (1 271403 27142 0@
2112 |652-1-08 21-09°"
1 (z+0.3)2z+1) 1

”65(2 0eery C )Hoo

‘OO

- 1+2271
h =— .
where Q(z) 109 Q(2)
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H, Control Example (cont.)

Step 2: Partial fraction expansion, to remove unstable poles

1 3)2z+1 .2802 .
1 (2+0.3)(2z+1) — 03077 0.280 . 0 7857,
6.5 (z—0.8)(z+2) z+2 5z—-4
S0
0.3077z +0.3352
!
z+2 o
10N — By 0.7857
where Q'(z) := Q(z) Faloa”
Step 3: State-space realization of the problem
-05 0 0.5
0.3077z+0.3352 1 Xp+1 = xR+ Up
o 1 0 0
z+2 z

v =[03352  0.3077) .
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H, Control Example (cont.)

Step 4: Compute Gramians (by solving their Lyapunov equations)

0.3333  —-0.1667
-0.1667  0.3333

0.1385 0.1031
0.1031  0.0947

c= > o=

Step 5: Compute norm of Hankel matrix

IT] = 0.1947.

Step 6: Compute f € Ho s.t. [Tfllg=1TIIf 2

-0.3824
-0.1834

27140.7902

Y= 21405

s f(z)=-0.94819

Cristian R. Rojas  Topic 10: Application to Hoo Control Theory 34



H, Control Example (cont.)

Step 7: Compute optimal symbol of Hankel matrix

2~140.7902

(Poy0)2) =210 T - A)Lyg = —0.18461=—
z7++0.5

(z71+0.7902)z"1 +2)

s (2)=0.1232 _
g -1105)z-1+1266)

Notice that Ig(ei‘”\ =0.1947 for all w (as we expected).

Step 8: Compute optimal @

-1 -1
271-0.9 [ 0.3077271 +0.3352 _1
)= -8z )+
Qe 142271 z7142 8t

0.7857
5z71-4

_0.096111(=~1-0.9)
T (z71+40.7902)(z"1 -0.8)°
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H, Control Example (cont.)

Bode Diagram

30

—G
——target T
—G*Q

Magnitude (dB)
o

-30

10

Cristian R. Rojas

107"
Frequency (rad/s)
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Last Slide

Thank you for attending the course!
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Bonus Slides
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Bonus: Proof of Youla / Affine Parametrization

Notice that, in terms of the Youla parameter @ := C/[1+ GC],

S:ﬁ:l—GQ
siz%zafa%g
Su= 1@,

hence all sensitivity functions are affine in @. Now, if G and @ are stable, all sensitivity functions are

stable as well, while conversely, if the sensitivity functions are stable, @ =Sy, is stable too. O
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Bonus: Radial Limits of I, Functions

Poisson representation
Consider an analytic f: D — C. By Cauchy’s integral formula, for every analytic ~: D — C:
1 fw)

1 1
=3 b w30 = g 10 dv=g, § rl

for z € D, since the integral of an analytic function in D around T is zero. Note that if

1 w

+wh(w) U.LW,
w

+h(w)
z z

w=e' (te[-m,7]), dw/iw = dt. We want to choose % so the formula in brackets is real.
Now,

Fwhw) =1+ —— +wh(w) =1+ —2
w-—z w-—z 1-z

— +wh(w), (weT)
w

so we can force wh(w) = zw/(1 - zw) = Zw/(1 - Zw), or h(w) = 2/(1 - Zw). Then, making

w=el and z = reig, we obtain
; 1 (" rel@- ; 1 /7 1-r2 ;
( “’):—/ 1+2Re| ——— Mgr=— | ————_ fle'h)dt.
flre 21 J_n 1—rei@-1) fle™) 27 |5 1-2rcos(0—¢t)+r2 fe

=:P(r,0—t) “Poisson kernel”
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Bonus: Radial Limits of H, Functions (cont.)

Poisson representation of H, functions (p > 1)
Note first that, for every a € (0,1),

. ya .
Flare'?)= %/ P(r,0-t)f(ae')dt  (rel0,1),0€[-m,7l).
=7

To see this, apply the Poisson representation to f4(z) = f(az), which is also analytic in D.

If f € Hp for p > 1, then fa € Lp[-m,7], where Fa(@):= fa(e'®), and || fo lp <Iflp.
Consider a sequence (fan) where ap — 1. Since L = L;, where q is s.t. 1/p+1/g =1, by
Banach-Alaoglu, there is a subsequence (fai) s.t. fai — g€Lp in aweak” sense. Thus,

1 /" 1 1 _ . .
—/ P(r,0-t)gt)dt= —(P(r,0—-,g) = lim —(P(r,0—-,fs,) = lim f(a;re'?) = f(rei?),
2n - 2n i—o0 27 ! 1—00

since f is continuous in D; this yields a Poisson representation for analytic functions in D.
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Bonus: Radial Limits of H, Functions (cont.)

Fatou’s Theorem. Let g € L1[-m, 7], and assume that

. T
f(re‘g): 2i/ P(r,0—t)g(t)dt, for all r€[0,1),0 € [-m,7].
T

-

Then, the radial limit lim,_1_ f(reig) = g(0) exists for almost all 0 € [-7, 7].

Proof. From the Poisson representation of f =1, ffﬂ P(r,0 —t)dt =2 for all r,0. Then, by integration
by parts, if G(¢) := ff,, g(nydr,
1 [T oP(r,0-1t)

. 1 T
Fret?y—g(6) = —/ P(r,0-lg(t)-g0)ldt=—-— ———[G(®) - g(O)tldt.
2m g 27 )z ot

Now, for 0 <6 <0 —t|<m,

OP(r,0—t 2r(1—r2
‘ (rz;t )'s rd=r’) —0asr—1_,

[1-2rcos(d) +r2]2

0+6 _ 0 — _
1/ OP(r,0—t) iﬂ/ 6Pé;,t)th(9+t) GO t)—g(e) dt.

while — o s o [G(t) - gO)¢tldt = — %

Given € >0, let § > 0 be small enough so |g(0) —[G(0 +t)— G(0 — t))/2t| < ¢ for all ¢ €[0,5] (this can hold
for almost all 6, by Radon-Nikodym theorem). These two estimates imply that lim,_.;_ f(r)=g(0). O
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Bonus: Radial Limits of H, Functions (cont.)

Hardy’s theorem

. ; 1/p
Let f: D — C be analytic, and define M (f;r):= [(271)_1 ]fn If(retH)Pdt for r €[0,1)
and p €[1,00]. Then, M(f;r) is non-decreasing in r.
Proof (Taylor, 1950). Let us define a function F: D — Lpl-n,7] by [F(2)1(6) = f(zeig) 0 € (—m,m)).
Notice that [|F(2)lp = Mp(f,|z]). We will show now that the maximum of |F(2)|, over an open disk rD
cannot be achieved inside rD, unless | F(2)lp is constant in that disk. Indeed, if
IF(z0)llp =sup,e,p IF(2)lp for some zg € rD, then since by Cauchy’s integral formula (defining the
integral entry-wisely)

. 1 /7 . . 1 (7 . .
[F(z)0) = f(zge'?) = —/ Fzpe'? + 561 0+D)qt = [—/ F(zg +6eit)dt| (i),
2n J_n 2 g
where 6 > 0 is small enough so that the integration path is inside rD, and it includes points z for which

1 T i
IF@)p < IF(zo)llp, then [|F(zg)lp < 2*/ IF(zg +6e'")l| pdt < | F(20)lp, which contradicts the
nJ-n

assumption that |F(2)[p is not constant in the integration path. This contradicts proves that
Mp(f;r) =sup,e,p IF(2)lp is non-decreasing in r. 0O

Cristian R. Rojas  Topic 10: Application to Hoo Control Theory 43



Bonus: Radial Limits of H, Functions (cont.)

The previous three results imply that every f € Hp, for p > 1, has the Poisson
representation

1 T - .
— | Pr,0-tf@)dt=f(re'?),
2n J_n
where £(t) =lim,_1_ f(re') for all ¢ € [-7,7]. Furthermore, since I|f¢llp < I fllp, the
Lebesgue dominated convergence theorem implies that || ]| p=Iflp.

Note. Our approach to the development of a Poisson representation fails for H; functions
because L1[-m,7] is not the dual of any normed space. In particular, for an f € H1, using
the Riesz representation theorem for the dual of C[—x, 7], one arrives at the
Poisson-Stieltjes representation

/2

L7 per0-0dcw = Fre'®,
21 )5

where G € NBV[—-7, 7], but extra effort is needed to show that it is differentiable (which
corresponds to the F. and M. Riesz theorem).
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