EL3370 Mathematical Methods in Signals, Systems and Control

Topic 10: Application to H_∞ Control Theory

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology

Outline

Feedback Control and Youla Parameterization

Approaches to H_∞ Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_∞ Control Example

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Goal: Design a controller that drives the output as close to the reference as possible.

Concerns:

- 1. Reference: Output should be equal to reference.
- 2. Disturbance: Disturbance should not affect output.
- 4. Noise: Noise should not perturb output.
- 5. Input: Input should lie within prescribed limits.
- 6. Stability: Closed loop should be stable.
- 7. Robustness: Model errors should not affect performance nor stability.

 $If \mathcal{Z} \{ref.\} =: R(z), \mathcal{Z} \{noise\} =: N(z), \mathcal{Z} \{disturb.\} =: D(z), \mathcal{Z} \{in.\} =: U(z) \text{ and } \mathcal{Z} \{out.\} =: Y(z):$

$$\begin{array}{c} \frac{Y(z)}{R(z)} \bigg|_{D,N=0} = \frac{G(z)C(z)}{1+G(z)C(z)} =: T(z) & (complementary \ sensitivity) \\ \hline \frac{Y(z)}{D(z)} \bigg|_{R,N=0} = \frac{1}{1+G(z)C(z)} = 1 - T(z) =: S(z) & (sensitivity) \\ \hline \frac{Y(z)}{U(z)} \bigg|_{D,N=0} = \frac{G(z)}{1+G(z)C(z)} =: S_i(z) & (input \ sensitivity) \\ \hline \frac{U(z)}{R(z)} \bigg|_{D,N=0} = \frac{C(z)}{1+G(z)C(z)} =: S_u(z) & (control \ sensitivity) \end{array}$$

A control loop is *internally stable* if all these sensitivities are stable.

Many of the concerns can be traded-off by imposing, e.g., that

- $T(e^{i\omega}) \approx 1$ for small ω ,
- $T(e^{i\omega}) \approx 0$ for large ω ,
- the closed loop is internally stable.

This can be achieved by requiring that C yields a stable closed loop and minimizes

$$\|W_1(1-T)\|_\infty + \|W_2T\|_\infty = \sup_{|z|=1} |W_1(z)[1-T(z)]| + \sup_{|z|=1} |W_2(z)T(z)|. \quad (W_1,W_2: \text{weights})$$

To parameterize all stabilizing controllers C, the following result is useful:

Theorem (Youla/affine parameterization) (see bonus slides for proof) Assume that *G* is stable. Then *C* yields an internally stable loop iff the *Youla parameter* Q := C/(1 + GC) is stable. Furthermore, all sensitivity functions are affine functions of *Q*.

Outline

Feedback Control and Youla Parameterization

Approaches to H_∞ Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_∞ Control Example

Approaches to H_{∞} Control

- (a) **Nehari problem** (H_{∞} approximation) \leftarrow we will follow this approach!
- (b) Nevanlinna-Pick problem (H_{∞} interpolation)
- (c) Polynomial methods (H. Kwakernaak)
- (d) Chain scattering (H. Kimura)
- (e) Riccati equations ("DGKF" paper)
- (f) Linear matrix inequalities (P. Gahinet & P. Apkarian, C. Scherer)
- (g) Differential games (T. Başar and G. J. Olsder)
- (h) Krein space techniques

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Our goal is to obtain the minimizer, over all $Q \in H_{\infty}$, of $||T - GQ||_{\infty}$, where $T, G \in L_{\infty}(\mathbb{T})$ $(\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\})$. Now, $\min_{Q \in H_{\infty}} ||T - GQ||_{\infty} = \min_{\tilde{Q} = G_{O}Q \in H_{\infty}} \alpha ||G_{I}^{-1}T - \tilde{Q}||_{\infty} \quad (G = G_{I}G_{O}, \text{ where } G_{O}, G_{O}^{-1} \in H_{\infty}, |G_{I}(e^{i\omega})|^{2} = \alpha^{2} = \text{constant})$ $= \min_{\tilde{Q} = G_{O}Q \in H_{\infty}} \alpha ||G_{I}^{-1}T|_{\text{stable}} + [G_{I}^{-1}T]_{\text{unstable}} - \tilde{Q}||_{\infty}$ $= \min_{Q' = \tilde{Q} - [G_{I}^{-1}T]_{\text{stable}}} \alpha ||G_{I}^{-1}T|_{\text{unstable}} - \tilde{Q}||_{\infty}, \text{ where } Q' \in H_{\infty}, [G_{I}^{-1}T]_{\text{unstable}} \in H_{\infty}^{\perp}$

 $= \alpha \left\| \Gamma_{[G_{I}^{-1}T]_{\text{unstable}}} \right\|, \text{ where } \Gamma_{[G_{I}^{-1}T]_{\text{unstable}}} \text{ is a } \textit{Hankel operator.} \quad (\text{Nehari's theorem})$

In this topic, we will define the appropriate H_p spaces, the *inner-outer factorization* $(G = G_I G_Q)$, Hankel operators, Nehari's theorem, and how to compute the minimizer!

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_∞ Control Example

Definition

For $1 \le p < \infty$, the *Hardy space* H_p is the normed space of analytic functions f on the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, for which the norm

$$\|f\|_p := \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\omega})|^p d\omega \right)^{1/p}$$

is finite. H_{∞} is the space of bounded analytic functions f on \mathbb{D} , with norm

$$\|f\|_{\infty} := \sup_{z \in \mathbb{D}} |f(z)| = \sup_{\substack{-\pi \le \omega < \pi \\ 0 \le r < 1}} |f(re^{i\omega})|.$$

Remark. For $1 \leq p < q \leq \infty$, $H_p \supseteq H_q$: indeed, for fixed $r \in [0, 1)$, with $f_r(\omega) := f(re^{i\omega})$, so $f_r \in L_q[-\pi, \pi]$; Hölder's inequality yields $\int_{-\pi}^{\pi} |f(re^{i\omega})|^p d\omega = ||f_r||_p^p = ||1 \cdot f_r^p||_1 \leq ||1|_{q/(q-p)} ||f_r^p||_{q/p} = (2\pi)^{1-p/q} ||f_r||_q^p$, *i.e.*, $||f_r||_p \leq (2\pi)^{1/p-1/q} ||f_r||_q$. In particular, $H_\infty \subseteq H_2 \subseteq H_1$.

We can identify elements of H_p with functions in $L_p(\mathbb{T})!$ $(\mathbb{T} := \partial \mathbb{D} = \{z \in \mathbb{C} : |z| = 1\})$

Theorem. For every $f \in H_p$ $(1 \le p \le \infty)$ the *radial limit* $\tilde{f}(e^{i\omega}) = \lim_{r \to 1_-} f(re^{i\omega})$ exists for almost every $\omega \in [-\pi, \pi]$, and indeed $\tilde{f} \in L_p(\mathbb{T})$, with $\|\tilde{f}\|_{L_p} = \|f\|_{H_p}$. (See bonus slides for proof in the case 1)

Remarks

- 1. H_p can be identified with a closed subspace of $L_p(\mathbb{T})$, and hence it is a Banach space.
- 2. H_p can be defined as the subspace of those $f \in L_p(\mathbb{T})$ whose negative Fourier coefficients vanish, *i.e.*, $f(e^{i\omega}) = \sum_{n=-\infty}^{\infty} a_n e^{in\omega}$ with

$$a_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\omega}) e^{-in\omega} d\omega = 0 \quad \text{for } n < 0.$$

Those *f*'s can be extended to \mathbb{D} as $f(z) = \sum_{n=0}^{\infty} a_n z^n$ for $z \in \mathbb{D}$.

3. Due to this identification, we see that the dual of H_p $(1 \le p < \infty)$ is $H_q,$ where 1/p + 1/q = 1.

In particular, H_2 is a Hilbert space, since it is a closed subspace of $L_2(\mathbb{T})$, and we can define the *projection* operator from $L_2(\mathbb{T})$ onto H_2 as

$$P_{H_2} \colon \sum_{n=-\infty}^{\infty} a_n e^{in\omega} \mapsto \sum_{n=0}^{\infty} a_n e^{in\omega}.$$

 $H_2 \text{ can also be identified with } \ell_2, \text{ by: } \quad \sum_{n=0}^\infty a_n e^{in\omega} \in H_2 \quad \Leftrightarrow \quad (a_0,a_1,\ldots) \in \ell_2.$

 H_2^{\perp} is the orthogonal complement of H_2 in $L_2(\mathbb{T})$, *i.e.*, $f \in H_2^{\perp}$ iff it has the form $f(e^{i\omega}) = \sum_{n=-\infty}^{-1} a_n e^{in\omega}$.

 RH_p and RL_p are those subspaces of H_p and $L_p(\mathbb{T})$ consisting of those functions which are *real-rational* (*i.e.*, quotients of polynomials with real coefficients).

Hardy Spaces (cont.)

For some derivations, we will need the following technical lemma:

Lemma. If $f \in H_2 \setminus \{0\}$, then $f(e^{i\omega}) \neq 0$ almost everywhere, and $\int_{-\pi}^{\pi} \log |f(e^{i\omega})| d\omega > -\infty$.

Proof (Helson and Lowdenslager, 1958)

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is non-zero, by multiplying it by some z^m $(m \in \mathbb{N})$ we assume w.l.o.g. that $a_0 \neq 0$.

Consider the affine subspace $C = \{z \mapsto f(z) | 1 + b_1 z + \dots + b_m z^m \}$: $m \in \mathbb{N}; b_1, \dots, b_m \in \mathbb{C} \} \subseteq H_2$; note that $0 \notin C$, because if $h \in C$, $h(0) = a_0 \neq 0$. By the closest point property, there is a $g \in \tilde{C}$ of smallest norm.

Given $\lambda \in \mathbb{C}$ and $m \in \mathbb{N}$, $\|g + \lambda z^m g\|^2 = (1 + |\lambda|^2) \|g\|^2 + 2\operatorname{Re} \left[(\lambda/2\pi i) \int_{-\pi}^{\pi} |g(e^{i\omega})|^2 e^{im\omega} d\omega \right]$, but since $g + \lambda z^m g \in \tilde{C}$ and g has minimum norm in \tilde{C} , $\int_{-\pi}^{\pi} |g(e^{i\omega})|^2 e^{im\omega} d\omega = 0$ for all $m \in \mathbb{N}$, and taking the conjugate the same holds for all $-m \in \mathbb{N}$; thus, $|g(e^{i\omega})|^2 \equiv g_0 > 0$, since $g \neq 0$.

Assume f(z) = 0 on a set $E \subseteq \mathbb{T}$. Define $h: \mathbb{T} \to \mathbb{C}$ as h(z) = 0 on $\mathbb{T} \setminus E$, and $h(z) = |g(z)|/\overline{g(z)}$ on E. Then, $h \in L_2(\mathbb{T})$ and (F,h) = 0 for all $F \in C$ (since F also vanishes on E), and by continuity, (F,h) = 0 for all $F \in \overline{C}$, so $0 = (g,h) = (2\pi)^{-1} \int_E |g(e^{i\omega})| d\omega = (2\pi)^{-1} \sqrt{g_0} m(E)$ (where m is the Lebesgue measure), hence E has measure zero.

Now, for $\varepsilon > 0$, let $\lambda = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log[|f(e^{i\omega})|^2 + \varepsilon]d\omega$ and $\psi = \lambda - \log[|f|^2 + \varepsilon]$. Then, since $\int_{-\pi}^{\pi} \psi(e^{i\omega})d\omega = 0$, e^{ψ} can be approximated arbitrarily well by polynomials of the form $|1 + b_1e^{i\omega} + \dots + b_me^{im|\omega|^2}$ (recall Topic 5), so

$$\exp\left\{\frac{1}{2\pi}\int \log[|f|^2+\varepsilon]\right\} = \frac{1}{2\pi}\int_{-\pi}^{\pi}\exp(\lambda)d\omega = \frac{1}{2\pi}\int e^{\psi}(|f|^2+\varepsilon) \geq \frac{1}{2\pi}\int e^{\psi}|f|^2 \geq \inf_{F\in\bar{C}}\|F\|^2 = g_0 > 0.$$

The monotone convergence theorem, for $\varepsilon \to 0$, yields $\int_{-\pi}^{\pi} \log |f(e^{i\omega})|^2 d\omega > -\infty$.

Cristian R. Rojas Topic 10: Application to H_{∞} Control Theory

Inner-Outer Factorization

Example: $4\frac{(z^{-1})}{(z^{-1})}$

$$\frac{(z^{-1}-2)(z^{-1}-3)}{(z^{-1}-0.6)} = \underbrace{\frac{(z^{-1}-2)(z^{-1}-3)}{(1-2z^{-1})(1-3z^{-1})}}_{\text{(constant modulus = 1 in T)}} \cdot \underbrace{4 \underbrace{(1-2z^{-1})(1-3z^{-1})}_{\text{(contrant modulus = 1 in T)}}}_{\text{(outer function"}} \cdot \underbrace{4 \underbrace{(1-2z^{-1})(1-3z^{-1})}_{\text{(contrant modulus = 1 in T)}}}_{\text{(all poles and zeros outside D)}}$$

Definitions

An inner function is an H_{∞} function with unit modulus almost everywhere in \mathbb{T} . An outer function is an $f \in H_1$ that can be written as

$$f(z) = \alpha \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{i\omega} + z}{e^{i\omega} - z} k(e^{i\omega}) d\omega\right), \qquad z \in \mathbb{D},$$

where *k* is a real valued integrable function, and $|\alpha| = 1$.

Remark: An outer function cannot have zeros in \mathbb{D} .

Inner-Outer Factorization (cont.)

Theorem (Beurling). Let $f \in H_1$ be nonzero. Then, $f = f_I \cdot f_O$, where f_I is inner and f_O is outer. This factorization is unique up to a constant of unit modulus.

Proof idea: Take $k = \log |f|$ in the definition of outer function.

Corollary (Riesz factorization theorem)

 $f \in H_1$ iff there are $g, h \in H_2$ s.t. f = gh and $||f||_{H_1} = ||g||_{H_2} ||h||_{H_2}$.

Proof. Since $f = f_I f_O$, where f_I is inner and f_O is outer, let $g = \sqrt{f_O}$ and $h = \sqrt{f_O} f_I$.

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

A causal discrete-time linear system G is defined by the relation

$$y_t = \sum_{k=0}^{\infty} g_k u_{t-k} = \sum_{k=-\infty}^t g_{t-k} u_k, \qquad t \in \mathbb{Z},$$

or, in matrix form,

To plitz form describing G (infinite matrix, constant along its diagonals)

Hankel Matrices and Operators (cont.)

If we constrain the input $(u_t)_{t\in\mathbb{Z}}$ so that $u_t = 0$ for t > 0, and project $(y_t)_{t\in\mathbb{Z}}$ onto $\ell_2(\mathbb{Z}_+)$ (*i.e.*, only focus on y_t for $t \ge 0$), we obtain

infinite Hankel matrix (constant along its anti-diagonals)

If *R* is the reversion operator on $L_2(\mathbb{T})$, $R\left(\sum_{k=-\infty}^{\infty} a_k z^k\right) := \sum_{k=-\infty}^{\infty} a_{-k} z^k$, and M_G is the multiplication operator on $L_2(\mathbb{T})$ by *G*, $M_G f = G f$, then Γ_G can be seen as an operator on H_2 :

$$\Gamma_G = P_{H_2} M_G R \Big|_{H_2}$$

Note that if $G(z) = g_1 z + g_2 z^2 + \cdots$ is the transfer function of a system described by

$x_{t+1} = Ax_t + Bu_t$	State-space representation
$y_t = Cx_t$,	(with state $x_t \in \mathbb{R}^n$)

then $G(z) = C(z^{-1}I - A)^{-1}B$, and the Hankel matrix of $z^{-1}G(z)$ is

This means that the Hankel operator can be decomposed into a *controllability operator* (mapping past inputs to initial state x_0) and an *observability operator* (mapping the initial state to future outputs).

Norm of Γ_G

Assume that *G* is *controllable* and *observable*, *i.e.*, that Ψ_c is surjective and Ψ_o is injective, respectively. Since $\Gamma_G = \Psi_o \Psi_c$, we have, for every $x \in \ell_2$,

$$\|\Gamma_G x\|^2 = (\Gamma_G x, \Gamma_G x) = (\Psi_o \Psi_c x, \Psi_o \Psi_c x) = (\Psi_o^* \Psi_o \Psi_c x, \Psi_c x) = (\Psi_o^* \Psi_o y, y),$$

where $y = \Psi_c x$. Hence

$$\|\Gamma_G\|^2 = \sup_{\substack{y = \Psi_c x \\ \|x\|_{\ell_2} \leqslant 1}} (\Psi_o^* \Psi_o y, y) = \sup_{\substack{y = \Psi_c x \\ \|x\|_{\ell_2} \leqslant 1}} y^T [\Psi_o^* \Psi_o] y = \sup_{y^T [\Psi_c \Psi_c^*]^{-1} y \leqslant 1} y^T [\Psi_o^* \Psi_o] y.$$

The last step is due to that $y = \Psi_c x$ for some $x \in \ell_2$ s.t. $||x|| \leq 1$ iff $y^T [\Psi_c \Psi_c^*]^{-1} y \leq 1$, which holds since $\min_{x \in \ell_2, y = \Psi_c x} ||x||^2 = y^T [\Psi_c \Psi_c^*]^{-1} y$. This follows from a result in the bonus slides of Topic 8, which states that the minimizer x^{opt} satisfies $x^{\text{opt}} = \Psi_c^* z$ for some $z \in \mathbb{C}^n$ s.t. $y = \Psi_c \Psi_c^* z$, *i.e.*, $x^{\text{opt}} = \Psi_c^* [\Psi_c \Psi_c^*]^{-1} y$, hence $||x^{\text{opt}}||^2 = y^T [\Psi_c \Psi_c^*]^{-1} y$ (note that the assumption that $\mathscr{R}(\Psi_c) = \mathbb{C}^n$ holds because G is controllable).

Norm of Γ_G (cont.)

Now,

$$\begin{split} & L_c := \Psi_c \Psi_c^* = \sum_{k=0}^{\infty} A^k B B^T (A^T)^k \\ & L_o := \Psi_o^* \Psi_o = \sum_{k=0}^{\infty} (A^T)^k C^T C A^k \end{split} \text{ are solutions of: } \begin{array}{l} L_c - A L_c A^T = B B^T \\ & L_o - A^T L_o A = C^T C. \end{array} \end{split}$$
 (Lyapunov equations)

Therefore:

$$\|\Gamma_G\|^2 = \max_{y^T L_c^{-1} y \leq 1} y^T L_o y$$

= $\max_{x^T x \leq 1} x^T L_c^{1/2} L_o L_c^{1/2} x$
= $\lambda_{\max}(L_c^{1/2} L_o L_c^{1/2})$
= $\lambda_{\max}(L_c L_o).$

$$(x = L_c^{-1/2} y)$$

Easy eigenvalue problem

Note. $\lambda_{\max}(AB) = \lambda_{\max}(BA)$, since $ABx = \lambda_{\max}x$ can be written as the set of equations $Ay = \lambda_{\max}x$, Bx = y, or equivalently, $BAy = \lambda_{\max}y$, and vice versa.

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Notice that if $\Gamma = P_{H_2}M_gR$ is a Hankel operator, then

$$\|\Gamma\| = \|P_{H_2}M_gR\| \leq \|P_{H_2}\| \, \|M_g\| \, \|R\| = \|g\|_\infty.$$

The following result establishes a deep connection between H_{∞} problems and Hankel operators:

Theorem (Nehari)

If Γ is a bounded Hankel operator on H_2 , then there is a $g \in L_{\infty}(\mathbb{T})$ s.t. $\Gamma = P_{H_2}M_gR\Big|_{H_2}$, and $\|g\|_{\infty} = \|\Gamma\|$.

Remark: Two symbols $g, h \in L_{\infty}(\mathbb{T})$ give the same Hankel operator iff their nonnegative Fourier coefficients coincide, *i.e.*, $g(z) = \sum_{k=-\infty}^{\infty} g_k z^k$ and $h(z) = \sum_{k=-\infty}^{\infty} h_k z^k$, with $g_k = h_k$ for all $k \ge 0$. Thus, Nehari's theorem establishes the greatest lower bound on the ∞ -norm of a $g \in L_{\infty}(\mathbb{T})$ whose projection onto H_2 is fixed.

Corollary

Given $g \in L_{\infty}(\mathbb{T})$, we have that $\|\Gamma_g\| = \min_{h \in H_{\infty}^{\perp}} \|g - h\|_{\infty}$, where H_{∞}^{\perp} is the space of those $f(z) = \sum_{k=-\infty}^{-1} f_k z^k$ which are analytic and bounded in $\{z \in \mathbb{C} : |z| > 1\}$.

Given Γ , the problem of finding a symbol for Γ of minimum norm, *i.e.*,

 $\|\Gamma\| = \inf \{ \|g\|_{\infty} : g \in L_{\infty}(\mathbb{T}) \text{ is a symbol for } \Gamma \},\$

is called the Nehari extension problem.

Proof of Nehari's theorem

We already know that if g is a symbol for Γ , then $\|\Gamma\| \le \|g\|_{\infty}$. Our goal then is to show that there is a symbol for which we achieve equality. As the nonnegative Fourier coefficients of g are fixed, we need to determine the negative ones, which amounts to extend Γ to a Hankel operator on L_2 . We will do this by extending a related functional from H_1 to L_1 .

The entries of the matrix of Γ are $a_{n+m} := (\Gamma z^n, z^m) = (\Gamma z^{n+m}, 1)$. Therefore,

$$\left(\Gamma\sum_{n=0}^{N}b_nz^n,\sum_{m=0}^{M}\overline{c_m}z^m\right) = \left(\Gamma\sum_{n=0}^{N}b_nz^n\sum_{m=0}^{M}c_mz^m,1\right).$$

Denote $\left(\sum_{m=0}^{M} c_m z^m\right)^+ := \sum_{m=0}^{M} \overline{c_m} z^m$. Then, for polynomials f_1, f_2 we can define the functional $\alpha(f_1 f_2) = (\Gamma f_1, f_2^+) = (\Gamma f_1 f_2, 1),$

which satisfies $|\alpha(f_1f_2)| \leq ||\Gamma|| ||f_1||_2 ||f_2||_2$.

Proof of Nehari's theorem (cont.)

By Riesz Factorization theorem, every $f \in H_1$ can be factorized as a product of H_2 functions f_1, f_2 , and polynomials are dense in H_2 , so α can be extended uniquely to $\tilde{\alpha} : H_1 \to \mathbb{C}$, by $\tilde{\alpha}(f) = \tilde{\alpha}(f_1f_2) = (\Gamma f_1, f_2^+)$.

Furthermore, $|\tilde{\alpha}(f)| \leq \|\Gamma\| \|f_1\|_2 \|f_2\|_2 = \|\Gamma\| \|f\|_1$, so $\|\tilde{\alpha}\| \leq \|\Gamma\|$.

Since H_1 is a subspace of L_1 , by Hahn-Banach there is an extension $\tilde{\alpha}$ of $\tilde{\alpha}$ to L_1 s.t. $\|\tilde{\alpha}\| = \|\tilde{\alpha}\| \le \|\Gamma\|$.

Since the dual of $L_1(\mathbb{T})$ is $L_{\infty}(\mathbb{T})$, $\bar{\alpha} = \int_{-\pi}^{\pi} f(e^{i\omega})h(e^{i\omega})d\omega$ for some $h \in L_{\infty}(\mathbb{T})$, with $\|h\|_{\infty} = \|\tilde{\alpha}\| \le \|\Gamma\|$. Now, for all $n, m \ge 0$,

$$a_{n+m} = (\Gamma z^{n+m}, 1) = \bar{\alpha}(z^{n+m}) = \int_{-\pi}^{\pi} e^{i(n+m)\omega} h(e^{i\omega}) d\omega.$$

Therefore, $h(z) = \sum_{k=-\infty}^{\infty} h_k z^k$ with $h_{-n} = a_n$ for all $n \ge 0$, and $||h||_{\infty} \le ||\Gamma||$.

This means that by taking $g(e^{i\omega}) = h(e^{-i\omega})$, we obtain the desired symbol for Γ .

How can we compute the optimal symbol $g \in L_{\infty}(\mathbb{T})$?

Theorem (Sarason)

If Γ is a bounded Hankel operator on H_2 , and $f \in H_2$ is nonzero and s.t. $\| \Gamma f \|_2 = \|\Gamma\| \| f \|_2$, then there is a unique symbol $g \in L_{\infty}(\mathbb{T})$ for Γ of minimum norm, $\| g \|_{\infty} = \|\Gamma\|$, and it is given by $g = \Gamma f/Rf$. Moreover, $|g(e^{i\omega})|$ is constant almost everywhere.

Proof. Let $g \in L_{\infty}(\mathbb{T})$ be s.t. $\|g\|_{\infty} = \|\Gamma\|$, and recall that $\Gamma f = P_{H_2}M_gRf$. Therefore,

$$\|\Gamma\|\|f\|_2 = \|\Gamma f\|_2 = \|P_{H_2}M_gRf\|_2 \le \|M_gRf\|_2 \le \|g\|_{\infty}\|Rf\|_2 = \|\Gamma\|\|f\|_2.$$

Since the leftmost and rightmost sides coincide, we have equality throughout. Therefore, $\|P_{H_2}M_gRf\|_2 = \|gRf\|_2$, *i.e.*, $gRf \in H_2$, so $\Gamma f = gRf$, or $g = \Gamma f/Rf$, which shows that g is unique. Moreover, since $\|gRf\|_2 = \|g\|_{\infty} \|Rf\|_2$, it follows that $|g(e^{i\omega})|$ is constant almost everywhere. How can we find an $f \in H_2$ s.t. $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$?

Let $y_0 \in \mathbb{R}^n$ achieve the maximum in $\|\Gamma_G\| = \max_{y^T L_c^{-1} y \leq 1} y^T L_o y$. (*How*? Let $\tilde{y} = L_c^{-1/2} y$ and solve the eigenvalue problem: $\max_{\tilde{y}^T \tilde{y} \leq 1} \tilde{y}^T L_c^{1/2} L_o L_c^{1/2} \tilde{y}$.)

The sought f is s.t. $y_0 = \Psi_c f$, and to achieve equality in $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$ it must have minimum norm. From the derivation at the end of Slide 21, this implies that

$$f = \Psi_c^* L_c^{-1} y_0,$$

or: $f_k = B^T (A^T)^k L_c^{-1} y_0$ for $k \ge 0$ (and zero otherwise), *i.e.*, $f(z) = z B^T (z^{-1}I - A^T)^{-1} L_c^{-1} y_0$ Also, $\Gamma f(z) = (\Psi_0 \Psi_c f)(z) = (\Psi_0 y_0)(z) = \sum_{k=0}^{\infty} CA^k y_0 z^k = z^{-1}C(z^{-1}I - A)^{-1} y_0$, so

$$g(z) = \frac{(\Gamma f)(z)}{(Rf)(z)} = \frac{(\Psi_o y_0)(z)}{f(z^{-1})} = \frac{C(z^{-1}I - A)^{-1}y_0}{B^T(zI - A^T)^{-1}L_c^{-1}y_0}.$$

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

H_∞ Control Example

Consider the system:

$$G(z) = \frac{z^{-1} + 2}{z^{-1} - 0.9}.$$

We want to control it so that the transfer function T from reference to output becomes

$$T(z) = \frac{1}{6.5} \frac{z^{-1} + 0.3}{z^{-1} - 0.8},$$

i.e., we want the closed loop to be slightly faster than G, and with static gain $T(e^{i0}) = 1.$

Using the Youla parameterization, we can impose these constraints by minimizing

$$\inf_{Q\in H_\infty}\|T-GQ\|_\infty$$

Bode Diagram

H_{∞} Control Example (cont.)

Let's compute the optimum of

$$\inf_{Q \in H_{\infty}} \underbrace{\left\| \frac{1}{6.5} \frac{z^{-1} + 0.3}{z^{-1} - 0.8} - \frac{z^{-1} + 2}{z^{-1} - 0.9} Q(z) \right\|_{\infty}}_{=:J}$$

Step 1: Factorize poles and zeros in \mathbb{D}

$$\begin{split} \left\| \frac{1}{6.5} \frac{z^{-1} + 0.3}{z^{-1} - 0.8} - \frac{z^{-1} + 2}{z^{-1} - 0.9} Q(z) \right\|_{\infty} &= \left\| \frac{1 + 2z^{-1}}{z^{-1} + 2} \left(\frac{1}{6.5} \frac{z^{-1} + 0.3}{z^{-1} - 0.8} - \frac{z^{-1} + 2}{z^{-1} - 0.9} Q(z) \right) \right\|_{\infty} \\ &= \left\| \frac{1}{6.5} \frac{(z + 0.3)(2z + 1)}{(z - 0.8)(z + 2)} - \tilde{Q}(z^{-1}) \right\|_{\infty}, \end{split}$$

where $\tilde{Q}(z) := \frac{1+2z^{-1}}{z^{-1}-0.9}Q(z).$

Step 2: Partial fraction expansion, to remove unstable poles

$$\frac{1}{6.5} \frac{(z+0.3)(2z+1)}{(z-0.8)(z+2)} = 0.3077 - \frac{0.2802}{z+2} + \frac{0.7857}{5z-4},$$

 \mathbf{so}

$$J = \left\| \frac{0.3077z + 0.3352}{z+2} - Q'(z^{-1}) \right\|_{\infty},$$

where $Q'(z) := \tilde{Q}(z) - \frac{0.7857}{5z^{-1}-4}$.

Step 3: State-space realization of the problem

$$\frac{0.3077z + 0.3352}{z + 2} \frac{1}{z} \quad \Rightarrow \quad \begin{array}{c} x_{k+1} = \begin{bmatrix} -0.5 & 0 \\ 1 & 0 \end{bmatrix} x_k + \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} u_k \\ y_k = \begin{bmatrix} 0.3352 & 0.3077 \end{bmatrix} x_k.$$

Step 4: Compute Gramians (by solving their Lyapunov equations)

$$L_c = \begin{bmatrix} 0.3333 & -0.1667 \\ -0.1667 & 0.3333 \end{bmatrix}, \qquad L_o = \begin{bmatrix} 0.1385 & 0.1031 \\ 0.1031 & 0.0947 \end{bmatrix}.$$

Step 5: Compute norm of Hankel matrix

 $\|\Gamma\| = 0.1947.$

Step 6: Compute $f \in H_2$ s.t. $\|\Gamma f\|_2 = \|\Gamma\| \|f\|_2$

$$y_0 = \begin{bmatrix} -0.3824 \\ -0.1834 \end{bmatrix}, \qquad f(z) = -0.94819 \frac{z^{-1} + 0.7902}{z^{-1} + 0.5}.$$

Cristian R. Rojas Topic 10: Application to H_∞ Control Theory

Step 7: Compute optimal symbol of Hankel matrix

$$(\Psi_o y_0)(z) = z^{-1}C(z^{-1}I - A)^{-1}y_0 = -0.18461\frac{z^{-1} + 0.7902}{z^{-1} + 0.5},$$

so
$$g(z) = 0.1232 \frac{(z^{-1} + 0.7902)(z^{-1} + 2)}{(z^{-1} + 0.5)(z^{-1} + 1.266)}$$

Notice that $|g(e^{i\omega})| = 0.1947$ for all ω (as we expected).

Step 8: Compute optimal Q

$$\begin{split} Q(z) &= \frac{z^{-1} - 0.9}{1 + 2z^{-1}} \left[\frac{0.3077z^{-1} + 0.3352}{z^{-1} + 2} - g(z^{-1}) + \frac{0.7857}{5z^{-1} - 4} \right. \\ &= \frac{0.096111(z^{-1} - 0.9)}{(z^{-1} + 0.7902)(z^{-1} - 0.8)}. \end{split}$$

Cristian R. Rojas Topic 10: Application to H_{∞} Control Theory

H_{∞} Control Example (cont.)

Cristian R. Rojas Topic 10: Application to H_∞ Control Theory

Thank you for attending the course!

Outline

Feedback Control and Youla Parameterization

Approaches to H_{∞} Control

The Big Picture

Hardy Spaces

Hankel Matrices and Operators

Nehari's Theorem

 H_{∞} Control Example

Notice that, in terms of the Youla parameter Q := C/[1 + GC],

$$T = \frac{GC}{1+GC} = GQ$$
$$S = \frac{1}{1+GC} = 1-GQ$$
$$S_i = \frac{G}{1+GC} = G - G^2Q$$
$$S_u = \frac{C}{1+GC} = Q,$$

hence all sensitivity functions are affine in Q. Now, if G and Q are stable, all sensitivity functions are stable as well, while conversely, if the sensitivity functions are stable, $Q = S_u$ is stable too.

Poisson representation

Consider an analytic $f : \overline{\mathbb{D}} \to \mathbb{C}$. By Cauchy's integral formula, for every analytic $h : \overline{\mathbb{D}} \to \mathbb{C}$:

$$f(z) = \frac{1}{2\pi i} \oint_{\mathbb{T}} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \oint_{\mathbb{T}} f(w) \left[\frac{1}{w-z} + h(w) \right] dw = \frac{1}{2\pi} \oint_{\mathbb{T}} f(w) \left[\frac{w}{w-z} + wh(w) \right] \frac{dw}{iw},$$

for $z \in \mathbb{D}$, since the integral of an analytic function in $\overline{\mathbb{D}}$ around \mathbb{T} is zero. Note that if $w = e^{it}$ ($t \in [-\pi, \pi]$), dw/iw = dt. We want to choose h so the formula in brackets is real. Now,

$$\frac{w}{w-z}+wh(w)=1+\frac{z}{w-z}+wh(w)=1+\frac{z\bar{w}}{1-z\bar{w}}+wh(w),\qquad (w\in\mathbb{T})$$

so we can force $wh(w) = \overline{zw/(1-zw)} = \overline{zw}/(1-\overline{z}w)$, or $h(w) = \overline{z}/(1-\overline{z}w)$. Then, making $w = e^{it}$ and $z = re^{i\theta}$, we obtain

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 + 2\operatorname{Re}\left(\frac{re^{i(\theta-t)}}{1 - re^{i(\theta-t)}}\right) \right] f(e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - r^2}{\underbrace{1 - 2r\cos(\theta-t) + r^2}_{=:P(r,\theta-t) \text{ "Poisson kernel"}}} f(e^{it}) dt.$$

Poisson representation of H_p **functions** (p > 1)

Note first that, for every $\alpha \in (0, 1)$,

$$f(\alpha r e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) f(\alpha e^{it}) dt \qquad (r \in [0, 1), \theta \in [-\pi, \pi]).$$

To see this, apply the Poisson representation to $f_{\alpha}(z) = f(\alpha z)$, which is also analytic in $\overline{\mathbb{D}}$.

If $f \in H_p$ for p > 1, then $\tilde{f}_{\alpha} \in L_p[-\pi,\pi]$, where $\tilde{f}_{\alpha}(\omega) := f_{\alpha}(e^{i\omega})$, and $\|\tilde{f}_{\alpha}\|_p \le \|f\|_p$. Consider a sequence (\tilde{f}_{α_n}) where $\alpha_n \to 1$. Since $L_p = L_q^*$, where q is s.t. 1/p + 1/q = 1, by Banach-Alaoglu, there is a subsequence (\tilde{f}_{α_i}) s.t. $\tilde{f}_{\alpha_i} \to g \in L_p$ in a weak^{*} sense. Thus,

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}P(r,\theta-t)g(t)dt = \frac{1}{2\pi}\langle P(r,\theta-\cdot,g) = \lim_{i\to\infty}\frac{1}{2\pi}\langle P(r,\theta-\cdot,\tilde{f}_{\alpha_i}) = \lim_{i\to\infty}f(\alpha_i re^{i\theta}) = f(re^{i\theta}),$$

since f is continuous in \mathbb{D} ; this yields a Poisson representation for analytic functions in \mathbb{D} .

Fatou's Theorem. Let $g \in L_1[-\pi, \pi]$, and assume that

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t)g(t)dt, \quad \text{for all } r \in [0, 1), \theta \in [-\pi, \pi].$$

Then, the *radial limit* $\lim_{r\to 1^-} f(re^{i\theta}) = g(\theta)$ exists for almost all $\theta \in [-\pi, \pi]$.

Proof. From the Poisson representation of $f \equiv 1$, $\int_{-\pi}^{\pi} P(r, \theta - t) dt = 2\pi$ for all r, θ . Then, by integration by parts, if $G(t) := \int_{-\pi}^{t} g(\tau) d\tau$,

$$f(re^{i\theta}) - g(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) [g(t) - g(0)] dt = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\partial P(r, \theta - t)}{\partial t} [G(t) - g(\theta)t] dt.$$

Now, for $0 < \delta \le |\theta - t| \le \pi$,

$$\left|\frac{\partial P(r,\theta-t)}{\partial t}\right| \leq \frac{2r(1-r^2)}{[1-2r\cos(\delta)+r^2]^2} \to 0 \text{ as } r \to 1_-,$$

$$\text{while } -\frac{1}{2\pi}\int_{\theta-\delta}^{\theta+\delta}\frac{\partial P(r,\theta-t)}{\partial t}[G(t)-g(\theta)t]dt = -\frac{1}{2\pi}\int_{0}^{\delta}\frac{\partial P(r,t)}{\partial t}t\left[\frac{G(\theta+t)-G(\theta-t)}{2t}-g(\theta)\right]dt.$$

Given $\varepsilon > 0$, let $\delta > 0$ be small enough so $|g(\theta) - [G(\theta + t) - G(\theta - t)]/2t| \le \varepsilon$ for all $t \in [0, \delta]$ (this can hold for almost all θ , by Radon-Nikodym theorem). These two estimates imply that $\lim_{r \to 1^-} f(r) = g(0)$. \Box

Hardy's theorem

Let $f: \mathbb{D} \to \mathbb{C}$ be analytic, and define $M_p(f;r) := \left[(2\pi)^{-1} \int_{-\pi}^{\pi} |f(re^{it})|^p dt \right]^{1/p}$ for $r \in [0,1)$ and $p \in [1,\infty]$. Then, $M_p(f;r)$ is non-decreasing in r.

Proof (Taylor, 1950). Let us define a function $F: \mathbb{D} \to L_p[-\pi,\pi]$ by $[F(z)](\theta) = f(ze^{i\theta})$ ($\theta \in (-\pi,\pi)$). Notice that $||F(z)||_p = M_p(f,|z|)$. We will show now that the maximum of $||F(z)||_p$ over an open disk $r\mathbb{D}$ cannot be achieved inside $r\mathbb{D}$, unless $||F(z)||_p$ is constant in that disk. Indeed, if $||F(z_0)||_p = \sup_{z \in r\mathbb{D}} ||F(z)||_p$ for some $z_0 \in r\mathbb{D}$, then since by Cauchy's integral formula (defining the integral entry-wisely)

$$[F(z_0)](\theta) = f(z_0e^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0e^{i\theta} + \delta e^{i(\theta+t)})dt = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} F(z_0 + \delta e^{it})dt\right](e^{i\theta}),$$

where $\delta > 0$ is small enough so that the integration path is inside $r\mathbb{D}$, and it includes points z for which $\|F(z)\|_p < \|F(z_0)\|_p$, then $\|F(z_0)\|_p < \frac{1}{2\pi} \int_{-\pi}^{\pi} \|F(z_0 + \delta e^{it})\|_p dt < \|F(z_0)\|_p$, which contradicts the assumption that $\|F(z)\|_p$ is not constant in the integration path. This contradicts proves that $M_p(f;r) = \sup_{z \in r\mathbb{D}} \|F(z)\|_p$ is non-decreasing in r.

The previous three results imply that every $f \in H_p$, for p > 1, has the Poisson representation

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}P(r,\theta-t)\tilde{f}(t)dt=f(re^{i\theta}),$$

where $\tilde{f}(t) = \lim_{r \to 1_{-}} f(re^{it})$ for all $t \in [-\pi, \pi]$. Furthermore, since $\|\tilde{f}_{\alpha}\|_{p} \leq \|f\|_{p}$, the Lebesgue dominated convergence theorem implies that $\|\tilde{f}\|_{p} = \|f\|_{p}$.

Note. Our approach to the development of a Poisson representation fails for H_1 functions because $L_1[-\pi,\pi]$ is not the dual of any normed space. In particular, for an $f \in H_1$, using the Riesz representation theorem for the dual of $C[-\pi,\pi]$, one arrives at the *Poisson-Stieltjes representation*

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}P(r,\theta-t)dG(t)=f(re^{i\theta}),$$

where $G \in \text{NBV}[-\pi,\pi]$, but extra effort is needed to show that it is differentiable (which corresponds to the *F. and M. Riesz theorem*).