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Differentiability

Goal: Generalize the notion of derivative to functionals on normed spaces.

Definition. Let X ,Y be normed spaces and T : D ⊆ X →
Y (a possibly nonlinear transformation).
If, for x ∈ D, there exists a bounded linear operator
h ∈ X 7→ δT(x;h) ∈Y s.t.

lim
‖h‖→0

‖T(x+h)−T(x)−δT(x;h)‖
‖h‖ = 0,

then T is Fréchet differentiable at x, and δT(x;h) is the Fréchet differential of T at x with
increment h.

If f is a functional on X , then δ f (x;h)= d
dα

f (x+αh)
∣∣∣∣
α=0

.
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Differentiability (cont.)

Examples
1. If X =Rn and f (x)= f (x1, . . . , xn) is a functional having continuous partial

derivatives with respect to each variable xk , then

δ f (x;h)=
n∑

k=1

∂ f
∂xk

hk .

2. Let X = C[0,1] and f (x)=
ˆ 1

0
g(x(t), t)dt where gx exists and is continuous with

respect to x. Then δ f (x;h)= d
dα

ˆ 1

0
g(x(t)+αh(t), t)dt

∣∣∣∣∣
α=0

=
ˆ 1

0
gx(x(t), t)h(t)dt.
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Differentiability (cont.)

Properties
1. If T has a Fréchet differential, it is unique.

Proof. If δT(x;h), δ′T(x;h) are Fréchet differentials of T, and ε> 0, ‖δT(x;h)−δ′T(x;h)‖ É
‖T(x+h)−T(x)−δT(x;h)‖+‖T(x+h)−T(x)−δ′T(x;h)‖ É ε‖h‖ for h small. Thus, δT(x;h)−
δ′T(x;h) is a bounded operator with norm 0, i.e., δT(x;h)= δ′T(x;h).

2. If T is Fréchet differentiable at x ∈ D, where D is open, then T is continuous at x.
Proof. Given ε> 0, there is a δ> 0 s.t. ‖T(x+h)−T(x)−δT(x;h)‖ É ε‖h‖ whenever ‖h‖ < δ, i.e.,
‖T(x+h)−T(x)‖ < ε‖h‖+‖δT(x;h)‖ É (ε+M)‖h‖, where M = ‖δT(x; ·)‖, so T is continuous at x.

If T : D ⊆ X →Y is Fréchet differentiable throughout D, then the Fréchet differential is of
the form δT(x;h)= T′(x)h, where T′(x) ∈L (X ,Y ) is the Fréchet derivative of T at x.

Also, if x 7→ T′(x) is continuous in some open S ⊆ D, then T is continuously Fréchet
differentiable in S.

If f is a functional in D, so that δ f (x;h)= f ′(x)h, f ′(x) ∈ X∗ is the gradient of f at x.
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Differentiability (cont.)

Much of the theory for ordinary derivatives extends to Fréchet derivatives:

Properties
1. (Chain rule). Let S : D ⊆ X → E ⊆Y and P : E → Z be Fréchet differentiable at x ∈ D

and y= S(x) ∈ E, respectively, where X ,Y , Z are normed spaces and D,E are open
sets. Then T = P ◦S is Fréchet differentiable at x, and T′(x)= P ′(y)S′(x).

Proof. If x, x+h ∈ D, then T(x+h)−T(x)= P[S(x+h)]−P[S(x)]= P(y+ g)−P(y), where
g = S(x+h)−S(x). Now, ‖P(y+ g)−P(y)−P′(y)g‖ = o(‖g‖), ‖g−S′(x)h‖ = o(‖h‖) and ‖g‖ =O(‖h‖),
so ‖T(x+h)−T(x) −P′(y)S′(x)h‖ = o(‖h‖)+ o(‖g‖)= o(‖h‖). Thus, T′(x)h = P′(y)S′(x)h.
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Differentiability (cont.)

Properties (cont.)
2. (Mean value theorem). Let T be Fréchet differentiable on an open domain D, and

x ∈ D. Suppose that x+ th ∈ D for all t ∈ [0,1]. Then ‖T(x+h)−T(x)‖ É
‖h‖sup0<t<1 ‖T′(x+ th)‖.

Fix y∗ ∈ D∗, ‖y∗‖ = 1, and let φ(t) := 〈T(x+ th), y∗〉 (t ∈ [0,1]), which is differentiable, with φ′(t)=
〈T′(x+ th)h, y∗〉. Let γ(t)=φ(t)− (1− t)φ(0)− tφ(1), so γ(0)= γ(1)= 0 and γ′(t)=φ′(t)+φ(0)−φ(1). If
γ= 0, then γ′ = 0; if not, there is a τ ∈ (0,1) s.t., e.g., γ(τ)> 0, so there is an s ∈ (0,1) s.t. γ(s)=
maxt∈[0,1] γ(t). Now, γ(s+h)−γ(s)É 0 whenever 0É s+h É 1, so γ′(s)= 0, and |φ(1)−φ(0)| =
|φ′(s)| É sup0<t<1 |φ′(t)| É ‖h‖sup0<t<1 ‖T′(x+ th)‖. Also, |φ(1)−φ(0)| = |〈T(x+h)−T(x), y∗〉|, so
taking the sup over ‖y∗‖ = 1 yields the result.
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Differentiability (cont.)

Extrema
The minima/maxima of a functional can be found by setting its Fréchet derivative to zero!

Definition. x0 ∈Ω is a local minimum of f : Ω⊆ X →R if there is a nbd B of x where
f (x0)É f (x) on Ω∩B, and a strict local minimum if f (x0)< f (x) for all x ∈Ω∩B \{x0}.

Theorem. If f : X →R is Fréchet differentiable, then a necessary condition for f to have
a local minimum/maximum at x0 ∈ X is that δ f (x0;h)= 0 for all h ∈ X .
Proof. If δ f (x0;h) 6= 0, pick h0 s.t. ‖h0‖ = 1 and δ f (x0;h0)> 0. As h → 0, | f (x0+h)− f (x0)−δ f (x0;h)|/‖h‖
→ 0, so given ε ∈ (0,δ f (x0;h0)) there is a γ> 0 s.t. f (x0 +γh0)> f (x0)+ δ f (x0;γh0)−εγ> f (x0), while
f (x0 −γh0)< f (x0)−δ f (x0;γh0)+εγ< f (x0), so x0 is not a local minimum/maximum.

A generalization of this result to constrained optimization is:

Theorem. If x0 minimizes f on the convex set Ω⊆ X , and f is Fréchet differentiable at
x0, then δ f (x0; x− x0)Ê 0 for all x ∈Ω.
Proof. For x ∈Ω, let h = x− x0 and note that x0 +αh ∈Ω (0ÉαÉ 1) since Ω is convex. The rest of the
proof is similar to the previous one.
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Inverse/Implicit Function Theorems

The inverse and implicit function theorems are fundamental to many fields, and
constitute the analytical backbone of differential geometry, essential to nonlinear system
theory.

Theorem (Inverse Function Theorem)
Let X ,Y be Banach spaces, and x0 ∈ X . Assume that T : X →Y is continuously Fréchet
differentiable in a nbd of x0, and that T′(x0) is invertible. Then, there is a nbd U of x0 s.t.
T is invertible in U , and both T and T−1 are continuous. Furthermore, T−1 is
continuously Fréchet differentiable in T(U), with derivative [T′(T−1(y))]−1 (y ∈ T(U)).

Proof.
(1) Invertibility: Since T′(x0) is invertible, by translation and multiplying by a linear map, assume

w.l.o.g. that x0 = 0, T(x0)= 0 and T′(x0)= I. Consider y 7→ Ty(x)= x−T(x)+ y for y ∈ X ; note that
a fixed point of Ty is precisely an x s.t. T(x)= y. Define the ball BR := {x ∈ X : ‖x‖ É R}, which is
complete. Let F(x)= T(x)− x. By the mean value theorem, ‖F(x)−F(x′)‖ É supz∈BR

‖F′(z)‖·
‖x− x′‖ for all x, x′ ∈ BR , and since F′(0)= 0, given a fixed ε ∈ (0,1), if R > 0 is small enough,
‖F(x)−F(x′)‖ É ε‖x− x′‖.
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Inverse/Implicit Function Theorems (cont.)

Proof (cont.)

Suppose ‖y‖ É R(1−ε). Note that, if x ∈ BR , ‖Ty(x)‖ É ‖F(x)‖+‖y‖ É ε‖x‖+R(1−ε)É R, so
Ty(BR )⊆ BR , and for x, x′ ∈ BR , ‖Ty(x)−Ty(x′)‖ É ‖F(x)−F(x′)‖ É ε‖x− x′‖, so Ty is a
contraction. By the Banach fixed point theorem (Topic 4), Ty has a unique fixed point, i.e., if ‖y‖
is small enough, there is a unique x ∈ BR s.t. T(x)= y, so T−1 : BR(1−ε) → BR exists.

(2) Continuity: Since T is Fréchet differentiable in BR , it is continuous there. For y, y0 ∈ BR(1−ε),
‖Ty(x)−Ty0 (x)‖ = ‖y− y0‖→ 0 as y→ y0, so by the last part of the Banach fixed point theorem,
T−1 is continuous.

(3) Continuous differentiability: Consider a nbd V ⊆ BR of 0 where T′ is invertible. Let W = T(V ),
y0, y ∈W and x0 = T−1(y0), x = T−1(y). Then,

‖T−1(y)−T−1(y0)− [T′(x0)]−1(y− y0)‖
‖y− y0‖

= ‖x− x0 − [T′(x0)]−1(T(x)−T(x0))‖
‖T(x)−T(x0)‖

É ‖[T′(x0)]−1‖
( ‖T(x)−T(x0)− [T′(x0)](x− x0)‖

‖x− x0‖
)( ‖x− x0‖

‖T(x)−T(x0)‖
)
. (∗)
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Inverse/Implicit Function Theorems (cont.)

Proof (cont.)

The 2nd factor tends to 0 as x → x0, while for the 3rd factor:

liminf
x→x0

‖ T(x)−T(x0)‖
‖x− x0‖

Ê liminf
x→x0

∣∣∣∣ ‖T′(x0)[x− x0]‖
‖x− x0‖

− ‖T(x)−T(x0)−T′(x0)[x− x0]‖
‖x− x0‖

∣∣∣∣
= liminf

x→x0

‖T′(x0)[x− x0]‖
‖x− x0‖

Ê 1
‖[T′(x0)]−1‖ > 0.

Hence, the left hand side of (∗) tends to 0, and T−1(y0) has Fréchet derivative [T′(x0)]−1.
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Inverse/Implicit Function Theorems (cont.)

Theorem (Implicit Function Theorem)
Let X ,Y , Z be Banach spaces, A ⊆ X ×Y open, and f : A → Z continuously Fréchet
differentiable, with derivative [ fx f y]. Let (x0, y0) ∈ A be s.t. f (x0, y0)= 0, and assume
that f y(x0, y0) is invertible. Then, there are open sets W ⊆ X and V ⊆ A s.t x0 ∈W ,
(x0, y0) ∈V , and a g : W →Y Fréchet differentiable at x0 s.t. (x, g(x)) ∈V and f (x, g(x))= 0
for all x ∈W . Moreover, g′(x0)=−[ f y(x0, y0)]−1 fx(x0, y0).

Proof. Define the continuously differentiable function F : A → X ×Z by F(x, y)= (x, f (x, y)). Note that
F(x0, y0)= (x0,0) and

F′(x0, y0)=
[

I 0
fx(x0, y0) f y(x0, y0)

]
, [F′(x0, y0)]−1 =

[
I 0

−[ f y(x0, y0)]−1 fx(x0, y0) [ f y(x0, y0)]−1

]
,

i.e., F′(x0, y0) is invertible. By the inverse function theorem, there is an open V ⊆ A where F is
invertible and F−1 is continuously differentiable. Let πY : X ×Y →Y be the projection of X ×Y onto Y ,
i.e., πY (x, y)= y for all (x, y) ∈ X ×Y . The function g : W →Y given by g(x)=πY (F−1(x,0)), where
W = {x ∈ X : (x,0) ∈ F(V )}, satisfies the conditions of the theorem.
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Inverse/Implicit Function Theorems (cont.)

Application to initial-value problems
Consider the initial-value problem

dx(t)
dt

= f (x, t), t ∈ [a,b]

x(a)= ξ ∈Rn,

where f is continuously differentiable, and x ∈ C([a,b],Rn).

We want to study the dependence of x on ξ. To this end, define the function
Φ : C([a,b],Rn)×Rn → C([a,b],Rn) as

Φ(x,ξ)(t)= x(t)−ξ−
ˆ t

a
f (x(s), s)ds, t ∈ [a,b].

Notice that x solves the initial-value problem iff Φ(x,ξ)= 0. Now, Φ is continuously
differentiable, and it satisfies the conditions of the implicit function theorem (check this!),
which implies that x depends on ξ in a differentiable manner!
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Calculus of Variations

Classical problem: find a function x on [t1, t2] that minimizes J =
ˆ t2

t1
f [x(t), ẋ(t), t]dt.

Assume that x belongs to the space D[t1, t2] of real-valued continuously differentiable
functions on [t1, t2], with norm ‖x‖ =maxt1ÉtÉt2 |x(t)|+maxt1ÉtÉt2 |ẋ(t)|.
Also, the end points x(t1) and x(t2) are assumed fixed.

If Dh[t1, t2] is the subspace consisting of those x ∈ D[t1, t2] s.t. x(t1)= x(t2)= 0, then the
necessary condition for the minimization of J is

δJ(x;h)= 0, for all h ∈ Dh[t1, t2].
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Calculus of Variations (cont.)

We have

δJ(x;h)= d
dα

ˆ t2

t1
f (x+αh, ẋ+αḣ, t)dt

∣∣∣∣∣
α=0

=
ˆ t2

t1
fx(x, ẋ, t)h(t)dt+

ˆ t2

t1
f ẋ(x, ẋ, t)ḣ(t)dt (integration by parts, assuming

=
ˆ t2

t1

[
fx(x, ẋ, t)− d

dt
f ẋ(x, ẋ, t)

]
h(t)dt.

d
dt

f ẋ(x, ẋ, t) is continuous in t)

Lemma (Fundamental lemma of calculus of variations)

If α ∈ C[t1, t2], and
ˆ t2

t1
α(t)h(t)dt = 0 for every h ∈ Dh[t1, t2], then α= 0.

Proof. If, say, α(t)> 0 for some t ∈ (t1, t2), there is an interval (τ1,τ2) where α is strictly positive. Pick

h(t)= (t−τ1)2(t−τ2)2 for t ∈ (τ1,τ2) and h(t)= 0 otherwise. This gives
ˆ t2

t1
α(t)h(t)dt > 0.

Using this result we obtain

δJ(x;h)= 0 for all h ∈ Dh[t1, t2] ⇔ fx(x, ẋ, t)− d
dt

f ẋ(x, ẋ, t)= 0. (Euler-Lagrange equation)
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Calculus of Variations (cont.)

Example (minimum arc length)
Problem: Given (t1, x(t1)), (t2, x(t2)), determine curve of minimum length connecting
them.

Notice that the distance between points (t, x(t)) and (t+∆t, x(t+∆t)) is√
(x(t+∆t)− x(t))2 +∆t2 =

√
(ẋ(t)∆t+ o(∆t))2 +∆t2 =

√
1+ ẋ2(t)∆t+ o(∆t),

hence the total arc length, by integration, is: J =
ˆ t2

t1

√
1+ ẋ2(t)dt.

Using the Euler-Lagrange equation, we obtain

d
dt

∂

∂ẋ

√
1+ ẋ2 = 0

or ẋ(t)= constant. Thus, the extremizing arc is the straight line connecting these points.

Cristian R. Rojas Topic 9: Differentiability and Optimization of Functionals 18



Outline

Differentiability

Inverse/Implicit Function Theorems

Calculus of Variations

Game Theory and the Minimax Theorem

Lagrangian Duality

Bonus Slides

Cristian R. Rojas Topic 9: Differentiability and Optimization of Functionals 19



Game Theory and the Minimax Theorem

Two-Person Zero-Sum Games

Consider a problem with two players: I and II. If player I chooses a strategy x ∈ X , and
player II chooses a strategy y ∈Y , then I gains, and II loses, an amount (payoff) J(x, y).
Each player wants to maximize its payoff.

Example: Matching pennies

−1

−1

1

1

y1 y2

x1

x2

Player I

Player II

Player I wants to maximize min
y∈Y

J(x, y) wrt x.

Player II wants to minimize max
x∈X

J(x, y) wrt y.

If V∗ =max
x∈X

min
y∈Y

J(x, y) and V∗ =min
y∈Y

max
x∈X

J(x, y),

and V∗ =V∗, V =V∗ =V∗ is the value of the game.

Not every game has a value!
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Game Theory and the Minimax Theorem (cont.)

Mixed Strategies
Instead of choosing a particular strategy, each player can choose a mixed/randomized
strategy, i.e., a probability distribution over its strategy space X or Y : px(x), py(y)
(assuming that X and Y are finite).

The values of the game are

V∗ =max
px

min
py

∑
x∈X

∑
y∈Y

J(x, y)px(x)py(y),

V∗ =min
py

max
px

∑
x∈X

∑
y∈Y

J(x, y)px(x)py(y).

The fundamental (minimax) theorem of game theory states that V∗ =V∗.
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Game Theory and the Minimax Theorem (cont.)

Proof of Minimax Theorem
We need to establish, equivalently, that for any matrix A ∈Rm×n

V∗ := max
x∈(R+0 )n

x1+···+xn=1

min
y∈(R+0 )m

y1+···+ym=1

xT A y= min
y∈(R+0 )m

y1+···+ym=1

max
x∈(R+0 )n

x1+···+xn=1

xT A y=: V∗.

First notice that, for every x, y:

min
y′∈(R+0 )m

y′1+···+y′m=1

xT A y′ É xT A yÉ max
x′∈(R+0 )n

x′1+···+x′n=1

x′T A y.

so taking max wrt x and min wrt y gives V∗ ÉV∗.

We need to show that V∗ ÊV∗, by showing that there is an x0 s.t. min
y∈(R+0 )m

y1+···+ym=1

xT
0 A y=V∗.
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Game Theory and the Minimax Theorem (cont.)

Reformulation as an S-game
To gain geometric insight, we can simplify the problem by defining the risk set

S := {A y ∈Rn : y ∈ (R+0 )m , y1 +·· ·+ ym = 1}

so min
y∈(R+0 )m

y1+···+ym=1

xT A y=min
s∈S

xT s.

Example

2

10

y1 y2

x1

x2

y3 y4

2

1

0

2

0.5

S is the convex hull of the columns of A.
x1

x2

(2, 0)T

(2, 1)T

(0.5, 1)T

(0, 2)T

S
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Game Theory and the Minimax Theorem (cont.)

Back to the proof. . .
A minimax strategy for Player II, i.e., an y0 s.t. max

x∈(R+0 )n

x1+···+xn=1

xT A y0 = min
y∈(R+0 )m

y1+···+ym=1

max
x∈(R+0 )n

x1+···+xn=1

xT A y,

corresponds to an s0 = A y0 ∈ S of minimum smax :=max{s1, . . . , sn}.

Let Qα := {s ∈Rn : smax Éα}. Then

V∗ = inf{α ∈R : Qα∩S 6= ;}.

To find an x0 s.t. mins∈S xT
0 s =V∗, we can use the separat-

ing hyperplane theorem to determine a hyperplane (given
by x̄) separating QV∗ and S: H = {s ∈ S : x̄T s =V∗}.

(x̄ has been scaled so that
∑

j x̄ j = 1, since H contains
the vertex s∗ = (V∗, . . . ,V∗) of QV∗ , so x̄T s0 = x̄T s∗ =
V∗∑

j x̄ j = V∗, and x̄T s É V∗ for all s ∈ Qα implies, by let-
ting s j →−∞, that x̄ j Ê 0 for all j).

x1

x2

S
s0

Qα

H

Then we can choose x0 = x̄! This proves the minimax theorem.

Cristian R. Rojas Topic 9: Differentiability and Optimization of Functionals 24



Outline

Differentiability

Inverse/Implicit Function Theorems

Calculus of Variations

Game Theory and the Minimax Theorem

Lagrangian Duality

Bonus Slides

Cristian R. Rojas Topic 9: Differentiability and Optimization of Functionals 25



Lagrangian Duality

Given a convex optimization problem in a normed space, our goal is to derive its
(Lagrangian) dual. To formulate such a problem, we need to define an order relation:

Definitions
• A set C in a real vector space V is a cone if x ∈ C implies that αx ∈ C for every αÊ 0.
• Given a convex cone P in V (positive cone), we say that x Ê y (x, y ∈V ) when x− y ∈ P.
• If V is a normed space with closed positive cone P, x > 0 means that x ∈ int P.
• Given the positive cone P ⊆V , P⊕ := {x∗ ∈V∗ : x∗(x)Ê 0 for all x ∈ P} is the positive

cone in V∗. By Hahn-Banach, if P is closed and x ∈V , then x∗(x)Ê 0 for all x∗ Ê 0
implies that x Ê 0.

• If X ,Y are real vector spaces, C ⊆ X is convex, and P is the positive cone of Y , a
function f : C →Y is convex if f (αx+ (1−α)y)Éα f (x)+ (1−α) f (y) for all x, y ∈ X ,
α ∈ [0,1].

Given a vector space X and a normed space Y , let Ω be a convex subset of X , and P be
the (closed) positive cone of Y . Also, let f : Ω→R and G : Ω→Y be convex functions.

Consider the convex optimization problem

min
x∈X

f (x)

s.t. x ∈Ω, G(x)É 0.
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Lagrangian Duality (cont.)

To analyze this convex optimization problem, we need to introduce a special function:

Definition
Let Γ= {y ∈Y : there exists an x ∈Ω s.t. G(x)É y}; this set is convex (why?).
On Γ, the primal function ω : Ω→R is given by ω(y) := inf { f (x) : x ∈Ω, G(x)É y}.
Notice that the original optimization problem corresponds to finding ω(0).

Properties
(1) ω is convex.

Proof
ω(αy1 + (1−α)y2)

= inf{ f (x) : x ∈Ω, G(x)Éαy1 + (1−α)y2}

É inf{ f (αx1 + (1−α)x2) : x1, x2 ∈Ω, G(x1)É y1, G(x2)É y2}

Éα inf{ f (x) : x ∈Ω, G(x)É y1}

+ (1−α) inf{ f (x) : x ∈Ω, G(x)É y2}

=αω(y1)+ (1−α)ω(y2).

(2) ω is non-increasing: if y1 É y2 then
ω(y1)Êω(y2).
Proof. Direct.

y

ω(y)

0
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Lagrangian Duality (cont.)

Duality theory of convex programming is based on the observation that, since ω is
convex, its epigraph (i.e., the area above the curve of ω in Γ×R) is convex, so it has a
supporting hyperplane passing through the point (0,ω(0)). To develop this idea, consider
the normed space Y ×R with the norm ‖(y, r)‖ = ‖y‖+|r| for y ∈Y and r ∈R.

Theorem
Assume that P has non-empty interior, and that there exists an x1 ∈Ω s.t. G(x1)< 0 (i.e.,
−G(x1) is an interior point of P). Let

µ0 = inf { f (x) : x ∈Ω, G(x)É 0}, (∗)

and assume µ0 is finite. Then, there exists a y∗0 ∈ P⊕ s.t.

µ0 = inf { f (x)+〈G(x), y∗0 〉 : x ∈Ω}. (∗∗)

Furthermore, if the infimum in (∗) is achieved by some x0 ∈Ω, G(x0)É 0, then the
infimum in (∗∗) is also achieved by x0, and 〈G(x0), y∗0 〉 = 0.
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Lagrangian Duality (cont.)

Proof. On Y ×R, define the sets

A := {(y, r) : yÊG(x), r Ê f (x), for some x ∈Ω}, (epigraph of f )

B := {(y, r) : yÉ 0, r Éµ0}.

Since f ,G are convex, so are the sets A,B. By the definition of µ0, A∩ int B =;. Also, since P has an
interior point, B has a non-empty interior (why?). Then, by the separating hyperplane theorem, there
is a non-zero w∗

0 = (y∗0 , r0) ∈ (Y ×R)∗ s.t.

〈y1, y∗0 〉+ r0r1 Ê 〈y2, y∗0 〉+ r0r2, for all (y1, r1) ∈ A, (y2, r2) ∈ B.

From the nature of B, it follows that y∗0 Ê 0 and r0 Ê 0. Since (0,µ0) ∈ B, we have that 〈y, y∗0 〉+ r0r Ê
r0µ0 for all (y, r) ∈ A; if r0 = 0, then in particular y∗0 6= 0 and 〈G(x1), y∗0 〉 Ê 0, but since −G(x1)> 0 and
y∗0 Ê 0, we would have that 〈G(x1), y∗0 〉 < 0 (we know that 〈G(x1), y∗0 〉 É 0; now, there exists a y ∈Y s.t.
〈y, y∗0 〉 > 0, so G(x1)+εy< 0 for some ε> 0, thus if 〈G(x1), y∗0 〉 = 0 we would have 〈G(x1)+εy, y∗0 〉 > 0, a
contradiction). Therefore, r0 > 0, and we can assume w.l.o.g. that r0 = 1.
Since (0,µ0) ∈ A∩B, µ0 = inf {〈y, y∗0 〉+ r : (y, r) ∈ A}= inf { f (x)+〈G(x), y∗0 〉 : x ∈Ω}É inf { f (x) : x ∈Ω, G(x)É 0}
=µ0, which establishes the first part of the theorem. Now, if there is an x0 ∈Ω s.t. G(x0)É 0 and f (x0)
=µ0, then µ0 É f (x0)+〈G(x0), y∗0 〉 É f (x0)=µ0, so 〈G(x0), y∗0 〉 = 0.
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Lagrangian Duality (cont.)

The expression L(x, y∗)= f (x)+〈G(x), y∗〉, for x ∈Ω, y∗ ∈ P⊕, is the Lagrangian of the
optimization problem.

Corollary (Lagrangian Dual). Under the conditions of the theorem,

sup
y′∈P⊕

L (y∗) := inf { f (x)+〈G(x), y∗〉 : x ∈Ω}=µ0,

and the supremum is achieved by some y∗0 ∈ P⊕.
Proof. The theorem established the existence of a y∗0 s.t. L (y∗)=µ0, while for all y∗ ∈ P⊕, L (y∗)=
infx∈Ω( f (x)+〈G(x), y∗〉)É infx∈Ω,G(x)É0( f (x)+〈G(x), y∗〉)É infx∈Ω,G(x)É0 f (x)=µ0.

The dual problem can provide useful information about the primal (original) problem,
since their solutions are linked via the complementarity condition 〈G(x0), z∗0 〉 = 0.
Also, the dual problem always has a solution, so it may be easier to analyze than the
primal.

Remark. If f is non-convex, ω may be non-convex, and the optimal cost of the dual
problem provides only a lower bound on the optimal cost of the original problem.
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Lagrangian Duality (cont.)

Examples
(1) Linear programming. Let A ∈Rm×n, b ∈Rn and c ∈Rm, and consider the problem

µ0 = min
x∈Rn

bT x

s.t. Ax Ê c, x Ê 0.

Assume there is an x > 0 with Ax > c. Letting f (x)= bT x, G(x)= c− Ax and
Ω= P = {x : x j Ê 0 for all j}, the corollary yields, for y ∈ P⊕ = P,

L (y)= inf {bT x+ yT (c− Ax) : x Ê 0}= inf {(b− AT y)T x+ yT c : x Ê 0}=
yT c, if b Ê AT y

−∞, otherwise,

so the Lagrangian dual, corresponding to the standard dual linear program, is

µ0 = max
y∈Rm

cT y

s.t. AT yÉ b, yÊ 0.
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Lagrangian Duality (cont.)

Examples (cont.)
(2) Optimal control. Consider the system ẋ(t)= Ax(t)+bu(t), where x(t) ∈Rn,

A ∈Rn×n, b ∈Rn and u(t) ∈R. Given x(t0), the goal is to find an input u on [t0, t1]
which minimizes

J(u)=
ˆ t1

t0
u2(t)dt,

while satisfying x(t1)Ê c, where c ∈Rn. The solution of the system is

x(t1)= eA(t1−t0)x(t0)+Ku, Ku :=
ˆ t1

t0
eA(t1−t)bu(t)dt,

so problem corresponds to minimizing J(u) subject to Ku Ê c− eA(t1−t0)x(t0)=: d.

Assuming that u ∈ L2[t0, t1], the corollary gives the dual problem

max
yÊ0

inf
u∈L2[t0,t1]

[J(u)+ yT (d−Ku)]=max
yÊ0

inf
u∈L2[t0,t1]

ˆ t1

t0
[u2(t)− yT eA(t1−t)bu(t)]dt+ yT d

=max
yÊ0

yTQ y+ yT d,

where Q :=−(1/4)
ˆ t1

t0
eA(t1−t)bbT eAT (t1−t)dt. This is a simple finite-dimensional

problem, and its solution, yopt, yields uopt(t)= (1/2)yT
opteA(t1−t)b.
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Next Topic

Application to H∞ Control Theory
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Bonus: Equality Constrained Optimization

Problem

min
x∈Ω

f (x)

s.t. g j(x)= 0, j = 1, . . . ,n,

where Ω⊆ X and f , g1, . . . , gn are Fréchet differentiable on X .

Theorem 1. Let x0 ∈Ω be a local minimum of f on the set of all x ∈Ω s.t. g j(x)= 0,
j = 1, . . . ,n, and assume that the functionals δg1(x0; ·), . . . ,δgn(x0; ·) are l.i. (i.e., x0 is a
regular point). Then,

δ f (x0;h)= 0 for all h s.t. δg j(x0;h)= 0 for all j = 1, . . . ,n.
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Bonus: Equality Constrained Optimization (cont.)

Proof
First, notice that there exist vectors y1, . . . , yn ∈ X s.t. the matrix M ∈Rn×n , M jk = δg j (x0; yk), is
non-singular. To see this, consider the linear mapping G : X →Rn , [G(y)] j = δg j (x0; y). The range of G
is a linear subspace of Rn ; if dimR(G)< n, there would exist a λ ∈Rn \{0} s.t. λT G(y)= 0 for all y ∈ X ,
i.e., {δg j (x0; ·)} would be l.i. Therefore, in particular there exist vectors y1, . . . , yn ∈ X s.t. G(yj )= e j , so
M = I, which is non-singular.

Fix h ∈ X s.t. δg j (x0;h)= 0 for all j = 1, . . . ,n, and consider the set of equations g j (x0 +αh+∑n
k=1βk yk)

= 0, k = 1, . . . ,n, in α,β1, . . . ,βn . The Jacobian of this system, [∂g j /∂βk]α=βk=0 = M, is non-singular.
Therefore, by the implicit function theorem (in Rn), there exists a continuous function β : U ⊆R→Rn

in a nbd U of 0 s.t. β(0)= 0 and

0= g j
(
x0 +αh+∑n

k=1βk(α)yk
)

= g j (x0)+αδg j (x0;h)︸ ︷︷ ︸
=0

+δg j
(
x0;

∑n
k=1βk(α)yk

)︸ ︷︷ ︸
=Mβ(α)

+o(α)+ o
(∥∥∑n

k=1βk(α)yk
∥∥)

.
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Bonus: Equality Constrained Optimization (cont.)

Proof (cont.)
However, since M is non-singular, so d1‖β(α)‖ É ‖Mβ(α)‖ É d2‖β(α)‖ for some d1,d2 > 0, and since the
yk ’s are l.i., d3‖ β(α)‖ É

∥∥∥∑n
k=1βk(α)yk

∥∥∥É d4‖ β(α)‖, for some d3,d4 > 0. Therefore, from the equation

above, ‖β(α)‖ = o(α), and thus also
∥∥∥∑n

k=1βk(α)yk

∥∥∥= o(α).

Along the curve α 7→ x0 +αh+∑n
k=1βk(α)yk , f assumes its local minimum at x0, so

δ f (x0;h)= d
dα

f

(
x0 +αh+

n∑
k=1

βk(α)yk

)∣∣∣∣∣
α=0

= d
dα

f
(
x0 +αh+ o(α)

)∣∣∣∣
α=0

= 0.
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Bonus: Equality Constrained Optimization (cont.)

Lemma. Let g1, . . . , gn be l.i. linear functionals on a vector space X , and let f be a linear
functional on X s.t. f (x)= 0 for all x ∈ X s.t. g j(x)= 0 for all j = 1, . . . ,n. Then,
f ∈ lin{g1, . . . , gn}.

Proof. Let G ∈L (X ,Rn+1), where G j (x)= g j (x) ( j = 1, . . . ,n) and Gn+1(x)= f (x). Note that R(G) is a
linear subspace of Rn+1, and due to the condition on f , it does not intersect {(0, . . . ,0, x) : x 6= 0}, so
dimR(G)< n+1 and there is a λ ∈Rn+1 \{0} s.t. λ1 g1(x)+·· ·+λn gn(x)+λn+1 f (x)= 0 for all x ∈ X .
Since the g j ’s are l.i., λn+1 6= 0, so dividing by −λn+1 gives f = λ̃1 g1 +·· ·+ λ̃n gn for some λ̃ j ’s.

From this lemma and Theorem 1, it follows immediately that

Theorem 2 (Lagrange multipliers). Under the conditions of Theorem 1, there exist
constants λ1, . . . ,λn s.t.

δ f (x0;h)+
n∑

i=1
λiδg i(x0;h)= 0 for all h ∈ X .
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Bonus: Equality Constrained Optimization (cont.)

Example: Maximum entropy spectral analysis (Burg’s) method
Consider the problem of estimating the spectrum Φ of a stationary Gaussian stochastic
process, given estimates of the first n autocovariance coefficients. This problem is
ill-posed, but one can appeal to the maximum entropy method to obtain an estimate:

max
Φ∈C[−π,π]

H(Φ)= ln
p

2πe+ 1
4π

ˆ π

−π
lnΦ(ω)dω entropy rate of Gaussian process

s.t.
1

2π

ˆ π

−π
eikωΦ(ω)dω= c|k|, k = 0,1, . . . ,n, autocorrelation coefficients

Φ(ω)Ê 0, for all ω ∈ [−π,π]. non-negativity constraint

We will solve this problem using calculus of variations, ignoring the non-negativity
constraint (since the solution, as will be seen, is already non-negative). We will assume
that the autocorrelation coefficients c0, c1, . . . , cn are s.t. the problem has feasible
solutions.
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Bonus: Equality Constrained Optimization (cont.)

Example: Maximum entropy spectral analysis (Burg’s) method (cont.)
Using Lagrange multipliers, an optimal solution Φopt should satisfy

1
4π

ˆ π

−π
1

Φopt(ω)
h(ω)dω+ 1

2π

n∑
k=−n

λ|k|
ˆ π

−π
eikωh(ω)dω= 0, for all h ∈ C[−π,π].

Hence, using the fundamental lemma of calculus of variations,

1
Φopt(ω)

+2
n∑

k=−n
λ|k|eikω = 0 ⇔ Φopt(ω)=− 1

2
∑n

k=−nλ|k|e
ikω ,

where the quantities λ0,λ1, . . . ,λn can be determined from the autocorrelation
coefficients c0, c1, . . . , cn. This formula shows that the maximum-entropy spectrum
corresponds to that of an “auto-regressive process”.

Remark. The fact that Φopt is a maximizer of the optimization problem follows from the
concavity of the cost function, and its non-negativity is due to that H(Φ)=−∞ if Φ is
negative inside an interval of [−π,π] (yielding lower cost than any feasible Φ).
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