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Linear Functionals

Definition
In a real vector space V , f : V →R is a linear functional if for all x, y ∈V , and α,β ∈R,

f (αx+βy)=α f (x)+β f (y).

Examples

1. In Rn, every linear functional is of the form f (x)=∑n
k=1αkxk , where x = (x1, . . . , xn).

2. In C[0,1], f (x)= x(1/2) is a linear functional.

3. In L2[a,b], f (x)=
ˆ b

a
y(t)x(t)dt, where y ∈ L2[a,b], is a linear functional.

The kernel of f , Ker f , is defined as Ker f := {x ∈V : f (x)= 0}.
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Linear Functionals (cont.)

Definition. A linear functional f in a normed space is bounded if there is an M > 0 s.t.
| f (x)| É M‖x‖ for all x ∈V . The smallest such M is the norm of f , ‖ f ‖.

Theorem. Let f be a linear functional on a normed space V . The following are
equivalent:

(1) f is continuous.
(2) f is continuous at 0.
(3) f is bounded.

Proof

(1) ⇒ (2): By definition.

(2) ⇒ (3): Let f be continuous at 0. There is a δ> 0 s.t. | f (x)| < 1 for all x ∈V s.t. ‖x‖ É δ. Then, by linearity,
| f (x)| É (1/δ)‖x‖ for all x ∈V .

(3) ⇒ (1): Pick some x ∈V . If f is bounded, with norm M, and (xn) is a sequence convergent to x, then
| f (xn)− f (x)| = | f (xn − x)| É M‖xn − x‖→ 0. Since x was arbitrary, f is thus continuous.
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Linear Functionals (cont.)

Example
In `0 (the space of sequences with finitely non-zero entries), with norm equal to the
maximum of the absolute value of its components, define for x = (x1, . . . , xn,0,0, . . . ),
f (x)=∑n

k=1 kxk . This linear functional is unbounded (why?).

Linear functionals on V form a vector space, called algebraic dual of V , by defining

( f1 + f2)(x) := f1(x)+ f2(x),

(λ f )(x) :=λ f (x), x ∈V , λ ∈R.
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Linear Functionals (cont.)

Definition
The space of bounded linear functionals on a normed space V is the normed dual of V ,
denoted as V∗. The norm of an f ∈V∗ is ‖ f ‖ = sup‖x‖É1 | f (x)|.

Theorem. V∗ is a Banach space.

Proof (for real normed spaces)
We only need to show that V∗ is complete. Take a Cauchy sequence (x∗n) in V∗. For every x ∈V , (x∗n(x))
is Cauchy in R, since |x∗n(x)− x∗m(x)| É ‖x∗n − x∗m‖‖x‖, so there is an x∗(x) ∈R s.t. x∗n(x)→ x∗(x). The
functional x∗ defined in this way is linear, because x∗(αx+βy)= lim x∗n(αx+βy)=α lim x∗n(x)+
β lim x∗n(y)=αx∗(x)+βx∗(y), for all x, y ∈V and α,β ∈R. In addition, for a given ε> 0, since (x∗n) is
Cauchy, there is an N ∈N s.t. ‖x∗n − x∗m‖ < ε for all n,m Ê N, or |x∗n(x)− x∗m(x)| < ε‖x‖ for all x ∈V , hence
taking n →∞ gives |x∗(x)− x∗m(x)| < ε‖x‖. Thus, |x∗(x)| É |x∗(x)− x∗m(x)|+ |x∗m(x)| < (

ε+‖x∗m‖)‖x‖, so x∗
is bounded, i.e., x∗ ∈V∗. Finally, as |x∗(x)− x∗m(x)| < ε‖x‖, we have x∗m → x∗. Therefore, V∗ is
complete.
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Duals of Some Common Banach Spaces

• Rn (with Euclidean norm): itself!

Take the linear functional

f (x)=
n∑

k=1
αk xk , x = (x1, . . . , xn).

From Cauchy-Schwarz, | f (x)| = ∣∣∑n
k=1αk xk

∣∣É√∑n
k=1α

2
k‖x‖, so every such f is bounded, and

since equality is achieved for x = (α1, . . . ,αn), we have ‖ f ‖ =
√∑n

k=1α
2
k .

Conversely, if f ∈ (Rn)∗, take the standard basis vectors ek . Every x = (x1, . . . , xn) can be written
as x =∑n

k=1 xk ek , so f (x)=∑n
k=1 xk f (ek)=∑n

k=1αk xk , with αk = f (ek).

Hence the dual space of Rn is itself, in the sense that all bounded functionals are of the form
f (x)=∑n

k=1αk xk , with ‖ f ‖ =
√∑n

k=1α
2
k .
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Duals of Some Common Banach Spaces (cont.)

• `p (1É p <∞): `q!

The dual of `p is `q , where 1/p+1/q = 1, in the sense that every bounded linear
functional in `p can be written as f (x)=∑∞

k=1αkxk , with α= (αk) ∈ `q , and
‖ f ‖ = ‖α‖q .

The dual of `∞ is not `1: see bonus slides for proof.

• Lp[a,b] (1É p <∞): Lq[a,b]!

Similarly to `p , the dual of Lp[a,b] is Lq[a,b], with 1/p+1/q = 1, since every

bounded linear functional is of the form f (x)=
ˆ b

a
x(t)y(t)dt, with y ∈ Lq[a,b], and

‖ f ‖ = ‖y‖q .
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Duals of Some Common Banach Spaces (cont.)

• Dual of a Hilbert space H
A particular linear functional in H is f (x)= (x, y) for y ∈ H. By Cauchy-Schwarz,
| f (x)| É ‖x‖‖y‖, and taking x = y shows that ‖ f ‖ = ‖y‖. Conversely,

Theorem (Riesz-Fréchet). If f ∈ H∗, there is a unique y ∈ H s.t. f (x)= (x, y) for all
x ∈ H, and ‖ f ‖ = ‖y‖.
Proof. If f = 0, the theorem is trivial. Otherwise, the set N = {x ∈ H : f (x)= 0} is closed (why?)
and not equal to H. Since H = N ⊕N⊥, take a z ∈ N⊥ \{0}, scaled so that f (z)= 1. We will show
that y is a multiple of z. Given x ∈ H, we have x− f (x)z ∈ N, since f (x− f (x)z)= 0. As z ⊥ N, we
have (x− f (x)z, z)= 0, or (x, z)= f (x)(z, z), hence y= z/‖z‖2. If (x, y1)= (x, y2) for all x ∈ H then
y1 = y2, which proves the uniqueness of y.
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Hahn-Banach Theorem (Extension of Linear Functionals)

Definitions
1. Let f be a linear functional defined on a subspace M of a vector space V . An

extension F of f (from M to N) is a linear functional defined on N ) M, s.t. F
∣∣
M = f .

2. A real valued function p defined on a vector space V is a sublinear functional if
(a) p(x1 + x2)É p(x1)+ p(x2), for all x1, x2 ∈V , (sub-additivity)
(b) p(αx)=αp(x), for all αÊ 0 and x ∈V . (positive homogeneity)

Theorem (Hahn-Banach; extension form)
Let V be a real vector space, and p a sublinear functional on V . Let f be a linear
functional defined on a subspace M ⊆V satisfying f (x)É p(x) for all x ∈ M. Then there is
an extension F of f from M to V s.t. F(x)É p(x) for all x ∈V .
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Hahn-Banach Theorem (Extension of Linear Functionals) (cont.)

Proof
Let us define a partial order ¹ on the set E of extensions of f satisfying the conditions of the theorem:
say that F ¹G if G is an extension of F. For every chain C ⊆ E, according to this partial order, define F̂
as F̂(x)= F(x) if x ∈D(F) for some F ∈ C. F̂ is a linear functional with domain

⋃
F∈C D(F), and it is an

upper bound for the chain C. Thus, by Zorn’s lemma, E has a maximal element, say, F̄.

The linear functional F̄ should have domain equal to V , since otherwise there is an element
y ∈V \D(F̄). All x ∈ lin(D(F̄)+ y) are of the form x = m+αy with m ∈D(F̄) and α ∈R. An extension of F̄
from D(F̄) to lin(D(F̄)+ y) has the form g(x)= F̄(m)+αg(y), so we need to show that g(y) can be chosen
s.t. g(x)É p(x) on lin(D(F̄)+ y), or, equivalently, that F̄(m)+αg(y)É p(m+αy) for all m ∈D(F̄) and α ∈R.

By positive homogeneity, this is equivalent to requiring that F̄(m)+ g(y)É p(m+ y) and
F̄(m)− g(y)É p(m− y) for all m ∈D(F̄), or that F̄(m)− p(m− y)É g(y)É p(m+ y)− F̄(m). Therefore, for
the existence of an extension of F̄, we need to show that F̄(m)− p(m− y)É p(m′+ y)− F̄(m′) for all
m,m′ ∈D(F̄), or F̄(m)+ F̄(m′)É p(m− y)+ p(m′+ y). This condition holds, due to the sub-additivity of p
(and that m+m′ ∈D(F̄)): F̄(m)+ F̄(m′)= F̄(m+m′)É p(m+m′)= p(m− y+ y+m′)É p(m′+ y)+ p(m− y).

Therefore, we can choose g(y) so that g(x)É p(x) on lin(D(F̄)+ y), thus contradicting the maximality of
F̄. This contradiction shows that F̄ is the sought extension of f to V .

Remark
It is not possible to avoid Zorn’s lemma (or the axiom of choice), since it can be shown
that the Hahn-Banach theorem is equivalent to the axiom of choice.
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Hahn-Banach Theorem (Extension of Linear Functionals) (cont.)

Corollary 1
Let f be a bounded linear functional defined on a subspace M of a normed space V . Then
there is an extension F of f to V s.t. ‖F‖ = ‖ f ‖.

Proof. Take p(x)= ‖F‖‖x‖ in the Hahn-Banach theorem.

Corollary 2
Let x ∈V . Then there is a nonzero F ∈V∗ on a normed space V s.t. F(x)= ‖F‖‖x‖.

Proof. Assume x 6= 0 (otherwise, take any F ∈V∗). On lin{x}, define the bounded functional
f (αx)=α‖x‖, which has norm 1. By Corollary 1, extend f to an F ∈V∗ with norm 1.

The Hahn-Banach theorem, particularly as Corollary 1, can be used as an existence
theorem for minimization problems.
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The Dual of C[a,b]

Definitions
• x : [a,b]→R is of bounded variation if there is a K > 0 s.t. for every partition of [a,b]

(i.e., a finite set {t1, . . . , tn} s.t. a = t0 < t1 < ·· · < tn = b),
∑n

k=1 |x(tk)− x(tk−1)| É K .

• BV[a,b] is the normed space of all x : [a,b]→R of bounded variation, with norm
‖x‖ = |x(a)|+TV(x), with TV(x) := sup

∑n
k=1 |x(tk)− x(tk−1)|, where the sup is over all

partitions of [a,b].

A consequence of Hahn-Banach is that the dual of C[a,b] is (almost) BV[a,b]:

Theorem (Riesz Representation Theorem)
Let f ∈ C[a,b]∗. Then there is ν ∈BV[a,b] s.t.

f (x)=
ˆ b

a
x(t)dν(t), x ∈ C[a,b] (“Riemann-Stieltjes integral”)

and ‖ f ‖ =TV(ν). Conversely, every ν ∈BV[a,b] defines an f ∈ C[a,b]∗ in this way.
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The Dual of C[a,b] (cont.)

Digression: Riemann-Stieltjes Integral

A partition of the interval [a,b] is a collection P of numbers x0, . . . , xn s.t.
a = x0 < x1 < ·· · < xn = b, and denoted as

P = {a = x0 < x1 < ·· · < xn = b}.

The norm of P is norm(P)=maxi=0,...,n−1 |xi+1 − xi |.
Consider a function f : [a,b]→R, and g ∈BV[a,b]. The Riemann-Stieltjes integral of f
w.r.t. g is defined as

ˆ b

a
f (x)dg(x) := lim

∆→0
sup

P={a=x0<x1<···<xn=b}
norm(P)É∆

sup
ci∈[xi ,xi+1]
(i=0,...,n−1)

n−1∑
i=0

f (ci)[g(xi+1)− g(xi)],

in case the limit exists. Here the first supremum is over all partitions of [a,b] (of any size
n) of norm at most ∆.
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The Dual of C[a,b] (cont.)

Proof of Riesz representation theorem

Given an f ∈ C[a,b]∗, we need to find a ν ∈BV[a,b] s.t. f (x)=
ˆ b

a
x(t)dν(t).

A natural idea is to set x = us (s ∈ [a,b]), where us(t)= 1 for t ∈ [a, s] and 0 otherwise, so

f (us)=
ˆ b

a
us(t)dν(t)=

ˆ s

a
dν(t)= ν(s)−ν(a),

hence we can set ν(a) := 0 and ν(s) := f (us).

Unfortunately, us ∉ C[a,b]. However, us belongs to the space B of bounded functions on [a,b], and
C[a,b]⊆ B, so by Hahn-Banach it is possible to obtain an extension F of f from C[a,b] to B, preserving
its norm. This will allow us to define ν(s) := F(us)!

The rest of the proof is to show that:

• ν ∈BV[a,b]

• f (x)=
ˆ b

a
x(t)dν(t)

• ‖ f ‖ =TV(ν) (see bonus slides for details)
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The Dual of C[a,b] (cont.)

Riesz Representation Theorem does not provide a unique ν ∈BV[a,b], since, e.g.,
f (x)= x(1/2) can be described by

ν(t)=


0, 0É t < 1/2,

α, t = 1/2,

1, 1/2< t É 1,

where α can be any number between 0 and 1 (exercise!). To avoid this, we define

Definition
NBV[a,b]⊆BV[a,b], normalized space of functions of bounded variation, consists of those
ν ∈BV[a,b] s.t. ν(a)= 0 and are right continuous on (a,b). Here ‖ν‖ :=TV(ν).

Then, NBV[a,b] is the dual of C[a,b].
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Second Dual Space

Let x ∈V∗. For every x ∈V , denote 〈x, x∗〉 := x∗(x) (resembling an inner product).
This notation also allows to define a functional f on V∗ (for a given x ∈V ):

f (x∗)= 〈x, x∗〉, x∗ ∈V∗.

This f is linear, and since | f (x∗)| = |〈x, x∗〉| É ‖x‖‖x∗‖, so ‖ f ‖ É ‖x‖, and by Hahn-Banach,
there is an x∗ ∈V∗ s.t. |〈x, x∗〉| = ‖x‖‖x∗‖, so ‖ f ‖ = ‖x‖.

Definition
V∗∗ := (V∗)∗ is the second dual of a normed space V .

As we saw, there is a natural mapping ϕ : V →V∗∗ given by ϕ(x)= x∗∗, where
〈x∗, x∗∗〉 = 〈x, x∗〉. This mapping is linear and norm-preserving: ‖ϕ(x)‖ = ‖x‖. However, ϕ
is not always surjective, i.e., there may be an x∗∗ ∈V∗∗ not represented by elements of V .

Definition. A normed space V is reflexive if ϕ is surjective. If so, we write V =V∗∗.
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Second Dual Space (cont.)

Examples

1. `p and Lp (1< p <∞) are reflexive, since (`p)∗∗ = (`q)∗ = `p , where 1/p+1/q = 1.

2. `1 and L1 are not reflexive.

3. Every Hilbert space is reflexive.
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Alignment and Orthogonal Complements

For x ∈V and x∗ ∈V∗, 〈x, x∗〉 É ‖x‖‖x∗‖. In Hilbert spaces, we have equality iff x∗ is
represented by a nonnegative multiple of x, i.e., 〈x, x∗〉 = (x,αx) for some αÊ 0. In a
normed space V , we define

Definition. x∗ ∈V∗ is aligned with x ∈V if 〈x, x∗〉 = ‖x‖‖x∗‖.

Example
Let x ∈ C[a,b], and Γ := {t ∈ [a,b] : |x(t)| = ‖x‖} 6= ;.

An x∗(x)=
ˆ b

a
x(t)dν(t) is aligned with x iff ν only

varies on Γ so that ν is nondecreasing at t if x(t)>
0 and nonincreasing if x(t)< 0 (exercise!).
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Alignment and Orthogonal Complements (cont.)

Definition. x ∈V and x∗ ∈V∗ are orthogonal if 〈x, x∗〉 = 0.

In Hilbert spaces, this coincides with the original definition of orthogonality.

Definition. The orthogonal complement of S ⊆V , S⊥, is the set of all x∗ ∈V∗ s.t.
〈x, x∗〉 = 0 for all x ∈ S.

For subsets of V∗, we have a “dual” definition:

Definition. The orthogonal complement of U ⊆V∗, ⊥U , is the set of all x ∈V s.t.
〈x, x∗〉 = 0 for all x∗ ∈U .

Notice that U⊥ 6=⊥U (U ⊆V∗) in general, unless V is reflexive, since U⊥ ⊆V∗∗, while
⊥U ⊆V .

Theorem. If M is a closed subspace of V , then ⊥[M⊥]= M. (See proof at the end.)
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Minimum Norm Problems

Goal: Extend the projection theorem to minimum norm problems in normed spaces.

The situation is more difficult: possibly several optima, given by nonlinear equations, ...

Example
Let V =R2 with norm ‖(y1, y2)‖ =max{‖y1‖,‖y2‖}, and let M =R× {0}. Then
miny∈M ‖(2,1)− y‖ = 1, but the optimum is not unique!
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Minimum Norm Problems (cont.)

Theorem
Let x ∈V , where V is a real normed space, and let d be the distance from x to a subspace
M. Then,

d = inf
m∈M

‖x−m‖ = max
‖x∗‖É1
x∗∈M⊥

〈x, x∗〉,

where the maximum is achieved for some x∗0 ∈ M⊥. Also, if the infimum is achieved for
some m0 ∈ M, then x∗0 is aligned with x−m0.

Proof
(Ê) Take ε> 0 and mε ∈ M s.t. ‖x−mε‖ É d+ε. Then, for every x∗ ∈ M⊥, ‖x∗‖ É 1:

〈x, x∗〉 = 〈x−mε, x∗〉 É ‖x−mε‖‖x∗‖ É d+ε,

and since ε was arbitrary, we have 〈x, x∗〉 É d for all x∗ ∈ M⊥, ‖x∗‖ É 1.
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Minimum Norm Problems (cont.)

Proof
(É) Let N = lin(x+M). If n ∈ N, then n =αx+m for some m ∈ M, α ∈R. Define the functional f on N

as f (n)=αd. Then

‖ f ‖ = sup
n∈N

| f (n)|
‖n‖ = sup

m∈M

|α|d
‖αx+m‖ = sup

m∈M

d
‖x+m/α‖ = d

infm∈M ‖x+m/α‖ = 1.

By Hahn-Banach, let x∗0 be a norm-preserving extension of f to V . Then ‖x∗0 ‖ = 1 and x∗0 = f on
N. By construction, x∗0 ∈ M⊥ and 〈x, x∗0 〉 = d.

Now, let m0 ∈ M be s.t. ‖x−m0‖ = d, and take x∗0 ∈ M⊥ s.t. ‖x∗0 ‖ = 1 and 〈x, x∗0 〉 = d. Then,
〈x−m0, x∗0 〉 = 〈x, x∗0 〉 = d = ‖x−m0‖‖x∗0 ‖, so x∗0 is aligned with x−m0.
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Minimum Norm Problems (cont.)

Corollary (generalized projection theorem)
Let x ∈V and M be a subspace of V . Then m0 ∈ M satisfies ‖x−m0‖ É ‖x−m‖ for all
m ∈ M iff there is an x∗0 ∈ M⊥ aligned with x−m0.

The following is a “dual” version of the previous theorem:

Theorem
Let M be a subspace of V , and x∗ ∈V∗, which is at a distance d from M⊥. Then

d = min
m∗∈M⊥

‖x∗−m∗‖ = sup
x∈x‖x‖É1

〈x, x∗〉,

where the minimum is achieved for m∗
0 ∈ M⊥. If the infimum is achieved for some x ∈ M,

then x∗−m∗
0 is aligned with x0.
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Minimum Norm Problems (cont.)

Example (control problem, again)
Consider the DC motor problem again, where we want to find the current u : [0,1]→R to
drive a motor governed by

θ̈(t)+ θ̇(t)= u(t)

from θ(0)= θ̇(0)= 0 to θ(1)= 1, θ̇(1)= 0, so as to minimize maxt∈[0,1] |u(t)|.

We can formulate this problem in a dual space, by forcing u ∈ (L1[0,1])∗ = L∞[0,1], so
that we seek an input of minimum L∞ norm.

As in the previous example, the constraints are

ˆ 1

0
et−1u(t)dt = 〈y1,u〉 = 0, y1(t)= et−1,

ˆ 1

0
(1− et−1)u(t)dt = 〈y2,u〉 = 1, y2(t)= 1− et−1.
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Minimum Norm Problems (cont.)

Example (cont.)
Therefore, the optimization problem is

L = min
u∈L∞〈y1,u〉=0

〈y2,u〉=1

‖u‖ = min
ũ∈L∞〈y1,ũ〉=0

〈y2,ũ〉=0

‖ũ− ū‖ = min
ũ∈M⊥

‖ũ− ū‖,

where ū is any function in L∞[0,1] satisfying the constraints 〈y1, ū〉 = 0 and 〈y2, ū〉 = 1,
and M = lin{y1, y2}.

From the theorems:

L = min
u∈L∞〈y1,u〉=0

〈y2,u〉=1

‖u‖ = sup
x∈M‖x‖É1

〈x, ū〉 = sup
‖ay1+by2‖É1

〈ay1 +by2, ū〉 = sup
‖ay1+by2‖É1

b

and the constraint ‖ay1 +by2‖ É 1, in L1, corresponds to
ˆ 1

0

∣∣∣(a−b)et−1 +b
∣∣∣dt É 1.
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Minimum Norm Problems (cont.)

Example (cont.)
This means that the optimal value is equal to

sup´ 1
0

∣∣(a−b)et−1+b
∣∣dtÉ1

b,

which is attained and can be solved explicitly, since it is simple and finite dimensional!

Qualitatively, the optimal x(t) = (a− b)et−1 + b is
aligned with the optimal u, i.e., 〈x,u〉 = ‖x‖‖u‖.

Since the right side is the maximum of the left
side over all u ∈ L∞ with ‖u‖ = L, has to take
only values ±L, depending on sgn(x(t)): “Bang-
bang” control!

u

x

t

L

−L

0 1

As x is the sum of an exponential and a constant, it can change sign at most once, so u
has to change sign at most once.
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Hahn-Banach Theorem (Geometric Form)

Definition. A hyperplane H in a vector space V is a
maximal proper linear variety, i.e., a set of the form x+
M (x ∈ V and M is a subspace of V ) s.t. H 6= V and for
every y ∈V \ H, lin(H+ y)=V .

Hyperplanes are the “contour surfaces” of linear func-
tionals.

Theorem. H is a hyperplane in V iff there is a linear functional f 6= 0 in V and c ∈R s.t.
H = {x ∈V : f (x)= c}. Also, if 0 ∉ H, there is a unique f s.t. H = {x ∈V : f (x)= 1}.

Proof.
(⇒) Pick a hyperplane H = x0 +M (x0 ∈V and M is a subspace). If x0 ∉ M, then lin(x0 +M)=V , so

every x ∈V fulfills x =αx0 +m (α ∈R, m ∈ M); letting f (x)=α yields H = {x ∈V : f (x)= 1}. If
x0 ∈ M, let x1 ∈V \ H; every x ∈V satisfies x =αx1 +m, so f (x)=α gives H = {x ∈V : f (x)= 0}.

(⇐) If f 6= 0, define the subspace M = {x ∈V : f (x)= 0}. Take an x0 ∈V with f (x0)= 1; then, for every
x ∈V , f (x− f (x)x0)= 0, so x = f (x)x0 +m for some m ∈ M, i.e., M is maximally proper. Now, for
c ∈R, let x1 ∈ X s.t. f (x1)= c; then, {x : f (x)= c}= {x : f (x− x1)= 0}= x1 +M, which is a hyperplane
If 0 ∉ H, one can scale f by c 6= 0 so that H = {x ∈V : f (x)= 1}. If also H = {x ∈V : g(x)= 1}, then
H ⊆ {x ∈V : f (x)− g(x)= 0}, but the smallest subspace containing H is V , so f = g.
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Hahn-Banach Theorem (Geometric Form) (cont.)

By definition, a hyperplane H is either closed or dense in V , since H ⊆ H ⊆V , and H is
also a linear variety (why?), so either H = H or H =V , because H is maximally proper
(i.e., it cannot be inside a larger but proper linear variety).

Theorem. Let f 6= 0 be a linear functional on V . Then, for every c, H = {x : f (x)= c} is
closed iff f is continuous.

Proof. If f is continuous, then H = f −1({c}) is closed since {c} is closed for every c ∈R.
Conversely, as H = {x : f (x)= c} is a hyperplane, there is a y ∈V \ H, and every x ∈V fulfills x =αy+h,
with α ∈R and h ∈ H. Then, consider a sequence (xn) in V , with xn =αn y+hn (αn ∈R, hn ∈ H), s.t.
xn → x =αy+h (α ∈R, h ∈ H). Since H is closed, d = infh∈H ‖y−h‖ > 0 (from Homework 1), so
‖xn − x‖ = ‖(αn −α)y+hn −h‖ Ê |αn −α|d, which implies that αn →α, hence f (xn)=αn f (y)→α f (y)=
f (x), so f is continuous.

See bonus slides for an example of a linear functional for which H is dense.
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Hahn-Banach Theorem (Geometric Form) (cont.)

A hyperplane H = {x : f (x)= c} generates the half-spaces

{x : f (x)É c}, {x : f (x)Ê c}, {x : f (x)< c}, {x : f (x)> c}.

If f is continuous, the first 2 are closed and the last two are open.

Goal: establish a geometric Hahn-Banach theorem:
Given a convex set K s.t. int K 6= ;, and x0 ∉ int K , there is
a closed hyperplane containing x0 but disjoint from int K .

If K were B(0,1), the theorem is easy, since Hahn-Banach
assures the existence of an x∗0 aligned with x0: if x ∈
int B(0,1),

K

x0

〈x, x∗0 〉 É ‖x‖‖x∗0‖ < ‖x0‖‖x∗0‖ = 〈x0, x∗0 〉, so H = {x : 〈x, x∗0 〉 = 〈x0, x∗0 〉} is enough.

We thus need to generalize the unit ball B(0,1) to arbitrary convex sets!
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Hahn-Banach Theorem (Geometric Form) (cont.)

Definition (Minkowski functional)
Let K be a convex set in a normed space V , and assume 0 ∈ int K .
The Minkowski functional p : V →R+0 of K on V is

p(x) := inf {r > 0: x ∈ rK}.

Properties (assuming 0 ∈ int K)

(1) 0É p(x)<∞ for all x ∈V .
(2) p(αx)=αp(x) for α> 0.
(3) p(x1 + x2)É p(x1)+ p(x2).
(4) p is continuous.
(5) K = {x : p(x)É 1}, int K = {x : p(x)< 1}.

p is then a continuous, sublinear functional.

(See bonus slides for proofs of these properties.)
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Hahn-Banach Theorem (Geometric Form) (cont.)

Theorem (Mazur’s Theorem, Geometric Hahn-Banach)
Let K be a convex set in a real normed space V s.t. int K 6= ;. Let W be a linear variety
s.t. W ∩ int K =;. Then there is a closed hyperplane containing W but no interior points
of K , i.e., there is an x∗ ∈V∗ \{0} and c ∈R s.t. 〈w, x∗〉 = c for w ∈W , 〈k, x∗〉 É c for k ∈ K ,
and 〈k, x∗〉 < c for k ∈ int K .

Proof. Idea: use the Minkowski functional p in the Hahn-Banach theorem!
Assume w.l.o.g. that 0 ∈ int K . Let M = lin W. Then, W is a hyperplane in M which does not contain 0,
so there is a linear functional f on M s.t. W = {x : f (x)= 1}.

Let p be the Minkowski functional of K . Since W has no interior points of K , f (x)= 1É p(x) for x ∈W.
Every point in M can be written as αx, where α ∈R and x ∈W, so if α> 0, f (αx)=αÉ p(αx) (by positive
homogeneity), and if α< 0, f (αx)É 0É p(αx), so f (x)É p(x) in M.

By Hahn-Banach, there is an extension F of f to V s.t. F(x)É p(x). Let H = {x : F(x)= 1}. Since
F(x)É p(x) on V , and p is continuous, so is F (because −p(−xn)É F(xn)É p(xn), so if xn → 0, then
F(xn)→ 0), and F(x)< 1 on int K , while F(x)É 1 on K . Therefore, H is the desired hyperplane.

See bonus slides for example of why int K 6= ; is needed in Mazur’s theorem.
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Hahn-Banach Theorem (Geometric Form) (cont.)

Some corollaries

1. (Supporting Hyperplane Theorem). If x ∉ int K 6= ;, there is a closed hyperplane H
containing x s.t. K lies on one side of H (If x ∈ ∂K , K is a supporting hyperplane).
Proof. A special case of Mazur’s theorem, where W = {x}.

2. (Eidelheit Separating Hyperplane Theorem). If K1 and K2 are
convex, s.t. int K1 6= ; and K2 ∩ int K1 = ;. Then there is a
closed hyperplane separating K1 and K2 (i.e., an x∗ ∈ V∗ s.t.
supx∈K1 〈x, x∗〉 É infx∈K2 〈x, x∗〉).

Proof. Let K = K1 + (−K2) = {x1 − x2 : x1 ∈ K1 and x2 ∈ K2}. int K 6= ;,
and 0 ∉ int K , so apply Corollary 1 with x = 0.

3. If K is closed and convex, and x ∉ K , there is a closed halfspace that contains K but
not x.
Proof. Let d = infy∈K ‖x− y‖ > 0, so B(x,d/2) does not intersect K . Apply Corollary 2 with K1 = K
and K2 = B(x,d/2).

4. (Dual formulation of convex sets). A closed convex set is equal
to the intersection of all the closed half-spaces that contain it.
Proof. Follows directly from Corollary 3.

Cristian R. Rojas Topic 7: Dual Spaces 40



Next Topic

Linear Operators

Cristian R. Rojas Topic 7: Dual Spaces 41



Outline

Linear Functionals

Duals of Some Common Banach Spaces

Hahn-Banach Theorem (Extension of Linear Functionals)

The Dual of C[a,b]

Second Dual Space

Alignment and Orthogonal Complements

Minimum Norm Problems

Hahn-Banach Theorem (Geometric Form)

Bonus Slides

Cristian R. Rojas Topic 7: Dual Spaces 42



Bonus: Proof that `1 is Not the Dual of `∞

Let c0 be the subspace of `∞ consisting of sequences x = (xn) s.t. xn → 0. We will first show that
c∗0 = `1. First, let z ∈ `1 and define ϕz : c0 →R so that ϕz(x)=∑∞

n=1 zn xn . ϕz is linear, and bounded,
since |ϕz(x)| = ∣∣∑∞

n=1 zn xn
∣∣É ‖z‖1‖x‖∞, and if xn = sgn(zn), then |ϕz(x)| = ‖z‖1‖x‖∞, so ‖ϕz‖ = ‖z‖1.

Conversely, if f : c0 →R is a bounded linear functional, define z = (zn) by zn = f (en); then, if v =∑N
n=1 sgn(zn)en ,

∑N
n=1 |zn | = | f (v)| É ‖ f ‖‖v‖∞ = ‖ f ‖, so taking N →∞ we conclude that z ∈ `1.

Furthermore, for every x ∈ c0, f (x)= f
(∑∞

n=1 xn en
)= f

(
limN→∞

∑N
n=1 xn en

)
= limN→∞

∑N
n=1 xn f (en)

=∑∞
n=1 zn xn =ϕz(x) (by continuity of f ), so there is a one-to-one correspondence between c∗0 and `1.

Now we show that there are elements of `∗∞ which are not of the form ϕz with z ∈ `1. Since c0 ⊆ `∞,
and x ∈ `∞, where xn = 1 for all n, does not belong to c0, Mazur’s theorem with K = B(x,1/2) and
W = c0 implies the existence of a f ∈ `∗∞ s.t. f (y)= 0 for all y ∈ c0, and f (x)= 1; this f cannot be written
in the form ϕz , since otherwise z = 0 and f = 0, which is not true.
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Bonus: Details of Derivation of Dual of C[a,b]

(1) v ∈BV[a,b]: Let a = t0 < t1 < ·· · < tn−1 < tn = b, and εk = sgn[ν(tk)−ν(tk−1)]. Then,

n∑
k=1

|ν(tk)−ν(tk−1)| =
n∑

k=1
εk[ν(tk)−ν(tk−1)]= F

(
n∑

k=1
εk[utk −utk−1 ]

)
É ‖F‖

∥∥∥∥∥ n∑
k=1

εk[utk −utk−1 ]

∥∥∥∥∥︸ ︷︷ ︸
=1

= ‖F‖ = ‖ f ‖,

so ν ∈BV[a,b], with TV(ν)É ‖ f ‖.

(2) f (x)=
ˆ b

a
x(t)dν(t): For x ∈ C[a,b], let z =∑n

k=1 x(tk−1)[utk −utk−1 ] ∈ B. Then, ‖z− x‖B =
maxk maxtk−1ÉtÉtk |x(tk−1)− x(t)|→ 0 as maxk |tk − tk−1|→ 0, since x is uniformly continuous.
Also, continuity of F yields F(z)→ F(x)= f (x), but F(z)=∑n

k=1 x(tk−1)[ν(tk)−ν(tk−1)]→ˆ b

a
x(t)dν(t), by definition of the Riemann-Stieltjes integral, so f (x)=

ˆ b

a
x(t)dν(t).

(3) ‖ f ‖ =TV(ν): Since ‖F(z)‖ = ∥∥∑n
k=1 x(tk−1)[ν(tk)−ν(tk−1)]

∥∥É ‖x‖ TV(ν), since F(z)→ F(x)= f (x),
we obtain ‖ f (x)‖ É ‖x‖ TV(ν), i.e., ‖ f ‖ ÉTV(ν). Combining this with (1) yields ‖ f ‖ =TV(ν).
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Bonus: Proof that ⊥[M⊥]= M

It is clear that M ⊆⊥[M⊥].

Let x ∉ M. On lin(x+M), define the linear functional f (αx+m)=α for all m ∈ M. Then,

‖ f ‖ = sup
m∈M

f (x+m)
‖x+m‖ = 1

infm∈M ‖x+m‖ ,

and since M is closed, ‖ f ‖ <∞. Thus, by Hahn-Banach, we can extend f to an x∗ ∈V∗. Since f (x)= 0
on M, x∗ ∈ M⊥, but also 〈x, x∗〉 = 1, so x ∉⊥[M⊥].
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Bonus: Example of a Dense Hyperplane

It is easy to build examples of closed hyperplanes, since these are the contour surfaces of
bounded functionals. Finding dense hyperplanes is a bit harder. Here is an example:

Consider the space c0 ⊆ `∞ of sequences that converge to 0, and let (en)n∈N be the
standard basis of these spaces. Let v0 = (1,1/2,1/3, . . . ) ∈ c0. The set {v0, e1, e2, . . . } is
l.i. (recall that l.i. refers to finite linear combinations); this set can be complemented with
a set {bk}k∈I ⊆ c0 to obtain a Hamel basis, i.e., an l.i. set {v0, e1, e2, . . . }∪ {bk}k∈I s.t. every
x ∈ c0 can be written as a finite linear combination of elements of this set (recall the
application of Zorn’s Lemma from Topic 1).

Define a functional f : c0 →R by

f
(
α0v0 +

∑∞
n=1αn en +∑

k∈I βkbk
)=α0.

Note that f 6= 0 (because f (v0)= 1 6= 0), and since en ∈Ker f := {x ∈ c0 : f (x)= 0} for every
n ∈N, Ker f is a dense hyperplane in c0. Exercise: prove that f is unbounded.
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Bonus: Proof of Properties of Minkowski Functional

(1) 0É p(x)<∞ for all x ∈V :
By definition, p(x)Ê 0. Also, since 0 ∈ int K , B(0,δ)⊆ K for some δ> 0, so for every ε> 0 and x ∈V ,
x ∈ B(0,‖x‖+εδ)= (‖x‖/δ+ε)B(0,δ)⊆ (‖x‖/δ+ε)K , thus p(x)É ‖x‖/δ+ε<∞.

(2) p(αx)=αp(x) for α> 0:
p(αx)= inf {r > 0: αx ∈ rK}= inf {αr̃ > 0: x ∈ r̃K}=αp(x).

(3) p(x1 + x2)É p(x1)+ p(x2):
Given ε> 0, let rk ∈ [p(xk), p(xk)+ε], so xk /rk ∈ K (k = 1,2). Then,
(x1 + x2)/(r1 + r2)= [r1/(r1 + r2)](x1/r1)+ [r2/(r1 + r2)](x2/r2) ∈ K , since this is a convex
combination of x1/r1 and x2/r2, and K is convex. Hence, p(x1 + x2)É r1 + r2 É p(x1)+ p(x2)+2ε,
and since ε> 0 was arbitrary, letting ε→ 0 shows that p is sublinear.

(4) p is continuous:
By (1), if xn → 0, 0É p(xn)É ‖xn‖/δ→ 0, so p is continuous at 0. Also, if xn → x, p(x)É p(x− xn)+
p(xn) and p(xn)É p(xn − x)+ p(x), so −p(xn − x)É p(x)− p(xn)É p(x− xn). Thus, since xn − x → 0
and x− xn → 0, p(xn)→ p(x) and p is continuous.

(5) K = {x : p(x)É 1} , int K = {x : p(x)< 1}:
If x ∈ K , p(x)É 1, so if xn ∈ K → x ∈V , by (4), p(x)É 1, thus K ⊆ {x : p(x)É 1}, and if x ∈ int K , there
is an ε> 0 s.t. (1+ε)x ∈ K , so int K ⊆ {x : p(x)< 1}. Conversely, if x ∉ K , there is an ε ∈ (0,1) s.t.
(1−δ)x ∉ K for all 0É δÉ ε, hence p(x)> 1 and K = {x : p(x)É 1}, and if p(x)< 1, x ∈ K , so p−1((0,1))
is a nbd of x, thus int K = {x : p(x)< 1}.
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Bonus: Why Do We Need int K 6= ; in Mazur’s Theorem?

If int K =;, it is not possible in general to find a hyperplane H containing W s.t. K lies
on one side of H.

Counter-example
In V =R3, let W =R2 × {0} and K = {(0,0)}×R, as shown in the figure below. Note that
int K =;. While W ∩ int K =;, there is only one hyperplane containing the plane W
(itself: H =W!), and K lies on both sides of it.

W

K
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Bonus: Weak∗ Convergence

A sequence (xn) in a normed space V is said to (strongly) converge to x ∈V if ‖x− xn‖→ 0.

Another notion of convergence in V is: (xn) converges weakly to x ∈V if 〈xn, x∗〉→ 〈x, x∗〉
as n →∞ for all x∗ ∈V∗. If xn → x strongly, then

∣∣〈xn, x∗〉−〈x, x∗〉∣∣É ‖x∗‖‖xn − x‖→ 0, so
xn → x weakly too.

Example. In `2, consider the sequence (en) with en = (0, . . . ,0,1,0, . . . , with 1 in the n-th
place. For every x∗ = (η1,η2, . . . ), 〈en, x∗〉 = ηn → 0 as n →∞, so en → 0 weakly. However,
‖en −0‖ = 1 for every n, so en does not converge to 0 strongly.

In the dual space V∗, we can similarly define strong and weak convergence (since it is a
normed space), but an even weaker notion is available:

Definition
(x∗n) converges in weak∗-sense to x∗ ∈V∗ if 〈x, x∗n〉→ 〈x, x∗〉 as n →∞ for all x ∈V .

Weak convergence in V∗ implies weak∗ convergence, since in the former one requires
that 〈x∗n, x∗∗〉→ 〈x∗, x∗∗〉 for all x∗∗ ∈V∗∗, where V∗∗ ⊇V .
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Bonus: Weak∗ Convergence (cont.)

Example. For V = c0 ⊆ `∞, the set of sequences that converge to 0, V∗ = `1 and
V∗∗ = `∞ (see Bonus Slide 43). In V∗ = `1, en → 0 weakly∗, but not weakly, since
〈en, x∗∗〉 6→ 0 for x∗∗ = (1,1, . . . ) ∈V∗∗.

Weak∗ convergence corresponds to point-wise convergence for linear functionals, so it has
the relative topology on V∗ of the product topology of RV =∏

x∈V R; in particular, the
weak∗ topology is Hausdorff but not first-countable in general. Also,

Theorem (Banach-Alaoglu). The closed unit ball in V∗, K , is weak∗-compact.
Proof. Since K = {x∗ ∈V∗ : |x∗(x)| É ‖x‖ for all x ∈V }=V∗∩∏

x∈V f −1
x ([−‖x‖,‖x‖])=: V∗∩D, where

fx : V∗ →C given by fx(x∗)= x∗(x) is weak∗-continuous (see Slide 52), and D is compact by Tychonoff,
it suffices to show that K is closed. If f ∈ K ∩D, pick x, y ∈V , α,β ∈R, and ε> 0, and let g ∈ K s.t.
| f (x)− g(x)| < ε, | f (y)− g(y)| < ε and | f (αx+βy)− g(αx+βy)| < ε. Then, | f (αx+βy)−α f (x)−β f (y)| É
| f (αx+βy)− g(αx+βy)|+ |α||g(x)− f (x)|+ |β||g(y)− f (y)| < (1+|α|+ |β|)ε and | f (x)| É | f (x)− g(x)|+‖g‖ <
ε+1, and since ε, x, y,α,β were arbitrary, f is linear and ‖ f ‖ É 1, so f ∈ K and K is closed.
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Bonus: Weak∗ Convergence (cont.)

Weak∗-compactness is useful for establishing existence of solutions of optimization
problems involving a weak∗-continuous functional on a dual space.

For example, if the variables of a convex optimization problem are linear functionals on a
normed space X , and the second dual X∗∗ does not have a simple characterization, one
cannot write the Lagrangian dual in an explicit form (see Topic 9!). However, the
following lemma states that one can still approximate, in a weak∗ sense, the dual by an
optimization problem in X !

Lemma. Let X be a normed space. Then, the embedding of X into its second dual via its
natural mapping, ϕ(X ), is weak∗-dense in X∗∗.
Proof. Take a y ∈ X∗∗, f1, . . . , fn ∈ X∗, and some ε> 0. To establish the weak∗-denseness of ϕ(X ) in
X∗∗, we need to show that there is an x ∈ X s.t.

|〈 f i , y〉−〈 f i ,ϕ(x)〉| = |〈 f i , y〉−〈x, f i〉| < ε, for all i = 1, . . . ,n.

We shall prove a stronger statement, namely, that f i (x)= y( f i ) for all i = 1, . . . ,n. By a problem of
Homework 4, this system of equations has a solution x ∈ X iff for every λ1, . . . ,λn ∈R,

∑n
i=1λi f i = 0

implies that
∑n

i=1λi y( f i )= 0, which holds due to the linearity of y:
∑n

i=1λi y( f i )= y
(∑n

i=1λi f i
)
= y(0)

= 0. This concludes the proof.
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Bonus: Weak∗ Convergence (cont.)

The weak∗ topology of V∗ is the weakest in which functionals f (x∗)= 〈x, x∗〉 on V∗, for
some x ∈V , are continuous (i.e., every other such topology contains the open sets of the
weak∗ topology). This is because for | f (x∗)| = |〈x, x∗〉| < ε to hold, the topology should
contain open sets of the form {x∗ ∈V∗ : |〈x, x∗〉| < ε} for all x ∈V , as well as finite
intersections of these sets, which generate the weak∗ topology. Conversely,

Theorem. Every weak∗-continuous linear functional on V∗ has the form f (x∗)= 〈x, x∗〉
for some x ∈V .

Proof. Let f be a weak∗-continuous linear functional on V∗. Then, for every ε> 0, there is a set
U = {x∗ : |〈xk , x∗〉| < δ for k = 1, . . . ,n} where x1, . . . , xn ∈V , s.t. if x∗ ∈U, | f (x∗)| < ε. Thus, by linearity,
| f (x∗)| É (ε/δ)maxk∈{1,...,n} |〈xk , x∗〉|, so if 〈xk , x∗〉 = 0 for all k, then f (x∗)= 0; assume now w.l.o.g. that
{x1, . . . , xn} is l.i. Let F(x∗)= (〈x1, x∗〉, . . . ,〈xn , x∗〉, f (x∗)). Since there is a nbd of (0, . . . ,0,1) not
intersecting R(F), by Mazur’s theorem there is a λ ∈Rn+1 \{0} s.t. λT F(x∗)= 0 for all x∗, i.e.,〈∑n

k=1λk xk , x∗
〉+ λn+1 f (x∗)= 0 for all x∗, and since {x1, . . . , xn} are l.i., λn+1 6= 0, so

f (x∗)=
〈∑n

k=1(−λk /λn+1)xk , x∗
〉

.
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Bonus: Weak∗ Convergence (cont.)

Let B,B∗ be the closed unit balls in V , V∗ respectively. The following is a converse of the
Banach-Alaoglu theorem:

Theorem (Krein-Smulian). If E ⊆V∗ is convex and s.t. E∩ (rB∗) is weak∗-compact for
every r > 0, then E is weak∗-closed.

Proof
Firstly note that E is norm-closed, since if (x∗n) is a sequence in E that converges to x∗ ∈V∗, then (x∗n)
is bounded, i.e., ‖x∗n‖ É M for some M > 0, thus x∗n ∈ E∩ (MB∗) for all n, so x∗ ∈ E∩ (MB∗)⊆ E. This
means that if x∗ ∈V∗ \ E, there is a ball centered at x∗ which does not intersect E; thus, by
translation and scaling, the theorem will be proven by showing that “if E∩B∗ =;, then there exists an
x ∈V s.t. 〈x, x∗〉 Ê 1 for every x∗ ∈ E”: since {x∗ : 〈x, x∗〉 Ê 1} is a weak∗-closed half-space, E is the
intersection of closed half-spaces, and hence it is weak∗-closed.

Next, given a subset F ⊆ X , define its polar P(F) := {x∗ : |〈x, x∗〉| É 1 for all x ∈ F}; notice that the
intersection of all sets P(F) as F ranges over all finite subsets of r−1B is exactly rB∗.
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Bonus: Weak∗ Convergence (cont.)

Proof (cont.)
To establish the proposition, let F0 = {0}, and assume that finite sets F0, . . . ,Fn−1 have been chosen s.t.
Fk ⊆ k−1B and P(F0)∩·· ·∩P(Fn−1)∩E∩nB∗ =;; note that this holds for n = 1. Let
Q = P(F0)∩·· ·∩P(Fn−1)∩E∩ (n+1)B∗; if P(F)∩Q 6= ; for every finite set F ⊆ n−1B, the
weak∗-compactness of Q implies (via the finite intersection property) that nB∗∩Q 6= ;, which
contradicts the properties of F0, . . . ,Fn−1. Hence, there is a finite set Fn ⊆ n−1B s.t. P(Fn)∩Q =;,
which yields the sequence (Fn).

By construction, (Fn) satisfies E∩⋂∞
n=1 P(Fn)= E∩P(∪Fn)=;. Now, arrange the elements of ∪Fn in

a sequence (xn); note that ‖xn‖→ 0. Define T : V∗ → c0 (the space of sequences converging to 0) by
Tx∗ = (〈xn , x∗〉). T(E) is a convex subset of c0, and, due to E∩P(∪Fn)=;, ‖Tx∗‖ = supn |〈xn , x∗〉| Ê 1
for every x∗ ∈ E. Thus, since c∗0 = `1 (see previous bonus slides), by the separating hyperplane theorem
there is a y ∈ `1 (i.e.,

∑∞
n=1 |yn | <∞) s.t. 〈Tx∗, y〉 =∑∞

n=1 yn〈xn , x∗〉 Ê 1 for all x∗ ∈ E. The vector
x =∑∞

n=1 yn xn is well defined (why?) and it satisfies the condition 〈x, x∗〉 Ê 1 for every x∗ ∈ E.
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Bonus: Krein-Milman and Carathéodory Theorems

Motivation. Consider a convex set in R3, such as a polytope.

A polytope contains important subsets of points, such as ver-
tices, edges and faces, which are special cases of extreme sets,
that include an entire line segment if one of their interior
points is a part of them. Extreme points (or vertices) are sin-
gleton extreme sets.

Extreme sets can be found by maximizing a linear function over the
polytope: the set of maximizers is an extreme set.
Thus, one can find extreme points by iteratively maximizing linear
functionals over smaller and smaller extreme sets.

Given a set of points, its convex hull is the set of all con-
vex combinations of these points.
The convex hull can be found graphically (in 2D) by en-
closing the points with a rubber band.
Note that a polytope is the convex hull of its vertices (or
extreme points).

Cristian R. Rojas Topic 7: Dual Spaces 55



Bonus: Krein-Milman and Carathéodory Theorems (cont.)

The Krein-Milman theorem is one of the cornerstones of functional analysis, as it extends
to very general vector spaces some of the intuitive results of Euclidean geometry shown
in the previous slide. To state it, we first need some definitions:

Definitions
- Topological vector space: a vector space V over F with a Hausdorff topology s.t. the

addition + : V ×V →V and scalar multiplication · : F ×V →V operations are
continuous. Every normed space induces a topological vector space.

- Locally convex topological (LCT) vector space: a real topological vector space V s.t.
for every x ∈V and every nbd U of x, there is a convex nbd W ⊆U of x.

- V∗ (dual of a topological vector space V ): set of continuous linear functionals on V .

- Extreme point of a convex set K : a point x ∈ K s.t. if x =λy+ (1−λ)z with y, z ∈ K and
λ ∈ [0,1], then either λ= 0 or λ= 1.

- conv(X ) (convex hull of a subset X of a real vector space): set of all convex
combinations of points in X (i.e., expressions α1x1 +·· ·+αnxn where α1, . . . ,αn Ê 0,∑

kαk = 1, x1, . . . , xn ∈ X , and n ∈N).
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

In locally convex topological vector spaces, linear functionals can “separate points”:

Theorem (separation of points)
If V is an LCT vector space, V∗ separates points in V (i.e., if x, y ∈V , x 6= y, there is an
f ∈V∗ s.t. f (x) 6= f (y)).

Proof. Since V is an LCT vector space, all properties of the Minkowski functional of a convex set hold.
In particular, if U is a convex set and 0 ∈ int U, then p is finite, because scalar multiplication is
continuous, so for every z ∈V there is an α ∈R s.t. αz ∈U.

Therefore, Mazur’s theorem applies to LCT vector spaces, as well as its 4 corollaries. Corollary 3, in
particular implies this result, by taking K = {y}.

Corollary (separation of a convex set and a point)
If K is a closed, convex set in an LCT vector space V , and y ∈V \ K , then there is an
f ∈V∗ s.t. f (x)É c for all x ∈ K , and f (y)> c.
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

Theorem (Krein-Milman)
Let V be an LCT vector space, and K ⊆V a convex, compact and non-empty set. Then:

(i) K has at least one extreme point, and
(ii) K is the closure of the convex hull of its extreme points.

Proof
(i) Call a set E ⊆ K extreme if it is convex, compact, non-empty and s.t. if x ∈ E is a convex combination
of y, z ∈ K , then both y, z ∈ E. Since K is extreme, the collection F of all extreme subsets of K is not
empty. Partially order F by set inclusion; we will show that every subchain {Eα} of F has a lower
bound in F,

⋂
αEα.

⋂
αEα is clearly convex, compact (as it is the intersection of compact sets), and if

x ∈⋂
αEα is a convex combination of y, z ∈ K , then for every α, x ∈ Eα, so both y, z ∈ Eα, and hence

y, z ∈⋂
αEα. It remains to show that

⋂
αEα is non-empty: if

⋂
αEα =;, then

⋃
αEc

α = K , but since K is
compact, there is a finite subcollection {Ec

αk
}k of {Ec

α} whose union is K ; however, since {Ec
αk

}k is
totally ordered, there is a largest extreme set Ec

αN = K , i.e., EαN =;, which is a contradiction.

By Zorn’s lemma, K has a minimal extreme subset E. If E had at least two points, by the theorem on
separation of points, there is an f ∈V∗ that separates them.
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

Proof (cont.)
Since E is compact and f is continuous and non-constant, it achieves its maximum, say, fmax, on some
proper subset M of E, which is closed (and hence compact) due to the continuity of f . M is convex, and
if x ∈ M satisfies x =λy+ (1−λ)z for some y, z ∈ K and λ ∈ [0,1], then both y, z ∈ E and furthermore
fmax = f (x)=λ f (y)+ (1−λ) f (z), so f (y)= f (z)= fmax and y, z ∈ M; thus, M is a smaller extreme subset
of K than E, a contradiction, so E has only one point, which is an extreme point of K .

(ii) Let Ke be the set of all extreme points of K , and Ce = conv(Ke)⊆ K . If x ∉ Ce , by the corollary on
the separation of a convex set and a point, there is an f ∈V∗ s.t. f (y)É c for all y ∈ Ce and f (x)> c. As
before, f achieves its maximum over K , fmax, on some closed non-empty set E ⊆ K . If y ∈ E satisfies
y=λz+ (1−λ)w for some z,w ∈ K and λ ∈ [0,1], then fmax = f (y)=λ f (z)+ (1−λ) f (w), so f (z)= f (w)=
fmax and z,w ∈ E, hence E is extreme. By part (i), E should contain at least one extreme point, p,
which belongs to Ke ⊆ Ce , hence fmax = f (p)É c. Therefore, since f (x)> c Ê fmax, x ∉ K . Thus, Ce ⊇ K ,
which implies that Ce = K .
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

Example: c0 is not the dual space of a normed space

By Banach-Alaoglu, the closed unit ball of a dual space is weak∗-compact, as well as
convex and non-empty, hence by Krein-Milman, it should contain at least one extreme
point.

However, the closed unit ball of c0 does not have extreme points: indeed, let x ∈ c0,
‖x‖ É 1. By definition, x = (xn), with xn → 0, so there is an N ∈N s.t. |xn| < 1/2 for all
n Ê N. Let y1, y2 ∈ c0 be s.t. y1

n = y2
n = xn for n É N and y1

n = xn +2−n, y2
n = xn −2−n for

n > N. Then, ‖y1‖ É 1, ‖y2‖ É 1, x = (1/2)(y1 + y2), but y1 6= x, y2 6= x, so x is not an
extreme point.
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

To apply Krein-Milman, the following lemma is often useful:

Lemma. If V is an LCT vector space, K ⊆V a compact and convex set, and F ⊆ K a
compact set s.t. conv(F)= K , then the extreme points of K are contained in F.

Proof. Let x be an extreme point of K not in F. Since F is compact, there is a nbd U0 of 0 s.t.
(x+U0)∩F =;, and a convex nbd U of 0 s.t. U −U ⊆U0, so (x+U)∩ (F +U)=;, hence x ∉ F +U.
The family {y+U}y∈F is an open cover of F, so by compactness, {yk +U}k=1,...,n is a finite subcover. Let

Qk = conv([yk +U]∩K)⊆ yk +U; note that Qk is closed, and hence a compact subset of K , therefore

K = conv(Q1 ∪·· ·∪Qn)= conv(Q1 ∪·· ·∪Qn).

(This result is proven by induction on n: for n = 2, the mapping ϕ : [0,1]×Q1 ×Q2 → conv(Q1 ∪Q2)
given by ϕ(α, y1, y2)=αy1 + (1−α)y2 is continuous, and [0,1]×Q1 ×Q2 is compact, hence
ϕ([0,1]×Q1 ×Q2)= conv(Q1 ∪Q2) is compact, so conv(Q1 ∪Q2)= conv(Q1 ∪Q2).)

Since x ∈ K , x =∑n
k=1αk xk for xk ∈Qk , αk Ê 0, α1 +·· ·+αn = 1. But x is an extreme point, so x = xk for

some k, which implies that x ∈Qk ⊆ yk +U ⊆ F +U, a contradiction.
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

In finite dimensions, the Krein-Milman theorem can be made more explicit:

Theorem (Carathéodory) Let X ⊆RN . Every point x ∈ conv(X ) can be written as a
convex combination of at most N +1 points from X .

Proof. Let x ∈ conv(X ). Then, x =λ1x1 +·· ·+λn xn , where λ1, . . . ,λn > 0, λ1 +·· ·+λn = 1 and
x1, . . . , xn ∈ X . If n > N +1, the points x2 − x1, . . . , xn − x1 are l.d., i.e., µ2(x2 − x1)+·· ·+ µn(xn − x1)= 0 for
some µ2, . . . ,µn ∈R, not all zero. Defining µ1 =−µ2 −·· ·−µn , we have that µ1x1 +·· ·+µn xn = 0 and
µ1 +·· ·+µn = 0. Since not all µ’s are zero, there is at least one µk > 0. Then,

x =λ1x1 +·· ·+λn xn −α(µ1x1 +·· ·+µn xn)= (λ1 −αµ1)x1 +·· ·+ (λn −αµn)xn .

Pick α as the minimum of λ j /µ j , over the indices j for which µ j > 0; note that α> 0 and λ j −αµ j Ê 0 for
all j, but λ j −αµ j = 0 for at least one index. Thus, x = (λ1 −αµ1)x1 +·· ·+ (λn −αµn)xn , where each
coefficient is non-negative, their sum is one, and one of them is zero. Applying this procedure
iteratively one can write x as a convex combination of at most N +1 points.
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Bonus: Krein-Milman and Carathéodory Theorems (cont.)

Application: Optimal multisine spectrum
In experimental design, one searches for an input cumulative spectrum Φopt (a
non-decreasing function Φ : [0,π]→R+0 s.t. Φopt(0)= 0) s.t. the information matrix IF of a
parameter θ ∈Rd is maximized in some sense, under a power constraint
Φ(π)= ´ π0 dΦ(ω)= 1. Now,

IF (Φ)≈
ˆ π

0
F(ω)dΦ(ω) ∈Rd×d , F(ω) : symmetric positive semi-definite matrix.

Note that, under the power constraint, IF (Φ) lies in the convex hull of {F(ω) : ω ∈ [0,π]},
which has dimension d(d+1)/2 (since F(ω) is a symmetric matrix). Thus, by
Carathéodory’s Theorem, IF (Φopt) is a convex combination of at most n = d(d+1)/2+1
matrices F(ω1), . . . ,F(ωd(d+1)/2+1), i.e., for some λ1, . . . ,λn Ê 0,

IF (Φopt)=λ1F(ω1)+·· ·+λnF(ωn)=
ˆ π

0
F(ω) [λ1δ(ω−ω1)+·· ·+λnδ(ω−ωn)]dω,

where δ is the Dirac distribution. Therefore Φopt can be replaced by a “multisine”
spectrum with frequencies at ω1, . . . ,ωn to obtain the same maximal information matrix!
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Bonus: Positive Linear Functionals

Let X be a topological space. A linear functional F on C(X ) is positive, denoted F Ê 0, if
F( f )Ê 0 whenever f (x)Ê 0 for all x ∈ X . Positive linear functionals are called Borel
measures on X , and those of unit norm are called Borel probability measures on X .

Lemma (Cauchy-Schwarz inequality for positive linear functionals)
If F : C(X )→R is a positive linear functional, and f , g ∈ C(X ), then [F( f g)]2 É F( f 2)F(g2)
Proof. Since F[(λ f + g)2]=λ2F( f 2)+2λF( f g)+F(g2)Ê 0 for all λ ∈R, the discriminant
4[F( f g)]2 −4F( f 2)F(g2) is non-positive.

Lemma (characterization of positive linear functionals)
A linear functional F : C(X )→R is positive iff F(1)= ‖F‖, where 1 : x ∈ C(X ) 7→ 1.
Proof.
(⇒) If F Ê 0, then F(1)É ‖F‖, since ‖1‖ = 1, and, by Cauchy-Schwarz, for every f ∈ C(X ) of unit norm,

[F( f )]2 = [F(1 f )]2 É F(12)F( f 2)É F(1)‖F‖, since ‖ f 2‖ É ‖ f ‖2 É 1; taking the supremum over all f
of unit norm, ‖F‖2 É F(1)‖F‖, so in conclusion F(1)= ‖F‖.

(⇐) If f ∈ C(X ) satisfies f (x)Ê 0 for all x, and ‖ f ‖ É 1, then also 1(x)− f (x)Ê 0, and ‖1− f ‖ É 1, so
‖F‖−F( f )= F(1)−F( f )= F(1− f )É ‖F‖, thus F( f )Ê 0. By linearity, F is positive.
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Bonus: Positive Linear Functionals (cont.)

Lemma (Jordan decomposition for linear functionals)
Every l ∈ C(X )∗, where X is compact, can be written as l = l+− l−, where l+, l− ∈ C(X )∗
are positive, and ‖l‖ = ‖l+‖+‖l−‖.

Proof. Let S = {l ∈ C(X )∗ : l(1)= ‖l‖ É 1} and U = {l ∈ C(X )∗ : ‖l‖ É 1}; by Banach-Alaoglu, S and U are
weak∗-compact. We will first show that U equals K = conv(S∪ (−S)). If l ∈ K , then l =αl1 − (1−α)l2,
with l1, l2 ∈ S and α ∈ [0,1] (since S is convex, every convex combination in S∪ (−S) can be reduced to
this form); hence ‖l‖ Éα‖l1‖+ (1−α)‖l2‖ É 1, so K ⊆U. Furthermore, K is weak∗-compact: indeed,
define ϕ : S×S× [0,1]→U as ϕ(l1, l2,α)=αl1 − (1−α)l2; this map is continuous and S×S× [0,1] is the
product of compact sets, hence it is compact, and K =R(ϕ) is compact. Suppose now that l ∈U \ K . By
the corollary on the separation of a convex set and a point, there is a weak∗-continuous functional f
on C(X )∗ s.t. f (l)> c and f (m)É c for all m ∈ K . This f is of the form f (m)= m(x) for some x ∈ C(X ), and
since K is symmetric (i.e., m ∈ K iff −m ∈ K), |m(x)| É c for all m ∈ K . Let t ∈ X s.t. |x(t)| = maxτ∈X |x(τ)|,
and define m̂ ∈ C(X )∗ as m̂(y)= y(t) for all y ∈ C(X ), hence m̂ Ê 0 and ‖m̂‖ = 1, so ‖x‖ = |m̂(x)| =
supm∈S |m(x)| = supm∈S | f (m)| É c. Thus, ‖x‖ É c but l(x)> c, contradicting that ‖l‖ É 1; hence K =U.
Now, take an l ∈ C(X )∗; assume w.l.o.g. that ‖l‖ = 1. As l ∈U = conv(S∪ (−S)), l =αl1 − (1−α)l2 for
some l1, l2 ∈ S and α ∈ [0,1]. Define the positive functionals l+ =αl1 and l− = (1−α)l2, and note that
‖l+‖+‖l−‖ =α‖l1‖+ (1−α)‖l2‖ É 1= ‖l‖ = ‖l+− l−‖ É ‖l+‖+‖l−‖.
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Bonus: Positive Linear Functionals (cont.)

Lemma (Extreme points of Borel probability measures)
The extreme points of the set ∆(X ) of Borel probability measures on X are the delta
measures δx for x ∈ X , where δx( f )= f (x) for all f ∈ C(X ).

Proof (Barvinok, 2002, and Dunford&Schwartz, 1958)
Let x ∈ X . Assume that δx =αl1 + (1−α)l2, where l1, l2 ∈∆(X ) and α ∈ (0,1). If f ∈ C(X ) satisfies
f (x)= 1 and f (y)É 1 for all y ∈ X , then lk( f )= lk(1− (1− f ))= lk(1)− lk(1− f )É 1 for k = 1,2, but
δx( f )= f (x)= 1, so lk( f )= 1. Hence, l1, l2 agree with δx on every function with its maximum at x. Now,
take any f ∈ C(X ), and write it as f = f1 − f2, where f1(y)=min{ f (x), f (y)} and f2(y)=
min{0, f (x)− f (y)}. Then, f1, f2 attain their maxima at x, so lk( f )= lk( f1)− lk( f2)= f1(x)− f2(x)= f (x)=
δx( f ), i.e., δx is extreme.
Now, let A = {δx : x ∈ X }⊆∆(X ). Since ∆(X ) is convex and weak∗-closed, conv(A)⊆∆(X ) (the left side is
the weak∗-closure). If l ∈ C(X )∗ \conv(A), by the corollary on the separation between a convex set and
a point, there is an f ∈ C(X ) s.t. l( f )> c but δx( f )= f (x)É c for all x ∈ X , so l ∉∆(X ). Therefore,
conv(A)=∆(X ). On the other hand, A is weak∗-closed in C(X )∗ (why?), and hence weak∗-compact by
Banach-Alaoglu, so the lemma on Slide 61 implies that all extreme points of ∆(X ) are in A.

Corollary. The extreme points of U = {l ∈ C(X )∗ : ‖l‖ É 1} are δx and −δx for x ∈ X .
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Bonus: Convex Functions and Jensen’s Inequality

Definitions
Let X be a normed space, and f : X →R.

- f is convex if f (λx+ (1−λ)y)Éλ f (x)+ (1−λ) f (y) for all x, y ∈ X and λ ∈ [0,1].
- epi f := {(x, y) ∈ X ×R : yÊ f (x)}: epigraph of f : X →R.

A function is convex iff its epigraph is a convex set,
so it can be represented as the intersection of closed
half-spaces that contain it (by Corollary 4 of Mazur’s
theorem). Now, for all a,b ∈R and x∗ ∈ X∗,

a É 〈x, x∗〉+by whenever yÊ f (x)

⇔ a É 〈x, x∗〉+bf (x).

If H = {(x, y) ∈ X ×R : a É 〈x, x∗〉+by} contains epi f , then b cannot be zero nor negative;
otherwise f would be undefined when a > 〈x, x∗〉. Thus, every closed half-space
containing epi f has the form H = {(x, y) ∈ X ×R : c+〈x, x∗〉 É y}, and

f (x)= sup
(c,x∗) : c+〈x̃,x∗〉É f (x̃) for all x̃∈X

c+〈x, x∗〉.
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Bonus: Convex Functions and Jensen’s Inequality (cont.)

Jensen’s Inequality
Let X be a set, and E a Borel probability measure on a set of functions from X to R. Also,
let g : X →R be s.t. E(g) is well-defined, and let f : R→R be a convex function. Then

E( f ◦ g)Ê f (E(g)),

if the left-hand side is well-defined.

Proof. Take a,b ∈R s.t. f (y)Ê ay+b for all y ∈R. Then ( f ◦ g)(x)= f (g(x))Ê ag(x)+b for all x ∈ X , so
applying E yields E( f ◦ g)Ê aE(g)+b. Taking the supremum over all a,b ∈R s.t. f (y)Ê ay+b for every
y ∈R finally gives

E( f ◦ g)Ê sup
(a,b) : a+byÉ f (y) for all y∈X

aE(g)+b = f (E(g)).

Remark. The Borel probability measure E can be, e.g., the Riemann/Lebesgue integral,
or the mathematical expectation operator with respect to a probability measure.
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Bonus: Stone-Weierstrass Theorem

Weierstrass’ Theorem, on the approximation of continuous functions on a real interval by
polynomials, was considerably generalized by M.H. Stone in two directions:

- it applies to continuous functions on an arbitrary compact Hausdorff space, and
- instead of polynomials, it allows for more general algebras of functions.

We will provide a functional-analytic proof of this result, based on the following lemma:

Lemma (spanning criterion)
Let V be a normed space, x ∈V , and Y ⊆V . Then, x ∈ clin Y iff every f ∈V∗ that vanishes
on Y also vanishes on x (i.e., if f (y)= 0 for all y ∈Y , then f (x)= 0).

Proof
(⇒) If f (y)= 0 for all y ∈Y , then by linearity f (y)= 0 for all y ∈ lin Y , and by continuity f (x)= 0 since

x ∈ clin Y .
(⇐) Assume x ∉ clin Y , and define the functional f on lin(clin Y + x) by f (y+αx)=α for all y ∈ clin Y

and α. Let d = infy∈clin Y ‖x− y‖, which is strictly positive since clin Y is closed. Then, ‖y+αx‖ =
|α|‖α−1 y+ x‖ Ê d|α|, so ‖ f ‖ É d−1, and Corollary 1 of Hahn-Banach provides an extension F ∈V∗
of f that vanishes on Y but not on x.
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Bonus: Stone-Weierstrass Theorem (cont.)

Theorem (Stone-Weierstrass)
Let X be a compact Hausdorff space, and let E be a subalgebra of C(X ), i.e., a linear
subspace of C(X ) s.t. if f , g ∈ E, also f g ∈ E. In addition, assume that 1 ∈ E, and that E
separates points of X , i.e., for every pair x, y ∈ X , x 6= y, there is an f ∈ E s.t. f (x) 6= f (y).
Then, E is dense in C(X ).

Proof (adapted from version due to Louis de Branges)
By the spanning criterion, E is dense in C(X ) iff for every l ∈ C(X )∗, l(x)= 0 for all x ∈ E implies that
l = 0. Assume the contrary, and let U be the set of l ∈ C(X )∗ of norm É 1 that vanish on E; by
Banach-Alaoglu, U is weak∗-compact. By Krein-Milman, U has an extreme point, say, l, which should
have unit norm. (Why?)

Let g ∈ E be s.t. 0< g(t)< 1 for all t ∈ X . Since E is an algebra, the functionals l′, l′′ ∈ C(X )∗ defined by
l′( f )= l(gf ) and l′′( f )= l((1− g) f ) also vanish in E. Write l as l = l+− l−, where l+, l− Ê 0, and also l′
and l′′ as l′( f )= l(gf )= l+(gf )− l−(gf )=: l′+( f )− l′−( f ) and l′′( f )= l+((1− g) f )− l−((1− g) f )=:
l′′+( f )− l′′−( f ), where l′+, l′−, l′′+, l′′− Ê 0, and note that ‖l‖ = ‖l+‖+‖l−‖ = l+(1)+ l−(1)= l′+(1)+ l′′+(1)+
l′−(1)+ l′′−(1)= ‖l′+‖+‖l′′+‖+‖l′−‖+‖l′′−‖, while ‖l‖ = ‖l′+ l′′‖ É ‖l′‖+‖l′′‖ É ‖l′+‖+‖l′′+‖+‖l′−‖+‖l′′−‖, so
combining these expressions we see that they should be all equalities, and in particular
‖l‖ = ‖l′‖+‖l′′‖.
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Bonus: Stone-Weierstrass Theorem (cont.)

Proof (cont.)
Let a = ‖l′‖ Êminx∈X g(x)‖l‖ > 0 and similarly b = ‖l′′‖ > 0, so a+b = ‖l‖ = 1. Then, l = a(l′/a)+b(l′′/b)
shows that l is a convex combination of l′/a and l′′/b, both of which have unit norm and vanish in E.
Since l is an extreme point, we have that l = l′/a = l′′/b, i.e., l±([1− g/a] f )= 0 for all f ∈ C(X ), or
|l|(g) |l|( f )= |l|(gf ), where |l|( f )= l+( f )+ l−( f ).

Using |l|(g) |l|( f )= |l|(gf ), we will now show that all functions in the nullspace of |l| in E (which is a
closed hyperplane) have a common zero. Indeed, every g ∈Ker |l|∩E should have a zero in X , because
otherwise g−1 ∈ C(X ), so taking f = g−1 gives |l|(g)|l|(g−1)= |l|(1)> 0, which contradicts the
assumption that |l|(g)= 0. Now, if g1, . . . , gn ∈Ker |l|∩E, then they share a common zero, since
otherwise g = g2

1 +·· ·+ g2
n ∈ E is strictly positive, while |l|(g)= |l|(g2

1)+·· ·+ |l|(g2
n)=

[|l|(g1)]2 +·· ·+ [|l|(gn)]2 = 0, which is a contradiction. Finally, for every g ∈ E, let X g = {x ∈ X : g(x)= 0};
X g is a closed set in X , and every finite intersection X g1 ∩·· ·∩ X gn is non-empty, so by the
compactness of X ,

⋂
g∈Ker |l| X g 6= ;, i.e., all functions in Ker |l|∩E share a common zero.
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Bonus: Stone-Weierstrass Theorem (cont.)

Proof (cont.)
The kernel of any h ∈ E∗ for which h( f g)= h( f )h(g) (called a homomorphism, such as |l|) satisfies
another important property: it is an ideal in E, i.e., it is a linear subspace of E s.t. if f ∈ E and
g ∈Ker h, then f g ∈Ker h (since h( f g)= h( f )h(g)= 0); furthermore, it is a maximal ideal, that is, a
proper subset of E which is not contained in a larger proper ideal of E (since Ker h has co-dimension 1,
so adding an extra dimension would yield E).

Other homomorphisms on E include δx |E for every x ∈ X . Since E separates points on X , Ker δx |E =
{g ∈ E : g(x)= 0} 6=Ker δy|E for x 6= y (indeed: pick a function g ∈ E s.t. g(x)= 0 and g(y)= 1; this g
belongs to Ker δx |E but not to Ker δy|E ).

Therefore, Ker |l|∩E ⊆Ker δx |E for some x ∈ X corresponding to the common zero of the functions in
Ker |l|∩E, but since Ker |l| is a maximal ideal in E, we have that Ker |l|∩E =Ker δx |E , i.e., |l|( f )=
αδx( f )=α f (x) for all f ∈ E, with α= 1 due to the positivity of |l|.

Since δx is an extreme point of the unit ball of C(X )∗, δx = |l| = l++ l− implies that l± =α±δx , so
l = cδx . On the other hand, 1 ∈ E, so cδx(1)= l(1)= 0, thus c = 0 and l = 0, which contradicts the
assumption that ‖l‖ = 1, hence E is dense in C(X ).

Cristian R. Rojas Topic 7: Dual Spaces 72


	Linear Functionals
	Duals of Some Common Banach Spaces
	Hahn-Banach Theorem (Extension of Linear Functionals)
	The Dual of C[a,b]
	Second Dual Space
	Alignment and Orthogonal Complements
	Minimum Norm Problems
	Hahn-Banach Theorem (Geometric Form)
	Bonus Slides

