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Hilbert Space of Random Variables

x1, . . . , xn: finite collection of random variables with E{x2
k}<∞ for each i. Their second

order statistical information is given by n expected values, E{xk} (k = 1, . . . ,n) and the
covariance matrix cov{x1, . . . , xn} ∈Rn×n, whose jk-th entry is E{[x j −E{x j}][xk −E{xk}]}.

Define a Hilbert space H of all linear combinations of the xk ’s, with inner product
(x, y) :=E{xy}. H has dimension at most n (<∞).

Generalization
x1, . . . , xn: collection of m-dimensional random vectors with E

{‖xk‖2}<∞ for each k.

Let H be the Hilbert space of all m-dimensional random vectors whose entries are linear
combinations of the entries of x1, . . . , xn, i.e., x ∈H can be expressed as

x = K1x1 +·· ·+Knxn, where K1, . . . ,Kn ∈Rm×m.

The inner product of H is (x, y) :=E
{
xT y

}= trE
{
xyT}

(x, y ∈H ).
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Least Square Estimate

Suppose that a vector y of measurements (y1, . . . , ym) is available, and we want to find a
vector β ∈Rn (n < m) s.t. y≈Wβ in a minimum Euclidean norm sense, i.e., s.t. ‖y−Wβ‖2
is minimum, where W is given.

To use the projection theorem, consider the Hilbert
space H =Rm, and the closed linear subspace

M = {x ∈ H : x =Wβ for some β ∈Rn}=R(W).

The minimizer βopt should satisfy (y−Wβopt,Wβ)= 0 for all β ∈Rn, or

βTWT [y−Wβopt]= 0 for all β ∈Rn,

i.e., WT y=WTWβopt. Therefore, if the columns of W are l.i.:

βopt = (WTW)−1WT y. (Least squares solution)
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Minimum Variance Estimates

Consider measurements y=Wβ+ε, where both β and ε are random vectors.
We want to minimize E

{∥∥β̂−β∥∥2
2

}
.

Theorem. Assume that [E{yyT }]−1 exists. Then, the linear estimate β̂ of β, based on y,
minimizing E

{∥∥β̂−β∥∥2
2

}
is β̂=E{βyT }[E{yyT }]−1 y, with error covariance

E
{
[β̂−β][β̂−β]T

}=E
{
ββT}−E

{
βyT}[

E
{
yyT}]−1

E
{
yβT}

.

Proof. Let β̂= K y, with K ∈Rn×m . If we consider the Hilbert space H generated from the entries of y
and β, and let M = clin{y1, . . . , ym}, the projection theorem gives (β− β̂)⊥ M, or E

{
βk yT }=E

{
Kk yyT }=

KkE
{
yyT }

(where Kk is the k-th row of K), i.e., K =E
{
βyT }[

E
{
yyT }]−1.

Corollary. If E
{
εεT}=Q º 0, E

{
ββT}= R º 0, E

{
εβT}= 0, with WRWT +Q Â 0, then

β̂= RWT (WRWT +Q)−1 y= (WTQ−1W +R−1)−1WTQ−1 y, with error covariance
R−RWT (WRWT +Q)−1WR = (WTQ−1W +R−1)−1 (assuming Q,R Â 0).
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Minimum Variance Estimates (cont.)

Properties

1. The minimum variance linear estimate of a linear function of β, e.g., Tβ, is Tβ̂.

Proof. If Γy is the optimal estimate of Tβ, then the projection theorem gives E
{
y(Tβ−Γy)T

}= 0,
or Γy= T E

{
βyT }[

E
{
yyT }]−1 y= Tβ̂.

2. If β̂ is the linear minimum variance estimate of β, then it is also the linear estimate
minimizing E

{
(β̂−β)T P(β̂−β)

}
for every P Â 0.

Proof. From property 1, P1/2β̂ is the minimum variance estimate of P1/2β, i.e., β̂ minimizes
E

{∥∥P1/2β̂−P1/2β
∥∥2

2
}=E

{
(β̂−β)T P(β̂−β)

}
.
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Minimum Variance Estimates (cont.)

Properties (cont.)

3. Let β ∈ H (Hilbert space of random variables) and let β̂1 denote its orthogonal
projection on a closed subspace Y1 of H. Let y2 be a vector of m random variables
generating Y2 ⊆ H, ŷ2 the component-wise projection of y2 into Y1, and ỹ2 := y2 − ŷ2.
Then, the projection of β into Y1 +Y2 is

β̂= β̂1 +E
{
β ỹT

2
}[

E
{
ỹ2 ỹT

2
}]−1 ỹ2.

Proof
Let Ỹ2 be s.t. Ỹ2 ⊥Y1 and Y1 ⊕ Ỹ2 =Y1 +Y2.
Also, if Y2 is generated by a finite set of vectors, Ỹ2 is
generated by those vectors minus their projections into
Y1 (why?).
Since the projection into Y1⊕Ỹ2 is equal to the projection
into Y1 plus the projection into Ỹ2, the result follows.
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Minimum Variance Estimates (cont.)

Example
Assume we have an optimal estimate β̂ of a random β ∈Rn, with E

{
(β̂−β)(β̂−β)T

}= R.
Given new measurements y=Wβ+ε, where ε has zero mean, covariance Q, and is
uncorrelated with β and previous measurements, we want to update β̂ to, say, ˆ̂β.

The best estimate of y based on past measurements is ŷ=Wβ̂ (why?), so ỹ= y−Wβ̂=
W(β− β̂)+ε.

By property 3: ˆ̂β= β̂+E
{
β ỹT}[

E
{
ỹ ỹT}]−1 ỹ= β̂+RWT [WRWT +Q]−1(y−Wβ̂).

The error covariance is: E
{(

ˆ̂β−β
)(

ˆ̂β−β
)T}

= R−RWT [WRWT +Q]−1WR. (Exercise!)
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Recursive Estimation

A discrete random process is a sequence (xn) of random variables. (xn) is orthogonal or
white if E{x j xk}=α jδ j−k , and orthonormal if, in addition, α j = 1 ( j ∈N).

We assume that underlying an observed random process there is an orthonormal process.

Examples ((uk)k∈Z: orthonormal process)

1. Moving average: xn =∑∞
k=1 akun−k , where

∑∞
k=1 |ak |2 <∞.

2. Autorregresive of order 1: xn = axn−1 +un−1, |a| < 1.
Notice that this process is equivalent to a moving average: xn =∑∞

k=1 ak−1un−k .

3. Autorregresive of order N: xn +a1xn−1 +·· ·+aN xn−N = un−1,
where the polynomial sN +a1sN−1 +·· ·+aN has all its roots in the open unit disk.
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Recursive Estimation (cont.)

Definition
An n-dimensional state-space model of a random process consists of:

1. State equation: xk+1 =Φkxk +uk (k = 0,1, . . . ), where xk is an n-dimensional state
(random) vector, Φk ∈Rn×n is known, and uk is an n-dimensional random vector of
zero mean and E

{
ukuT

l
}=Qkδk−l .

2. Initial random vector: x0 with an estimate x̂0 s.t. E
{
(x̂0 − x0)(x̂0 − x0)T

}= P0.

3. Measurements: yk = Mkxk +wk (k = 0,1, . . . ), where Mk ∈Rm×n is known, and wk is
an m-dimensional random measurement vector of zero mean and E

{
wkwT

l
}=

Rkδk−l , with Rk Â 0.

In addition, assume that x0, u j and wk are uncorrelated for all j,k Ê 0.
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Recursive Estimation (cont.)

Estimation problem
Find the minimum variance estimate, x̂k|n, of xk given measurements y0, . . . , yn.

We will focus only on the prediction problem: to find x̂k+1|k .

Theorem (Kalman)
x̂k+1|k can be computed recursively from:

x̂k+1|k =ΦkPkMT
k (MkPkMT

k +Rk)−1(yk −Mk x̂k|k−1)+Φk x̂k|k−1,

where Pk is the covariance of x̂k|k−1, which can also be computed recursively from

Pk+1 =ΦkPk[I −MT
k (MkPkMT

k +Rk)−1MkPk]ΦT
k Qk .

The initial conditions for these equations are x̂0|−1 = x̂0 and P0.

Cristian R. Rojas Topic 6: Least Squares Estimation 14



Recursive Estimation (cont.)

Proof
Suppose that measurements y0, . . . , yk−1 are available, as well as x̂k|k−1 and Pk , i.e., we have the
projection of xk onto Yk−1 := clin{y0, . . . , yk−1}.

The new measurement is yk = Mk xk +wk . From the previous example, we have

x̂k|k = x̂k|k−1 +Pk MT
k (MkPk MT

k +Rk)−1(yk −Mk x̂k|k−1)

and covariance matrix Pk|k = Pk −Pk MT
k (MkPk MT

k +Rk)−1MkPk .

Since xk+1 =Φk xk +uk , and uk is uncorrelated to vk and xk , Property 1 gives

x̂k+1|k =Φk x̂k|k ,

with error covariance Pk+1 =ΦkPk|kΦT
k +Qk .
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Dual Approximation Problem

The projection theorem can also be used to explicitly solve some infinite dimensional
problems. To this end, we can restate it as:

Theorem (minimum norm problem)
Let M be a closed subspace of a Hilbert space H. Let x ∈ H, and
the linear variety V = x+ M := {x+ m : m ∈ M}. Then there is a
unique x0 ∈V of minimum norm. Furthermore, x0 ⊥ M.

Proof. Translate V by −x, so that V turns into M, and ‖x0‖ becomes ‖x0 −
x‖, so that the projection theorem can be applied.

Two types of varieties V are of interest: those with finite dimensional M, and those
consisting of all x ∈ H satisfying (for y1, . . . , yn l.i.)

(x, y1)= c1,

... (V has co-dimension n.)

(x, yn)= cn.
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Dual Approximation Problem (cont.)

Theorem
Let {y1, . . . , yn} be l.i. vectors in a Hilbert space H, and x0 ∈ H the vector of minimum
norm s.t. (x, yk)= ck for k = 1, . . . ,n. Then x0 =∑n

k=1βk yk , where the coefficients βk
satisfy

(y1, y1)β1 +·· ·+ (yn, y1)βn = c1,

... (∗)

(y1, yn)β1 +·· ·+ (yn, yn)βn = cn.

Proof. Let M = clin{y1, . . . , yn}. The linear variety of vectors x ∈ H satisfying (x, yk)= ck for k = 1, . . . ,n
is a translation of M⊥. Since M⊥ is closed, existence and uniqueness of x0 follow from the modified
projection theorem (if M⊥ 6= {0}). Furthermore, x0 ⊥ M⊥, i.e., x0 ∈ (M⊥)⊥. Since M is closed, (M⊥)⊥ =
M, so x0 ∈ M, and x0 =∑n

k=1βk yk for some coefficients βk , which must satisfy the constraints
(x0, yk)= ck ; this gives the system of equations (∗).
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Dual Approximation Problem (cont.)

Example
The shaft angular velocity ω of a DC motor driven by a current u satisfies
ω̇(t)+ω(t)= u(t).
The shaft angular position is θ (i.e., θ̇ =ω). The motor is initially at rest: θ(0)=ω(0)= 0.

We want to find the current of minimum energy,
ˆ 1

0
u2(t)dt, that drives the motor to

θ(1)= 1, ω(1)= 0.

This problem can be treated as a minimum norm problem in L2[0,1]: By integration,

ω(1)=
ˆ 1

0
et−1u(t)dt = (u, y1) != 0, y1(t)= et−1,

θ(1)=
ˆ 1

0
(1− et−1)u(t)dt = (u, y2) != 1, y2(t)= 1− et−1.

According to the previous theorem, u(t)=β1et−1 +β2(1− et−1), and by forcing the
constraints,

u(t)= 1
3− e

(1+ e−2et), t ∈ [0,1].
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