EL3370 Mathematical Methods in Signals, Systems and Control

Topic 6: Least Squares Estimation

Cristian R. Rojas

Division of Decision and Control Systems
KTH Royal Institute of Technology

Outline

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Dual Approximation Problem

Outline

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Dual Approximation Problem

Hilbert Space of Random Variables

x_{1}, \ldots, x_{n} : finite collection of random variables with $\mathrm{E}\left\{x_{k}^{2}\right\}<\infty$ for each i. Their second order statistical information is given by n expected values, $\mathrm{E}\left\{x_{k}\right\}(k=1, \ldots, n)$ and the covariance matrix $\operatorname{cov}\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{n \times n}$, whose $j k$-th entry is $\mathrm{E}\left\{\left[x_{j}-\mathrm{E}\left\{x_{j}\right\}\right]\left[x_{k}-\mathrm{E}\left\{x_{k}\right\}\right]\right\}$.
Define a Hilbert space H of all linear combinations of the x_{k} 's, with inner product $(x, y):=\mathrm{E}\{x y\} . H$ has dimension at most $n(<\infty)$.

Generalization

x_{1}, \ldots, x_{n} : collection of m-dimensional random vectors with $\mathrm{E}\left\{\left\|x_{k}\right\|^{2}\right\}<\infty$ for each k.
Let \mathscr{H} be the Hilbert space of all m-dimensional random vectors whose entries are linear combinations of the entries of x_{1}, \ldots, x_{n}, i.e., $x \in \mathscr{H}$ can be expressed as

$$
x=K_{1} x_{1}+\cdots+K_{n} x_{n}, \quad \text { where } K_{1}, \ldots, K_{n} \in \mathbb{R}^{m \times m} .
$$

The inner product of \mathscr{H} is $(x, y):=\mathrm{E}\left\{x^{T} y\right\}=\operatorname{tr} \mathrm{E}\left\{x y^{T}\right\}(x, y \in \mathscr{H})$.

Outline

Hilbert Space of Random Variables
Least Square Estimate
Minimum Variance Estimates
Recursive Estimation
Dual Approximation Problem

Least Square Estimate

Suppose that a vector y of measurements $\left(y_{1}, \ldots, y_{m}\right)$ is available, and we want to find a vector $\beta \in \mathbb{R}^{n}(n<m)$ s.t. $y \approx W \beta$ in a minimum Euclidean norm sense, i.e., s.t. $\|y-W \beta\|_{2}$ is minimum, where W is given.

To use the projection theorem, consider the Hilbert space $H=\mathbb{R}^{m}$, and the closed linear subspace

$$
M=\left\{x \in H: x=W \beta \text { for some } \beta \in \mathbb{R}^{n}\right\}=\mathscr{R}(W)
$$

The minimizer $\beta^{\text {opt }}$ should satisfy $\left(y-W \beta^{\text {opt }}, W \beta\right)=0$ for all $\beta \in \mathbb{R}^{n}$, or

$$
\beta^{T} W^{T}\left[y-W \beta^{\mathrm{opt}}\right]=0 \quad \text { for all } \beta \in \mathbb{R}^{n},
$$

i.e., $W^{T} y=W^{T} W \beta^{\text {opt }}$. Therefore, if the columns of W are l.i.:

$$
\beta^{\mathrm{opt}}=\left(W^{T} W\right)^{-1} W^{T} y . \quad(\text { Least squares solution })
$$

Outline

Hilbert Space of Random Variables
Least Square Estimate
Minimum Variance Estimates
Recursive Estimation
Dual Approximation Problem

Minimum Variance Estimates

Consider measurements $y=W \beta+\varepsilon$, where both β and ε are random vectors.
We want to minimize $\mathrm{E}\left\{\|\hat{\beta}-\beta\|_{2}^{2}\right\}$.
Theorem. Assume that $\left[\mathrm{E}\left\{y y^{T}\right\}\right]^{-1}$ exists. Then, the linear estimate $\hat{\beta}$ of β, based on y, minimizing $\mathrm{E}\left\{\|\hat{\beta}-\beta\|_{2}^{2}\right\}$ is $\hat{\beta}=\mathrm{E}\left\{\beta y^{T}\right\}\left[\mathrm{E}\left\{y y^{T}\right\}\right]^{-1} y$, with error covariance

$$
\mathrm{E}\left\{[\hat{\beta}-\beta][\hat{\beta}-\beta]^{T}\right\}=\mathrm{E}\left\{\beta \beta^{T}\right\}-\mathrm{E}\left\{\beta y^{T}\right\}\left[\mathrm{E}\left\{y y^{T}\right\}\right]^{-1} \mathrm{E}\left\{y \beta^{T}\right\} .
$$

Proof. Let $\hat{\beta}=K y$, with $K \in \mathbb{R}^{n \times m}$. If we consider the Hilbert space H generated from the entries of y and β, and let $M=\operatorname{clin}\left\{y_{1}, \ldots, y_{m}\right\}$, the projection theorem gives $(\beta-\hat{\beta}) \perp M$, or $\mathrm{E}\left\{\beta_{k} y^{T}\right\}=\mathrm{E}\left\{K_{k} y y^{T}\right\}=$ $K_{k} \mathrm{E}\left\{y y^{T}\right\}$ (where K_{k} is the k-th row of K), i.e., $K=\mathrm{E}\left\{\beta y^{T}\right\}\left[\mathrm{E}\left\{y y^{T}\right\}\right]^{-1}$.

Corollary. If $\mathrm{E}\left\{\varepsilon \varepsilon^{T}\right\}=Q \geq 0, \mathrm{E}\left\{\beta \beta^{T}\right\}=R \geq 0, \mathrm{E}\left\{\varepsilon \beta^{T}\right\}=0$, with $W R W^{T}+Q>0$, then $\hat{\beta}=R W^{T}\left(W R W^{T}+Q\right)^{-1} y=\left(W^{T} Q^{-1} W+R^{-1}\right)^{-1} W^{T} Q^{-1} y$, with error covariance $R-R W^{T}\left(W R W^{T}+Q\right)^{-1} W R=\left(W^{T} Q^{-1} W+R^{-1}\right)^{-1}$ (assuming $\left.Q, R>0\right)$.

Minimum Variance Estimates (cont.)

Properties

1. The minimum variance linear estimate of a linear function of β, e.g., $T \beta$, is $T \hat{\beta}$.

Proof. If Γy is the optimal estimate of $T \beta$, then the projection theorem gives $\mathrm{E}\left\{y(T \beta-\Gamma y)^{T}\right\}=0$, or $\Gamma y=T \mathrm{E}\left\{\beta y^{T}\right\}\left[\mathrm{E}\left\{y y^{T}\right\}\right]^{-1} y=T \hat{\beta}$.
2. If $\hat{\beta}$ is the linear minimum variance estimate of β, then it is also the linear estimate minimizing $E\left\{(\hat{\beta}-\beta)^{T} P(\hat{\beta}-\beta)\right\}$ for every $P>0$.
Proof. From property $1, P^{1 / 2} \hat{\beta}$ is the minimum variance estimate of $P^{1 / 2} \beta$, i.e., $\hat{\beta}$ minimizes $\mathrm{E}\left\{\left\|P^{1 / 2} \hat{\beta}-P^{1 / 2} \beta\right\|_{2}^{2}\right\}=\mathrm{E}\left\{(\hat{\beta}-\beta)^{T} P(\hat{\beta}-\beta)\right\}$.

Minimum Variance Estimates (cont.)

Properties (cont.)

3. Let $\beta \in H$ (Hilbert space of random variables) and let $\hat{\beta}_{1}$ denote its orthogonal projection on a closed subspace Y_{1} of H. Let y_{2} be a vector of m random variables generating $Y_{2} \subseteq H, \hat{y}_{2}$ the component-wise projection of y_{2} into Y_{1}, and $\tilde{y}_{2}:=y_{2}-\hat{y}_{2}$. Then, the projection of β into $Y_{1}+Y_{2}$ is

$$
\hat{\beta}=\hat{\beta}_{1}+\mathrm{E}\left\{\beta \tilde{y}_{2}^{T}\right\}\left[\mathrm{E}\left\{\tilde{y}_{2} \tilde{y}_{2}^{T}\right\}\right]^{-1} \tilde{y}_{2}
$$

Proof

Let \tilde{Y}_{2} be s.t. $\tilde{Y}_{2} \perp Y_{1}$ and $Y_{1} \oplus \tilde{Y}_{2}=Y_{1}+Y_{2}$.
Also, if Y_{2} is generated by a finite set of vectors, \tilde{Y}_{2} is generated by those vectors minus their projections into Y_{1} (why?).
Since the projection into $Y_{1} \oplus \tilde{Y}_{2}$ is equal to the projection into Y_{1} plus the projection into \tilde{Y}_{2}, the result follows.

Minimum Variance Estimates (cont.)

Example

Assume we have an optimal estimate $\hat{\beta}$ of a random $\beta \in \mathbb{R}^{n}$, with $\mathrm{E}\left\{(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{T}\right\}=R$. Given new measurements $y=W \beta+\varepsilon$, where ε has zero mean, covariance Q, and is uncorrelated with β and previous measurements, we want to update $\hat{\beta}$ to, say, $\hat{\beta}$.

The best estimate of y based on past measurements is $\hat{y}=W \hat{\beta} \quad$ (why?), so $\tilde{y}=y-W \hat{\beta}=$ $W(\beta-\hat{\beta})+\varepsilon$.

By property 3: $\quad \hat{\hat{\beta}}=\hat{\beta}+\mathrm{E}\left\{\beta \tilde{y}^{T}\right\}\left[\mathrm{E}\left\{\tilde{y} \tilde{y}^{T}\right\}\right]^{-1} \tilde{y}=\hat{\beta}+R W^{T}\left[W R W^{T}+Q\right]^{-1}(y-W \hat{\beta})$.
The error covariance is: $\quad \mathrm{E}\left\{(\hat{\hat{\beta}}-\beta)(\hat{\hat{\beta}}-\beta)^{T}\right\}=R-R W^{T}\left[W R W^{T}+Q\right]^{-1} W R . \quad$ (Exercise!)

Outline

Hilbert Space of Random Variables
Least Square Estimate
Minimum Variance Estimates

Recursive Estimation

Dual Approximation Problem

Recursive Estimation

A discrete random process is a sequence $\left(x_{n}\right)$ of random variables. $\left(x_{n}\right)$ is orthogonal or white if $\mathrm{E}\left\{x_{j} x_{k}\right\}=\alpha_{j} \delta_{j-k}$, and orthonormal if, in addition, $\alpha_{j}=1(j \in \mathbb{N})$.

We assume that underlying an observed random process there is an orthonormal process.

Examples $\left(\left(u_{k}\right)_{k \in \mathbb{Z}}\right.$: orthonormal process)

1. Moving average: $\quad x_{n}=\sum_{k=1}^{\infty} a_{k} u_{n-k}$, where $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$.
2. Autorregresive of order 1: $\quad x_{n}=a x_{n-1}+u_{n-1}, \quad|a|<1$.

Notice that this process is equivalent to a moving average: $x_{n}=\sum_{k=1}^{\infty} a^{k-1} u_{n-k}$.
3. Autorregresive of order $N: \quad x_{n}+a_{1} x_{n-1}+\cdots+a_{N} x_{n-N}=u_{n-1}$, where the polynomial $s^{N}+a_{1} s^{N-1}+\cdots+a_{N}$ has all its roots in the open unit disk.

Recursive Estimation (cont.)

Definition

An n-dimensional state-space model of a random process consists of:

1. State equation: $x_{k+1}=\Phi_{k} x_{k}+u_{k}(k=0,1, \ldots)$, where x_{k} is an n-dimensional state (random) vector, $\Phi_{k} \in \mathbb{R}^{n \times n}$ is known, and u_{k} is an n-dimensional random vector of zero mean and $\mathrm{E}\left\{u_{k} u_{l}^{T}\right\}=Q_{k} \delta_{k-l}$.
2. Initial random vector: x_{0} with an estimate \hat{x}_{0} s.t. $\mathrm{E}\left\{\left(\hat{x}_{0}-x_{0}\right)\left(\hat{x}_{0}-x_{0}\right)^{T}\right\}=P_{0}$.
3. Measurements: $y_{k}=M_{k} x_{k}+w_{k}(k=0,1, \ldots)$, where $M_{k} \in \mathbb{R}^{m \times n}$ is known, and w_{k} is an m-dimensional random measurement vector of zero mean and $\mathrm{E}\left\{w_{k} w_{l}^{T}\right\}=$ $R_{k} \delta_{k-l}$, with $R_{k}>0$.

In addition, assume that x_{0}, u_{j} and w_{k} are uncorrelated for all $j, k \geqslant 0$.

Recursive Estimation (cont.)

Estimation problem

Find the minimum variance estimate, $\hat{x}_{k \mid n}$, of x_{k} given measurements y_{0}, \ldots, y_{n}.
We will focus only on the prediction problem: to find $\hat{x}_{k+1 \mid k}$.

Theorem (Kalman)

$\hat{x}_{k+1 \mid k}$ can be computed recursively from:

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} P_{k} M_{k}^{T}\left(M_{k} P_{k} M_{k}^{T}+R_{k}\right)^{-1}\left(y_{k}-M_{k} \hat{x}_{k \mid k-1}\right)+\Phi_{k} \hat{x}_{k \mid k-1},
$$

where P_{k} is the covariance of $\hat{x}_{k \mid k-1}$, which can also be computed recursively from

$$
P_{k+1}=\Phi_{k} P_{k}\left[I-M_{k}^{T}\left(M_{k} P_{k} M_{k}^{T}+R_{k}\right)^{-1} M_{k} P_{k}\right] \Phi_{k}^{T} Q_{k}
$$

The initial conditions for these equations are $\hat{x}_{0 \mid-1}=\hat{x}_{0}$ and P_{0}.

Recursive Estimation (cont.)

Proof

Suppose that measurements y_{0}, \ldots, y_{k-1} are available, as well as $\hat{x}_{k \mid k-1}$ and P_{k}, i.e., we have the projection of x_{k} onto $Y_{k-1}:=\operatorname{clin}\left\{y_{0}, \ldots, y_{k-1}\right\}$.

The new measurement is $y_{k}=M_{k} x_{k}+w_{k}$. From the previous example, we have

$$
\hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+P_{k} M_{k}^{T}\left(M_{k} P_{k} M_{k}^{T}+R_{k}\right)^{-1}\left(y_{k}-M_{k} \hat{x}_{k \mid k-1}\right)
$$

and covariance matrix $P_{k \mid k}=P_{k}-P_{k} M_{k}^{T}\left(M_{k} P_{k} M_{k}^{T}+R_{k}\right)^{-1} M_{k} P_{k}$.
Since $x_{k+1}=\Phi_{k} x_{k}+u_{k}$, and u_{k} is uncorrelated to v_{k} and x_{k}, Property 1 gives

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} \hat{x}_{k \mid k}
$$

with error covariance $P_{k+1}=\Phi_{k} P_{k \mid k} \Phi_{k}^{T}+Q_{k}$.

Outline

Hilbert Space of Random Variables
Least Square Estimate
Minimum Variance Estimates
Recursive Estimation
Dual Approximation Problem

Dual Approximation Problem

The projection theorem can also be used to explicitly solve some infinite dimensional problems. To this end, we can restate it as:

Theorem (minimum norm problem)

Let M be a closed subspace of a Hilbert space H. Let $x \in H$, and the linear variety $V=x+M:=\{x+m: m \in M\}$. Then there is a unique $x_{0} \in V$ of minimum norm. Furthermore, $x_{0} \perp M$.

Proof. Translate V by $-x$, so that V turns into M, and $\left\|x_{0}\right\|$ becomes $\| x_{0}-$ $x \|$, so that the projection theorem can be applied.

Two types of varieties V are of interest: those with finite dimensional M, and those consisting of all $x \in H$ satisfying (for y_{1}, \ldots, y_{n} l.i.)

$$
\begin{aligned}
\left(x, y_{1}\right) & =c_{1}, \\
& \vdots \\
\left(x, y_{n}\right) & =c_{n} .
\end{aligned} \quad(V \text { has co-dimension } n .)
$$

Dual Approximation Problem (cont.)

Theorem

Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be l.i. vectors in a Hilbert space H, and $x_{0} \in H$ the vector of minimum norm s.t. $\left(x, y_{k}\right)=c_{k}$ for $k=1, \ldots, n$. Then $x_{0}=\sum_{k=1}^{n} \beta_{k} y_{k}$, where the coefficients β_{k} satisfy

$$
\begin{align*}
&\left(y_{1}, y_{1}\right) \beta_{1}+\cdots+\left(y_{n}, y_{1}\right) \beta_{n}=c_{1}, \\
& \vdots \tag{*}\\
&\left(y_{1}, y_{n}\right) \beta_{1}+\cdots+\left(y_{n}, y_{n}\right) \beta_{n}=c_{n} .
\end{align*}
$$

Proof. Let $M=\operatorname{clin}\left\{y_{1}, \ldots, y_{n}\right\}$. The linear variety of vectors $x \in H$ satisfying $\left(x, y_{k}\right)=c_{k}$ for $k=1, \ldots, n$ is a translation of M^{\perp}. Since M^{\perp} is closed, existence and uniqueness of x_{0} follow from the modified projection theorem (if $M^{\perp} \neq\{0\}$). Furthermore, $x_{0} \perp M^{\perp}$, i.e., $x_{0} \in\left(M^{\perp}\right)^{\perp}$. Since M is closed, $\left(M^{\perp}\right)^{\perp}=$ M, so $x_{0} \in M$, and $x_{0}=\sum_{k=1}^{n} \beta_{k} y_{k}$ for some coefficients β_{k}, which must satisfy the constraints (x_{0}, y_{k}) $=c_{k}$; this gives the system of equations (*).

Dual Approximation Problem (cont.)

Example

The shaft angular velocity ω of a DC motor driven by a current u satisfies $\dot{\omega}(t)+\omega(t)=u(t)$.
The shaft angular position is θ (i.e., $\dot{\theta}=\omega$). The motor is initially at rest: $\theta(0)=\omega(0)=0$. We want to find the current of minimum energy, $\int_{0}^{1} u^{2}(t) d t$, that drives the motor to $\theta(1)=1, \omega(1)=0$.

This problem can be treated as a minimum norm problem in $L_{2}[0,1]$: By integration,

$$
\begin{aligned}
\omega(1)=\int_{0}^{1} e^{t-1} u(t) d t=\left(u, y_{1}\right) \stackrel{!}{=} 0, & y_{1}(t)=e^{t-1}, \\
\theta(1)=\int_{0}^{1}\left(1-e^{t-1}\right) u(t) d t=\left(u, y_{2}\right) \stackrel{!}{=} 1, & y_{2}(t)=1-e^{t-1} .
\end{aligned}
$$

According to the previous theorem, $u(t)=\beta_{1} e^{t-1}+\beta_{2}\left(1-e^{t-1}\right)$, and by forcing the constraints,

$$
u(t)=\frac{1}{3-e}\left(1+e-2 e^{t}\right), \quad t \in[0,1] .
$$

Next Topic

Dual Spaces

