EL3370 Mathematical Methods in Signals, Systems and Control

Topic 6: Least Squares Estimation

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

 x_1, \ldots, x_n : finite collection of random variables with $\mathbb{E}\{x_k^2\} < \infty$ for each *i*. Their second order statistical information is given by *n* expected values, $\mathbb{E}\{x_k\}$ ($k = 1, \ldots, n$) and the covariance matrix $\operatorname{cov}\{x_1, \ldots, x_n\} \in \mathbb{R}^{n \times n}$, whose *jk*-th entry is $\mathbb{E}\{[x_j - \mathbb{E}\{x_j\}] [x_k - \mathbb{E}\{x_k\}]\}$.

Define a Hilbert space *H* of all linear combinations of the x_k 's, with inner product $(x, y) := E\{xy\}$. *H* has dimension at most $n (< \infty)$.

Generalization

 x_1, \ldots, x_n : collection of *m*-dimensional random vectors with $\mathbb{E} \{ \|x_k\|^2 \} < \infty$ for each *k*.

Let \mathscr{H} be the Hilbert space of all *m*-dimensional random vectors whose entries are linear combinations of the entries of x_1, \ldots, x_n , *i.e.*, $x \in \mathscr{H}$ can be expressed as

 $x = K_1 x_1 + \dots + K_n x_n$, where $K_1, \dots, K_n \in \mathbb{R}^{m \times m}$.

The inner product of $\mathcal H$ is $(x,y):=\mathrm{E}\big\{x^Ty\big\}=\mathrm{tr}\,\mathrm{E}\big\{xy^T\big\}\;(x,y\in\mathcal H).$

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Least Square Estimate

Suppose that a vector *y* of measurements (y_1, \ldots, y_m) is available, and we want to find a vector $\beta \in \mathbb{R}^n$ (n < m) s.t. $y \approx W\beta$ in a minimum Euclidean norm sense, *i.e.*, s.t. $||y - W\beta||_2$ is minimum, where *W* is given.

To use the projection theorem, consider the Hilbert space $H = \mathbb{R}^m$, and the closed linear subspace

 $M = \{x \in H : x = W\beta \text{ for some } \beta \in \mathbb{R}^n\} = \mathscr{R}(W).$

The minimizer β^{opt} should satisfy $(y - W\beta^{\text{opt}}, W\beta) = 0$ for all $\beta \in \mathbb{R}^n$, or

$$\beta^T W^T [y - W \beta^{\text{opt}}] = 0 \text{ for all } \beta \in \mathbb{R}^n,$$

i.e., $W^T y = W^T W \beta^{\text{opt}}$. Therefore, if the columns of W are l.i.: $\beta^{\text{opt}} = (W^T W)^{-1} W^T y.$ (Least squares solution)

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Consider measurements $y = W\beta + \varepsilon$, where both β and ε are random vectors. We want to minimize $\mathbb{E}\left\{\|\hat{\beta} - \beta\|_2^2\right\}$.

Theorem. Assume that $[\mathbb{E}\{yy^T\}]^{-1}$ exists. Then, the linear estimate $\hat{\beta}$ of β , based on y, minimizing $\mathbb{E}\left\{\|\hat{\beta} - \beta\|_2^2\right\}$ is $\hat{\beta} = \mathbb{E}\{\beta y^T\}[\mathbb{E}\{yy^T\}]^{-1}y$, with error covariance

$$\mathbf{E}\{[\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}][\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}]^T\} = \mathbf{E}\{\boldsymbol{\beta}\boldsymbol{\beta}^T\} - \mathbf{E}\{\boldsymbol{\beta}\boldsymbol{y}^T\} \left[\mathbf{E}\{\boldsymbol{y}\boldsymbol{y}^T\}\right]^{-1} \mathbf{E}\{\boldsymbol{y}\boldsymbol{\beta}^T\}.$$

Proof. Let $\hat{\beta} = K_y$, with $K \in \mathbb{R}^{n \times m}$. If we consider the Hilbert space H generated from the entries of y and β , and let $M = \operatorname{clin}\{y_1, \dots, y_m\}$, the projection theorem gives $(\beta - \hat{\beta}) \perp M$, or $\operatorname{E}\{\beta_k y^T\} = \operatorname{E}\{K_k y y^T\} = K_k \operatorname{E}\{y y^T\}$ (where K_k is the k-th row of K), *i.e.*, $K = \operatorname{E}\{\beta_y T^T\}[\operatorname{E}\{y y^T\}]^{-1}$.

Corollary. If $E\{\varepsilon\varepsilon^T\} = Q \ge 0$, $E\{\beta\beta^T\} = R \ge 0$, $E\{\varepsilon\beta^T\} = 0$, with $WRW^T + Q > 0$, then $\hat{\beta} = RW^T(WRW^T + Q)^{-1}y = (W^TQ^{-1}W + R^{-1})^{-1}W^TQ^{-1}y$, with error covariance $R - RW^T(WRW^T + Q)^{-1}WR = (W^TQ^{-1}W + R^{-1})^{-1}$ (assuming Q, R > 0).

Properties

1. The minimum variance linear estimate of a linear function of β , e.g., $T\beta$, is $T\hat{\beta}$.

Proof. If Γy is the optimal estimate of $T\beta$, then the projection theorem gives $\mathbb{E}\{y(T\beta - \Gamma y)^T\} = 0$, or $\Gamma y = T\mathbb{E}\{\beta y^T\}[\mathbb{E}\{yy^T\}]^{-1}y = T\hat{\beta}$.

2. If $\hat{\beta}$ is the linear minimum variance estimate of β , then it is also the linear estimate minimizing $E\{(\hat{\beta}-\beta)^T P(\hat{\beta}-\beta)\}$ for every P > 0.

Proof. From property 1, $P^{1/2}\hat{\beta}$ is the minimum variance estimate of $P^{1/2}\beta$, *i.e.*, $\hat{\beta}$ minimizes $\mathbb{E}\{\|P^{1/2}\hat{\beta} - P^{1/2}\beta\|_2^2\} = \mathbb{E}\{(\hat{\beta} - \beta)^T P(\hat{\beta} - \beta)\}.$

Properties (cont.)

 Let β ∈ H (Hilbert space of random variables) and let β̂₁ denote its orthogonal projection on a closed subspace Y₁ of H. Let y₂ be a vector of m random variables generating Y₂ ⊆ H, ŷ₂ the component-wise projection of y₂ into Y₁, and ỹ₂ := y₂ − ŷ₂. Then, the projection of β into Y₁ + Y₂ is

$$\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_1 + \mathbf{E} \{ \boldsymbol{\beta} \tilde{\boldsymbol{y}}_2^T \} [\mathbf{E} \{ \tilde{\boldsymbol{y}}_2 \tilde{\boldsymbol{y}}_2^T \}]^{-1} \tilde{\boldsymbol{y}}_2$$

Proof

Let \tilde{Y}_2 be s.t. $\tilde{Y}_2 \perp Y_1$ and $Y_1 \oplus \tilde{Y}_2 = Y_1 + Y_2$. Also, if Y_2 is generated by a finite set of vectors, \tilde{Y}_2 is generated by those vectors minus their projections into Y_1 (*why*?).

Since the projection into $Y_1 \oplus \tilde{Y}_2$ is equal to the projection into Y_1 plus the projection into \tilde{Y}_2 , the result follows. \Box

Example

Assume we have an optimal estimate $\hat{\beta}$ of a random $\beta \in \mathbb{R}^n$, with $\mathbb{E}\{(\hat{\beta} - \beta)(\hat{\beta} - \beta)^T\} = R$. Given new measurements $y = W\beta + \varepsilon$, where ε has zero mean, covariance Q, and is uncorrelated with β and previous measurements, we want to update $\hat{\beta}$ to, say, $\hat{\beta}$.

The best estimate of y based on past measurements is $\hat{y} = W\hat{\beta}$ (why?), so $\tilde{y} = y - W\hat{\beta} = W(\beta - \hat{\beta}) + \varepsilon$.

By property 3: $\hat{\hat{\beta}} = \hat{\beta} + \mathbb{E} \big\{ \beta \tilde{y}^T \big\} \big[\mathbb{E} \big\{ \tilde{y} \tilde{y}^T \big\} \big]^{-1} \tilde{y} = \hat{\beta} + R W^T [W R W^T + Q]^{-1} (y - W \hat{\beta}).$

The error covariance is: $E\left\{\left(\hat{\hat{\beta}}-\beta\right)\left(\hat{\hat{\beta}}-\beta\right)^T\right\} = R - RW^T[WRW^T+Q]^{-1}WR.$ (*Exercise!*)

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

A discrete random process is a sequence (x_n) of random variables. (x_n) is orthogonal or white if $\mathbb{E}\{x_j x_k\} = \alpha_j \delta_{j-k}$, and orthonormal if, in addition, $\alpha_j = 1$ $(j \in \mathbb{N})$.

We assume that underlying an observed random process there is an orthonormal process.

Examples ($(u_k)_{k \in \mathbb{Z}}$: orthonormal process)

- 1. Moving average: $x_n = \sum_{k=1}^{\infty} a_k u_{n-k}$, where $\sum_{k=1}^{\infty} |a_k|^2 < \infty$.
- 2. Autorregressive of order 1: $x_n = ax_{n-1} + u_{n-1}$, |a| < 1. Notice that this process is equivalent to a moving average: $x_n = \sum_{k=1}^{\infty} a^{k-1}u_{n-k}$.
- 3. Autorregresive of order N: $x_n + a_1 x_{n-1} + \dots + a_N x_{n-N} = u_{n-1}$, where the polynomial $s^N + a_1 s^{N-1} + \dots + a_N$ has all its roots in the open unit disk.

Definition

An *n*-dimensional state-space model of a random process consists of:

- 1. State equation: $x_{k+1} = \Phi_k x_k + u_k$ (k = 0, 1, ...), where x_k is an *n*-dimensional state (random) vector, $\Phi_k \in \mathbb{R}^{n \times n}$ is known, and u_k is an *n*-dimensional random vector of zero mean and $\mathbb{E}\{u_k u_l^T\} = Q_k \delta_{k-l}$.
- 2. Initial random vector: x_0 with an estimate \hat{x}_0 s.t. $\mathbb{E}\{(\hat{x}_0 x_0)(\hat{x}_0 x_0)^T\} = P_0$.
- 3. *Measurements*: $y_k = M_k x_k + w_k$ (k = 0, 1, ...), where $M_k \in \mathbb{R}^{m \times n}$ is known, and w_k is an *m*-dimensional random measurement vector of zero mean and $\mathbb{E}\{w_k w_l^T\} = R_k \delta_{k-l}$, with $R_k > 0$.

In addition, assume that x_0 , u_j and w_k are uncorrelated for all $j, k \ge 0$.

Estimation problem

Find the minimum variance estimate, $\hat{x}_{k|n}$, of x_k given measurements y_0, \ldots, y_n .

We will focus only on the *prediction* problem: to find $\hat{x}_{k+1|k}$.

Theorem (Kalman)

 $\hat{x}_{k+1|k}$ can be computed recursively from:

$$\hat{x}_{k+1|k} = \Phi_k P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} (y_k - M_k \hat{x}_{k|k-1}) + \Phi_k \hat{x}_{k|k-1},$$

where P_k is the covariance of $\hat{x}_{k|k-1}$, which can also be computed recursively from

$$P_{k+1} = \Phi_k P_k [I - M_k^T (M_k P_k M_k^T + R_k)^{-1} M_k P_k] \Phi_k^T Q_k.$$

The initial conditions for these equations are $\hat{x}_{0|-1} = \hat{x}_0$ and P_0 .

Proof

Suppose that measurements y_0, \ldots, y_{k-1} are available, as well as $\hat{x}_{k|k-1}$ and P_k , *i.e.*, we have the projection of x_k onto $Y_{k-1} := \text{clin}\{y_0, \ldots, y_{k-1}\}$.

The new measurement is $y_k = M_k x_k + w_k$. From the previous example, we have

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} (y_k - M_k \hat{x}_{k|k-1})$$

and covariance matrix $P_{k|k} = P_k - P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} M_k P_k$.

Since $x_{k+1} = \Phi_k x_k + u_k$, and u_k is uncorrelated to v_k and x_k , Property 1 gives

 $\hat{x}_{k+1|k} = \Phi_k \hat{x}_{k|k},$

with error covariance $P_{k+1} = \Phi_k P_{k|k} \Phi_k^T + Q_k$.

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

The projection theorem can also be used to explicitly solve some infinite dimensional problems. To this end, we can restate it as:

Theorem (minimum norm problem)

Let *M* be a closed subspace of a Hilbert space *H*. Let $x \in H$, and the *linear variety* $V = x + M := \{x + m : m \in M\}$. Then there is a unique $x_0 \in V$ of minimum norm. Furthermore, $x_0 \perp M$.

Proof. Translate *V* by -x, so that *V* turns into *M*, and $||x_0||$ becomes $||x_0 - x||$, so that the projection theorem can be applied.

Two types of varieties *V* are of interest: those with finite dimensional *M*, and those consisting of all $x \in H$ satisfying (for y_1, \ldots, y_n l.i.)

$$(x, y_1) = c_1,$$

 \vdots (V has co-dimension n.)
 $(x, y_n) = c_n.$

Theorem

Let $\{y_1, \ldots, y_n\}$ be l.i. vectors in a Hilbert space H, and $x_0 \in H$ the vector of minimum norm s.t. $(x, y_k) = c_k$ for $k = 1, \ldots, n$. Then $x_0 = \sum_{k=1}^n \beta_k y_k$, where the coefficients β_k satisfy

$$(y_1, y_1)\beta_1 + \dots + (y_n, y_1)\beta_n = c_1$$

$$(y_1, y_n)\beta_1 + \dots + (y_n, y_n)\beta_n = c_n.$$

Proof. Let $M = \operatorname{clin}\{y_1, \dots, y_n\}$. The linear variety of vectors $x \in H$ satisfying $(x, y_k) = c_k$ for $k = 1, \dots, n$ is a translation of M^{\perp} . Since M^{\perp} is closed, existence and uniqueness of x_0 follow from the modified projection theorem (if $M^{\perp} \neq \{0\}$). Furthermore, $x_0 \perp M^{\perp}$, *i.e.*, $x_0 \in (M^{\perp})^{\perp}$. Since M is closed, $(M^{\perp})^{\perp} = M$, so $x_0 \in M$, and $x_0 = \sum_{k=1}^n \beta_k y_k$ for some coefficients β_k , which must satisfy the constraints $(x_0, y_k) = c_k$; this gives the system of equations (*).

Dual Approximation Problem (cont.)

Example

The shaft angular velocity ω of a DC motor driven by a current u satisfies $\dot{\omega}(t) + \omega(t) = u(t)$. The shaft angular position is θ (*i.e.*, $\dot{\theta} = \omega$). The motor is initially at rest: $\theta(0) = \omega(0) = 0$. We want to find the current of minimum energy, $\int_0^1 u^2(t) dt$, that drives the motor to $\theta(1) = 1$, $\omega(1) = 0$.

This problem can be treated as a minimum norm problem in $L_2[0,1]$: By integration,

$$\omega(1) = \int_0^1 e^{t-1} u(t) dt = (u, y_1) \stackrel{!}{=} 0, \qquad y_1(t) = e^{t-1},$$

$$\theta(1) = \int_0^1 (1 - e^{t-1}) u(t) dt = (u, y_2) \stackrel{!}{=} 1, \qquad y_2(t) = 1 - e^{t-1},$$

According to the previous theorem, $u(t) = \beta_1 e^{t-1} + \beta_2 (1 - e^{t-1})$, and by forcing the constraints,

$$u(t) = \frac{1}{3-e}(1+e-2e^t), \quad t \in [0,1].$$

Dual Spaces