EL3370 Mathematical Methods in Signals, Systems and Control

Topic 2: Inner Product Spaces

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology Motivation and Definitions

Inner Product Spaces as Normed Spaces

Bonus Slides

Motivation and Definitions

Inner Product Spaces as Normed Spaces

Bonus Slides

Consider the space \mathbb{C}^n . It has:

- 1. Vector space (algebraic) structure: Given $x, y \in \mathbb{C}^n$, their sum x + y and scalar multiplication αx ($\alpha \in \mathbb{C}$) are defined.
- 2. Inner product structure:

$$(x,y) = \sum_{i=1}^{n} x_i \overline{y}_i, \qquad x = (x_1, \dots, x_n), \quad y = (y_1, \dots, y_n) \in \mathbb{C}^n. \quad (\overline{x}: complex \ conjugate \ of \ x \in \mathbb{C})$$

Many physical properties (e.g., work) can be defined in terms of inner products. Also, (\cdot, \cdot) can define: *distances* (metrics), *length* (norms), *angles*, *limits* (topologies), ...

Goal: Extend inner products to general (possibly infinite dimensional) vector spaces.

Definition

Let ℓ_2 denote the vector space over \mathbb{C} of all complex sequences $x = (x_n)$ which are square summable, *i.e.*, that satisfy $\sum_{n=1}^{\infty} |x_n|^2 < \infty$, with componentwise addition and scalar multiplication:

$$\begin{aligned} x + y &:= (x_n + y_n), \quad x = (x_n), \ y = (y_n) \in \ell_2, \\ \alpha x &:= (\alpha x_n), \qquad \alpha \in \mathbb{C}, \end{aligned}$$

and inner product: $(x, y) := \sum_{n=1}^{\infty} x_n \overline{y}_n$.

Observation

Need to verify that these operations (sum, scalar multiplication, inner product) are valid!

(We will do it later, using the Cauchy-Schwarz inequality.)

Definition (reminder)

A vector space V over a field F (e.g., \mathbb{R} or \mathbb{C}) is a set with two operations, $sum (x + y \in V, \text{ for } x, y \in V)$ and $scalar multiplication (<math>\lambda x \in V$, for $x \in V$ and $\lambda \in F$) s.t. for all $x, y, z \in V$, $\alpha, \beta \in F$:

1. x + y = y + x,(commutativity)2. (x + y) + z = x + (y + z),(associativity)3. There is a null vector $0 \in V$ s.t. 0 + x = x,4. $\alpha(x + y) = \alpha x + \alpha y$,(distributivity)5. $(\alpha + \beta)x = \alpha x + \beta x$,(distributivity)6. $(\alpha\beta)x = \alpha(\beta x)$,(associativity)7. 1x = x.

A field F is a set with operations + and · which are: associative and commutative; F has additive and multiplicative identities (0 and 1, respectively); every $a \in F$ has an additive inverse (-a) and, if $a \neq 0$, a multiplicative inverse too $(a^{-1} \in F)$; and · is distributive with respect to $+: a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$. (associativity) xx + y

 λx

Definition (reminder)

Let *V* be a vector space over *F*; $\alpha_1, \ldots, \alpha_n \in F$; $x_1, \ldots, x_n \in V$; and $X \subseteq V$.

- *Linear subspace* B of V: subset of V s.t., if $x, y \in B$, $\alpha \in F$, then $x + y \in B$ and $\alpha x \in B$.
- Affine subspace (or linear variety) B of V: subset of V of the form $x + M := \{x + m : m \in M\}$, where $x \in V$ and M is a linear subspace of V.
- *Linear combination* of x_1, \ldots, x_n : an element $\alpha_1 x_1 + \cdots + \alpha_n x_n \in V$ (for *finite n*).
- lin X (span of X): set of all linear combinations of elements of X.
 Note. lin X is the intersection of all linear subspaces of V containing X (why?).
- If for every linear combination $\alpha_1 x_1 + \dots + \alpha_n x_n = 0, x_1, \dots, x_n \in X$, we have that $\alpha_1 = \dots = \alpha_n = 0, X$ is *linearly independent* (l.i.). If not, *X* is *linearly dependent* (l.d.).
- Basis of V: A linearly independent set $X \subseteq V$ which spans V (i.e., $\lim X = V$).
- dim *V* (*dimension* of *V*): number of elements of some basis of *V*. (All bases of *V* have the same number of elements; *why*?).
- If dim $V < \infty$, V is a *finite-dimensional vector space*. (**Obs**: V is not necessarily finite!)

Definition (inner products)

An *inner product* (*scalar product*) on a vector space *V* over \mathbb{C} is a mapping (\cdot, \cdot) : $V \times V \to \mathbb{C}$ s.t. for all $x, y, z \in V$ and $\lambda \in \mathbb{C}$:

- 1. $(x, y) = \overline{(y, x)}$,
- 2. $(\lambda x, y) = \lambda(x, y),$
- 3. (x + y, z) = (x, z) + (y, z),
- 4. (x, x) > 0 when $x \neq 0$.

 $(V, (\cdot, \cdot))$ is an inner product space (or pre-Hilbert space).

Examples

- 1. Complex vector space $C[0,1] := \{f : [0,1] \to \mathbb{C} : f \text{ is continuous}\}$, with point-wise addition and scalar multiplication $((f+g)(t) = f(t) + g(t), (\lambda f)(t) = \lambda f(t) \text{ for } f, g \in C[0,1], \lambda \in \mathbb{C} \text{ and } t \in [0,1])$, and inner product $(f,g) = \int_0^1 f(t)\overline{g(t)}dt$.
- 2. Space $\mathbb{C}^{m \times n}$ of $m \times n$ complex matrices, with inner product $(A, B) = tr(AB^H)$.

Proof for Example 1:

Since C[0,1] is a complex vector space (*exercise!*), we need to verify that (\cdot, \cdot) satisfies the axioms of an inner product. Let $f, g, h \in C[0,1]$ and $\lambda \in \mathbb{C}$:

$$\begin{aligned} 1. & (f,g) = \int_0^1 f(t)\overline{g(t)}dt = \overline{\int_0^1 g(t)\overline{f(t)}dt} = \overline{(g,f)}. \\ 2. & (\lambda f,g) = \int_0^1 \lambda f(t)\overline{g(t)}dt = \lambda \int_0^1 f(t)\overline{g(t)}dt = \lambda(f,g). \\ 3. & (f+g,h) = \int_0^1 [f(t)+g(t)]\overline{h(t)}dt = \int_0^1 f(t)\overline{h(t)}dt + \int_0^1 g(t)\overline{h(t)}dt = (f,h) + (g,h). \end{aligned}$$

4. If $f \neq 0$, then there is a $t_0 \in [0,1]$ s.t. $l := |f(t_0)|^2 \neq 0$. Since $|f|^2$ is continuous, there is an $\varepsilon > 0$ s.t. $|f(t)|^2 > l/2$ whenever $|t - t_0| < \varepsilon$. Therefore,

$$\begin{split} (f,f) &= \int_0^1 |f(t)|^2 dt \\ &\geq \int_{\{t \in [0,1]: \ |t-t_0| < \varepsilon\}} |f(t)|^2 dt \\ &\geq \varepsilon \frac{l}{2} > 0. \end{split}$$

Theorem

For every $\lambda \in \mathbb{C}$ and x, y, z in an inner product space V,

- (i) (x, y+z) = (x, y) + (x, z),
- (ii) $(x, \lambda y) = \overline{\lambda}(x, y),$
- (iii) (x,0) = (0,x) = 0,
- (iv) If (x, z) = (y, z) for all $z \in V$, then x = y.

Proof

- (i) By definition: $(x, y+z) = \overline{(y+z,x)} = \overline{(y,x)} + \overline{(z,x)}$.
- (ii) Similar to (i).
- (iii) Notice that (x, 0) = (x, 0y), and use (ii).
- (iv) Since (x,z) = (y,z), then (x y, z) = 0. Since this holds for every *z*, take z = x y, which gives (x y, x y) = 0. By the last axiom of an inner product, this implies x y = 0.

Motivation and Definitions

Inner Product Spaces as Normed Spaces

Bonus Slides

Idea: Inner products \implies lengths (*norms*) \implies distances (*metrics*).

Example: In \mathbb{R}^n , $(x, y) = x^T y \implies$ length $= ||x|| = \sqrt{x^T x} = \sqrt{(x, x)} \implies$ distance = ||x - y||.

Definition

In an inner product space *V*, the *norm* of a vector $x \in V$ is $||x|| := \sqrt{(x,x)}$.

Examples

1. For
$$x = (x_1, \dots, x_n) \in \mathbb{C}^n$$
: $||x|| = \sqrt{|x_1|^2 + \dots + |x_n|^2}$.
2. For $f \in C[0, 1]$: $||f|| = \sqrt{\int_0^1 |f(t)|^2 dt}$.

Theorem. For every *x*, *y* in an inner product space *V*, and $\lambda \in \mathbb{C}$:

(i) $||x|| \ge 0$, and ||x|| = 0 iff x = 0,

(ii) $\|\lambda x\| = |\lambda| \|x\|$,

(iii) $|(x, y)| \le ||x|| ||y||$, with equality iff $x = \alpha y$ for some $\alpha \in \mathbb{C}$, (*Cauchy-Schwarz inequality*)

(iv) $||x + y|| \le ||x|| + ||y||$.

(triangle inequality)

Proof. (i) Direct from last axiom of an inner product.

(ii)
$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda(x, \lambda x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \|x\|$$
.
(iii) For every $a \in \mathbb{C}$: $0 \le (x - ay, x - ay) = \|x\|^2 - 2\operatorname{Re}[\overline{\alpha}(x, y)] + \|a\|^2 \|y\|^2$.
Take $a = tu$, where $t \in \mathbb{R}$ and $u = \exp(i \arg(x, y))$, which gives $0 \le \|x\|^2 - 2t|(x, y)| + t^2 \|y\|^2$.
The minimum of this quadratic expression w.r.t. t is $\|x\|^2 - |(x, y)|^2/\|y\|^2$, which must be non-negative.
Furthermore, this is zero iff $x - ay = 0$ for some $a \in \mathbb{C}$.

(iv) By (iii),

 $\|x+y\|^2 \le \|x\|^2 + 2\operatorname{Re}\{(x,y)\} + \|y\|^2 \le \|x\|^2 + 2|(x,y)| + \|y\|^2 \le \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$

Inner Product Spaces as Normed Spaces (cont.)

Applications of Cauchy-Schwarz inequality

Probability

Let *V* be an inner product space of zero mean real random variables *x* with $E\{x^2\} < \infty$, and inner product $(x, y) := E\{xy\} = cov(x, y)$. Then the Cauchy-Schwarz inequality implies

$$|\operatorname{cov}(x, y)|^2 = |(x, y)|^2 \le ||x||^2 ||y||^2 = \operatorname{var}(x)\operatorname{var}(y).$$

Exercise: Prove that the operations in ℓ_2 are well defined.

Applications of Cauchy-Schwarz inequality (cont.)

Theorem. In an inner product space *V*, the inner product is a continuous function, *i.e.*, for every sequences $(x_n), (y_n)$ s.t. $x_n \to x$ and $y_n \to y$, we have $(x_n, y_n) \to (x, y)$.

Since (x_n) is convergent, it is also bounded (i.e., there is an M > 0 s.t. $||x_n|| \le M$ for all $n \in \mathbb{N}$). Indeed, since there is an $N \in \mathbb{N}$ s.t. $||x_n - x|| < 1$ for n > N, so $||x_n|| = ||x + x_n - x|| \le ||x|| + ||x_n - x|| < ||x|| + 1$, we can take $M = \max\{||x_1||, \dots, ||x_N||, ||x|| + 1\}$.

Then, given $\varepsilon > 0$, there is an $N_0 \in \mathbb{N}$ s.t. for $n > N_0$, $\|x_n - x\| < \varepsilon/(2\|y\|)$ and $\|y_n - y\| < \varepsilon/(2M)$, so $|(x,y) - (x_n,y_n)| \le \|y\|[\varepsilon/(2\|y\|)] + M[\varepsilon/(2M)] = \varepsilon$.

Theorem (Parallelogram Law)

Let x, y be elements of an inner product space. Then,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Proof. As $||x \pm y||^2 = ||x||^2 \pm (x, y) \pm (y, x) + ||y||^2$, the result follows by adding these expressions.

(See bonus slides for converse result!)

Theorem (Polarization Identity)

Let x, y be elements of an inner product space. Then,

$$\begin{aligned} (x,y) &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 \right) = \frac{1}{4} \sum_{k=0}^3 i^k \|x+i^k y\|^2, \quad \text{(complex case)} \\ &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right). \end{aligned}$$
(real case)

Proof. Exercise!

A more interesting example for system theory

 RL_2 : space of *rational functions*, analytic on *unit circle* $\partial \mathbb{D} := \{z \in \mathbb{C} : |z| = 1\}$ with usual addition and scalar multiplication, and inner product

$$(f,g) := \frac{1}{2\pi i} \oint_{\partial \mathbb{D}} f(z) \overline{g(z)} \frac{dz}{z} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\omega}) \overline{g(e^{i\omega})} d\omega.$$

 RH_2 : subspace of RL_2 , of functions analytic on *closed unit disc* $\overline{\mathbb{D}}$, where $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$

In engineering terms: RL_2 consists of rational functions without poles on $\partial \mathbb{D}$ (can be *stable* or *unstable*), and RH_2 only has functions with poles outside $\overline{\mathbb{D}}$ (*stable*).

A more interesting example for system theory (cont.)

Exercise: Prove that RL_2 is an inner product space.

Cauchy integral formula simplifies calculations of inner products in RL_2 : For $h \in RL_2$,

$$\frac{1}{2\pi i} \oint_{\partial \mathbb{D}} h(z) dz = \sum_{\substack{z_j = \text{pole of} \\ h \text{ in } \mathbb{D}}} \text{Res}_{z=z_j} [h(z)].$$

Example:
$$f(z) = \frac{1}{z-a}, g(z) = \frac{1}{z-b}$$
 ($|a| < 1, 0 < |b| < 1$), thus
 $(f,g) = \frac{1}{2\pi i} \oint_{\partial \mathbb{D}} \frac{1}{z-a} \frac{1}{\overline{z}-b} \frac{dz}{z} = -\frac{1}{2\pi i b} \oint_{\partial \mathbb{D}} \frac{1}{z-a} \frac{1}{z-1/b} dz$ (since $z\overline{z} = 1$ in $\partial \mathbb{D}$)
 $= -\frac{1}{b} \operatorname{Res}_{z=a} \left(\frac{h(z)}{z-a}\right)$ where $h(z) = \frac{1}{z-1/b}$ (h is analytic at $z = a$)
 $= -\frac{1}{b}h(a) = -\frac{1}{b} \frac{1}{a-1/b} = \frac{1}{1-ab}.$

Normed Spaces

Motivation and Definitions

Inner Product Spaces as Normed Spaces

Bonus Slides

The parallelogram law can be used to show that a given norm does not come from an inner product. However, when it holds, the norm can be used to derive an inner product!

Idea: Use the polarization identity! (consider the real case for simplicity)

$$(x, y) = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right).$$

Let us check the properties of an inner product:

1.
$$(y,x) = \frac{1}{4} \left(\|y+x\|^2 - \|y-x\|^2 \right) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right) = (x,y).$$

4. $(x,x) = \frac{1}{4} \left(\|x+x\|^2 - \|x-x\|^2 \right) = \|x\|^2 > 0 \text{ if } x \neq 0.$

3. Decompose (x + y, z) in two different ways:

$$\begin{aligned} (x+y,z) &= \frac{1}{4} \left(\|x+y+z\|^2 - \|x+y-z\|^2 \right) \\ &= \frac{1}{4} \left(\|x+y+z\|^2 + \|x-y+z\|^2 - \|x+y-z\|^2 - \|x-y+z\|^2 \right) \\ &= \frac{1}{4} \left(\|x+y+z\|^2 + \|x-y-z\|^2 - \|x+y-z\|^2 - \|x-y-z\|^2 \right) \end{aligned}$$

Applying the parallelogram law yields:

$$\begin{split} (x+y,z) &= \frac{1}{4} \left(2\|x+z\|^2 + 2\|y\|^2 - 2\|x\|^2 - 2\|y-z\|^2 \right) \\ &= \frac{1}{4} \left(2\|x\|^2 + 2\|y+z\|^2 - 2\|y\|^2 - 2\|x-z\|^2 \right). \end{split}$$

Averaging these expressions and applying the polarization identity gives

$$(x+y,z) = \frac{1}{4} \left(\|x+z\|^2 - \|y-z\|^2 + \|y+z\|^2 - \|x-z\|^2 \right) = (x,z) + (y,z).$$

2. From the polarization identity and Property 3,

$$\begin{aligned} (-x,y) &= \frac{1}{4} \left(\| -x + y \|^2 - \| -x - y \|^2 \right) = -\frac{1}{4} \left(\| x + y \|^2 - \| x - y \|^2 \right) = -(x,y), \\ (0,y) &= (x - x, y) = (x, y) + (-x, y) = (x, y) - (x, y) = 0, \\ [n+1]x,y) &= (nx,y) + (x,y), \end{aligned}$$

so by induction on $n \in \mathbb{N}$ and the 1st expression,(nx, y) = n(x, y) for all $n \in \mathbb{Z}$. Also, if $m, n \in \mathbb{Z} \setminus \{0\}$, n([m/n]x, y) = (mx, y) = m(x, y), so ([m/n]x, y) = [m/n](x, y), thus $(\lambda x, y) = \lambda(x, y)$ for all $\lambda \in \mathbb{Q}$. Since norms are continuous (because $||x|| - ||y|| \le ||x - y||$ from the triangle inequality), this last expression can be extended to all $\lambda \in \mathbb{R}$.

(