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Motivation and Definitions

Consider the space Cn. It has:

1. Vector space (algebraic) structure:
Given x, y ∈Cn, their sum x+ y and scalar multiplication αx (α ∈C) are defined.

2. Inner product structure:

(x, y)=
n∑

i=1
xi yi , x = (x1, . . . , xn), y= (y1, . . . , yn) ∈Cn. (x: complex conjugate of x ∈C)

Many physical properties (e.g., work) can be defined in terms of inner products.
Also, (·, ·) can define: distances (metrics), length (norms), angles, limits (topologies), . . .

Goal: Extend inner products to general (possibly infinite dimensional) vector spaces.

Cristian R. Rojas Topic 2: Inner Product Spaces 3



Motivation and Definitions (cont.)

Definition
Let `2 denote the vector space over C of all complex sequences x = (xn) which are square
summable, i.e., that satisfy

∑∞
n=1 |xn|2 <∞, with componentwise addition and scalar

multiplication:

x+ y := (xn + yn), x = (xn), y= (yn) ∈ `2,
αx := (αxn), α ∈C,

and inner product: (x, y) :=
∞∑

n=1
xn yn.

Observation
Need to verify that these operations (sum, scalar multiplication, inner product) are valid!

(We will do it later, using the Cauchy-Schwarz inequality.)
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Motivation and Definitions (cont.)

Definition (reminder)
A vector space V over a field F (e.g., R or C) is a set with two operations, sum (x+ y ∈V , for
x, y ∈V ) and scalar multiplication (λx ∈V , for x ∈V and λ ∈ F) s.t. for all x, y, z ∈V ,
α,β ∈ F:

1. x+ y= y+ x, (commutativity)
2. (x+ y)+ z = x+ (y+ z), (associativity)
3. There is a null vector 0 ∈V s.t. 0+ x = x,
4. α(x+ y)=αx+αy, (distributivity)
5. (α+β)x =αx+βx, (distributivity)
6. (αβ)x =α(βx), (associativity)
7. 1x = x.

A field F is a set with operations + and · which
are: associative and commutative; F has addi-
tive and multiplicative identities (0 and 1, re-
spectively); every a ∈ F has an additive inverse
(−a) and, if a 6= 0, a multiplicative inverse too
(a−1 ∈ F); and · is distributive with respect to
+: a · (b+ c)= a ·b+a · c for all a,b, c ∈ F.

x

y

x + y

x

λx

Cristian R. Rojas Topic 2: Inner Product Spaces 5



Motivation and Definitions (cont.)

Definition (reminder)
Let V be a vector space over F; α1, . . . ,αn ∈ F; x1, . . . , xn ∈V ; and X ⊆V .

- Linear subspace B of V : subset of V s.t., if x, y ∈ B, α ∈ F, then x+ y ∈ B and αx ∈ B.

- Affine subspace (or linear variety) B of V : subset of V of the form
x+M := {x+m : m ∈ M}, where x ∈V and M is a linear subspace of V .

- Linear combination of x1, . . . , xn: an element α1x1 +·· ·+αnxn ∈V (for finite n).

- lin X (span of X ): set of all linear combinations of elements of X .
Note. lin X is the intersection of all linear subspaces of V containing X (why?).

- If for every linear combination α1x1 +·· ·+αnxn = 0, x1, . . . , xn ∈ X , we have that
α1 = ·· · =αn = 0, X is linearly independent (l.i.). If not, X is linearly dependent (l.d.).

- Basis of V : A linearly independent set X ⊆V which spans V (i.e., lin X =V ).

- dimV (dimension of V ): number of elements of some basis of V . (All bases of V have
the same number of elements; why?).

- If dimV <∞, V is a finite-dimensional vector space. (Obs: V is not necessarily
finite!)
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Motivation and Definitions (cont.)

Definition (inner products)
An inner product (scalar product) on a vector space V over C is a mapping (·, ·) : V ×V →C

s.t. for all x, y, z ∈V and λ ∈C:

1. (x, y)= (y, x),

2. (λx, y)=λ(x, y),

3. (x+ y, z)= (x, z)+ (y, z),

4. (x, x)> 0 when x 6= 0.

(V , (·, ·)) is an inner product space (or pre-Hilbert space).

Examples

1. Complex vector space C[0,1] := { f : [0,1]→C : f is continuous}, with point-wise
addition and scalar multiplication (( f + g)(t)= f (t)+ g(t), (λ f )(t)=λ f (t) for

f , g ∈ C[0,1], λ ∈C and t ∈ [0,1]), and inner product ( f , g)=
ˆ 1

0
f (t)g(t)dt.

2. Space Cm×n of m×n complex matrices, with inner product (A,B)= tr(ABH ).
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Motivation and Definitions (cont.)

Proof for Example 1:
Since C[0,1] is a complex vector space (exercise!), we need to verify that (·, ·) satisfies the axioms of an
inner product. Let f , g,h ∈ C[0,1] and λ ∈C:

1. ( f , g)=
ˆ 1

0
f (t)g(t)dt =

ˆ 1

0
g(t) f (t)dt = (g, f ).

2. (λ f , g)=
ˆ 1

0
λ f (t)g(t)dt =λ

ˆ 1

0
f (t)g(t)dt =λ( f , g).

3. ( f + g,h)=
ˆ 1

0
[ f (t)+ g(t)]h(t)dt =

ˆ 1

0
f (t)h(t)dt+

ˆ 1

0
g(t)h(t)dt = ( f ,h)+ (g,h).

4. If f 6= 0, then there is a t0 ∈ [0,1] s.t. l := | f (t0)|2 6= 0. Since | f |2 is continuous, there is an ε> 0 s.t.
| f (t)|2 > l/2 whenever |t− t0| < ε.
Therefore,

( f , f )=
ˆ 1

0
| f (t)|2dt

Ê
ˆ

{t∈[0,1]: |t−t0 |<ε}
| f (t)|2dt

Ê ε l
2
> 0.

0 1t0

|f |2

2ε

l

l/2
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Motivation and Definitions (cont.)

Theorem
For every λ ∈C and x, y, z in an inner product space V ,

(i) (x, y+ z)= (x, y)+ (x, z),

(ii) (x,λy)=λ(x, y),

(iii) (x,0)= (0, x)= 0,

(iv) If (x, z)= (y, z) for all z ∈V , then x = y.

Proof
(i) By definition: (x, y+ z)= (y+ z, x)= (y, x)+ (z, x).

(ii) Similar to (i).
(iii) Notice that (x,0)= (x,0y), and use (ii).
(iv) Since (x, z)= (y, z), then (x− y, z)= 0. Since this holds for every z, take z = x− y, which gives

(x− y, x− y)= 0. By the last axiom of an inner product, this implies x− y= 0.
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Inner Product Spaces as Normed Spaces

Idea: Inner products =⇒ lengths (norms) =⇒ distances (metrics).

Example: In Rn, (x, y)= xT y =⇒ length= ‖x‖ =
√

xT x =√
(x, x) =⇒ distance= ‖x− y‖.

Definition
In an inner product space V , the norm of a vector x ∈V is ‖x‖ :=√

(x, x).

Examples

1. For x = (x1, . . . , xn) ∈Cn: ‖x‖ =
√
|x1|2 +·· ·+ |xn|2.

2. For f ∈ C[0,1]: ‖ f ‖ =
√ˆ 1

0
| f (t)|2dt.
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Inner Product Spaces as Normed Spaces (cont.)

Theorem. For every x, y in an inner product space V , and λ ∈C:
(i) ‖x‖ Ê 0, and ‖x‖ = 0 iff x = 0,
(ii) ‖λx‖ = |λ|‖x‖,
(iii) |(x, y)| É ‖x‖‖y‖, with equality iff x =αy for some α ∈C, (Cauchy-Schwarz inequality)
(iv) ‖x+ y‖ É ‖x‖+‖y‖. (triangle inequality)

Proof. (i) Direct from last axiom of an inner product.
(ii) ‖λx‖ =√

(λx,λx)=√
λ(x,λx)= |λ|√(x, x)= |λ|‖x‖.

(iii) For every α ∈C: 0É (x−αy, x−αy)= ‖x‖2 −2Re{α(x, y)}+|α|2‖y‖2.
Take α= tu, where t ∈R and u = exp(iarg(x, y)), which gives 0É ‖x‖2 −2t|(x, y)|+ t2‖y‖2.
The minimum of this quadratic expression w.r.t. t is ‖x‖2−|(x, y)|2/‖y‖2, which must be non-negative.
Furthermore, this is zero iff x−αy= 0 for some α ∈C.

(iv) By (iii),
‖x+ y‖2 É ‖x‖2 +2Re{(x, y)}+‖y‖2 É ‖x‖2 +2|(x, y)|+‖y‖2 É ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2.
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Inner Product Spaces as Normed Spaces (cont.)

Applications of Cauchy-Schwarz inequality

Angle between vectors

cosθ := (x, y)
‖x‖‖y‖ .

x

yθ

Probability
Let V be an inner product space of zero mean real random variables x with E{x2}<∞,
and inner product (x, y) :=E{xy}= cov(x, y). Then the Cauchy-Schwarz inequality implies

|cov(x, y)|2 = |(x, y)|2 É ‖x‖2‖y‖2 = var(x)var(y).

Exercise: Prove that the operations in `2 are well defined.
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Inner Product Spaces as Normed Spaces (cont.)

Applications of Cauchy-Schwarz inequality (cont.)

Theorem. In an inner product space V , the inner product is a continuous function, i.e.,
for every sequences (xn), (yn) s.t. xn → x and yn → y, we have (xn, yn)→ (x, y).

Proof. By Cauchy-Schwarz,

|(x, y)− (xn , yn)| = |(x, y)− (xn , y)+ (xn , y)− (xn , yn)|
É |(x− xn , y)|+ |(xn , y− yn)|
É ‖y‖‖x− xn‖+‖xn‖‖y− yn‖.

x1

x2
x3

xN
xN+1
x

ball B(x, 1)

0

Since (xn) is convergent, it is also bounded (i.e., there is an M > 0 s.t. ‖xn‖ É M for all n ∈N). Indeed,
since there is an N ∈N s.t. ‖xn − x‖ < 1 for n > N, so ‖xn‖ = ‖x+ xn − x‖ É ‖x‖+ ‖xn − x‖ < ‖x‖+1, we can
take M =max{‖x1‖, . . . ,‖xN‖,‖x‖+1}.

Then, given ε> 0, there is an N0 ∈N s.t. for n > N0, ‖xn − x‖ < ε/(2‖y‖) and ‖yn − y‖ < ε/(2M), so
|(x, y)− (xn , yn)| É ‖y‖[ε/(2‖y‖)]+M[ε/(2M)]= ε.
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Inner Product Spaces as Normed Spaces (cont.)

Theorem (Parallelogram Law)
Let x, y be elements of an inner product space. Then,

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2.

Proof. As ‖x±y‖2 = ‖x‖2±(x, y)±(y, x)+‖y‖2, the result follows
by adding these expressions.

(See bonus slides for converse result!)

Theorem (Polarization Identity)
Let x, y be elements of an inner product space. Then,

(x, y)= 1
4

(
‖x+ y‖2 −‖x− y‖2 + i‖x+ i y‖2 − i‖x− i y‖2

)
= 1

4

3∑
k=0

ik‖x+ ik y‖2, (complex case)

= 1
4

(
‖x+ y‖2 −‖x− y‖2

)
. (real case)

Proof. Exercise!
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Inner Product Spaces as Normed Spaces (cont.)

A more interesting example for system theory

RL2: space of rational functions, analytic on unit circle ∂D := {z ∈C : |z| = 1}
with usual addition and scalar multiplication, and inner product

( f , g) := 1
2πi

‰
∂D

f (z)g(z)
dz
z

= 1
2π

ˆ π

−π
f (eiω)g(eiω)dω.

RH2: subspace of RL2, of functions analytic on closed unit disc D, where
D := {z ∈C : |z| < 1}.

In engineering terms:
RL2 consists of rational functions
without poles on ∂D (can be stable or
unstable), and RH2 only has func-
tions with poles outside D (stable).

RL2

Re

Im

RH2

Re

Im

1−1 1−1
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Inner Product Spaces as Normed Spaces (cont.)

A more interesting example for system theory (cont.)

Exercise: Prove that RL2 is an inner product space.

Cauchy integral formula simplifies calculations of inner products in RL2: For h ∈ RL2,

1
2πi

‰
∂D

h(z)dz = ∑
z j=pole of

h in D

Resz=z j [h(z)].

Example: f (z)= 1
z−a

, g(z)= 1
z−b

(|a| < 1, 0< |b| < 1), thus

( f , g)= 1
2πi

‰
∂D

1
z−a

1
z−b

dz
z

=− 1
2πib

‰
∂D

1
z−a

1
z−1/b

dz (since zz = 1 in ∂D)

=− 1
b

Resz=a

(
h(z)
z−a

)
where h(z)= 1

z−1/b
(h is analytic at z = a)

=− 1
b

h(a)=− 1
b

1
a−1/b

= 1
1−ab

.
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Bonus: Converse of the Parallelogram Law

The parallelogram law can be used to show that a given norm does not come from an
inner product. However, when it holds, the norm can be used to derive an inner product!

Idea: Use the polarization identity! (consider the real case for simplicity)

(x, y)= 1
4

(
‖x+ y‖2 −‖x− y‖2

)
.

Let us check the properties of an inner product:

1. (y, x)= 1
4

(
‖y+ x‖2 −‖y− x‖2

)
= 1

4

(
‖x+ y‖2 −‖x− y‖2

)
= (x, y).

4. (x, x)= 1
4

(
‖x+ x‖2 −‖x− x‖2

)
= ‖x‖2 > 0 if x 6= 0.

3. Decompose (x+ y, z) in two different ways:

(x+ y, z)= 1
4

(
‖x+ y+ z‖2 −‖x+ y− z‖2

)
= 1

4

(
‖x+ y+ z‖2 +‖x− y+ z‖2 −‖x+ y− z‖2 −‖x− y+ z‖2

)
= 1

4

(
‖x+ y+ z‖2 +‖x− y− z‖2 −‖x+ y− z‖2 −‖x− y− z‖2

)
.
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Bonus: Converse of the Parallelogram Law (cont.)

Applying the parallelogram law yields:

(x+ y, z)= 1
4

(
2‖x+ z‖2 +2‖y‖2 −2‖x‖2 −2‖y− z‖2

)
= 1

4

(
2‖x‖2 +2‖y+ z‖2 −2‖y‖2 −2‖x− z‖2

)
.

Averaging these expressions and applying the polarization identity gives

(x+ y, z)= 1
4

(
‖x+ z‖2 −‖y− z‖2 +‖y+ z‖2 −‖x− z‖2

)
= (x, z)+ (y, z).

2. From the polarization identity and Property 3,

(−x, y)= 1
4

(
‖− x+ y‖2 −‖− x− y‖2

)
=− 1

4

(
‖x+ y‖2 −‖x− y‖2

)
=−(x, y),

(0, y)= (x− x, y)= (x, y)+ (−x, y)= (x, y)− (x, y)= 0,

([n+1]x, y)= (nx, y)+ (x, y),

so by induction on n ∈N and the 1st expression,(nx, y)= n(x, y) for all n ∈Z. Also, if m,n ∈Z\{0},
n([m/n]x, y)= (mx, y)= m(x, y), so ([m/n]x, y)= [m/n](x, y), thus (λx, y)=λ(x, y) for all λ ∈Q. Since
norms are continuous (because

∣∣‖x‖−‖y‖∣∣É ‖x− y‖ from the triangle inequality), this last
expression can be extended to all λ ∈R.
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