EL3370 Mathematical Methods in Signals, Systems and Control

Homework 4

Division of Decision and Control Systems
School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Instructions (read carefully):

- The exercise sets are individual: even though discussion with your peers is encouraged, you have to provide your own personal solution to each problem.
- The solutions to some problems can possibly be found by searching in math books other than the main course book. Avoid such practice: the only way to understand the topics in the course is by working hard on the problems by yourself.
- To prove statements in the exercises, use only the notation, definitions and results proven (not those given as exercises) in the lectures.

1 A rocket problem

Suppose we wish to bring a rocket car of unit mass, and subject only to the force of the rocket thrust, to rest at $x=0$ in minimum time by proper choice of the rocket thrust program. The position of the rocket is described by the equation $\ddot{x}=u$, where u is the available thrust, which is limited to $|u(t)| \leqslant 1$ for each t. Assume that initially $x(0)=0$ and $\dot{x}(0)=1$.

(a) Produce an argument that converts this problem to a minimum norm problem on a fixed interval $[0, T]$.
(b) Solve the problem.

2 Existence of solution to a system of linear equations

Let X be a real vector space and let f_{1}, \ldots, f_{n} be linear functionals on X. Show that, for fixed α_{k} 's the system of equations

$$
f_{k}(x)=\alpha_{k}, \quad k=1, \ldots, n
$$

has a solution $x \in X$ iff for every $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ the relation $\sum_{k=1}^{n} \lambda_{k} f_{k}=0$ implies $\sum_{k=1}^{n} \lambda_{k} \alpha_{k}=$ 0 .
Hint: In \mathbb{R}^{n}, consider the linear subspace consisting of all points of the form $\left(f_{1}(x), \ldots, f_{n}(x)\right)$ as x varies over X, and apply the Hahn-Banach theorem.
Note: The expression $\sum_{k=1}^{n} \lambda_{k} f_{k}=0$ is an equality between functions, i.e., it is equivalent to $\sum_{k=1}^{n} \lambda_{k} f_{k}(x)=0$ for all $x \in X$.

3 Bounded operators

Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be a total orthonormal sequence in a complex Hilbert space H, and let $\lambda_{n} \in \mathbb{C}$ for $n \in \mathbb{N}$.
(a) Show that there is a bounded linear operator D on H such that $D e_{n}=\lambda_{n} e_{n}$ for all $n \in \mathbb{N}$ iff $\left(\lambda_{n}\right)$ is a bounded sequence. What is $\|D\|$, when defined?
Note: Remember that a bounded sequence does not necessarily achieve its maximum (so do not confuse sup with max).
(b) Show that D, assumed bounded, is invertible $\operatorname{iff}^{\inf }{ }_{n}\left|\lambda_{n}\right|>0$. What is $\left\|D^{-1}\right\|$, when applicable?
Note: D being invertible means that D^{-1} exists as a function and is a bounded linear operator.
(c) Find the adjoint of D, when $\left(\lambda_{n}\right)$ is a bounded sequence.
(d) Find the spectrum of D, assuming that D is bounded.

Note: Remember that the spectrum is the complement of the set of those $\lambda \in \mathbb{C}$ such that $(\lambda I-D)^{-1}$ exists and is a bounded linear operator.

4 Projection operators

Let $M \neq\{0\}$ be a closed subspace of a Hilbert space H. The operator P defined by $P x=m$, where $x=m+n$ is the unique representation of $x \in H$ with $m \in M, n \in M^{\perp}$, is called the projection operator onto M.
(a) Show that a projection is linear with $\|P\|=1$.
(b) Show that a bounded linear operator on H is a projection iff

1. $P^{2}=P$ (idempotent), and
2. $P^{*}=P$ (self-adjoint).
(c) Two projections P_{1} and P_{2} on H are said to be orthogonal if $P_{1} P_{2}=0$. Show that two projections are orthogonal iff their ranges are orthogonal.
(d) Show that the sum of two projections is a projection iff they are orthogonal.

5 Fermat's principle

Fermat's principle of optics states: If the velocity of light is given by the continuous function $u=u(y)$, the actual light path connecting the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a plane is the one which extremizes (i.e., yields a local minimum or maximum of) the time integral

$$
I=\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} \frac{d s}{u}=\int_{y_{1}}^{y_{2}} \frac{\sqrt{1+[d x(y) / d y]^{2}}}{u(y)} d y
$$

(Actually, refinements are needed to make this formulation of Fermat's principle hold for all cases.)
(a) Derive Snell's law from Fermat's principle; that is, prove that $(\sin \phi) / u$ is constant, where ϕ is the angle shown in the following figure:

(b) Suppose that light travels in the $x y$-plane in such a way that its speed is proportional to y. Then, prove that the light rays emitted from any point are circle arcs with their centers on the x-axis.
Hint: Solve the Euler-Lagrange differential equation (you may use a computer algebra package to compute the resulting integrals).

