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Abstract—We develop an easy to implement distributed method
for weighted sum-rate maximization (WSRMax) problem in
a multicell multiple antenna downlink system. Unlike the re-
cently proposed minimum weighted mean-squared error based
algorithms, where at each iteration all mobile terminals needs to
estimate the covariance matrices of their received signals, compute
and feedback over the air certain parameters to the base stations
(BS), our algorithm operates without any user terminal assistance.
It requires only BS to BS signalling via reliable backhaul links (e.g.,
fiber, microwave links) and all required computation is performed
at the BSs. The algorithm is based on primal decomposition and
subgradient methods, where the original nonconvex problem is
split into a master problem and a number of subproblems (one
for each BS). A novel sequential convex approximation strategy
is proposed to address the nonconvex master problem. In the case
of subproblems, we adopt an existing iterative approach based on
second-order cone programming and geometric programming.
The subproblems are coordinated to find a (possibly suboptimal)
solution to the master problem. Subproblems can be solved by BSs
in a fully asynchronous manner, though the coordination between
subproblems should be synchronous. Numerical results are pro-
vided to see the behavior of the algorithm under different degrees
of BS coordination. They show that the proposed algorithm yields
a good tradeoff between the implementation-level simplicity and
the performance.

Index Terms—Distributed optimization, geometric program-
ming, primal decomposition, second-order cone programming,
subgradient method, successive convex approximations, wireless
networks.

I. INTRODUCTION

T HE weighted sum-rate maximization (WSRMax)
problem plays a central role in many network con-

trol and optimization methods, e.g., in [1]–[9] it is the basis for
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physical layer resource allocation. Unfortunately, in the case
of wireless networks, the WSRMax problem is NP-hard [10].
Therefore, we have to rely on centralized and exponentially
complex global optimization approaches [11], [12] for com-
puting an exact solution. As a result, many optimal network
design methods developed so far require a centralized imple-
mentation. However, finding even suboptimal but distributed
methods for WSRMax is crucial for practical use.
Distributed implementation of WSRMax problem has been

investigated in [13]–[17] in the context of digital subscriber
loops (DSL) networks. Those systems are inherently consisting
of single-input and single-output (SISO) links. Related algo-
rithms for SISO wireless ad hoc networks and SISO orthogonal
frequency division multiple access cellular systems are found
in [18]–[21]. However, in the case of multi antenna cellular
systems, the decision variables space is, of course, larger, e.g.,
joint optimization of transmit beamforming patterns, transmit
powers, and link activations is required. Therefore, designing
efficient distributed methods for WSRMax is a more chal-
lenging task due to the extensive amount of message passing
required to resolve the coupling between variables.
Several distributed methods for WSRMax in multiple-input

and single-output (MISO) cellular networks have been proposed
in [22]–[28]. Specifically, in [22] a two-user MISO interfer-
ence channel (IC)1 is considered and a distributed algorithm
is derived by using the commonly used high signal-to-inter-
ference-plus-noise ratio (SINR) approximation [29]. Moreover,
another approximation, which relies on zero forcing (ZF) beam-
forming is introduced in [22] to address the problem in the case
of multiuserMISO IC. Authors in [23] proposed a method based
on a distributed pricingmechanism to address the problem. Both
methods in [22], [23] are restricted to MISO IC (i.e., one user
per cell) and are not applicable in the more general interfering
broadcast channels, where there are many users per cell. The
methods proposed in [24]–[26] derived the necessary (but not
sufficient) optimality conditions for the WSRMax problem and
used it as the basis for their distributed solution. However, many
parameters must be selected heuristically to construct a potential
distributed solution and there is in general no systematic method
to find those parameters. In particular, the algorithms in [24],
[25] are designed for systems with very limited backhaul sig-
naling resources and do not consider any iterative base station
(BS) coordination mechanism to resolve the out-of-cell interfer-
ence coupling. Even though, the method proposed in [26] relies
on stringent requirements on the message passing between BSs
during each iteration of the algorithm, their results show that

1 -user MISO IC means that there are transmitter-receiver pairs, where
the transmitters have multiple antennas and the receivers have single antennas.
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BS coordination can provide considerable gains as compared
to uncoordinated methods. An inexact cooperate descent algo-
rithm for the case where each BS is serving only one cell edge
user has been proposed in [27]. The method proposed in [28]
considers a per data stream power constraint for simplicity, and
thus their method does not apply in case of the more realistic
power constraints at the BS, e.g., sum power constraint at the BS
transmitter, per antenna power constraints. Centralized methods
for WSRMax in multi antenna cellular networks are derived in
[30]–[34].
Many optimization criteria other than the weighted sum-rate

have been considered in references [35]–[43] to distributively
optimize the system resources (e.g., beamforming patterns,
transmit powers, etc.) in multi antenna cellular networks. In
particular, the references [35]–[38] used the characterization of
the Pareto boundary of the MISO interference channel [44] as
the basis for their distributed methods. Their proposed methods
do not employ any BS coordination mechanism to resolve the
out-of-cell interference coupling. These algorithm can perform
poorly, especially if the degrees of freedom available at BS
transmitter is insufficient to avoid interference. The method
proposed in [39] is designed for sum-rate maximization and
uses high SINR approximation. A cooperative beamforming
algorithm is proposed in [40] for MISO IC, where each BS
can transmit only to a single user. Their proposed method
employs an iterative BS coordination mechanism to resolve
the out-of-cell interference coupling. However, the convexity
properties exploited for distribution of the problem are de-
stroyed when there are more than one user is served by any
BS. In [41]–[43] distributed algorithms have been derived to
minimize a total (weighted) transmitted power or the maximum
per antenna power across the BSs subject to SINR constraints
at the user terminals.
Recently, an interesting distributed algorithm forWSRMax is

proposed by Shi et al. [45], which exploits a nontrivial equiva-
lence between the WSRMax problem and a weighted sum mean
squared error minimization problem. In the rest of the paper, we
refer to this method asWMMSE algorithm as suggested in [45].
Each iteration of WMMSE algorithm essentially consists of the
following three steps: 1) received signal covariance estimation
at each user terminal, 2) computation and feedback of certain
parameters from user terminals to BSs over the air interface,
and 3) transmit beamformer adjustment at each BS. In practice,
performing perfect covariance estimation and perfect feedback
during each iteration can be very challenging. In the presence
of user terminal imperfections, such as estimation and feedback
errors, the algorithm’s performance can degrade and its conver-
gence can be less predictable.
In this paper we provide an alternative distributed method

for WSRMax problem in a multicell MISO downlink system.
Unlike the WMMSE algorithm [45], our method does not rely
on user terminals’ assistance such as estimations, computations,
and feedback information to BSs over the air interface during
iterations. The proposed method require only the BS to BS syn-
chronized communication, where all the signalling overhead is
exchanged through reliable backhaul links (e.g., fiber and mi-
crowave links). All the necessary computation can be carried out
asynchronously at each BS without any involvement of the user
terminals. Thus, our algorithm is well suited for systems where

the user terminal support is not allowed or not desirable. Our al-
gorithm is based on primal decomposition methods and subgra-
dient methods [46]. Specifically, we first apply primal decom-
position techniques to split the problem into a master problem
andmany subproblems. Formaster problem, we develop a novel
sequential convex approximation strategy [47] together with a
subgradient method that relies on BS coordinations. The master
problem resolves the out-of-cell interference power, which is
also known as the interference temperature in the context of
cognitive radio networks [40]. In the case of subproblems, we
adopt an existing algorithm originally proposed in [31, Sec. 4.3],
which is based on second-order cone programming (SOCP) [48]
and geometric programming (GP) [49]. These subproblems (or
BS optimizations) can be carried out in a fully asynchronous
manner. We show the monotonic convergence properties of the
algorithm, with appropriate choice of the stopping criterion for
the subgradient method. We also provide practical stopping cri-
teria, which are favorable for implementing the algorithm, but at
the expense of a sacrificing the monotone convergence. Numer-
ical results are provided to compare our method with WMMSE
algorithm [45], the GP/SOCP based algorithm proposed in [31,
Sec. 4.3], and the distributed algorithm proposed in [24], [25].
The behavior of the algorithm under different degrees of BS co-
ordination is also discussed and numerically illustrated. Prelim-
inary results of this paper can be found in [50].
The rest of the paper is organized as follows. The system

model and problem formulation are presented in Section II. In
Section III we present the problem decomposition, where we
develop a novel sequential convex approximation strategy for
addressing the nonconvex master problem. Our proposed dis-
tributed algorithm is presented in Section IV. The numerical re-
sults are presented in Section V and Section VI concludes our
paper.
Notations: All boldface lower case and upper case letters rep-

resent vectors and matrices respectively and calligraphy letters
represent sets. We use to denote the set of nonnegative real
numbers. The set of complex numbers is denoted by , the set
of complex -vectors is denoted . denotes the absolute
value of the complex number , denotes the -norm of
the complex vector , and denotes the vector obtained
by stacking the columns of matrix . The identity matrix is de-
noted by . The superscript stands for Hermitian transpose,
the superscript is used to denote a solution of an optimiza-
tion problem, and denotes statistical expectation. The no-
tation indicates that is complex Gaussian
distributed with mean and covariance .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A multicell MISO downlink system, with BSs each
equipped with transmit antennas is considered. The set of
all BSs is denoted by and we label them with the integer
values . The transmission region of each BS is
modeled as a disc with radius centered at the location
of the BS. Single data stream is transmitted for each user. We
denote the set of all data streams in the system by and label
them with the integer values . The transmitter
node (i.e., the BS) of th data stream is denoted by
and the receiver node of th data stream is denoted by .
We have , where denotes the set of data
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Fig. 1. Multicell network, , ,
, , . The area inside

solid-lined circles around BS 1, 2, and 3 represent the associated transmission
regions of each BS and the area inside dash-lined circles around BSs represent
the associated interference regions of each BS.

streams transmitted by th BS. Note that the users of the data
streams transmitted by each BS are necessarily located inside
the transmission region of the BS (see Fig. 1).
The antenna signal vector transmitted by th BS is given by

(1)

where denotes the power, represents the infor-
mation symbol, and is the beamformer, all associated
to th data stream. We assume that and are normalized
such that and . Moreover, we assume
independent data streams, i.e., for all ,
where .
The signal received at is given by

(2)

(3)

where is the channel matrix between and
, and is circular symmetric complex Gaussian noise

with variance . Note that the second term in (3) represents
the intra-cell interference and the third term represents the
out-of-cell interference. The received SINR of th data stream
is given by

(4)

where represents the out-of-cell
interference power from th BS to , which is typically
known as interference temperature in the context of cognitive
radio networks [40].
The out-of-cell interference term in (4) (i.e.,

) prevents resource allocation (RA)
on an intra-cell basis and demands centralized RA methods. To
facilitate potential distributed algorithms for RA, we make the
following assumption: transmissions from th BS do interfere
the th data stream transmitted by BS , if the distance
between th BS and is smaller than a threshold .2

The disc with radius centered at the location of any BS
is referred to as the interference region of the BS, see Fig. 1.
Thus, if th BS is located at a distance larger than to

, then the associated components are set to zero.3

Based on the assumption above, we can express as

(5)

where is the set of out-of-cell inter-
fering BSs that are located at a distance less than to .
For example, in Fig. 1 we have , ,

, and for all . It
is worth noting that the shape of the transmission and interfer-
ence regions can be arbitrary closed contours around the BSs in-
stead of the circles. This canmean arbitrary associations of users
to BSs. However, without loss of generality, we can use disc
model, which simplifies the presentation. Finally, it is useful to
define the set of data streams that are subject to out-of-cell
interference, i.e., . For example,
in Fig. 1 we have .
Let be an arbitrary positive weight associated with th

data stream. We consider the case where all receivers are using
single-user detection (i.e., a receiver decodes its intended signal
by treating all other interfering signals as noise). Assuming
that the power allocation is subject to a maximum power
constraint for each BS ,
the problem of WSRMax can be expressed as, see (6) at the
bottom of the next page, where the variables are
and and is the natural logarithm. The
weights , assign different priorities to different
users. For example, in the context of physical layer resource
allocation in optimal cross-layer control policies, represents
queue backlog associated with data stream [2]. Note that we
can simply replace the constraint
with , because .

III. PROBLEM DECOMPOSITION, MASTER
PROBLEM, AND SUBPROBLEMS

In this section, we develop the main building blocks re-
quired to derive the distributed algorithm for problem (6),

2Similar assumptions are made in [51] in the context of arbitrary wireless
networks.
3The value of is chosen such that the power of the interference term is

below the noise level and this commonly used approximation is made to avoid
unnecessary coordinations between distant BSs. The effect of nonzero terms
can be accurately modeled by changing the statistical characteristics of noise
at . However, those issues are extraneous to the main focus of the paper.
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namely, the master problem and the subproblems. To do this,
we first break problem (6) into a master problem and sub-
problems (one for each BS), by treating out-of-cell interfer-
ence powers as complicating variables. In
the case of the master problem, we develop a novel sequential
convex approximation strategy to circumvent the difficulties
due to the inherent nonconvexity of problem (6). In the case
of the subproblem, we adopt the method originally proposed
in [31, Sec. 4.3], which is essentially based on SOCP and GP
techniques.

A. Primal Decomposition

We start by first reformulating problem (6) as, see (7) at the
bottom of the page, where the variables are and

. Problem (6) and (7) are equivalent, since
1) function is increasing and 2) the objective function of
problem (7) is increasing in , and therefore the first set of con-
straints holds with equality at the optimal point.
Let denote the set of links for which base station

acts as an out-of-cell interferer. In particular,
. By noting that the sets

and are identical, we can
rewrite the first inequality constraint of problem (7) as

(8)

Now we treat as complicating variables and use primal
decomposition techniques to split problem (7) into a master
problem and subproblems (one for each BS). The master
problem updates the complicating variables
to maximize the overall weighed sum rate (i.e., to maximize
the objective of original problem (6)). To express the master
problem compactly, let us denote the vector
of out-of-cell interference components by . The master
problem is given by

(9)

where the variable is and is the optimal value of the
th subproblem given by, see (10) at the bottom of the page,
with variables . To simplify the presentation, it is

(6)

(7)

(10)
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also useful to introduce the following equivalent reformulation
of problem (10):

(11)

where the variable is . The equivalence of
problem (10) and (11) follows since the objective function of
problem (11) is decreasing in , and therefore the first set of
constraints holds with equality at the optimal point.

B. Master Problem

Computing the objective value of the master problem
(9) requires the solution of each subproblem (10), which is
NP-hard [10]. Moreover, even if we would be able to solve the
subproblems, we cannot apply standard subgradient methods
to solve the master problem (9) since it is not convex. To
address these difficulties, we develop a novel method that
solves successive approximated variants of the original master
problem (9). Each approximated problem can be transformed
into a convex problem by a change of variables. To solve the
resulting convex problems, we propose a subgradient method.
It is important to note that, the approximations and variable
transformations mentioned above are such that we can always

rely on subproblems (10) (i.e., BS optimizations) to compute
a subgradient. Details of the subproblem solution method are
deferred to Section III-C.
We start by approximating the objective function of

problem (9) with an upper bound function, which in turn
is used to obtain the approximation of the master problem.
We refer to the resulting approximation as the approximated
master problem. Next, we derive an equivalent convex form of
the approximated master problem, followed by the subgradient
methods to solve it.
1) Derivation of an Upper Bound Function for the Master

Problem: The key idea is as follows: we first carry out partial
minimization of problem (11) to yield an initial upper bound
on .4 Then the initial upper bound is further modified by
using a well known monomial approximation, so that convex
optimization techniques can be readily employed.
To simplify the presentation, let denote the feasible

set of problem (11). For some fixed normalized , let
.

Now we can write the following relations: see (12)–(17) shown
at the bottom of the page. The first equality follows from the
definition of and from the equivalence of problems (10)
and (11), (13) follows from partial minimization of the function
over while being fixed such that

, (14) follows trivially from the properties of
function, (15) follows from the monomial lower bound

on , i.e., , where is an
arbitrary positive number5 [52, Lem. 1], (16) follows from the

4The minimum value of a function with respect to the all set of variables is
always better than the minimum value of the function with respect to a subset
of variables while others being fixed.
5This bound is typically used in conjunction with an iterative method, which

uses local approximations. The parameter is usually the point at which the
approximation is made.

(12)

(13)

(14)

(15)

(16)

(17)
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monotonic properties of , and is the optimal value
of the following problem:6

(18)

where the variable is and is the subset
of data streams transmitted by th BS, which are not inter-
fered by any out-of-cell interference, i.e.,

. Note that, the inequality (13) holds with
equality if the optimal normalized beamforming directions of
problem (11) is identical to and the inequality (15)
holds with equality if .
From (12)—(17) we have , which holds

for all . Thus we have

(19)

which gives an upper bound on the objective function of (9). The
approximated master problem is obtained by replacing the ob-

6Here we have explicitly characterized the constraint
.

jective function of the original master problem (9) by the upper
bound function given in (19), i.e.,

(20)

where the variables is . Though Problem (20) is not convex
in its current form, it can be equivalently reformulated into a
convex problem via a variable transformation as shown in the
next section.
2) Convex Reformulation of the Approximated Master

Problem: Let us first transform problem (20) by the loga-
rithmic change of variables (so ). This
yields the problem

(21)

where the variable is . Here we use
the notation , where is a vector, to mean componentwise
exponentiation: .
Next we show that problem (21) is convex. To see this, we

capitalize on perturbation and sensitivity analysis results for
convex optimization problems [53]–[55].7 In particular, we
apply perturbation results to the convex form of GP (18). To
do this, let us first perform the logarithmic change of variables

, , logarithmic change of parameters
, and a logarithmic transformation of the objective

and constraint functions of GP (18) to get its convex form:
see (22) at the bottom of the page, where the variable is

and . Problem (22) possesses the
following key features:
a. Since the optimal value of GP (18) is , the optimal
value of problem (22) is given by .

7Basic sensitivity results are documented in [53, Sec. 5.6] and more general
results can be found in [54, Chap. 2] and [55, Sec. 5.6].

(22)
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b. Objective function of problem (22) is jointly convex in
and .

c. The constraint functions of problem (22) become jointly
convex in and .

By using the perturbation and sensitivity result given in [55,
Lem. 1] it follows that is convex in . Consequently,
problem (21) is convex.
3) Subgradient Method to Solve the Convex Form of the

Approximated Master Problem: In this subsection, we de-
rive the subgradient method for solving problem (21). By
invoking [55, Lem. 1], we can compute a subgradient of

at . Specifically, a subgradient is given by
and see (23) at the bottom of the

page, where denotes the optimal La-
grange multipliers associated with the first set of constraints of
problem (22), denotes the optimal Lagrange
multipliers associated with the third set of constraints of (22),
and denotes the optimal solution of
problem (22). Each BS can compute
independently, which in turn are used to construct the sub-
gradient of at via BS-BS coordination.
Note that the zero in (23) are used to simplify the presentation.
In practice, these zeros need not be exchanged between BSs
during their coordinations.
The subgradient method for problem (21) is given by [46]

(24)

(25)

where is the current iteration index of the subgradient method
and is a step size.8 The second equality (25) follows
from (23) after ignoring the zero elements. This suggest that, for
computing the th component of the subgradient, only two
BSs (i.e., and ) need to coordinate.

C. Subproblem: BS Optimization

Note that subproblem (11) is NP-hard [10], and therefore
any practical solution method is reliant on approximations.
The subproblem solution method presented in this section is
essentially based on the Algorithm 4.3.1 originally proposed
in [31, Sec. 4.3]. Here we briefly discuss the key idea of this
algorithm for the sake of completeness.
The key idea of the algorithm is to carry out the optimiza-

tion with respect to different subsets of variables by consid-
ering others fixed [31, Sec. 4.3]. First, by fixing the beamformers

8We chose diminishing nonsummable step lengths (i.e., ), that
guarantees the asymptotic convergence of the subgradient method [46].

, a GP of the form (18) is solved which locally ap-
proximates the original subproblem (11). This is a decent step.
Then, for fixed values, a maximum power reduction
factor is found such that the SINR values are preserved. The
maximum power reduction factor is given by the optimum
that solves the following problem:

(26)

where the variables are and .9 Note that, we
always have , and, hence, the saved power can be used
to decrease the objective of original problem (11) by 1) setting

and and 2) increasing
until the SINR constraints become tight. The result

is again a descent step. The discussion above leads to the fol-
lowing descent algorithm which can be asynchronously solved
by th BS:

Algorithm 1: Finding a suboptimal solution for BS optimization
problem (11) [31, Sec. 4.3]

1 Initialization; given a feasible beamformer configuration
, a feasible power allocation ,

and . Set iteration index .
2 By setting and , compute for all

from (5).
3 By setting for all , solve problem (18).
Denote the solution by and the
optimal Lagrange multipliers by
and .

4 Stopping criterion; if the stopping criterion is satisfied
STOP by returning by using (23) and the suboptimal
solution , where . Otherwise,

update achieved SINR values for all .
5 By setting for all , solve problem (26).
Denote the solution by and . Update

and for all . Set
and go to step 2.

9It is well known that problem (26) is equivalently formulated as a SOCP,
see [31, Sec. 4.3].

(23)
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Fig. 2. Block diagrams of proposed algorithms. (a) Algorithm 1; (b) Algorithm 2.

The block diagram shown in Fig. 2(a) summarizes Algorithm 1.
It is a descent algorithm and we refer the reader to [31] for more
details.
Note that, step 3 of Algorithm 1 solves problem (18) for some

normalized . This is the problem that should be solved to find
given in (23), which is then used to compute a subgradient

for the objective of the approxi-
matedmaster problem (21). The observations above suggest that
the local BS optimizations (i.e., Algorithm 1) can be employed
to compute the subgradient in a distributed fashion. Specifically,
the dual variables and the optimal solutions required to compute
the subgradient elements are obtained as a by-product of
the BS optimization process. These are, of course, desirable and
favorable features that are exploited when developing our dis-
tributed WSRMax algorithm in Section IV.

IV. DISTRIBUTED ALGORITHM

In this section we blend 1) the subgradient method, which
solves an approximation of the master problem (9) (see
Section III-B) and 2) Algorithm 1, which finds a suboptimal
solution to subproblem (10) (see Section III-C). The result is
an algorithm, which solves a series of approximated variants
of the original master problem (9) via a subgradient method.
Subgradients for the subgradient method are computed by
coordinating the subproblems or the BS optimizations.
The main skeleton of the proposed distributed algorithm is

depicted in Fig. 2(b), which is a smooth integration of the sub-
gradient method (24) and Algorithm 1 in an iterative manner.
This results in Algorithm 2, see Fig. 2(b) for a concise block
diagram.
The first step initializes Algorithm 2. Steps 2 represents

the BS optimizations that are performed asynchronously in
a decentralized fashion by each BS for fixed out-of-cell in-
terference . BS optimizations terminate after the per BS
stopping criterion is satisfied; see step 4 of Algorithm 1. At
this stage each BS has its own solution and the subgradient
part . BS coordination is initiated at
step 3. For example, each BSs coordinate to construct a subgra-
dient and perform subgradient
method (24), which must be synchronous. This updates global
out-of-cell interference variable . At step 4, each BS performs
their own GP to compute for the next
subgradient iteration. Step 5, is the stopping criterion for the

Algorithm 2: Distributed algorithm for WSRMax

1 Initialization; given the globally agreed initial
out-of-cell interference , a feasible beamformer
configuration , and a feasible power

allocation . Set subgradient iteration
index .

2 for to
— performs Algorithm 1 and return the
subgradient contribution
and the suboptimal solution .

3 Set and perform (24)

to yield and set

.
4 for to
— solve problem (18). Denote the solution by

and the optimal Lagrange
multipliers by and

.
— Compute by using (23).

5 Stopping criterion; if the stopping criterion is satisfied,
reset subgradient iteration index , i.e., , set

, , and go to
step 2. Otherwise increment subgradient iteration index ,
i.e., and go to step 3.

subgradient method. If the stopping criterion is satisfied,
Algorithm switches back to BS optimizations, i.e., step 2. Oth-
erwise, the subgradient method is performed until the stopping
criterion is satisfied. The algorithm continues in an iterative
manner.
Fig. 3(a) depicts graphically the behavior of Algorithm 2.

The nonconvex curve is the objective function of the master
problem (9) after the logarithmic change of variables

. The convex curves are the objective functions of approx-
imated master problems of the form (21), which are essentially
parameterized by the current beamforming directions. The ver-
tical arrows correspond to asynchronous per BS optimizations,
i.e., step 2 depicted in Fig. 2(b). The horizontal arrows cor-
respond to the subgradient method, i.e., step 3–5 depicted in
Fig. 2(b). Fig. 3(a) shows that the algorithm switches between
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Fig. 3. The behavior of Algorithm 2; the objective function of problem (9) and
(21) are shown in the domain of . (a) Upper bounds; (b) monotonic conver-
gence.

the per BS optimizations and the subgradient method. For ex-
ample, by fixing out-of-cell interference at , the algorithm
performs per BS optimizations. Once a specified stopping crite-
rion is satisfied, the algorithm stops BS optimizations and per-
forms the subgradient method until a specified stopping crite-
rion is satisfied. As a result, the out-of-cell interference values
are changed from to . The algorithm continues in an itera-
tive manner.
The algorithm proposed in this section has following features,

which simplify its practical implementation:
a. Local channel state information (CSI): The th BS re-
quires to know only the channels to receiver nodes located
inside its interference region. Specifically, th BS should
know channel matrices , where
and . This is similar to the CSI requirement
in WMMSE algorithm (see [45, Sec. IV]).

b. Asynchronism: All the subproblems or BS optimizations
can be carried out in a fully asynchronous fashion until a
stopping criterion is satisfied.

c. Fast Local optimization: Each subsystem need to solve
convex problems, which can be performed very fast
provided the significant computing power available at
each BS.

d. Thin protocol: Each BS does not need to reveal the en-
tirety of its own subproblem during the BS coordination;
only a little communication is needed, and therefore the
protocol between BSs can be very light.

e. Reliability: To carry out the algorithm, only BS to BS
synchronized signalling is required. This signalling can
be carried out via reliable backhaul communication links
such as microwave and fibre links.

f. No user terminal involvement: The user terminals do not
require performing any processing associated with algo-
rithm iterations and user to BS signalling is not required.

A. Monotonic Convergence of Algorithm 2

In this section we first show that Algorithm 2 can generate a
monotonically nonincreasing sequence of objective values, with
appropriate choice of stopping criteria. In particular, we mea-
sure the objective value given by the algorithm just after each
GP; see point ‘ ’ of Fig. 2(a) and point ‘ ’ of Fig. 2(b). Then
we show the monotonic convergence of Algorithm 2.
Algorithm 2 starts with Algorithm 1 (see step 2). Let

denote the sequence of objective values
obtained during Algorithm 1 iterations. Here is the number
of Algorithm 1 iterations until its stopping criterion is satisfied.
Natural stopping criteria includes 1) running Algorithm 1 for a
fixed number of iterations or 2) running Algorithm 1 until the
objective value decrement between two successive iterations
is below a certain predefined threshold. Since Algorithm 1
contains nonascent steps (see Section III-C) we have

(27)

as depicted in Fig. 3(b).
Next, Algorithm 2 switches to the subgradient method (24)

(see step 3). Note that, the subgradient method is not a descent
algorithm. Therefore, in order to obtain a monotonically non-
increasing sequence of objective values, we consider the fol-
lowing stopping criterion: running subgradient method until an
objective value is achieved, such that (see
Fig. 3(b)), where and is the number of
subgradient iterations.10 Thus, we have

(28)

The switching between Algorithm 1 and the subgradient
method is done in an iterative manner. The result is a
monotonically nonincreasing sequence of objective values

such that , .
Moreover, note that the optimal objective value of problem (7)
is bounded. This guarantees the monotonic convergence of
Algorithm 2 [56, Th. 3.14].

10In fact, the subgradient method, with diminishing nonsummable step
lengths, ensures asymptotic convergence [46]. However, the requirement here
is to iterate until a better objective value (compared to the initial objective
value ) is obtained.
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Fig. 4. An example signalling frame structure.

Note that the development of Algorithm 2 is not based on
Karush-Kuhn-Tucker (KKT) optimality conditions for the non-
convex problem (7). As a result, characterizing completely the
solution structure of the proposed algorithm is a difficult task.
For example, the (suboptimal) solution after the convergence of
Algorithm 2 may not necessarily be a locally optimal point of
problem (7).

B. A Practical Stopping Criterion/Signalling Strategy

The stopping criteria discussed in Section IV-A are, of course,
important to ensure the monotonic convergence of the algo-
rithm. However, it is desirable to seek for stopping criteria,
which are favorable for practical implementations of the algo-
rithm, but with a violation of the monotonic convergence. In the
sequel, we explain such an example strategy.
The key idea is to define time barriers; i.e., system check-

points at which all BS must start their local optimizations (i.e.,
Algorithm 1) and system checkpoints at which all BS start co-
ordination (i.e., the subgradient method). In particular, each BS
transmissions are synchronized and the data transmission phase
of each BS is preceded by a signalling phase, in which the
rate/power allocation of each BS is determined via WSRMax;
see Fig. 4. The signalling phase consists of three types of time
slots called initial signalling window, BS optimization window,
and BS coordination window. The initial signalling window is
used for step 1 of Algorithm 2, i.e., the initialization step. The
latter two types of windows (i.e., BS optimization window and
BS coordination window) are repeated until the data transmis-
sion phase is reached as shown in Fig. 4. We define the BS opti-
mization windows to be the the time periods where Algorithm 1
is performed asynchronously. Therefore, during BS optimiza-
tion windows, step 2 of Algorithm 2 is carried out. The width
of the window is determined by the maximum number of Algo-
rithm 1 iterations. The BS coordination windows are defined to
be the time periods where the subgradient method is performed.
Therefore, during any BS coordination window, step 3, step 4,
and step 5 of Algorithm 2 are carried out repeatedly. The width
of the BS coordination window is determined by the maximum
number of subgradient iterations. Typically, wemay assume that
the time period of any BS optimization window is significantly
smaller compared to the time period of any BS coordination
window because of the following reasons: 1) significant com-
puting power available at BSs so that the BS optimization can be

performed very fast, 2) BS coordination require backhaul mes-
sage exchanges between BSs, which in turn demand stringent
time requirements.

V. NUMERICAL EXAMPLES

In this section we run our proposed Algorithm 2 (Section IV)
in multiuser multicell environments and the benefits due to dif-
ferent degrees of BS coordination are numerically evaluated.
As benchmarks, we consider three algorithms:11 1) distributed
WMMSE algorithm [45], 2) GP-SOCP based centralized algo-
rithm proposed in [31, Sec. 4.3], and 3) the distributed algo-
rithm proposed in [24], [25], which is based on a virtual SINR
beamforming strategy. To emphasize the practical relevance of
the proposed algorithm, we consider only the stopping criterion
discussed in Section IV-B, which is based on time barriers or
system checkpoints as shown in Fig. 4.
We consider an exponential path loss model, where the

channel gains between BSs and users are given by

(29)

where is the distance from the transmitter of th data stream
to the receiver of th data stream, is the far field reference dis-
tance [57], is the path loss exponent, and such that

(i.e., frequency-flat fading with uncorrelated
antennas). The first term of (29) represents the path loss factor
and the second term models the Rayleigh small-scale fading.
An arbitrarily generated set of fading coefficients where

is referred to as a single fading realization. The
variance of the noise is considered equal for all data streams,
i.e., for all and the maximum power constraint
is assumed the same for all nodes, i.e., for all

. We define the SNR operating point at a distance [dis-
tance units] as

otherwise.
(30)

In all our simulations, we set , , ,
, where is the radius of the interference

regions of each BS,12 and , where is
the radius of the transmission regions of each BS.
In our simulations two multicell multiuser wireless cellular

networks as shown in Fig. 5 are considered. In the case of first
network (i.e., Fig. 5(a)), there are BSs with
antennas at each one. The BSs are located such that the distance
between the two BSs is . In the case of second
network (i.e., Fig. 5(b)), there are BSs with
antennas at each one. Moreover, the BSs are located such that
they form an equilateral triangle and the distance between any
two BSs is . There are 4 users per each BS

11These three algorithms are not restricted toMISO IC. They can handle more
general MISO interfering broadcast channel.
12Signal strength of BS’s transmitted signal at a distance is at most on

the order of noise, Therefore, as we modeled in Section II, it is reasonable to
consider that the interference cased by the BS outside the interference region is
negligible.
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Fig. 5. (a) Multicell network 1, , ,
, , ; (b) Multicell network 2,

, , , ,
, .

Fig. 6. Objective value versus GP iteration: (a) Multicell network 1; (b) Mul-
ticell network 2.

located inside the transmission region of the BS. The locations
of users associated with BSs are arbitrarily chosen as shown in
Fig. 5. A single data stream is transmitted for each user.
To see the behavior of Algorithm 2, we first consider a non-

fading case where for each network (see Fig. 5), an arbitrary
generated single fading realization is considered. We run the al-
gorithm in both networks shown in Fig. 5. Fig. 6 shows the ob-
jective value of problem (6) computed at points ‘ ’ and ‘ ’

(see Fig. 2(a) and Fig. 2(b)). Here the X-axis of Fig. 6 represents
combined Algorithm 1 iterations and subgradient iterations. For
simplicity, we denote the number of Algorithm 1 iterations car-
ried out during the BS optimization window by and
denote the number of subgradient iterations performed during
the BS coordination window by . Plots are drawn for
the cases of and , 10, 50. Note
that is a measure of the degree of BS coordination. For
example, means that the subgradient method is
performed only once during any BS coordination window and

means that the subgradient method is carried
out 50 consecutive times during any BS coordination window.
Weights of each data stream is arbitrarily chosen from the
interval (0, 1]. In step 1 of Algorithm 2, the components of ini-
tial out-of-cell interference vector are chosen on the order of
noise variance (e.g., ). Moreover, the normalized ini-
tial beamformers are randomly generated and a
feasible uniform initial beamformer power allocation is chosen,
i.e., , where is chosen to

ensure the feasibility of problem (18).
In order to describe the algorithm’s behavior, let us first focus

to Fig. 6(a), the case of . To distinguish Algorithm 1
iterations from the subgradient iterations, we use two types of
squares; transparent squares and solid squares. Specifically, the
transparent squares correspond to the Algorithm 1 iterations
and the solid squares correspond to the subgradient iterations.
Since , only a single subgradient iteration is
performed during any BS coordination window. Furthermore,
each BS perform 15 Algorithm 1 iterations during any BS
optimization window, since we have . Note that
the BS optimizations (Algorithm 1) are always nondecreasing
steps.13 The flattening of these line segments means that BS
optimizations cannot further improve the system objective.
Violation of overall monotonic behavior is inevitable since
the subgradient method is not a descent algorithm in general
[46]. Results show that BS coordination can gracefully resolve
the out-of-cell interference (i.e., ) via subgradient method.
For example, the plot in the case of , shows a
22% increase in the weighted sum-rate (WSR), after having 5
subgradient iterations.
Fig. 6(a) further shows that the value of , which

parameterizes the degree of BS coordination has a signif-
icant effect on the overall WSR value. It is interesting to
note that, a smaller number of consecutive subgradient iter-
ations (e.g., , 10) can perform better compared
to a larger number of consecutive subgradient iterations (e.g.,

). Such a behavior is very important in practice
to reduce significantly the backhaul message exchanges during
any BS coordination window. We can intuitively explain the
behavior by considering the two points ‘A’ and ‘B’ in Fig. 3(a).
In particular, point ‘A’ corresponds to a smaller , where
the (convex form) approximated master problem (21) is solved
to a low accuracy. Point ‘B’ corresponds to a larger ,
where the (convex form) approximated master problem is
solved to a high accuracy. Of course, point ‘B’ is better than

13Nondecreasing because we have plotted the positive weighted sum-rate
value instead of the negative value of it.
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point ‘A’ for the approximated master problem, but not neces-
sarily for the original master problem (9); see the master objec-
tive depicted in Fig. 3(a). This suggests that one need not solve
each approximation to a high accuracy. Refining the approxi-
mation more often (which corresponds to a smaller ),
rather than solving some approximated master problem to a
high accuracy (which corresponds to a larger ) is more
beneficial.
Fig. 6(b) shows the proposed algorithm behavior in the case

of network setup 2 in Fig. 5(b). The behavior is very similar to
the previous plots in Fig. 6(a). The network can yield substantial
gains by performing just one subgradient iterations during any
BS coordination window, i.e., less backhaul message exchanges
between BSs. For example, the plot in the case of ,
shows a 23% increase in the WSR, after having 5 subgradient
iterations; see Fig. 6(a). Fig. 6 also shows the performance of
the considered benchmark algorithms after their convergence.
In both networks, for the considered channel realizations, the
performance of the distributed algorithm in [24] is significantly
low. Note that, algorithm in [24] is well suited for lightly loaded
scenarios (see [35, Fig. 4]), and therefore, it is intuitively ex-
pected this performance drop due to the lack of degrees of
freedom available at BS transmissions to avoid interference.
Results further show that the distributed WMMSE algorithm
outperforms the proposed algorithm in both scenarios. Such
results are intuitively expected because WMMSE algorithm do
rely on user terminal assistance during algorithm’s iterations
compared to our proposed Algorithm 2. The good performance
of the centralized algorithm compared to Algorithm 2 agrees
with the intuition that methods with a centralized controller can
always outperform decentralized methods.
It is important to note, however, that all the considered al-

gorithms are suboptimal methods to problem (6), and therefore
their optimality is not guaranteed. As a result, they may expe-
rience different performance ranking for different channel real-
izations. One such case is illustrated in Fig. 7. The algorithms’
parameters are same as in Fig. 6 except the fading realizations.
Results show that Algorithm 2 can outperforms WMMSE and
the centralized algorithms.
In order to see the average behavior of the proposed algo-

rithm, we consider a fading case. Here, we run Algorithm 2 for
500 fading realization with and .
Recall that the algorithm parameter means that
during any BS coordination window, only one subgradient
iteration is performed. These are the only operations that
require message exchanging between BSs via backhaul links.
Moreover, subgradient iterations are the main implementa-
tion-level bottleneck, provided significant computing power
at BSs, where Algorithm 1 iterations can be performed fast
and efficiently. Thus, it is interesting to see the average WSR
value of problem (6) achieved at point ‘ ’ of Algorithm 2 (see
Fig. 2(b)) after subgradient iteration. In other
words, we examine the evolution of average WSR versus the
number of BS coordinations.
Fig. 8 shows the dependence of the average WSR value on

the number of subgradient iterations in the case of considered
network 1 and network 2. Note that, we have used the same
figure to plot the dependence of the average objective value of

Fig. 7. Objective value versus GP iteration: (a) Multicell network 1; (b) Mul-
ticell network 2.

WMMSE algorithm on the number of iterations.14 Results show
that the BS coordination plays a critical role in the performance
of Algorithm 2. For clarity, we denote the situation where the
subgradient iterations as noncoordinating case. In
the case of network 1 (see Fig. 8(a)), more than 12% improve-
ment in the average objective value is achieved within five BS
coordinations compared to the noncoordinating case. For net-
work 2 (see Fig. 8(b)), within five BS coordinations, more than
24% improvement in the average objective value is achieved as
compared to the noncoordinating case.
Fig. 8 also shows that the average performance of WMMSE

algorithm is better compared to that of Algorithm 2. This
behavior is intuitively expected since, unlike the proposed
Algorithm 2, the WMMSE algorithm benefits from user ter-
minal assistance. Recall that, during each iterations, WMMSE
algorithm requires user terminals assistance such as signal co-
variance estimations, computations, and feedback information
to BSs over the air interface. In contrast, our proposed method
require only BS-level synchronized communication and all the
necessary computation is concentrated at the BSs. The result

14The subgradient iterations are analogous to WMMSE iterations in the fol-
lowing sense: both the subgradient iterations and the WMMSE algorithm iter-
ations require message exchanges between nodes. Specifically, the subgradient
method requires BS-BS message exchanges andWMMSE requires BS-user ter-
minal as well as user terminal-BS message exchanges.
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Fig. 8. Average objective value versus number of BS coordinations: (a) Mul-
ticell network 1; (b) Multicell network 2.

is naturally a trade off between performance gains and the
implementation-level simplicity. For a fair comparison of Al-
gorithm 2 and WMMSE algorithm, we examine the sensitivity
of WMMSE algorithm to imperfections on the signal covari-
ance estimations at user terminals. Specifically, during each
WMMSE iteration, we randomly perturb the error free signal
covariance matrix (which is a scalar in the case of MISO)
at each user terminal as follows: ,
where is a random variable with 2 equiprobable outcomes
1, 1 and is the amount of covariance perturbation. Re-

sults show that even small estimation errors have a significant
effect on the performance of WMMSE algorithm. Moreover,
in such situations, the convergence of the WMMSE method
becomes less predictable. Thus, our algorithm is well suited
for systems where the user terminal assistance is not desirable
due to potential errors such as estimation errors and feedback
errors.
Fig. 8 further shows that, the performance of Algorithm 2

within several BS coordinations is comparable with that of the
centralized algorithm [31, Sec. 4.3]. For example, in the case
of network 1, Algorithm 2 achieves around 99% of the average
WSR value given by the centralized algorithm [31, Sec. 4.3].
Moreover, in the case of network 2, Algorithm 2 yields around
94% of the average WSR value given by the considered central-
ized algorithm. Finally, we see that there is a substantial perfor-
mance gap between Algorithm 2 and the distributed algorithm

in [24]. The main reason for such a performance drop of algo-
rithm in [24] is the insufficient degree of freedom available at
BS transmissions to cancel the interference it causes to the user
terminals.

VI. CONCLUSIONS

We considered the weighted sum-rate maximization problem
in amulticell multiple-input and single-output downlink system.
The problem is nonconvex; in fact it is NP-hard. A distributed
solution method for the problem is proposed. The main ad-
vantage of the proposed algorithm is its implementation-level
simplicity. Unlike the minimum weighted mean-squared error
based algorithms, our method does not demand user terminal
assistance during each iteration. Our algorithm essentially re-
quire base station to base station (BS) communication, which
are reasonably realizable, provided reliable backhaul links (e.g.,
fibre and microwave links) and significant computing power
at BSs. As a result, a good trade-off between the performance
gains and the implementation-level simplicity was achieved.
The proposed algorithm was based on primal decomposition
and subgradient methods. In particular, the main problem was
split into a master problem and many subproblems (one for
each base station). A novel sequential convex approximation
strategy together with a subgradient method were blent to ad-
dress the nonconvex master problem. Master problem solution
relies on synchronous BS coordinations. A descent algorithm
based on second-order cone programming and a geometric pro-
gramming were adopted in the case of subproblems. The sub-
problems can be performed in a fully asynchronousmanner. The
monotonic convergence of the algorithm was established, with
appropriate choice of stopping criteria at intermediate steps.
Practical stopping criteria have also been proposed. Numerical
experiments were performed to compare our method with ex-
isting state-of-the-art algorithms. Results suggest that our algo-
rithm is well suited for systems where the user terminal assis-
tance is not allowed or not desirable. Results further showed that
the proposed algorithm could significantly improve the overall
system performance with a small amount of BS coordinations.
These observations are indeed important for deriving simple
signalling protocols in the context of large-scale practical cel-
lular communication systems.
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