DISCRETE ANALOGUES OF THE LAGUERRE INEQUALITIES AND A
CONJECTURE OF 1. KRASIKOV

MATTHEW CHASSE AND GEORGE CSORDAS

ABSTRACT. A conjecture of I. Krasikov is proved. Several discrete analogues of classical
polynomial inequalities are derived, along with results which allow extensions to a class of
transcendental entire functions in the Laguerre-P6lya class.

1. INTRODUCTION

The classical Laguerre inequality for polynomials states that a polynomial of degree n
with only real zeros, p(x) € R[x], satisfies (n — 1)p’(x)> —np” (x)p(x) > 0 for all x € R (see
[3, 13]). Thus, the classical Laguerre inequality is a necessary condition for a polynomial
to have only real zeros. Our investigation is inspired by an interesting paper of I. Krasikov
[8]. He proves several discrete polynomial inequalities, including useful versions of gen-
eralized Laguerre inequalities [17], and shows how to apply them by obtaining bounds on
the zeros of some Krawtchouk polynomials. In [8], I. Krasikov conjectures a new discrete
Laguerre inequality for polynomials. After establishing this conjecture, we generalize the
inequality to transcendental entire functions (of order p < 2, and minimal type of order
p = 2) in the Laguerre-Pdlya class (see Definition 1.1).

Definition 1.1. A real entire function ¢(x) = 3,77, %x’( is said to belong to the Laguerre-
Pdlya class, written ¢ € L-P, if it can be expressed in the form

w
p(x) = cxMem X I_l (1 + i) e (0<w< ),
k=1 Yk

where b, ¢, x;, € R, m is a non-negative integer, a > 0, x; # 0, and Z;{":] xlz < 00,
k

The significance of the Laguerre-Pélya class stems from the fact that functions in this
class, and only these, are uniform limits, on compact subsets of C, of polynomials with
only real zeros [12, Chapter VIII].

Definition 1.2. We denote by £-P, the set of polynomials of degree n in the Laguerre-
Polya class; that is, £-P, is the set of polynomials of degree n having only real zeros.

The minimal spacing between neighboring zeros of a polynomial in £-P, is a scale that
provides a natural criterion for the validity of discrete polynomial inequalities.

Definition 1.3. Suppose p(x) € £-P, has zeros {a;}}_,, repeated according to their mul-
tiplicities, and ordered such that @y < ay41, | < kK < n— 1. We define the mesh size,

associated with the zeros of p, by

u(p) == min g — .
1<k<n-1
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2 M. CHASSE AND G. CSORDAS

With the above definition of mesh size, we can now state a conjecture of 1. Krasikov,
which is proved in Section 2.

Conjecture 1.4. (I. Krasikov [8]) If p(x) € £L-P, and u(p) > 1, then
9] (n—=DIpx+1) = p(x— DI* = dnpx)[p(x + 1) = 2p(x) + p(x — 1)] > 0
holds for all x € R.

The classical Laguerre inequality is found readily by differentiating the logarithmic
derivative of a polynomial p(x) with only real zeros {a;}}_,, to give

P ()p(x) — (p'(x))? ( P’ (x) )’ [ u 1 ]’ " 1
2 = = = —_— —_—
@ (p(x))? p() g;u—aw g;u—awz
Since the right-hand side is non-positive,
(P’ (x)? = p"" (x)p(x) > 0.

This inequality is also valid for an arbitrary function in £-P [3]. A sharpened form of the
Laguerre inequality for polynomials can be obtained with the Cauchy-Schwarz inequality,

n 2 n
1 1
3) [; (x_ak)J Sn;—(x—ak)z'

N2
In terms of p, (3) becomes (’; ((;))) < nYr, m, and with (2) yields the sharpened

version of the Laguerre inequality for polynomials on which Conjecture 1.4 is based,

“) (n = D(p'(0))* = np” (x)p(x) = 0.

The inequality (1) is a finite difference version of the classical Laguerre inequality for
polynomials. Indeed, let us define

(5)  fulx,h,p) = (n = DIp(x + h) = p(x = )]> = dnp(X)[p(x + h) = 2p(x) + p(x — h)].
Then (1) can be written as f,(x, 1, p) > 0 (x € R), and we recover the classical Laguerre
inequality for polynomials by taking the following limit:
plx+h) = p(x =)\’
2h

p(x+h) —2p(x) + p(x — h))
"2

Jim 22072 P)
=0  4h2

=i

—ﬂwuwgg
(n = Dp'(x)* = np” (x)p(x).

As 1. Krasikov points out, the motivation for inequalities of type (1) is that classical
discrete orthogonal polynomials pi(x) satisfy a three-term difference equation (see [15, p.
271, [8D)

Pe(x + 1) = bi(x)pi(x) — cx(X)pr(x = 1),

where by (x) and ci(x) are continuous over the interval of orthogonality. Many of the clas-
sical discrete orthogonal polynomials satisfy the condition that cx(x) > O on the inter-
val of orthogonality, and this implies that u(p) > 1 (see [11]). Therefore, inequalities
when p(p) > 1 are of interest and may help provide sharp bounds on the loci of zeros
of discrete orthogonal polynomials [8, 5, 6]. Indeed, W. H. Foster, 1. Krasikov, and A.
Zarkh have found bounds on the extreme zeros of many orthogonal polynomials using dis-
crete and continuous Laguerre and new Laguerre type inequalities which they discovered
[5,6,7,8,9,10, 11].
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In this paper, we prove I. Krasikov’s conjecture (see Theorem 2.17), extend it to a
class of transcendental entire functions in the Laguerre-P6lya class, and formulate several
conjectures (cf. Conjecture 2.19, Conjecture 2.21, Conjecture 2.22, and Conjecture 3.5). In
Section 2, we establish several preliminary results about polynomials which satisfy a zero
spacing requirement. In Section 3, we establish the existence of a polynomial sequence
which satisfies a zero spacing requirement and converges uniformly on compact subsets of
C to the exponential function. We use this result to extend a version of (1) to transcendental
entire functions in the Laguerre-Pélya class up to order p = 2 and minimal type, and
conjecture that it is true for all functions in £-P.

2. Proor or I. Krasikov’s CONJECTURE

In this section we develop some discrete analogues of classical inequalities, form some
intuition about the effect of imposing a minimal zero spacing requirement on a polynomial
in £-P, and prove Conjecture 1.4. First, note that one can change the zero spacing require-
ment in Conjecture 1.4 by simply rescaling in x. For example, the following conjecture is
equivalent to Conjecture 1.4 of Krasikov.

Conjecture 2.1. Let p(x) € £-P,. Suppose that u(p) > h > 0. Then for all x € R,
(6) fulx,h, p) = (n=DIp(x+h) = p(x = W) = 4np(x)[p(x + h) = 2p(x) + p(x — h)] = 0.

For the sake of clarity, we will work with (1) directly (k = 1), and keep in mind that
we can always make statements about polynomials with an arbitrary positive minimal zero
spacing by rescaling p(x) (in other words “measuring x in units of #”).

Lemma 2.2. A local minimum of a polynomial, p(x) € L-P,, with only real simple zeros,
is negative. Likewise, a local maximum of p(x) is positive.

Proof. Because p(x) is a polynomial on R with simple zeros, at a local minimum (X,
P(Xmin)), we have that p’(x,,;,) = 0 and p” (xin) > 0 (because p” (xin) = 0 would imply
that p” has a multiple zero at x,,;, which is not possible). The classical Laguerre inequality
asserts that if p(x) € £-P, then for all x € R, (p’(x))> — p”'(x)p(x) > 0. At a local minimum
this expression becomes —p”’ (Xin)P(Xmin) = 0. Therefore, at a local minimum we have
P(Xmin) < 0. Since the zeros of p are simple, p(x,,;,) # 0. Thus p(x,;») < 0. The second
statement of the lemma can be proved the same way, or by considering —p and using the
first statement. O

A statement similar to Lemma 2.2 is proved by G. Csordas and A. Escassut [4, Theorem
5.1] for a class of functions whose zeros lie in a horizontal strip about the real axis.

Lemma 2.3. Let p(x) € L-P,, n > 2, u(p) > 1.

1) If p(x—1) > p(x) and p(x + 1) > p(x), then p(x) < O.
(1) If p(x— 1) < p(x) and p(x + 1) < p(x), then p(x) > 0.

Proof. (i) Fix an xp € R. Let p(xo — 1) > p(xp), p(xo + 1) > p(xp), and assume for a
contradiction that p(xp) > 0. There cannot be any zeros of p(x) in the interval [xy — 1, xo],
for if there were, p(xp)p(xo — 1) > 0 implies that the number of zeros in (xy — 1, xo) must
be even, and this violates the zero spacing p(p) > 1. Similarly, there cannot be any zeros
of p(x) in [xg, xo + 1]. If p(x9) < p(xp — 1) and p(xp) < p(xo + 1) then there is a point in
(xo — 1, xo + 1) where p’ changes sign from negative to positive. This implies p achieves a
non-negative local minimum on [xg — 1, xo + 1] which contradicts Lemma 2.2.

(i1) The second statement follows by replacing p with —p in (i). ]
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Using Lemma 2.3 we can verify that if p(x) < min{p(x + 1), p(x — 1)}, then p(x) < 0
and thus the function

Su(x, 1, p) (n=Dp(x+ 1) = p(x = DI* = dnp(x)[p(x + 1) = 2p(x) + p(x = 1)]
(n—DIp(x+ 1) — p(x— DI?
@) —4np(X)[(p(x + 1) = p(x)) + (p(x = 1) = p(x))]

has a non-negative second term and (1) is satisfied. Similarly, (1) is valid when p(x) >
max{p(x — 1), p(x + 1)}. The proof of Conjecture 1.4 is now reduced to the case where
min{p(x+ 1), p(x— 1)} < p(x) < max{p(x+ 1), p(x — 1)}. It is easy to show that if for some
p(x) € L-P,, fu(x,1,p) = 0 for all x € R, then for all m > n, f,,(x,1, p) > 0 for all x € R.
If u(p) > 1, but m < deg(p), then for some xp € R, f,,(x0, 1, p) may be negative. Indeed, let
p(x) = x(x—1)(x=2), then f3(x, 1, p) = 72(x—=1)? and fo(x, 1, p) = —12(x=3)(x—1)>(x+1).
In particular, f>(4, 1, p) = —540.

We next obtain inequalities and relations that are analogous to those used in deriving
the continuous version of the classical Laguerre inequality for polynomials.

Definition 2.4. Let p(x) € £-P, have only simple real zeros {aw};_,. Define forward and
reverse “discrete logarithmic derivatives” associated with p(x) by

px+1)-pl) z”: Ak

8 F =
® 0 @) L= )
9) and R(x) := PO —px-1) _ VB

' p(x) -

Note that deg(p(x + 1) — p(x)) < deg(p(x)) and deg(p(x) — p(x — 1)) < deg(p(x)) permits
unique partial fraction expansions of the rational functions F and R. Define the sequences
{Arli_, and {Bi};_, associated with p(x) by requiring that they satisfy the equation above.

Remark 2.5. For an arbitrary finite difference, 4, the scaled versions of the functions in

Definition 2.4 are F(x) := % and R(x) := %ﬂ.

Lemma 2.6. For p(x) € L£-P,, n > 2, with u(p) > 1 and zeros {a}]_,, the associated
sequences {A},_, and {By};_, satisfy Ay 2 0 and By, > 0, forallk, 1 <k <n.
Proof. From Definition 2.4 we have

n

oA
P+ D) =p)= ) ———px) =)
k=1

(x — ) =

Al [ ayp).

Jj#k

Evaluating this at a zero of p yields p(ay + 1) = Ag [1ju(ax — @;) = Arp’ ().
Thus,
_ Pl +1) —plag—1)
P'(ar) P’ (@)
Since the zeros of p are simple, for some neighborhood of oy, U(ay),

Ax and similarly By =

x € Ula), x <ar implies p(x)p’'(x) <0
and x € U(ay), x>, implies p(x)p’(x) > 0.

Since the zeros are spaced at least 1 unit apart, p(ay + 1) is either O or has the same sign
as p(x) for x > a4 on U(ay). So for all € > 0 sufficiently small, p(a + 1)p’(ay + &) > 0,
and by continuity p(ay + 1)p’(ax) = 0. Thus A; = % > 0. Note p’(ay) # 0 since
ay is simple. Likewise, p(ay — 1) is either O or has the same sign as p’(x) for x < @, on
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U(ay). Hence for all € > 0 sufficiently small, p(a; — 1)p’(ax — &) < 0. By continuity,
pla; — Dp’(ay) <0, whence By > 0.

O
Example 2.7. If the zero spacing requirement in Lemma 2.6 is violated then some Ay, or
B may be negative. Indeed, consider p(x) = x(x + 1 — &). Then % = % < +A12_8,
where )
- -
A = A = .
'T1-e T 1-¢

For any positive € < 1, u(p) = 1 — &, and A, is negative.

Corollary 2.8. For p(x) € L-P,, n > 2, with u(p) > 1, the associated functions F(x) and
R(x) (see Definition 2.4) satisfy F’(x) < 0 and R’ (x) < 0 on their respective domains.

Proof. This corollary is a direct result of differentiating the partial fraction expressions for
F and R and applying Lemma 2.6. O

Note that the degree of the numerator of F(x)isn — 1. If u(p) > 1, then F(x) hasn — 1
real zeros, because F(x) is strictly decreasing between any two consecutive poles of F(x).
This proves the following lemma.

Lemma 2.9. (Pdlya and Szegoé [18, vol. 11, p. 39]) For p(x) € L-P,, n > 2, with u(p) > 1,
F(x) and R(x) have only real simple zeros.

In the sequel (see Lemma 2.16), we show that if u(p(x)) > 1, then u(p(x+1)—p(x)) > 1,
and the zeros of F(x) and R(x) are spaced at least one unit apart.

Lemma 2.10. If p(x) € L£-P,, then the associated sequences {ArYi_, and {B}_, satisfy
w1 Ax=nand }}_, By =n.

Proof. Let p(x) = a,x" +a,_1 x"!

Observe that

+---+ag € L£-P, and denote the zeros of p(x) by {anky_,-

n

- _ o (PEHD-P@) L A
(10) lzlll_IgozF(z)—legrgoz( -5 )-lzllggoz;(z_ak)_;/ak.

Then (10) and

pz+1) - p(2) !

Az + D'+ a1+ D"+t ag — [and + an 7 + .+ ao)

na, 2" + 02", |z| = oo,

imply that
“ +1) - n—1 +0 n—2
ZAk = lim zF(z) = lim Z(u) = lim Z( na,z 1 Z") _
=1 |z] =00 |z]—00 p(Z) Koo \ @z + ay_1 2" + -+ + ag)
A similar argument shows that }};_, By = n. O

Lemma 2.11. Given p(x) € £-P,, n > 2, with u(p) > 1, the associated functions F(x) and
R(x) satisfy (F(x))> < —nF’(x) and (R(x))> < —nR’'(x), for all x € R, where p(x) # 0.
Proof. From Definition 2.4, F(x) = Y;_, Xfflk and therefore F'(x) = >;_, ﬁ. By
Lemma 2.6, u(p) > 1 implies the constants Ay > 0. Using the the Cauchy-Schwarz
inequality,

n

2 n n
(s AL Sal3 A,
(o= ( X = “k) = [kl Ak) = (x - a)? =),

k=1




6 M. CHASSE AND G. CSORDAS

where Lemma 2.10 has been used in the last equality. An identical argument shows
(R(x))* < —nR’(x) for all x € R. o

Remark 2.12. Simple examples show that the inequalities in Lemma 2.11 are sharp (con-
sider p(x) = x(x + 1 — g)).
Lemma 2.13. Let p(x) € L-P,, n > 2, with u(p) = 1, and let {ﬂk}z;{ be the zeros of
p(x+1)—p(x). Lety € R be such that min{p(y+1), p(y—1)} < p(y) < max{p(y+1), p(y—1)}.
Then if the interval [y — 1,y] does not contain any By ,
(P»)* = p&y + Dp(y = 1)

(p())*

1
—F)R() <
n

S F'()  _ (P GDp)=pt+Dp’ (D)) (pa))*
Proof. If no B¢ is in [y — 1,y], then Foor = P D=pCE (P00 can be extended to

be continuous and bounded on [y — 1,y]. By Lemma 2.11 (F 0))? < —nF'(x). Dividing
both sides of this inequality by n(F(x))? and integrating from y — 1 to y we have

LR S p(y) . ro-D
n= Fy) Fy-1) po+D-py) py-py-1)
Using min{p(y + 1), p(y)} < p(y) < max{p(y + 1), p(y — 1)}, we have that either p(y — 1) <

p) < py+1)or p(y+1) < p(y) < p(y—1). Inboth cases, (p(y+1)-pM)(p»)-p(y-1)) >
0 and therefore

1
;(p(y +D-pONP»-pO-1) < pMpEpO») -ply-1)-pOo-DEpG+1-pQ»)

(PO)* = pOy+ DpGy = 1)
Dividing both sides by (p(y))* gives the result. O

IA

Lemma 2.14. For p(x) € L-P,, the associated functions F(x) and R(x) from Definition
2.4 satisfy

(p(x))* = plx + Dp(x = 1)
(p(x))?

F(X)R(x) = (F(x) — R(x)) +
for all x € R, where p(x) # 0.

Proof. This lemma is verified by direct calculation using the definitions of F(x) and R(x)
in terms of p(x). O

Lemma 2.15. Let p(x) € £-P,, n = 2, with u(p) > 1.

@) If p(B) = p(B+ 1) > O, then for all x € (B,5+ 1), p(x) > p(B) and p(x) >
max{p(x + 1), p(x — D}.
@) If p(B) = p(B+ 1) < O, then for all x € (B, + 1), p(x) < p(B) and p(x) <
min{p(x + 1), p(x — 1)}.
@iii) If p(B) = p(B+1) = 0, then for all x € (B,5+1), either p(x) > max{p(x+1), p(x—1)}
or p(x) < min{p(x + 1), p(x — D}.

Proof. Note that by Lemma 2.9, any 8 which satisfies p(8) = p(8+ 1) under the hypotheses
stated in Lemma 2.15 must be real and simple since S is a zero of F(x).

For case (i), assume for a contradiction that there exists xy € (8,8 + 1) such that p(xp) <
p(B). There can not be any zeros of p on (8,8 + 1), if there were, p(B)p(8 + 1) > 0 implies
that p(x) must have at least two zeros on (8,8 + 1), which contradicts u(p) > 1. Thus, for
all x € (8,8 + 1), p(x) > 0. Specifically p(x) > 0.
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Since p(x) does not change sign on (3, + 1), the interval (5,5 + 1) must lie between
two neighboring zeros of p(x), call them @; and a;, such that (3,8 + 1) C (@1,a7). By
the mean value theorem there exists a € (8,8 + 1) with p’(a) = 0. The zeros of p(x) and
P’ (x) interlace, and in order to preserve the interlacing @ must be the only zero of p’(x) in
(a1, an), hence p’(B), p’(B + 1) # 0. Because the zeros are simple, for some & > 0, for all
x € (ap,ay +¢€), p'(x)p(x) > 0, and for all x € (a; — €, @2), p’(x)p(x) < 0. Since p’ and p
do not change sign on (a,8) or (8 + 1, a»), this gives us that p’(8) > O and p’(8 + 1) < 0.
Then if p(xp) < p(B), p’ must change signs at least twice on (@, @) (actually three times),
at least once on (83, xp) and at least once on (xp, 3 + 1), and this contradicts the uniqueness
of a. Thus for all x € (8,5 + 1) we have p(x) > p(B).

To show p(x) > p(B) implies p(x) > max{p(x + 1), p(x — 1)} for all x € (B, + 1), notice
that since p’(y) < O forally € (B+ 1,a2), p(B+ 1) > p(y) forall y € (8 + 1, @), and due
to the zero spacing p < 0 on (@, as + 1), hence p(8 + 1) > p(x + 1) for all x € (B, a»).
Thus, for all x € (8,8 + 1), p(x) > p(B+ 1) > p(x + 1). In the same way, p’(y) > O for
y € (a1,B) and p < 0 on (a; — 1,B) imply that p(8) > p(x) for all x € (a; — 1,5) and
therefore p(x) > p(x—1) for all x € (8,5+ 1). Hence, for all x € (8,5+ 1), p(x) > p(x—1)
and p(x) > p(x + 1), therefore p(x) > max{p(x + 1), p(x — 1)}.

Consider case (iii). If p(8) = p(8 + 1) = 0, then p does not change sign on (3,8 + 1)
since pu(p) > 1. It suffices to consider the case when p is positive on (5,5 + 1). Then
for all x € (8,8 + 1), p(x) > 0 = p(B). The conclusion p(x) > max{p(x + 1), p(x — 1)}
(p(x) < min{p(x+ 1), p(x—1)}) is a consequence of p(x) > p(B) (p(x) < p(B)) by the same
argument given in the proof of case (i).

To prove (ii), let g(x) = —p(x) and apply (i).

[m}

Lemma 2.16. If p(x) € L-P,, n > 2, u(p) > 1, and g(x) = p(x + 1) — p(x), then u(g) > 1.

Proof. (Reductio ad Absurdum) If u(g) < 1, then there exist 51,8, € R such that 0 <
Br—B1 < 1and g(B)) = g(B2) = 0. In the proof of Lemma 2.15 we have shown that
p(x) does not change sign on (81,8; + 1). Without loss of generality assume that p is
positive on (81,81 + 1). Observe that 8, € (51,81 + 1), and thus by Lemma 2.15, p(8,) >
max{p(B, + 1), p(B> — 1)} = p(B, + 1). But this yields p(8, + 1) — p(82) < 0, and therefore
g(B>) < 0 contradicting g(5,) = 0. O

Note that Lemma 2.16 is equivalent to the statement that if p(x) € £-P, with u(p) > 1,
then the associated functions F(x) and R(x) also have zeros spaced at least 1 unit apart.
Preliminaries aside, we prove Conjecture 1.4 of I. Krasikov.

Theorem 2.17. If p(x) € £-P,, and u(p) > 1, then
(1) fu(x, 1, p) = (n = DIp(x+ 1) = p(x = D> = 4np(x)[p(x + 1) = 2p(x) + p(x = 1)] = 0
holds for all x € R.

Proof. Since (11) is true when deg(p(x)) is 1 or 2, we assume n > 2. Fix x = xp € R. If
p(xo — 1) = p(xo) = p(xo + 1), or if p(xg) = 0, then f,(x, 1, p) > 0. Thus, we may assume
p(xo) # 0. If p(xo) < min{p(xo + 1), p(xo — D)}, or if p(xo) > max{p(xo + 1), p(xo — D},
then f,(xo, 1, p) = 0 (use (7) and Lemma 2.3).

We next consider the case when

(12) min{p(xo — 1), p(xo + D} < p(xo) < max{p(xo — 1), p(xo + 1)}
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(thus xo # Bor B8+ 1, where p(8 + 1) = p(B)), and show

n ’ 19

f(xO—f’) = (- D(F(xo) + R(Xo))2 —4n(F(xg) — R(xp)) = 0,
(p(x0))

where F(x) and R(x) are defined by (8) and (9) respectively. By Lemma 2.14,

Ju(x0, 1, p) ~ _ )
(p(xo))2 (n 1)(F(x0) R(XO))
2 - —
(13) —an[ L PRy — PE0D = P +21 )p(xo 1)) |
n (p(x0))
By Lemma 2.16, u(p(x + 1) = p(x)) > 1, and thus the zeros {B¢}iZ} of F(x) (p(Bx + 1) =

p(Br)) are spaced at least one unit apart. If [xo — 1, xo] does not contain any S, f(l(j(‘;’ml))f) >0

holds by Lemma 2.13 (see (13)) . If, on the other hand, 8; € (xo — 1, x0) (recall §; #
X0, Xo—1), then xy € (8;,8;+1) and by Lemma 2.15 either p(xp) > max{p(xo—1), p(xo+1)}
or p(xp) < min{p(xp— 1), p(xo+ 1)}, and both of these cases contradict our assumption (see
(12)). We have now shown f,(xo, 1, p)) > 0 for all xy € R, except for the isolated points
where xo = §8; or xo = 8; + 1 for some j, but by continuity of f,(x, 1, p), (11) will hold.

O

The converse of Theorem 2.17 is false in general. Indeed, the following example shows
that there are polynomials with arbitrary minimal zero spacing that still satisfy f,(x, 1, p) >
0 for all x e R.

Example 2.18. Let p(x) = (x +n + a) HZ;%(x + k) with n > 2, a € R. Using a symbolic
manipulator (we used Maple)
n-2

Fix1,p) = Coona) | [0+ k)2
k=2

where

(14) C(x,n,a) = (n — 1)(-2n° — 4na + 4a* + n* + n*)x*
+((n— 1)(6n2a +4n* = 8n’a + 84® — 12na + 4na® - 8n® + 2n*a + 4n2)x
+(n— 1)(=8na — 4na* + 4a* + 4n*a — 8n® + 4n* + 4n* + 12n°a
+n*a® + 13n%d® — 16n°a — 6n°d®).

C(x,n,a) is quadratic in x and its discriminant is D = —16na’(n — 1)*(n — 2)*(a — n)* <
0. Therefore C(x,n,a) does not change sign and is always positive (this is verified by
showing that the coefficient of x? is positive when considered as a quadratic in a), whence
fu(x,1,p) > 0 forall x e R.

In general, a polynomial p may satisfy f,(p, 1, x) > O for all x € R, even if p has multiple
zeros. If p(x) = x*(x + 1), which has u(p) = 0, then f3(x, 1, p) = 56x> + 32x + 8 is non-
negative for all x € R. A polynomial p with non-real zeros may also satisfy f,(p,1,x) >0
for all x € R. For example, let p(x) = (x*> + 1)(x + 1), then f3(x, 1, p) = 32x> = 32x+8 > 0
for all x e R.

It is known that a polynomial p(x) € £-P, with only real zeros satisfies u(p) < u(p’);
that is, p’(x) will have a minimal zero spacing which is larger than that of p(x) (N.
Obreschkoft [16, p. 13, Satz 5.3], P. Walker [19]). In light of Lemma 2.16, the afore-
mentioned result suggests the following conjecture.
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Conjecture 2.19. If p(x) € £-P,,n > 2, u(p) > d > 1, and g(x) = p(x + 1) — p(x), then
u(g) = d.

The derivation of the classical Laguerre inequality relies on properties of the logarithmic
derivative of a polynomial. In the same way, Conjecture 1.4 was proved using a discrete
version of the logarithmic derivative. The analogy between the discrete and continuous
logarithmic derivatives motivates the following conjectures, based on Theorem 2.20 and
its converse (B. Muranaka [14]).

Theorem 2.20. (P. B. Borwein and T. Erdélyi [1, p. 345]) If p € £-P,, then

m({xeR:Z((;c))Z/l})=% forall 1> 0,

where m denotes Lebesgue measure.

Conjecture 2.21. If p € £L-P,, n > 2, u(p) > 1, then

m({xeR: pix+ D - px) za}): " foralla>0,
p(x) A

where m denotes Lebesgue measure.

Conjecture 2.22. If p(x) is a real polynomial of degree n > 2, and if

m({xeR:IMZ/I})zE forall A > 0,
p(x) 4

where m denotes Lebesgue measure, then p € £-P, with u(p) > 1.

3. EXTENSION TO A CLASS OF TRANSCENDENTAL ENTIRE FUNCTIONS

In analogy with (5) we define, for a real entire function ¢,

(15) fol, 1, @) = [p(x + h) = p(x = )] = dp(x)[p(x + ) = 20(x) + (x = B)].

w

For ¢ € L£-P, with zeros {ai}? |, 0 < 00, we introduce the mesh size

(16) Hoolep) :=1nf |a; — @}l
#]

We remark that if ¢ £-P, then ¢ need not satisfy fo(x,h,¢y) > 0 forall x € R. A
calculation shows that if ¥(x) = e, then f(0,1,4) = —=8(e — 1) < 0. When ¢ € L-P,,
fo(x,h, ) > 0 for all x € R by Theorem 2.17. In order to extend Theorem 2.17 to
transcendental entire functions, we require the following preparatory result to ensure that
the approximating polynomials we use will satisfy a zero spacing condition.

Lemma 3.1. ForanyaceR, neN,n>2,

n

lim Z . r
n—e & nn(n)(k +n) + a -

Proof. Fix a € R. Since the terms
we obtain

1 . . .
ThondmTa are decreasing with k for n sufficiently large,

n n

' +1 1 n" 1 " 1
—_— < —_— < e —
ﬁ nln(n)(k + n) + adk - ; nln(n)(k+n)+a ~ jo‘ nln(n)(k + n) + adk
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for n sufficiently large, by considering the approximating Riemann sums for the integrals.
Thus

0 Lo nn+1+nln(n) L L 1 SR R n" +n1n(n)
nIn(n) n+1+ & nln(m)(k +n)+a ~ nln(n) n+ '

n ln(n) n ln(n)

As n — oo, both the left and right sides of (17) approach 1, and whence the sum in the
middle approaches 1. O

Lemma 3.2. The set of polynomials {qn(x) = ]—[Zil (1 + m) meN, n> 2}, forms a

normal family on C. There is a subsequence of {q.(x)},., which converges uniformly on
compact subsets of C to e*.

Proof. Let K C C be any compact set and let R = sup,. |z|. Recall the inequality
1 3 1
—lzl <|In(1 +2)| < = f < =
2|Z| <|In(1+2)| < 2IZI or |g] >

[2, p. 165]. Then for n > 2R,

Z 1
To@n | < E,hence,forkzlandzel(

3 [

Iz <3
= 2nln(m)(k + n)’

L R
2nln(n)k +n) —

Z
ln(l Ttk + n))

and therefore

nt

4
2 Z Ak + 1) Z Inf 1+

(' )
nln(n)(k + n)

As n — oo the sums on the left and right sides of the inequality converge by Lemma 3.1 to
%Izl and %Izl respectively. In particular, for some € > 0 and N > 2R sufficiently large, for
alln> Nandforall z € K,

3
=3 ; nInk + 1)’

n

n Z 3
Z 1+ —2 | <2r+e
k=1 nln(n)(k + n) )
Then foralln > N, forall z € K,
lg.(2)| < eZZillln(Hm) < e%R+8

So for n > N sufficiently large, the sequence {g,(z)}’., is uniformly bounded on compact
subsets K C C and thus form a normal family by Montel’s theorem [2, p. 153]. Thus,
there is a subsequence of {g,(z)},7, which converges uniformly on compact subsets of C to
a function f, and therefore satisfies

FO_ L 6® X 1 B
(1) o TR JLTOZ:;nln(n)(kw)” =h

for a fixed x € R, where the last equality is by Lemma 3.1. Equation (18) and f(0) = 1,
imply f(x) = e* on R, and thus f is the exponential function. O

Lemma 3.3. If o(x) = p(x)e®, b e R, p € L-P,, n > 2, and u(p) > 1, then foo(x,1,0) >0
forall x e R.



A CONJECTURE OF I. KRASIKOV 11

00

Proof. By Lemma 3.2, there is a subsequence of {qj(x) = Hijzl (1 + m)}jzz, call it
{q;,(O)},-_,, such that g;,(x) — e uniformly on compact subsets of C, as m — oco. Let

{ai};_, be the zeros of p(x), and R = 1m}flx |a|. The zero of least magnitude of g;, (bx), zj,,
<k<n

satisfies |z;,| = M, b # 0. Both u(q;,(bx)) — o0 as m — oo and |z;,| — oo as

m — oo. Thus, there is an M such that for all m > M, |z;,| > R + 1, and the sequence of
polynomials £,,(x) = p(x)gj,,,, (bx), m > 1, is in £-P, for some ¢, and satisfies u(h,,) > 1.
By Theorem 2.17, fo(x,1,h,) > O for all x € R, for all m. Since h, — p(x)ebx by
construction, lim,,_,es foo(X, 1, i) = fao(x, 1, p(x)eP) > 0. O

Theorem 3.4. If ¢ € L-P has order p < 2, or if ¢ is of minimal type of order p = 2, and
Hoo(p) = 1, then foo(x,1,¢) = 0 forall x € R.

Proof. By the Hadamard factorization theorem, ¢ has the representation

o) = e | | (1 v _) (< o)

k=1 i

where ai, b, c € R, m is a non-negative integer, a; # 0, and )}, % < o0, Let
k

gn(x) = cx"e? 1_[ (1 + i) e,

k=1 A

Then, g(x) = ce?™ Xkt a Tl (1 + a—t) has the form p(x)e”*, y € R, p € £-P,, and thus
by Lemma 3.3, f(x, 1, g,) > 0 for all x € R, and for all n. Since we also have g, — ¢ by
construction, lim, . feo(x, 1, g,) = foo(x, 1,¢) > 0 for all x € R. O

In light of Theorem 3.4, we make the following conjecture.

Conjecture 3.5. If ¢ € £-P and u(¢) > 1 then foo(x,1,¢) > 0 for all x € R.
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