DISCRETE ANALOGUES OF THE LAGUERRE INEQUALITIES AND A CONJECTURE OF I. KRASIKOV

MATTHEW CHASSE AND GEORGE CSORDAS

ABSTRACT. A conjecture of I. Krasikov is proved. Several discrete analogues of classical polynomial inequalities are derived, along with results which allow extensions to a class of transcendental entire functions in the Laguerre-Pólya class.

1. INTRODUCTION

The classical Laguerre inequality for polynomials states that a polynomial of degree n with only real zeros, $p(x) \in \mathbb{R}[x]$, satisfies $(n-1)p'(x)^2 - np''(x)p(x) \ge 0$ for all $x \in \mathbb{R}$ (see [3, 13]). Thus, the classical Laguerre inequality is a necessary condition for a polynomial to have only real zeros. Our investigation is inspired by an interesting paper of I. Krasikov [8]. He proves several discrete polynomial inequalities, including useful versions of generalized Laguerre inequalities [17], and shows how to apply them by obtaining bounds on the zeros of some Krawtchouk polynomials. In [8], I. Krasikov conjectures a new discrete Laguerre inequality for polynomials. After establishing this conjecture, we generalize the inequality to transcendental entire functions (of order $\rho < 2$, and minimal type of order $\rho = 2$) in the Laguerre-Pólya class (see Definition 1.1).

Definition 1.1. A real entire function $\varphi(x) = \sum_{k=0}^{\infty} \frac{\gamma_k}{k!} x^k$ is said to belong to the *Laguerre-Pólya class*, written $\varphi \in \mathcal{L}$ - \mathcal{P} , if it can be expressed in the form

$$\varphi(x) = c x^m e^{-a x^2 + bx} \prod_{k=1}^{\omega} \left(1 + \frac{x}{x_k} \right) e^{\frac{-x}{x_k}} \quad (0 \le \omega \le \infty),$$

where $b, c, x_k \in \mathbb{R}$, *m* is a non-negative integer, $a \ge 0$, $x_k \ne 0$, and $\sum_{k=1}^{\omega} \frac{1}{r^2} < \infty$.

The significance of the Laguerre-Pólya class stems from the fact that functions in this class, *and only these*, are uniform limits, on compact subsets of \mathbb{C} , of polynomials with only real zeros [12, Chapter VIII].

Definition 1.2. We denote by \mathcal{L} - \mathcal{P}_n the set of polynomials of degree *n* in the Laguerre-Pólya class; that is, \mathcal{L} - \mathcal{P}_n is the set of polynomials of degree *n* having only real zeros.

The minimal spacing between neighboring zeros of a polynomial in \mathcal{L} - \mathcal{P}_n is a scale that provides a natural criterion for the validity of discrete polynomial inequalities.

Definition 1.3. Suppose $p(x) \in \mathcal{L}$ - \mathcal{P}_n has zeros $\{\alpha_k\}_{k=1}^n$, repeated according to their multiplicities, and ordered such that $\alpha_k \leq \alpha_{k+1}$, $1 \leq k \leq n-1$. We define the *mesh size*, associated with the zeros of p, by

$$\mu(p) := \min_{1 \le k \le n-1} |\alpha_{k+1} - \alpha_k|.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 26D05; Secondary 30C10.

Key words and phrases. Laguerre inequality, discrete polynomials, orthogonal polynomials, Laguerre inequalities.

With the above definition of mesh size, we can now state a conjecture of I. Krasikov, which is proved in Section 2.

Conjecture 1.4. (I. Krasikov [8]) If $p(x) \in \mathcal{L}-\mathcal{P}_n$ and $\mu(p) \ge 1$, then (1) $(n-1)[p(x+1) - p(x-1)]^2 - 4np(x)[p(x+1) - 2p(x) + p(x-1)] \ge 0$ holds for all $x \in \mathbb{R}$.

The classical Laguerre inequality is found readily by differentiating the logarithmic derivative of a polynomial p(x) with only real zeros $\{\alpha_i\}_{i=1}^n$, to give

(2)
$$\frac{p''(x)p(x) - (p'(x))^2}{(p(x))^2} = \left(\frac{p'(x)}{p(x)}\right)' = \left(\sum_{k=1}^n \frac{1}{(x - \alpha_k)}\right)' = -\sum_{k=1}^n \frac{1}{(x - \alpha_k)^2}.$$

Since the right-hand side is non-positive,

$$(p'(x))^2 - p''(x)p(x) \ge 0.$$

This inequality is also valid for an arbitrary function in \mathcal{L} - \mathcal{P} [3]. A sharpened form of the Laguerre inequality for polynomials can be obtained with the Cauchy-Schwarz inequality,

(3)
$$\left(\sum_{k=1}^{n} \frac{1}{(x-\alpha_k)}\right)^2 \le n \sum_{k=1}^{n} \frac{1}{(x-\alpha_k)^2}.$$

In terms of p, (3) becomes $\left(\frac{p'(x)}{p(x)}\right)^2 \le n \sum_{k=1}^n \frac{1}{(x-\alpha_k)^2}$, and with (2) yields the sharpened version of the Laguerre inequality for polynomials on which Conjecture 1.4 is based,

(4)
$$(n-1)(p'(x))^2 - np''(x)p(x) \ge 0.$$

The inequality (1) is a finite difference version of the classical Laguerre inequality for polynomials. Indeed, let us define

(5)
$$f_n(x,h,p) := (n-1)[p(x+h) - p(x-h)]^2 - 4np(x)[p(x+h) - 2p(x) + p(x-h)].$$

Then (1) can be written as $f_n(x, 1, p) \ge 0$ ($x \in \mathbb{R}$), and we recover the classical Laguerre inequality for polynomials by taking the following limit:

$$\lim_{h \to 0} \frac{f_n(x,h,p)}{4h^2} = (n-1) \left(\lim_{h \to 0} \frac{p(x+h) - p(x-h)}{2h} \right)^2 - np(x) \left(\lim_{h \to 0} \frac{p(x+h) - 2p(x) + p(x-h)}{h^2} \right)$$
$$= (n-1)p'(x)^2 - np''(x)p(x).$$

As I. Krasikov points out, the motivation for inequalities of type (1) is that classical discrete orthogonal polynomials $p_k(x)$ satisfy a three-term difference equation (see [15, p. 27], [8])

$$p_k(x+1) = b_k(x)p_k(x) - c_k(x)p_k(x-1),$$

where $b_k(x)$ and $c_k(x)$ are continuous over the interval of orthogonality. Many of the classical discrete orthogonal polynomials satisfy the condition that $c_k(x) > 0$ on the interval of orthogonality, and this implies that $\mu(p) \ge 1$ (see [11]). Therefore, inequalities when $\mu(p) \ge 1$ are of interest and may help provide sharp bounds on the loci of zeros of discrete orthogonal polynomials [8, 5, 6]. Indeed, W. H. Foster, I. Krasikov, and A. Zarkh have found bounds on the extreme zeros of many orthogonal polynomials using discrete and continuous Laguerre and new Laguerre type inequalities which they discovered [5, 6, 7, 8, 9, 10, 11].

In this paper, we prove I. Krasikov's conjecture (see Theorem 2.17), extend it to a class of transcendental entire functions in the Laguerre-Pólya class, and formulate several conjectures (cf. Conjecture 2.19, Conjecture 2.21, Conjecture 2.22, and Conjecture 3.5). In Section 2, we establish several preliminary results about polynomials which satisfy a zero spacing requirement. In Section 3, we establish the existence of a polynomial sequence which satisfies a zero spacing requirement and converges uniformly on compact subsets of \mathbb{C} to the exponential function. We use this result to extend a version of (1) to transcendental entire functions in the Laguerre-Pólya class up to order $\rho = 2$ and minimal type, and conjecture that it is true for all functions in \mathcal{L} -P.

2. PROOF OF I. KRASIKOV'S CONJECTURE

In this section we develop some discrete analogues of classical inequalities, form some intuition about the effect of imposing a minimal zero spacing requirement on a polynomial in \mathcal{L} - \mathcal{P} , and prove Conjecture 1.4. First, note that one can change the zero spacing requirement in Conjecture 1.4 by simply rescaling in *x*. For example, the following conjecture is equivalent to Conjecture 1.4 of Krasikov.

Conjecture 2.1. Let $p(x) \in \mathcal{L}$ - \mathcal{P}_n . Suppose that $\mu(p) \ge h > 0$. Then for all $x \in \mathbb{R}$,

(6)
$$f_n(x,h,p) = (n-1)[p(x+h) - p(x-h)]^2 - 4np(x)[p(x+h) - 2p(x) + p(x-h)] \ge 0.$$

For the sake of clarity, we will work with (1) directly (h = 1), and keep in mind that we can always make statements about polynomials with an arbitrary positive minimal zero spacing by rescaling p(x) (in other words "measuring x in units of h").

Lemma 2.2. A local minimum of a polynomial, $p(x) \in \mathcal{L}$ - \mathcal{P}_n , with only real simple zeros, is negative. Likewise, a local maximum of p(x) is positive.

Proof. Because p(x) is a polynomial on \mathbb{R} with simple zeros, at a local minimum $(x_{min}, p(x_{min}))$, we have that $p'(x_{min}) = 0$ and $p''(x_{min}) > 0$ (because $p''(x_{min}) = 0$ would imply that p' has a multiple zero at x_{min} which is not possible). The classical Laguerre inequality asserts that if $p(x) \in \mathcal{L}$ - \mathcal{P} , then for all $x \in \mathbb{R}$, $(p'(x))^2 - p''(x)p(x) \ge 0$. At a local minimum this expression becomes $-p''(x_{min})p(x_{min}) \ge 0$. Therefore, at a local minimum we have $p(x_{min}) \le 0$. Since the zeros of p are simple, $p(x_{min}) \ne 0$. Thus $p(x_{min}) < 0$. The second statement of the lemma can be proved the same way, or by considering -p and using the first statement.

A statement similar to Lemma 2.2 is proved by G. Csordas and A. Escassut [4, Theorem 5.1] for a class of functions whose zeros lie in a horizontal strip about the real axis.

Lemma 2.3. Let $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, $\mu(p) \ge 1$.

- (i) If p(x-1) > p(x) and p(x+1) > p(x), then p(x) < 0.
- (ii) If p(x-1) < p(x) and p(x+1) < p(x), then p(x) > 0.

Proof. (i) Fix an $x_0 \in \mathbb{R}$. Let $p(x_0 - 1) > p(x_0)$, $p(x_0 + 1) > p(x_0)$, and assume for a contradiction that $p(x_0) \ge 0$. There cannot be any zeros of p(x) in the interval $[x_0 - 1, x_0]$, for if there were, $p(x_0)p(x_0 - 1) > 0$ implies that the number of zeros in $(x_0 - 1, x_0)$ must be even, and this violates the zero spacing $\mu(p) \ge 1$. Similarly, there cannot be any zeros of p(x) in $[x_0, x_0 + 1]$. If $p(x_0) < p(x_0 - 1)$ and $p(x_0) < p(x_0 + 1)$ then there is a point in $(x_0 - 1, x_0 + 1)$ where p' changes sign from negative to positive. This implies p achieves a non-negative local minimum on $[x_0 - 1, x_0 + 1]$ which contradicts Lemma 2.2.

(ii) The second statement follows by replacing p with -p in (i).

Using Lemma 2.3 we can verify that if $p(x) < \min\{p(x + 1), p(x - 1)\}$, then p(x) < 0 and thus the function

$$f_n(x, 1, p) = (n-1)[p(x+1) - p(x-1)]^2 - 4np(x)[p(x+1) - 2p(x) + p(x-1)]$$

= $(n-1)[p(x+1) - p(x-1)]^2$
(7) $-4np(x)[(p(x+1) - p(x)) + (p(x-1) - p(x))]$

has a non-negative second term and (1) is satisfied. Similarly, (1) is valid when $p(x) > \max\{p(x-1), p(x+1)\}$. The proof of Conjecture 1.4 is now reduced to the case where $\min\{p(x+1), p(x-1)\} \le p(x) \le \max\{p(x+1), p(x-1)\}$. It is easy to show that if for some $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $f_n(x, 1, p) \ge 0$ for all $x \in \mathbb{R}$, then for all $m \ge n$, $f_m(x, 1, p) \ge 0$ for all $x \in \mathbb{R}$. If $\mu(p) \ge 1$, but $m < \deg(p)$, then for some $x_0 \in \mathbb{R}$, $f_m(x_0, 1, p)$ may be negative. Indeed, let p(x) = x(x-1)(x-2), then $f_3(x, 1, p) = 72(x-1)^2$ and $f_2(x, 1, p) = -12(x-3)(x-1)^2(x+1)$. In particular, $f_2(4, 1, p) = -540$.

We next obtain inequalities and relations that are analogous to those used in deriving the continuous version of the classical Laguerre inequality for polynomials.

Definition 2.4. Let $p(x) \in \mathcal{L}$ - \mathcal{P}_n have only simple real zeros $\{\alpha_k\}_{k=1}^n$. Define forward and reverse "discrete logarithmic derivatives" associated with p(x) by

(8)
$$F(x) := \frac{p(x+1) - p(x)}{p(x)} =: \sum_{k=1}^{n} \frac{A_k}{(x - \alpha_k)}$$

(9) and
$$R(x) := \frac{p(x) - p(x-1)}{p(x)} =: \sum_{k=1}^{n} \frac{B_k}{(x - \alpha_k)}$$

Note that $\deg(p(x + 1) - p(x)) < \deg(p(x))$ and $\deg(p(x) - p(x - 1)) < \deg(p(x))$ permits unique partial fraction expansions of the rational functions *F* and *R*. Define the sequences $\{A_k\}_{k=1}^n$ and $\{B_k\}_{k=1}^n$ associated with p(x) by requiring that they satisfy the equation above.

Remark 2.5. For an arbitrary finite difference, *h*, the scaled versions of the functions in Definition 2.4 are $F(x) := \frac{p(x+h)-p(x)}{hp(x)}$ and $R(x) := \frac{p(x)-p(x-h)}{hp(x)}$.

Lemma 2.6. For $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, with $\mu(p) \ge 1$ and zeros $\{\alpha_k\}_{k=1}^n$, the associated sequences $\{A_k\}_{k=1}^n$ and $\{B_k\}_{k=1}^n$ satisfy $A_k \ge 0$ and $B_k \ge 0$, for all $k, 1 \le k \le n$.

Proof. From Definition 2.4 we have

$$p(x+1) - p(x) = \sum_{k=1}^{n} \frac{A_k}{(x - \alpha_k)} p(x) = \sum_{k=1}^{n} \left[A_k \prod_{j \neq k} (x - \alpha_j) \right].$$

Evaluating this at a zero of *p* yields $p(\alpha_k + 1) = A_k \prod_{j \neq k} (\alpha_k - \alpha_j) = A_k p'(\alpha_k)$. Thus,

$$A_k = \frac{p(\alpha_k + 1)}{p'(\alpha_k)}$$
 and similarly $B_k = \frac{-p(\alpha_k - 1)}{p'(\alpha_k)}$

Since the zeros of p are simple, for some neighborhood of α_k , $U(\alpha_k)$,

 $x \in U(\alpha_k), x < \alpha_k \quad \text{implies} \quad p(x)p'(x) < 0$ and $x \in U(\alpha_k), x > \alpha_k \quad \text{implies} \quad p(x)p'(x) > 0.$

Since the zeros are spaced at least 1 unit apart, $p(\alpha_k + 1)$ is either 0 or has the same sign as p(x) for $x > \alpha_k$ on $U(\alpha_k)$. So for all $\varepsilon > 0$ sufficiently small, $p(\alpha_k + 1)p'(\alpha_k + \varepsilon) \ge 0$, and by continuity $p(\alpha_k + 1)p'(\alpha_k) \ge 0$. Thus $A_k = \frac{p(\alpha_k+1)}{p'(\alpha_k)} \ge 0$. Note $p'(\alpha_k) \ne 0$ since α_k is simple. Likewise, $p(\alpha_k - 1)$ is either 0 or has the same sign as p'(x) for $x < \alpha_k$ on

 $U(\alpha_k)$. Hence for all $\varepsilon > 0$ sufficiently small, $p(\alpha_k - 1)p'(\alpha_k - \varepsilon) \le 0$. By continuity, $p(\alpha_k - 1)p'(\alpha_k) \le 0$, whence $B_k \ge 0$.

Example 2.7. If the zero spacing requirement in Lemma 2.6 is violated then some A_k or B_k may be negative. Indeed, consider $p(x) = x(x + 1 - \varepsilon)$. Then $\frac{p(x+1)-p(x)}{p(x)} = \frac{A_1}{x} + \frac{A_2}{x+1-\varepsilon}$, where

$$A_1 = \frac{2-\varepsilon}{1-\varepsilon}$$
 $A_2 = \frac{-\varepsilon}{1-\varepsilon}$.

For any positive $\varepsilon < 1$, $\mu(p) = 1 - \varepsilon$, and A_2 is negative.

Corollary 2.8. For $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, with $\mu(p) \ge 1$, the associated functions F(x) and R(x) (see Definition 2.4) satisfy F'(x) < 0 and R'(x) < 0 on their respective domains.

Proof. This corollary is a direct result of differentiating the partial fraction expressions for F and R and applying Lemma 2.6.

Note that the degree of the numerator of F(x) is n - 1. If $\mu(p) \ge 1$, then F(x) has n - 1 real zeros, because F(x) is strictly decreasing between any two consecutive poles of F(x). This proves the following lemma.

Lemma 2.9. (Pólya and Szegö [18, vol. II, p. 39]) For $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, with $\mu(p) \ge 1$, F(x) and R(x) have only real simple zeros.

In the sequel (see Lemma 2.16), we show that if $\mu(p(x)) \ge 1$, then $\mu(p(x+1)-p(x)) \ge 1$, and the zeros of F(x) and R(x) are spaced at least one unit apart.

Lemma 2.10. If $p(x) \in \mathcal{L}$ - \mathcal{P}_n , then the associated sequences $\{A_k\}_{k=1}^n$ and $\{B_k\}_{k=1}^n$ satisfy $\sum_{k=1}^n A_k = n$ and $\sum_{k=1}^n B_k = n$.

Proof. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathcal{L}$ - \mathcal{P}_n and denote the zeros of p(x) by $\{\alpha_k\}_{k=1}^n$. Observe that

(10)
$$\lim_{|z| \to \infty} zF(z) = \lim_{|z| \to \infty} z \left(\frac{p(z+1) - p(z)}{p(z)} \right) = \lim_{|z| \to \infty} z \sum_{k=1}^{n} \frac{A_k}{(z - \alpha_k)} = \sum_{k=1}^{n} A_k.$$

Then (10) and

$$p(z+1) - p(z) = a_n(z+1)^n + a_{n-1}(z+1)^{n-1} + \dots + a_0 - [a_n z^n + a_{n-1} z^{n-1} + \dots + a_0]$$

= $na_n z^{n-1} + O(z^{n-2}), |z| \to \infty,$

imply that

$$\sum_{k=1}^{n} A_k = \lim_{|z| \to \infty} zF(z) = \lim_{|z| \to \infty} z\left(\frac{p(z+1) - p(z)}{p(z)}\right) = \lim_{|z| \to \infty} z\left(\frac{na_n z^{n-1} + O(z^{n-2})}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_0}\right) = n.$$

A similar argument shows that $\sum_{k=1}^{n} B_k = n$.

Lemma 2.11. Given $p(x) \in \mathcal{L}$ - \mathfrak{P}_n , $n \ge 2$, with $\mu(p) \ge 1$, the associated functions F(x) and R(x) satisfy $(F(x))^2 \le -nF'(x)$ and $(R(x))^2 \le -nR'(x)$, for all $x \in \mathbb{R}$, where $p(x) \ne 0$.

Proof. From Definition 2.4, $F(x) = \sum_{k=1}^{n} \frac{A_k}{x-\alpha_k}$ and therefore $F'(x) = \sum_{k=1}^{n} \frac{-A_k}{(x-\alpha_k)^2}$. By Lemma 2.6, $\mu(p) \ge 1$ implies the constants $A_k \ge 0$. Using the the Cauchy-Schwarz inequality,

$$(F(x))^{2} = \left(\sum_{k=1}^{n} \frac{A_{k}}{x - \alpha_{k}}\right)^{2} \le \left(\sum_{k=1}^{n} A_{k}\right) \sum_{k=1}^{n} \frac{A_{k}}{(x - \alpha_{k})^{2}} = -nF'(x),$$

where Lemma 2.10 has been used in the last equality. An identical argument shows $(R(x))^2 \leq -nR'(x)$ for all $x \in \mathbb{R}$.

Remark 2.12. Simple examples show that the inequalities in Lemma 2.11 are sharp (consider $p(x) = x(x + 1 - \varepsilon)$).

Lemma 2.13. Let $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \geq 2$, with $\mu(p) \geq 1$, and let $\{\beta_k\}_{k=1}^{n-1}$ be the zeros of p(x+1)-p(x). Let $y \in \mathbb{R}$ be such that $\min\{p(y+1), p(y-1)\} < p(y) < \max\{p(y+1), p(y-1)\}$. Then if the interval [y-1, y] does not contain any β_k ,

$$\frac{1}{n}F(y)R(y) \le \frac{(p(y))^2 - p(y+1)p(y-1)}{(p(y))^2}$$

Proof. If no β_k is in [y - 1, y], then $\frac{F'(x)}{(F(x))^2} = \frac{(p'(x+1)p(x)-p(x+1)p'(x))(p(x))^2}{(p(x+1)-p(x))^2(p(x))^2}$ can be extended to be continuous and bounded on [y - 1, y]. By Lemma 2.11 $(F(x))^2 \leq -nF'(x)$. Dividing both sides of this inequality by $n(F(x))^2$ and integrating from y - 1 to y we have

$$\frac{1}{n} \leq \frac{1}{F(y)} - \frac{1}{F(y-1)} = \frac{p(y)}{p(y+1) - p(y)} - \frac{p(y-1)}{p(y) - p(y-1)}$$

Using $\min\{p(y+1), p(y)\} < p(y) < \max\{p(y+1), p(y-1)\}\)$, we have that either p(y-1) < p(y) < p(y+1) or p(y+1) < p(y) < p(y-1). In both cases, (p(y+1)-p(y))(p(y)-p(y-1)) > 0 and therefore

$$\frac{1}{n}(p(y+1) - p(y))(p(y) - p(y-1)) \le p(y)(p(y) - p(y-1)) - p(y-1)(p(y+1) - p(y)) \\ \le (p(y))^2 - p(y+1)p(y-1).$$

Dividing both sides by $(p(y))^2$ gives the result.

Lemma 2.14. For $p(x) \in \mathcal{L}$ - \mathcal{P}_n , the associated functions F(x) and R(x) from Definition 2.4 satisfy

$$F(x)R(x) = (F(x) - R(x)) + \frac{(p(x))^2 - p(x+1)p(x-1)}{(p(x))^2}$$

for all $x \in \mathbb{R}$, where $p(x) \neq 0$.

Proof. This lemma is verified by direct calculation using the definitions of F(x) and R(x) in terms of p(x).

Lemma 2.15. Let $p(x) \in \mathcal{L}$ - \mathfrak{P}_n , $n \ge 2$, with $\mu(p) \ge 1$.

- (i) If $p(\beta) = p(\beta + 1) > 0$, then for all $x \in (\beta, \beta + 1)$, $p(x) > p(\beta)$ and $p(x) > \max\{p(x+1), p(x-1)\}$.
- (ii) If $p(\beta) = p(\beta + 1) < 0$, then for all $x \in (\beta, \beta + 1)$, $p(x) < p(\beta)$ and $p(x) < \min\{p(x+1), p(x-1)\}$.
- (iii) If $p(\beta) = p(\beta+1) = 0$, then for all $x \in (\beta, \beta+1)$, either $p(x) > \max\{p(x+1), p(x-1)\}$ or $p(x) < \min\{p(x+1), p(x-1)\}$.

Proof. Note that by Lemma 2.9, any β which satisfies $p(\beta) = p(\beta+1)$ under the hypotheses stated in Lemma 2.15 must be real and simple since β is a zero of F(x).

For case (i), assume for a contradiction that there exists $x_0 \in (\beta, \beta + 1)$ such that $p(x_0) \le p(\beta)$. There can not be any zeros of p on $(\beta, \beta + 1)$, if there were, $p(\beta)p(\beta + 1) > 0$ implies that p(x) must have at least two zeros on $(\beta, \beta + 1)$, which contradicts $\mu(p) \ge 1$. Thus, for all $x \in (\beta, \beta + 1)$, p(x) > 0. Specifically $p(x_0) > 0$.

6

Since p(x) does not change sign on $(\beta, \beta + 1)$, the interval $(\beta, \beta + 1)$ must lie between two neighboring zeros of p(x), call them α_1 and α_2 , such that $(\beta, \beta + 1) \subset (\alpha_1, \alpha_2)$. By the mean value theorem there exists $a \in (\beta, \beta + 1)$ with p'(a) = 0. The zeros of p(x) and p'(x) interlace, and in order to preserve the interlacing *a* must be the only zero of p'(x) in (α_1, α_2) , hence $p'(\beta), p'(\beta + 1) \neq 0$. Because the zeros are simple, for some $\varepsilon > 0$, for all $x \in (\alpha_1, \alpha_1 + \varepsilon), p'(x)p(x) > 0$, and for all $x \in (\alpha_2 - \varepsilon, \alpha_2), p'(x)p(x) < 0$. Since p' and pdo not change sign on (α_1, β) or $(\beta + 1, \alpha_2)$, this gives us that $p'(\beta) > 0$ and $p'(\beta + 1) < 0$. Then if $p(x_0) \leq p(\beta), p'$ must change signs at least twice on (α_1, α_2) (actually three times), at least once on (β, x_0) and at least once on $(x_0, \beta + 1)$, and this contradicts the uniqueness of *a*. Thus for all $x \in (\beta, \beta + 1)$ we have $p(x) > p(\beta)$.

To show $p(x) > p(\beta)$ implies $p(x) > \max\{p(x+1), p(x-1)\}$ for all $x \in (\beta, \beta + 1)$, notice that since p'(y) < 0 for all $y \in (\beta + 1, \alpha_2)$, $p(\beta + 1) > p(y)$ for all $y \in (\beta + 1, \alpha_2)$, and due to the zero spacing $p \le 0$ on $(\alpha_2, \alpha_2 + 1)$, hence $p(\beta + 1) > p(x + 1)$ for all $x \in (\beta, \alpha_2)$. Thus, for all $x \in (\beta, \beta + 1)$, $p(x) > p(\beta + 1) > p(x + 1)$. In the same way, p'(y) > 0 for $y \in (\alpha_1, \beta)$ and $p \le 0$ on $(\alpha_1 - 1, \beta)$ imply that $p(\beta) > p(x)$ for all $x \in (\alpha_1 - 1, \beta)$ and therefore p(x) > p(x - 1) for all $x \in (\beta, \beta + 1)$. Hence, for all $x \in (\beta, \beta + 1)$, p(x) > p(x - 1) and p(x) > p(x + 1), therefore $p(x) > \max\{p(x + 1), p(x - 1)\}$.

Consider case (iii). If $p(\beta) = p(\beta + 1) = 0$, then *p* does not change sign on $(\beta, \beta + 1)$ since $\mu(p) \ge 1$. It suffices to consider the case when *p* is positive on $(\beta, \beta + 1)$. Then for all $x \in (\beta, \beta + 1)$, $p(x) > 0 = p(\beta)$. The conclusion $p(x) > \max\{p(x + 1), p(x - 1)\}$ $(p(x) < \min\{p(x + 1), p(x - 1)\})$ is a consequence of $p(x) > p(\beta) (p(x) < p(\beta))$ by the same argument given in the proof of case (i).

To prove (ii), let g(x) = -p(x) and apply (i).

Lemma 2.16. If $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, $\mu(p) \ge 1$, and g(x) = p(x+1) - p(x), then $\mu(g) \ge 1$.

Proof. (*Reductio ad Absurdum*) If $\mu(g) < 1$, then there exist $\beta_1, \beta_2 \in \mathbb{R}$ such that $0 < \beta_2 - \beta_1 < 1$ and $g(\beta_1) = g(\beta_2) = 0$. In the proof of Lemma 2.15 we have shown that p(x) does not change sign on $(\beta_1, \beta_1 + 1)$. Without loss of generality assume that p is positive on $(\beta_1, \beta_1 + 1)$. Observe that $\beta_2 \in (\beta_1, \beta_1 + 1)$, and thus by Lemma 2.15, $p(\beta_2) > \max\{p(\beta_2 + 1), p(\beta_2 - 1)\} \ge p(\beta_2 + 1)$. But this yields $p(\beta_2 + 1) - p(\beta_2) < 0$, and therefore $g(\beta_2) < 0$ contradicting $g(\beta_2) = 0$.

Note that Lemma 2.16 is equivalent to the statement that if $p(x) \in \mathcal{L}-\mathcal{P}_n$ with $\mu(p) \ge 1$, then the associated functions F(x) and R(x) also have zeros spaced at least 1 unit apart. Preliminaries aside, we prove Conjecture 1.4 of I. Krasikov.

Theorem 2.17. If $p(x) \in \mathcal{L}$ - \mathcal{P}_n and $\mu(p) \ge 1$, then

(11)
$$f_n(x, 1, p) = (n-1)[p(x+1) - p(x-1)]^2 - 4np(x)[p(x+1) - 2p(x) + p(x-1)] \ge 0$$

holds for all $x \in \mathbb{R}$ *.*

Proof. Since (11) is true when deg(p(x)) is 1 or 2, we assume $n \ge 2$. Fix $x = x_0 \in \mathbb{R}$. If $p(x_0 - 1) = p(x_0) = p(x_0 + 1)$, or if $p(x_0) = 0$, then $f_n(x, 1, p) \ge 0$. Thus, we may assume $p(x_0) \ne 0$. If $p(x_0) < \min\{p(x_0 + 1), p(x_0 - 1)\}$, or if $p(x_0) > \max\{p(x_0 + 1), p(x_0 - 1)\}$, then $f_n(x_0, 1, p) \ge 0$ (use (7) and Lemma 2.3).

We next consider the case when

(12)
$$\min\{p(x_0-1), p(x_0+1)\} < p(x_0) < \max\{p(x_0-1), p(x_0+1)\}$$

(thus $x_0 \neq \beta$ or $\beta + 1$, where $p(\beta + 1) = p(\beta)$), and show

$$\frac{f_n(x_0, 1, p)}{(p(x_0))^2} = (n-1)(F(x_0) + R(x_0))^2 - 4n(F(x_0) - R(x_0)) \ge 0,$$

where F(x) and R(x) are defined by (8) and (9) respectively. By Lemma 2.14,

$$\frac{f_n(x_0, 1, p)}{(p(x_0))^2} = (n-1)(F(x_0) - R(x_0))^2$$
(13)
$$-4n\left(\frac{1}{n}F(x_0)R(x_0) - \frac{(p(x_0))^2 - p(x_0 + 1)p(x_0 - 1)}{(p(x_0))^2}\right)$$

By Lemma 2.16, $\mu(p(x+1) - p(x)) \ge 1$, and thus the zeros $\{\beta_k\}_{k=1}^{n-1}$ of F(x) $(p(\beta_k + 1) = p(\beta_k))$ are spaced at least one unit apart. If $[x_0 - 1, x_0]$ does not contain any β_k , $\frac{f_n(x_0, 1, p)}{(p(x_0))^2} \ge 0$ holds by Lemma 2.13 (see (13)). If, on the other hand, $\beta_j \in (x_0 - 1, x_0)$ (recall $\beta_j \neq x_0, x_0 - 1$), then $x_0 \in (\beta_j, \beta_j + 1)$ and by Lemma 2.15 either $p(x_0) > \max\{p(x_0 - 1), p(x_0 + 1)\}$ or $p(x_0) < \min\{p(x_0 - 1), p(x_0 + 1)\}$, and both of these cases contradict our assumption (see (12)). We have now shown $f_n(x_0, 1, p)) \ge 0$ for all $x_0 \in \mathbb{R}$, except for the isolated points where $x_0 = \beta_j$ or $x_0 = \beta_j + 1$ for some j, but by continuity of $f_n(x, 1, p)$, (11) will hold.

The converse of Theorem 2.17 is false in general. Indeed, the following example shows that there are polynomials with arbitrary minimal zero spacing that still satisfy $f_n(x, 1, p) \ge 0$ for all $x \in \mathbb{R}$.

Example 2.18. Let $p(x) = (x + n + a) \prod_{k=1}^{n-1} (x + k)$ with $n \ge 2$, $a \in \mathbb{R}$. Using a symbolic manipulator (we used Maple)

$$f_n(x, 1, p) = C(x, n, a) \prod_{k=2}^{n-2} (x+k)^2$$

where

(14)
$$C(x, n, a) := (n - 1)(-2n^{3} - 4na + 4a^{2} + n^{2} + n^{4})x^{2} + (n - 1)(6n^{2}a + 4n^{4} - 8n^{3}a + 8a^{2} - 12na + 4na^{2} - 8n^{3} + 2n^{4}a + 4n^{2})x + (n - 1)(-8na - 4na^{2} + 4a^{2} + 4n^{4}a - 8n^{3} + 4n^{4} + 4n^{2} + 12n^{2}a + n^{4}a^{2} + 13n^{2}a^{2} - 16n^{3}a - 6n^{3}a^{2}).$$

C(x, n, a) is quadratic in x and its discriminant is $D = -16na^2(n-1)^2(n-2)^3(a-n)^2 \le 0$. Therefore C(x, n, a) does not change sign and is always positive (this is verified by showing that the coefficient of x^2 is positive when considered as a quadratic in *a*), whence $f_n(x, 1, p) \ge 0$ for all $x \in \mathbb{R}$.

In general, a polynomial p may satisfy $f_n(p, 1, x) \ge 0$ for all $x \in \mathbb{R}$, even if p has multiple zeros. If $p(x) = x^2(x + 1)$, which has $\mu(p) = 0$, then $f_3(x, 1, p) = 56x^2 + 32x + 8$ is non-negative for all $x \in \mathbb{R}$. A polynomial p with non-real zeros may also satisfy $f_n(p, 1, x) \ge 0$ for all $x \in \mathbb{R}$. For example, let $p(x) = (x^2 + 1)(x + 1)$, then $f_3(x, 1, p) = 32x^2 - 32x + 8 \ge 0$ for all $x \in \mathbb{R}$.

It is known that a polynomial $p(x) \in \mathcal{L}-\mathcal{P}_n$ with only real zeros satisfies $\mu(p) \leq \mu(p')$; that is, p'(x) will have a minimal zero spacing which is larger than that of p(x) (N. Obreschkoff [16, p. 13, Satz 5.3], P. Walker [19]). In light of Lemma 2.16, the aforementioned result suggests the following conjecture.

Conjecture 2.19. If $p(x) \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, $\mu(p) \ge d \ge 1$, and g(x) = p(x+1) - p(x), then $\mu(g) \ge d$.

The derivation of the classical Laguerre inequality relies on properties of the logarithmic derivative of a polynomial. In the same way, Conjecture 1.4 was proved using a discrete version of the logarithmic derivative. The analogy between the discrete and continuous logarithmic derivatives motivates the following conjectures, based on Theorem 2.20 and its converse (B. Muranaka [14]).

Theorem 2.20. (P. B. Borwein and T. Erdélyi [1, p. 345]) *If* $p \in \mathcal{L}$ - \mathcal{P}_n , then

$$m\left(\left\{x \in \mathbb{R} : \frac{p'(x)}{p(x)} \ge \lambda\right\}\right) = \frac{n}{\lambda} \quad for all \ \lambda > 0,$$

where m denotes Lebesgue measure.

Conjecture 2.21. If $p \in \mathcal{L}-\mathcal{P}_n$, $n \ge 2$, $\mu(p) \ge 1$, then

$$m\left(\left\{x \in \mathbb{R} : \frac{p(x+1) - p(x)}{p(x)} \ge \lambda\right\}\right) = \frac{n}{\lambda} \quad \text{for all } \lambda > 0,$$

where *m* denotes Lebesgue measure.

Conjecture 2.22. If p(x) is a real polynomial of degree $n \ge 2$, and if

$$m\left(\left\{x \in \mathbb{R} : \frac{p(x+1) - p(x)}{p(x)} \ge \lambda\right\}\right) = \frac{n}{\lambda} \quad \text{for all } \lambda > 0,$$

where *m* denotes Lebesgue measure, then $p \in \mathcal{L}$ - \mathcal{P}_n with $\mu(p) \ge 1$.

3. EXTENSION TO A CLASS OF TRANSCENDENTAL ENTIRE FUNCTIONS

In analogy with (5) we define, for a real entire function φ ,

(15)
$$f_{\infty}(x,h,\varphi) := [\varphi(x+h) - \varphi(x-h)]^2 - 4\varphi(x)[\varphi(x+h) - 2\varphi(x) + \varphi(x-h)].$$

For $\varphi \in \mathcal{L}$ - \mathcal{P} , with zeros $\{\alpha_i\}_{i=1}^{\omega}, \omega \leq \infty$, we introduce the mesh size

(16)
$$\mu_{\infty}(\varphi) := \inf_{i \neq j} |\alpha_i - \alpha_j|$$

We remark that if $\psi \notin \mathcal{L}$ - \mathcal{P} , then ψ need not satisfy $f_{\infty}(x, h, \psi) \ge 0$ for all $x \in \mathbb{R}$. A calculation shows that if $\psi(x) = e^{x^2}$, then $f_{\infty}(0, 1, \psi) = -8(e - 1) < 0$. When $\varphi \in \mathcal{L}$ - \mathcal{P}_n , $f_{\infty}(x, h, \varphi) \ge 0$ for all $x \in \mathbb{R}$ by Theorem 2.17. In order to extend Theorem 2.17 to transcendental entire functions, we require the following preparatory result to ensure that the approximating polynomials we use will satisfy a zero spacing condition.

Lemma 3.1. For any $a \in \mathbb{R}$, $n \in \mathbb{N}$, $n \ge 2$,

$$\lim_{n \to \infty} \sum_{k=1}^{n^n} \frac{1}{n \ln(n)(k+n) + a} = 1.$$

Proof. Fix $a \in \mathbb{R}$. Since the terms $\frac{1}{n \ln(n)(k+n)+a}$ are decreasing with k for n sufficiently large, we obtain

$$\int_{1}^{n^{n}+1} \frac{1}{n \ln(n)(k+n) + a} dk \le \sum_{k=1}^{n^{n}} \frac{1}{n \ln(n)(k+n) + a} \le \int_{0}^{n^{n}} \frac{1}{n \ln(n)(k+n) + a} dk,$$

for *n* sufficiently large, by considering the approximating Riemann sums for the integrals. Thus

(17)
$$\frac{1}{n\ln(n)}\ln\left(\frac{n^n+1+\frac{a}{n\ln(n)}}{n+1+\frac{a}{n\ln(n)}}\right) \le \sum_{k=1}^{n^n} \frac{1}{n\ln(n)(k+n)+a} \le \frac{1}{n\ln(n)}\ln\left(\frac{n^n+\frac{a}{n\ln(n)}}{n+\frac{a}{n\ln(n)}}\right).$$

As $n \to \infty$, both the left and right sides of (17) approach 1, and whence the sum in the middle approaches 1.

Lemma 3.2. The set of polynomials $\{q_n(x) = \prod_{k=1}^{n^n} \left(1 + \frac{x}{n \ln(n)(k+n)}\right) : n \in \mathbb{N}, n \ge 2\}$, forms a normal family on \mathbb{C} . There is a subsequence of $\{q_n(x)\}_{n=2}^{\infty}$ which converges uniformly on compact subsets of \mathbb{C} to e^x .

Proof. Let $K \subset \mathbb{C}$ be any compact set and let $R = \sup_{z \in K} |z|$. Recall the inequality

$$\frac{1}{2}|z| \le |\ln(1+z)| \le \frac{3}{2}|z| \qquad \text{for } |z| < \frac{1}{2}$$

[2, p. 165]. Then for n > 2R, $\left| \frac{z}{n \ln(n)(k+n)} \right| < \frac{1}{2}$, hence, for $k \ge 1$ and $z \in K$

$$\frac{1}{2}\frac{|z|}{n\ln(n)(k+n)} \le \left|\ln\left(1 + \frac{z}{n\ln(n)(k+n)}\right)\right| \le \frac{3}{2}\frac{|z|}{n\ln(n)(k+n)}$$

and therefore

$$\frac{1}{2}\sum_{k=1}^{n^n} \frac{|z|}{n\ln(n)(k+n)} \le \sum_{k=1}^{n^n} \left| \ln\left(1 + \frac{z}{n\ln(n)(k+n)}\right) \right| \le \frac{3}{2}\sum_{k=1}^{n^n} \frac{|z|}{n\ln(n)(k+n)}$$

As $n \to \infty$ the sums on the left and right sides of the inequality converge by Lemma 3.1 to $\frac{1}{2}|z|$ and $\frac{3}{2}|z|$ respectively. In particular, for some $\varepsilon > 0$ and N > 2R sufficiently large, for all $n \ge N$ and for all $z \in K$,

$$\sum_{k=1}^{n^n} \left| \ln\left(1 + \frac{z}{n \ln(n)(k+n)} \right) \right| \le \frac{3}{2}R + \varepsilon.$$

Then for all $n \ge N$, for all $z \in K$,

$$|q_n(z)| \le e^{\sum_{k=1}^{n^n} \left| \ln \left(1 + \frac{z}{n \ln(n)(k+n)} \right) \right|} \le e^{\frac{3}{2}R + \varepsilon}$$

So for n > N sufficiently large, the sequence $\{q_n(z)\}_{n=2}^{\infty}$ is uniformly bounded on compact subsets $K \subset \mathbb{C}$ and thus form a normal family by Montel's theorem [2, p. 153]. Thus, there is a subsequence of $\{q_n(z)\}_{n=2}^{\infty}$ which converges uniformly on compact subsets of \mathbb{C} to a function f, and therefore satisfies

(18)
$$\frac{f'(x)}{f(x)} = \lim_{n \to \infty} \frac{q'_n(x)}{q_n(x)} = \lim_{n \to \infty} \sum_{k=1}^{n^n} \frac{1}{n \ln(n)(k+n) + x} = 1,$$

for a fixed $x \in \mathbb{R}$, where the last equality is by Lemma 3.1. Equation (18) and f(0) = 1, imply $f(x) = e^x$ on \mathbb{R} , and thus f is the exponential function.

Lemma 3.3. If $\varphi(x) = p(x)e^{bx}$, $b \in \mathbb{R}$, $p \in \mathcal{L}$ - \mathcal{P}_n , $n \ge 2$, and $\mu(p) \ge 1$, then $f_{\infty}(x, 1, \varphi) \ge 0$ for all $x \in \mathbb{R}$.

Proof. By Lemma 3.2, there is a subsequence of $\left\{q_j(x) = \prod_{k=1}^{j^j} \left(1 + \frac{x}{j\ln(j)(k+j)}\right)\right\}_{j=2}^{\infty}$, call it $\{q_{j_m}(x)\}_{m=1}^{\infty}$, such that $q_{j_m}(x) \to e^x$ uniformly on compact subsets of \mathbb{C} , as $m \to \infty$. Let $\{\alpha_k\}_{k=1}^n$ be the zeros of p(x), and $R = \max_{1 \le k \le n} |\alpha_k|$. The zero of least magnitude of $q_{j_m}(bx), z_{j_m}$, satisfies $|z_{j_m}| = \frac{j_m \ln(j_m)(1+j_m)}{b}$, $b \ne 0$. Both $\mu(q_{j_m}(bx)) \to \infty$ as $m \to \infty$ and $|z_{j_m}| \to \infty$ as $m \to \infty$. Thus, there is an M such that for all m > M, $|z_{j_m}| > R + 1$, and the sequence of polynomials $h_m(x) = p(x)q_{j_{M+m}}(bx), m \ge 1$, is in \mathcal{L} - \mathcal{P}_ℓ for some ℓ , and satisfies $\mu(h_m) \ge 1$. By Theorem 2.17, $f_\infty(x, 1, h_m) \ge 0$ for all $x \in \mathbb{R}$, for all m. Since $h_m \to p(x)e^{bx}$ by construction, $\lim_{m\to\infty} f_\infty(x, 1, h_m) = f_\infty(x, 1, p(x)e^{bx}) \ge 0$.

Theorem 3.4. If $\varphi \in \mathcal{L}$ - \mathcal{P} has order $\rho < 2$, or if φ is of minimal type of order $\rho = 2$, and $\mu_{\infty}(\varphi) \ge 1$, then $f_{\infty}(x, 1, \varphi) \ge 0$ for all $x \in \mathbb{R}$.

Proof. By the Hadamard factorization theorem, φ has the representation

$$\varphi(x) = c x^m e^{bx} \prod_{k=1}^{\omega} \left(1 + \frac{x}{a_k} \right) e^{-\frac{x}{a_k}} \qquad (\omega \le \infty).$$

where $a_k, b, c \in \mathbb{R}$, *m* is a non-negative integer, $a_k \neq 0$, and $\sum_{k=1}^{\omega} \frac{1}{a_k^2} < \infty$. Let

$$g_n(x) = c x^m e^{bx} \prod_{k=1}^n \left(1 + \frac{x}{a_k}\right) e^{-\frac{x}{a_k}}.$$

Then, $g_n(x) = ce^{bx - \sum_{k=1}^n \frac{x}{a_k}} x^m \prod_{k=1}^n \left(1 + \frac{x}{a_k}\right)$ has the form $p(x)e^{\gamma x}$, $\gamma \in \mathbb{R}$, $p \in \mathcal{L}$ - \mathcal{P}_n , and thus by Lemma 3.3, $f_{\infty}(x, 1, g_n) \ge 0$ for all $x \in \mathbb{R}$, and for all n. Since we also have $g_n \to \varphi$ by construction, $\lim_{n\to\infty} f_{\infty}(x, 1, g_n) = f_{\infty}(x, 1, \varphi) \ge 0$ for all $x \in \mathbb{R}$.

In light of Theorem 3.4, we make the following conjecture.

Conjecture 3.5. If $\varphi \in \mathcal{L}$ - \mathcal{P} and $\mu_{\infty}(\varphi) \geq 1$ then $f_{\infty}(x, 1, \varphi) \geq 0$ for all $x \in \mathbb{R}$.

References

- [1] P. B. Borwein and T. Erdélyi, Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995.
- [2] J. B. Conway, Functions of One Complex Variable I, Springer, New York, 1978.
- [3] T. Craven and G. Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math., 136 (1989), 241–260.
- [4] G. Csordas and A. Escassut, The Laguerre inequality and the distribution of zeros of entire functions, Ann. Math. Blaise Pascal, 12 (2005), 331–345.
- [5] W. H. Foster and I. Krasikov, Inequalities for real-root polynomials and entire functions, Adv. in Appl. Math., 29 (2002), 102–114.
- [6] W. H. Foster and I. Krasikov, Bounds for the extreme roots of orthogonal polynomials, Int. J. of Math. Algorithms, 2 (2000), 121–132.
- [7] W. H. Foster and I. Krasikov, Explicit bounds for Hermite polynomials in the oscillatory region, LMS J. Comput. Math., 3 (2000), 307–314.
- [8] I. Krasikov, Discrete analogues of the Laguerre inequality, Anal. Appl. (Singap.), 1 (2003), 189–197.
- [9] I. Krasikov, Bounds for the Christoffel-Darboux kernel of the binary Krawtchouk polynomials, in Codes and Association Schemes (Pistcataway, NJ, 1999), 193–198, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001.
- [10] I. Krasikov, Nonnegative quadratic forms and bounds on orthogonal polynomials, J. Approx. Theory, 111 (2001), 31–49.
- [11] I. Krasikov and A. Zarkh, On the zeros of discrete orthogonal polynomials, J. Approx. Theory, **156** (2009), 121–141.
- [12] B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono. Vol. 5, Amer. Math. Soc., Providence, RI (1964); revised ed. 1980.
- [13] J. B. Love, Problem E 1532, Amer. Math. Monthly, 69 (1962), 668.

M. CHASSE AND G. CSORDAS

- [14] B. Muranaka, *The Laguerre inequality and the distribution of zeros of entire functions*, Master's thesis, University of Hawaii, Honolulu, Hawaii, December 2003.
- [15] A. F. Nikiforov, S. K. Suslov, and V. B. Urarov, *Classical orthogonal polynomials of a discrete variable*, Springer-Verlag, Berlin (1991).
- [16] N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, Veb Deutscher Verlag der Wissenschaften, Berlin, 1963.
- [17] M. L. Patrick, *Extension of inequalities of the Laguerre and Turán type*, Pacific J. Math., 44 (1973), 675–682.
- [18] G. Pólya and G. Szegő, Problems and Theorems in Analysis, vol. II, Springer-Verlag, New York (1976).
- [19] P. Walker, *Bounds for the separation of real zeros of polynomials*, J. Austral. Math. Soc. Ser. A, **59** (1995), 330–342.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HI 96822 *E-mail address*: chasse@math.hawaii.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HI 96822 *E-mail address*: george@math.hawaii.edu