
DISCRETE ANALOGUES OF THE LAGUERRE INEQUALITIES AND A
CONJECTURE OF I. KRASIKOV

MATTHEW CHASSE AND GEORGE CSORDAS

Abstract. A conjecture of I. Krasikov is proved. Several discrete analogues of classical
polynomial inequalities are derived, along with results which allow extensions to a class of
transcendental entire functions in the Laguerre-Pólya class.

1. Introduction

The classical Laguerre inequality for polynomials states that a polynomial of degree n
with only real zeros, p(x) ∈ R[x], satisfies (n−1)p′(x)2 −np′′(x)p(x) ≥ 0 for all x ∈ R (see
[3, 13]). Thus, the classical Laguerre inequality is a necessary condition for a polynomial
to have only real zeros. Our investigation is inspired by an interesting paper of I. Krasikov
[8]. He proves several discrete polynomial inequalities, including useful versions of gen-
eralized Laguerre inequalities [17], and shows how to apply them by obtaining bounds on
the zeros of some Krawtchouk polynomials. In [8], I. Krasikov conjectures a new discrete
Laguerre inequality for polynomials. After establishing this conjecture, we generalize the
inequality to transcendental entire functions (of order ρ < 2, and minimal type of order
ρ = 2) in the Laguerre-Pólya class (see Definition 1.1).

Definition 1.1. A real entire function ϕ(x) =
∑∞

k=0
γk
k! xk is said to belong to the Laguerre-

Pólya class, written ϕ ∈ L-P, if it can be expressed in the form

ϕ(x) = cxme−ax2+bx
ω∏

k=1

(
1 +

x
xk

)
e
−x
xk (0 ≤ ω ≤ ∞),

where b, c, xk ∈ R, m is a non-negative integer, a ≥ 0, xk , 0, and
∑ω

k=1
1
x2

k
< ∞.

The significance of the Laguerre-Pólya class stems from the fact that functions in this
class, and only these, are uniform limits, on compact subsets of C, of polynomials with
only real zeros [12, Chapter VIII].

Definition 1.2. We denote by L-Pn the set of polynomials of degree n in the Laguerre-
Pólya class; that is, L-Pn is the set of polynomials of degree n having only real zeros.

The minimal spacing between neighboring zeros of a polynomial in L-Pn is a scale that
provides a natural criterion for the validity of discrete polynomial inequalities.

Definition 1.3. Suppose p(x) ∈ L-Pn has zeros {αk}
n
k=1, repeated according to their mul-

tiplicities, and ordered such that αk ≤ αk+1, 1 ≤ k ≤ n − 1. We define the mesh size,
associated with the zeros of p, by

µ(p) := min
1≤k≤n−1

|αk+1 − αk |.
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With the above definition of mesh size, we can now state a conjecture of I. Krasikov,
which is proved in Section 2.

Conjecture 1.4. (I. Krasikov [8]) If p(x) ∈ L-Pn and µ(p) ≥ 1, then

(1) (n − 1)[p(x + 1) − p(x − 1)]2 − 4np(x)[p(x + 1) − 2p(x) + p(x − 1)] ≥ 0

holds for all x ∈ R.

The classical Laguerre inequality is found readily by differentiating the logarithmic
derivative of a polynomial p(x) with only real zeros {αi}

n
i=1, to give

(2)
p′′(x)p(x) − (p′(x))2

(p(x))2 =

(
p′(x)
p(x)

)′
=

 n∑
k=1

1
(x − αk)

′ = −

n∑
k=1

1
(x − αk)2 .

Since the right-hand side is non-positive,

(p′(x))2 − p′′(x)p(x) ≥ 0.

This inequality is also valid for an arbitrary function in L-P [3]. A sharpened form of the
Laguerre inequality for polynomials can be obtained with the Cauchy-Schwarz inequality,

(3)

 n∑
k=1

1
(x − αk)

2

≤ n
n∑

k=1

1
(x − αk)2 .

In terms of p, (3) becomes
(

p′(x)
p(x)

)2
≤ n

∑n
k=1

1
(x−αk)2 , and with (2) yields the sharpened

version of the Laguerre inequality for polynomials on which Conjecture 1.4 is based,

(4) (n − 1)(p′(x))2 − np′′(x)p(x) ≥ 0.

The inequality (1) is a finite difference version of the classical Laguerre inequality for
polynomials. Indeed, let us define

(5) fn(x, h, p) := (n − 1)[p(x + h) − p(x − h)]2 − 4np(x)[p(x + h) − 2p(x) + p(x − h)].

Then (1) can be written as fn(x, 1, p) ≥ 0 (x ∈ R), and we recover the classical Laguerre
inequality for polynomials by taking the following limit:

lim
h→0

fn(x, h, p)
4h2 = (n − 1)

(
lim
h→0

p(x + h) − p(x − h)
2h

)2

− np(x)
(
lim
h→0

p(x + h) − 2p(x) + p(x − h)
h2

)
= (n − 1)p′(x)2 − np′′(x)p(x).

As I. Krasikov points out, the motivation for inequalities of type (1) is that classical
discrete orthogonal polynomials pk(x) satisfy a three-term difference equation (see [15, p.
27], [8])

pk(x + 1) = bk(x)pk(x) − ck(x)pk(x − 1),
where bk(x) and ck(x) are continuous over the interval of orthogonality. Many of the clas-
sical discrete orthogonal polynomials satisfy the condition that ck(x) > 0 on the inter-
val of orthogonality, and this implies that µ(p) ≥ 1 (see [11]). Therefore, inequalities
when µ(p) ≥ 1 are of interest and may help provide sharp bounds on the loci of zeros
of discrete orthogonal polynomials [8, 5, 6]. Indeed, W. H. Foster, I. Krasikov, and A.
Zarkh have found bounds on the extreme zeros of many orthogonal polynomials using dis-
crete and continuous Laguerre and new Laguerre type inequalities which they discovered
[5, 6, 7, 8, 9, 10, 11].
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In this paper, we prove I. Krasikov’s conjecture (see Theorem 2.17), extend it to a
class of transcendental entire functions in the Laguerre-Pólya class, and formulate several
conjectures (cf. Conjecture 2.19, Conjecture 2.21, Conjecture 2.22, and Conjecture 3.5). In
Section 2, we establish several preliminary results about polynomials which satisfy a zero
spacing requirement. In Section 3, we establish the existence of a polynomial sequence
which satisfies a zero spacing requirement and converges uniformly on compact subsets of
C to the exponential function. We use this result to extend a version of (1) to transcendental
entire functions in the Laguerre-Pólya class up to order ρ = 2 and minimal type, and
conjecture that it is true for all functions in L-P.

2. Proof of I. Krasikov’s Conjecture

In this section we develop some discrete analogues of classical inequalities, form some
intuition about the effect of imposing a minimal zero spacing requirement on a polynomial
in L-P, and prove Conjecture 1.4. First, note that one can change the zero spacing require-
ment in Conjecture 1.4 by simply rescaling in x. For example, the following conjecture is
equivalent to Conjecture 1.4 of Krasikov.

Conjecture 2.1. Let p(x) ∈ L-Pn. Suppose that µ(p) ≥ h > 0. Then for all x ∈ R,

(6) fn(x, h, p) = (n − 1)[p(x + h) − p(x − h)]2 − 4np(x)[p(x + h) − 2p(x) + p(x − h)] ≥ 0.

For the sake of clarity, we will work with (1) directly (h = 1), and keep in mind that
we can always make statements about polynomials with an arbitrary positive minimal zero
spacing by rescaling p(x) (in other words “measuring x in units of h”).

Lemma 2.2. A local minimum of a polynomial, p(x) ∈ L-Pn, with only real simple zeros,
is negative. Likewise, a local maximum of p(x) is positive.

Proof. Because p(x) is a polynomial on R with simple zeros, at a local minimum (xmin,
p(xmin)), we have that p′(xmin) = 0 and p′′(xmin) > 0 (because p′′(xmin) = 0 would imply
that p′ has a multiple zero at xmin which is not possible). The classical Laguerre inequality
asserts that if p(x) ∈ L-P, then for all x ∈ R, (p′(x))2− p′′(x)p(x) ≥ 0. At a local minimum
this expression becomes −p′′(xmin)p(xmin) ≥ 0. Therefore, at a local minimum we have
p(xmin) ≤ 0. Since the zeros of p are simple, p(xmin) , 0. Thus p(xmin) < 0. The second
statement of the lemma can be proved the same way, or by considering −p and using the
first statement. �

A statement similar to Lemma 2.2 is proved by G. Csordas and A. Escassut [4, Theorem
5.1] for a class of functions whose zeros lie in a horizontal strip about the real axis.

Lemma 2.3. Let p(x) ∈ L-Pn, n ≥ 2, µ(p) ≥ 1.
(i) If p(x − 1) > p(x) and p(x + 1) > p(x), then p(x) < 0.

(ii) If p(x − 1) < p(x) and p(x + 1) < p(x), then p(x) > 0.

Proof. (i) Fix an x0 ∈ R. Let p(x0 − 1) > p(x0), p(x0 + 1) > p(x0), and assume for a
contradiction that p(x0) ≥ 0. There cannot be any zeros of p(x) in the interval [x0 − 1, x0],
for if there were, p(x0)p(x0 − 1) > 0 implies that the number of zeros in (x0 − 1, x0) must
be even, and this violates the zero spacing µ(p) ≥ 1. Similarly, there cannot be any zeros
of p(x) in [x0, x0 + 1]. If p(x0) < p(x0 − 1) and p(x0) < p(x0 + 1) then there is a point in
(x0 − 1, x0 + 1) where p′ changes sign from negative to positive. This implies p achieves a
non-negative local minimum on [x0 − 1, x0 + 1] which contradicts Lemma 2.2.

(ii) The second statement follows by replacing p with −p in (i). �
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Using Lemma 2.3 we can verify that if p(x) < min{p(x + 1), p(x − 1)}, then p(x) < 0
and thus the function

fn(x, 1, p) = (n − 1)[p(x + 1) − p(x − 1)]2 − 4np(x)[p(x + 1) − 2p(x) + p(x − 1)]
= (n − 1)[p(x + 1) − p(x − 1)]2

−4np(x)[(p(x + 1) − p(x)) + (p(x − 1) − p(x))](7)

has a non-negative second term and (1) is satisfied. Similarly, (1) is valid when p(x) >
max{p(x − 1), p(x + 1)}. The proof of Conjecture 1.4 is now reduced to the case where
min{p(x + 1), p(x− 1)} ≤ p(x) ≤ max{p(x + 1), p(x− 1)}. It is easy to show that if for some
p(x) ∈ L-Pn, fn(x, 1, p) ≥ 0 for all x ∈ R, then for all m ≥ n, fm(x, 1, p) ≥ 0 for all x ∈ R.
If µ(p) ≥ 1, but m < deg(p), then for some x0 ∈ R, fm(x0, 1, p) may be negative. Indeed, let
p(x) = x(x−1)(x−2), then f3(x, 1, p) = 72(x−1)2 and f2(x, 1, p) = −12(x−3)(x−1)2(x+1).
In particular, f2(4, 1, p) = −540.

We next obtain inequalities and relations that are analogous to those used in deriving
the continuous version of the classical Laguerre inequality for polynomials.

Definition 2.4. Let p(x) ∈ L-Pn have only simple real zeros {αk}
n
k=1. Define forward and

reverse “discrete logarithmic derivatives” associated with p(x) by

F(x) :=
p(x + 1) − p(x)

p(x)
=:

n∑
k=1

Ak

(x − αk)
(8)

and R(x) :=
p(x) − p(x − 1)

p(x)
=:

n∑
k=1

Bk

(x − αk)
.(9)

Note that deg(p(x + 1) − p(x)) < deg(p(x)) and deg(p(x) − p(x − 1)) < deg(p(x)) permits
unique partial fraction expansions of the rational functions F and R. Define the sequences
{Ak}

n
k=1 and {Bk}

n
k=1 associated with p(x) by requiring that they satisfy the equation above.

Remark 2.5. For an arbitrary finite difference, h, the scaled versions of the functions in
Definition 2.4 are F(x) := p(x+h)−p(x)

hp(x) and R(x) := p(x)−p(x−h)
hp(x) .

Lemma 2.6. For p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1 and zeros {αk}
n
k=1, the associated

sequences {Ak}
n
k=1 and {Bk}

n
k=1 satisfy Ak ≥ 0 and Bk ≥ 0, for all k, 1 ≤ k ≤ n.

Proof. From Definition 2.4 we have

p(x + 1) − p(x) =

n∑
k=1

Ak

(x − αk)
p(x) =

n∑
k=1

Ak

∏
j,k

(x − α j)

 .
Evaluating this at a zero of p yields p(αk + 1) = Ak

∏
j,k(αk − α j) = Ak p′(αk).

Thus,

Ak =
p(αk + 1)

p′(αk)
and similarly Bk =

−p(αk − 1)
p′(αk)

.

Since the zeros of p are simple, for some neighborhood of αk, U(αk),

x ∈ U(αk), x < αk implies p(x)p′(x) < 0
and x ∈ U(αk), x > αk implies p(x)p′(x) > 0.

Since the zeros are spaced at least 1 unit apart, p(αk + 1) is either 0 or has the same sign
as p(x) for x > αk on U(αk). So for all ε > 0 sufficiently small, p(αk + 1)p′(αk + ε) ≥ 0,
and by continuity p(αk + 1)p′(αk) ≥ 0. Thus Ak =

p(αk+1)
p′(αk) ≥ 0. Note p′(αk) , 0 since

αk is simple. Likewise, p(αk − 1) is either 0 or has the same sign as p′(x) for x < αk on
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U(αk). Hence for all ε > 0 sufficiently small, p(αk − 1)p′(αk − ε) ≤ 0. By continuity,
p(αk − 1)p′(αk) ≤ 0, whence Bk ≥ 0.

�

Example 2.7. If the zero spacing requirement in Lemma 2.6 is violated then some Ak or
Bk may be negative. Indeed, consider p(x) = x(x + 1 − ε). Then p(x+1)−p(x)

p(x) = A1
x + A2

x+1−ε ,

where
A1 =

2 − ε
1 − ε

A2 =
−ε

1 − ε
.

For any positive ε < 1, µ(p) = 1 − ε, and A2 is negative.

Corollary 2.8. For p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1, the associated functions F(x) and
R(x) (see Definition 2.4) satisfy F′(x) < 0 and R′(x) < 0 on their respective domains.

Proof. This corollary is a direct result of differentiating the partial fraction expressions for
F and R and applying Lemma 2.6. �

Note that the degree of the numerator of F(x) is n − 1. If µ(p) ≥ 1, then F(x) has n − 1
real zeros, because F(x) is strictly decreasing between any two consecutive poles of F(x).
This proves the following lemma.

Lemma 2.9. (Pólya and Szegö [18, vol. II, p. 39]) For p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1,
F(x) and R(x) have only real simple zeros.

In the sequel (see Lemma 2.16), we show that if µ(p(x)) ≥ 1, then µ(p(x+1)−p(x)) ≥ 1,
and the zeros of F(x) and R(x) are spaced at least one unit apart.

Lemma 2.10. If p(x) ∈ L-Pn, then the associated sequences {Ak}
n
k=1 and {Bk}

n
k=1 satisfy∑n

k=1 Ak = n and
∑n

k=1 Bk = n.

Proof. Let p(x) = anxn +an−1xn−1 + · · ·+a0 ∈ L-Pn and denote the zeros of p(x) by {αk}
n
k=1.

Observe that

(10) lim
|z|→∞

zF(z) = lim
|z|→∞

z
(

p(z + 1) − p(z)
p(z)

)
= lim
|z|→∞

z
n∑

k=1

Ak

(z − αk)
=

n∑
k=1

Ak.

Then (10) and

p(z + 1) − p(z) = an(z + 1)n + an−1(z + 1)n−1 + . . . + a0 − [anzn + an−1zn−1 + . . . + a0]
= nanzn−1 + O(zn−2), |z| → ∞,

imply that
n∑

k=1

Ak = lim
|z|→∞

zF(z) = lim
|z|→∞

z
(

p(z + 1) − p(z)
p(z)

)
= lim
|z|→∞

z
(

nanzn−1 + O(zn−2)
anzn + an−1zn−1 + · · · + a0)

)
= n.

A similar argument shows that
∑n

k=1 Bk = n. �

Lemma 2.11. Given p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1, the associated functions F(x) and
R(x) satisfy (F(x))2 ≤ −nF′(x) and (R(x))2 ≤ −nR′(x), for all x ∈ R, where p(x) , 0.

Proof. From Definition 2.4, F(x) =
∑n

k=1
Ak

x−αk
and therefore F′(x) =

∑n
k=1

−Ak
(x−αk)2 . By

Lemma 2.6, µ(p) ≥ 1 implies the constants Ak ≥ 0. Using the the Cauchy-Schwarz
inequality,

(F(x))2 =

 n∑
k=1

Ak

x − αk

2

≤

 n∑
k=1

Ak

 n∑
k=1

Ak

(x − αk)2 = −nF′(x),
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where Lemma 2.10 has been used in the last equality. An identical argument shows
(R(x))2 ≤ −nR′(x) for all x ∈ R. �

Remark 2.12. Simple examples show that the inequalities in Lemma 2.11 are sharp (con-
sider p(x) = x(x + 1 − ε)).

Lemma 2.13. Let p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1, and let {βk}
n−1
k=1 be the zeros of

p(x+1)−p(x). Let y ∈ R be such that min{p(y+1), p(y−1)} < p(y) < max{p(y+1), p(y−1)}.
Then if the interval [y − 1, y] does not contain any βk ,

1
n

F(y)R(y) ≤
(p(y))2 − p(y + 1)p(y − 1)

(p(y))2 .

Proof. If no βk is in [y − 1, y], then F′(x)
(F(x))2 =

(p′(x+1)p(x)−p(x+1)p′(x))(p(x))2

(p(x+1)−p(x))2(p(x))2 can be extended to
be continuous and bounded on [y − 1, y]. By Lemma 2.11 (F(x))2 ≤ −nF′(x). Dividing
both sides of this inequality by n(F(x))2 and integrating from y − 1 to y we have

1
n
≤

1
F(y)

−
1

F(y − 1)
=

p(y)
p(y + 1) − p(y)

−
p(y − 1)

p(y) − p(y − 1)
.

Using min{p(y + 1), p(y)} < p(y) < max{p(y + 1), p(y − 1)}, we have that either p(y − 1) <
p(y) < p(y+1) or p(y+1) < p(y) < p(y−1). In both cases, (p(y+1)−p(y))(p(y)−p(y−1)) >
0 and therefore
1
n

(p(y + 1) − p(y))(p(y) − p(y − 1)) ≤ p(y)(p(y) − p(y − 1)) − p(y − 1)(p(y + 1) − p(y))

≤ (p(y))2 − p(y + 1)p(y − 1).

Dividing both sides by (p(y))2 gives the result. �

Lemma 2.14. For p(x) ∈ L-Pn, the associated functions F(x) and R(x) from Definition
2.4 satisfy

F(x)R(x) = (F(x) − R(x)) +
(p(x))2 − p(x + 1)p(x − 1)

(p(x))2

for all x ∈ R, where p(x) , 0.

Proof. This lemma is verified by direct calculation using the definitions of F(x) and R(x)
in terms of p(x). �

Lemma 2.15. Let p(x) ∈ L-Pn, n ≥ 2, with µ(p) ≥ 1.
(i) If p(β) = p(β + 1) > 0, then for all x ∈ (β, β + 1), p(x) > p(β) and p(x) >

max{p(x + 1), p(x − 1)}.
(ii) If p(β) = p(β + 1) < 0, then for all x ∈ (β, β + 1), p(x) < p(β) and p(x) <

min{p(x + 1), p(x − 1)}.
(iii) If p(β) = p(β+1) = 0, then for all x ∈ (β, β+1), either p(x) > max{p(x+1), p(x−1)}

or p(x) < min{p(x + 1), p(x − 1)}.

Proof. Note that by Lemma 2.9, any βwhich satisfies p(β) = p(β+1) under the hypotheses
stated in Lemma 2.15 must be real and simple since β is a zero of F(x).

For case (i), assume for a contradiction that there exists x0 ∈ (β, β+ 1) such that p(x0) ≤
p(β). There can not be any zeros of p on (β, β + 1), if there were, p(β)p(β + 1) > 0 implies
that p(x) must have at least two zeros on (β, β + 1), which contradicts µ(p) ≥ 1. Thus, for
all x ∈ (β, β + 1), p(x) > 0. Specifically p(x0) > 0.
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Since p(x) does not change sign on (β, β + 1), the interval (β, β + 1) must lie between
two neighboring zeros of p(x), call them α1 and α2, such that (β, β + 1) ⊂ (α1, α2). By
the mean value theorem there exists a ∈ (β, β + 1) with p′(a) = 0. The zeros of p(x) and
p′(x) interlace, and in order to preserve the interlacing a must be the only zero of p′(x) in
(α1, α2), hence p′(β), p′(β + 1) , 0. Because the zeros are simple, for some ε > 0, for all
x ∈ (α1, α1 + ε), p′(x)p(x) > 0, and for all x ∈ (α2 − ε, α2), p′(x)p(x) < 0. Since p′ and p
do not change sign on (α1, β) or (β + 1, α2), this gives us that p′(β) > 0 and p′(β + 1) < 0.
Then if p(x0) ≤ p(β), p′ must change signs at least twice on (α1, α2) (actually three times),
at least once on (β, x0) and at least once on (x0, β + 1), and this contradicts the uniqueness
of a. Thus for all x ∈ (β, β + 1) we have p(x) > p(β).

To show p(x) > p(β) implies p(x) > max{p(x + 1), p(x− 1)} for all x ∈ (β, β+ 1), notice
that since p′(y) < 0 for all y ∈ (β + 1, α2), p(β + 1) > p(y) for all y ∈ (β + 1, α2), and due
to the zero spacing p ≤ 0 on (α2, α2 + 1), hence p(β + 1) > p(x + 1) for all x ∈ (β, α2).
Thus, for all x ∈ (β, β + 1), p(x) > p(β + 1) > p(x + 1). In the same way, p′(y) > 0 for
y ∈ (α1, β) and p ≤ 0 on (α1 − 1, β) imply that p(β) > p(x) for all x ∈ (α1 − 1, β) and
therefore p(x) > p(x− 1) for all x ∈ (β, β+ 1). Hence, for all x ∈ (β, β+ 1), p(x) > p(x− 1)
and p(x) > p(x + 1), therefore p(x) > max{p(x + 1), p(x − 1)}.

Consider case (iii). If p(β) = p(β + 1) = 0, then p does not change sign on (β, β + 1)
since µ(p) ≥ 1. It suffices to consider the case when p is positive on (β, β + 1). Then
for all x ∈ (β, β + 1), p(x) > 0 = p(β). The conclusion p(x) > max{p(x + 1), p(x − 1)}
(p(x) < min{p(x + 1), p(x− 1)}) is a consequence of p(x) > p(β) (p(x) < p(β)) by the same
argument given in the proof of case (i).

To prove (ii), let g(x) = −p(x) and apply (i).
�

Lemma 2.16. If p(x) ∈ L-Pn, n ≥ 2, µ(p) ≥ 1, and g(x) = p(x + 1) − p(x), then µ(g) ≥ 1.

Proof. (Reductio ad Absurdum) If µ(g) < 1, then there exist β1, β2 ∈ R such that 0 <
β2 − β1 < 1 and g(β1) = g(β2) = 0. In the proof of Lemma 2.15 we have shown that
p(x) does not change sign on (β1, β1 + 1). Without loss of generality assume that p is
positive on (β1, β1 + 1). Observe that β2 ∈ (β1, β1 + 1), and thus by Lemma 2.15, p(β2) >
max{p(β2 + 1), p(β2 − 1)} ≥ p(β2 + 1). But this yields p(β2 + 1) − p(β2) < 0, and therefore
g(β2) < 0 contradicting g(β2) = 0. �

Note that Lemma 2.16 is equivalent to the statement that if p(x) ∈ L-Pn with µ(p) ≥ 1,
then the associated functions F(x) and R(x) also have zeros spaced at least 1 unit apart.
Preliminaries aside, we prove Conjecture 1.4 of I. Krasikov.

Theorem 2.17. If p(x) ∈ L-Pn and µ(p) ≥ 1, then

(11) fn(x, 1, p) = (n − 1)[p(x + 1) − p(x − 1)]2 − 4np(x)[p(x + 1) − 2p(x) + p(x − 1)] ≥ 0

holds for all x ∈ R.

Proof. Since (11) is true when deg(p(x)) is 1 or 2, we assume n ≥ 2. Fix x = x0 ∈ R. If
p(x0 − 1) = p(x0) = p(x0 + 1), or if p(x0) = 0, then fn(x, 1, p) ≥ 0. Thus, we may assume
p(x0) , 0. If p(x0) < min{p(x0 + 1), p(x0 − 1)}, or if p(x0) > max{p(x0 + 1), p(x0 − 1)},
then fn(x0, 1, p) ≥ 0 (use (7) and Lemma 2.3).

We next consider the case when

(12) min{p(x0 − 1), p(x0 + 1)} < p(x0) < max{p(x0 − 1), p(x0 + 1)}
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(thus x0 , β or β + 1, where p(β + 1) = p(β)), and show

fn(x0, 1, p)
(p(x0))2 = (n − 1)(F(x0) + R(x0))2 − 4n(F(x0) − R(x0)) ≥ 0,

where F(x) and R(x) are defined by (8) and (9) respectively. By Lemma 2.14,

fn(x0, 1, p)
(p(x0))2 = (n − 1)(F(x0) − R(x0))2

−4n
(

1
n

F(x0)R(x0) −
(p(x0))2 − p(x0 + 1)p(x0 − 1)

(p(x0))2

)
.(13)

By Lemma 2.16, µ(p(x + 1) − p(x)) ≥ 1, and thus the zeros {βk}
n−1
k=1 of F(x) (p(βk + 1) =

p(βk)) are spaced at least one unit apart. If [x0−1, x0] does not contain any βk, fn(x0,1,p)
(p(x0))2 ≥ 0

holds by Lemma 2.13 (see (13)) . If, on the other hand, β j ∈ (x0 − 1, x0) (recall β j ,
x0, x0−1), then x0 ∈ (β j, β j +1) and by Lemma 2.15 either p(x0) > max{p(x0−1), p(x0 +1)}
or p(x0) < min{p(x0−1), p(x0 +1)}, and both of these cases contradict our assumption (see
(12)). We have now shown fn(x0, 1, p)) ≥ 0 for all x0 ∈ R, except for the isolated points
where x0 = β j or x0 = β j + 1 for some j, but by continuity of fn(x, 1, p), (11) will hold.

�

The converse of Theorem 2.17 is false in general. Indeed, the following example shows
that there are polynomials with arbitrary minimal zero spacing that still satisfy fn(x, 1, p) ≥
0 for all x ∈ R.

Example 2.18. Let p(x) = (x + n + a)
∏n−1

k=1(x + k) with n ≥ 2, a ∈ R. Using a symbolic
manipulator (we used Maple)

fn(x, 1, p) = C(x, n, a)
n−2∏
k=2

(x + k)2

where

(14) C(x, n, a) := (n − 1)(−2n3 − 4na + 4a2 + n2 + n4)x2

+ (n − 1)(6n2a + 4n4 − 8n3a + 8a2 − 12na + 4na2 − 8n3 + 2n4a + 4n2)x

+ (n − 1)(−8na − 4na2 + 4a2 + 4n4a − 8n3 + 4n4 + 4n2 + 12n2a

+ n4a2 + 13n2a2 − 16n3a − 6n3a2).

C(x, n, a) is quadratic in x and its discriminant is D = −16na2(n − 1)2(n − 2)3(a − n)2 ≤

0. Therefore C(x, n, a) does not change sign and is always positive (this is verified by
showing that the coefficient of x2 is positive when considered as a quadratic in a), whence
fn(x, 1, p) ≥ 0 for all x ∈ R.

In general, a polynomial p may satisfy fn(p, 1, x) ≥ 0 for all x ∈ R, even if p has multiple
zeros. If p(x) = x2(x + 1), which has µ(p) = 0, then f3(x, 1, p) = 56x2 + 32x + 8 is non-
negative for all x ∈ R. A polynomial p with non-real zeros may also satisfy fn(p, 1, x) ≥ 0
for all x ∈ R. For example, let p(x) = (x2 + 1)(x + 1), then f3(x, 1, p) = 32x2 − 32x + 8 ≥ 0
for all x ∈ R.

It is known that a polynomial p(x) ∈ L-Pn with only real zeros satisfies µ(p) ≤ µ(p′);
that is, p′(x) will have a minimal zero spacing which is larger than that of p(x) (N.
Obreschkoff [16, p. 13, Satz 5.3], P. Walker [19]). In light of Lemma 2.16, the afore-
mentioned result suggests the following conjecture.
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Conjecture 2.19. If p(x) ∈ L-Pn, n ≥ 2, µ(p) ≥ d ≥ 1, and g(x) = p(x + 1) − p(x), then
µ(g) ≥ d.

The derivation of the classical Laguerre inequality relies on properties of the logarithmic
derivative of a polynomial. In the same way, Conjecture 1.4 was proved using a discrete
version of the logarithmic derivative. The analogy between the discrete and continuous
logarithmic derivatives motivates the following conjectures, based on Theorem 2.20 and
its converse (B. Muranaka [14]).

Theorem 2.20. (P. B. Borwein and T. Erdélyi [1, p. 345]) If p ∈ L-Pn, then

m
({

x ∈ R :
p′(x)
p(x)

≥ λ

})
=

n
λ

for all λ > 0,

where m denotes Lebesgue measure.

Conjecture 2.21. If p ∈ L-Pn, n ≥ 2, µ(p) ≥ 1, then

m
({

x ∈ R :
p(x + 1) − p(x)

p(x)
≥ λ

})
=

n
λ

for all λ > 0,

where m denotes Lebesgue measure.

Conjecture 2.22. If p(x) is a real polynomial of degree n ≥ 2, and if

m
({

x ∈ R :
p(x + 1) − p(x)

p(x)
≥ λ

})
=

n
λ

for all λ > 0,

where m denotes Lebesgue measure, then p ∈ L-Pn with µ(p) ≥ 1.

3. Extension to a Class of Transcendental Entire Functions

In analogy with (5) we define, for a real entire function ϕ,

(15) f∞(x, h, ϕ) := [ϕ(x + h) − ϕ(x − h)]2 − 4ϕ(x)[ϕ(x + h) − 2ϕ(x) + ϕ(x − h)].

For ϕ ∈ L-P, with zeros {αi}
ω
i=1, ω ≤ ∞, we introduce the mesh size

(16) µ∞(ϕ) := inf
i, j
|αi − α j|.

We remark that if ψ < L-P, then ψ need not satisfy f∞(x, h, ψ) ≥ 0 for all x ∈ R. A
calculation shows that if ψ(x) = ex2

, then f∞(0, 1, ψ) = −8(e − 1) < 0. When ϕ ∈ L-Pn,
f∞(x, h, ϕ) ≥ 0 for all x ∈ R by Theorem 2.17. In order to extend Theorem 2.17 to
transcendental entire functions, we require the following preparatory result to ensure that
the approximating polynomials we use will satisfy a zero spacing condition.

Lemma 3.1. For any a ∈ R, n ∈ N, n ≥ 2,

lim
n→∞

nn∑
k=1

1
n ln(n)(k + n) + a

= 1.

Proof. Fix a ∈ R. Since the terms 1
n ln(n)(k+n)+a are decreasing with k for n sufficiently large,

we obtain

∫ nn+1

1

1
n ln(n)(k + n) + a

dk ≤
nn∑

k=1

1
n ln(n)(k + n) + a

≤

∫ nn

0

1
n ln(n)(k + n) + a

dk,
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for n sufficiently large, by considering the approximating Riemann sums for the integrals.
Thus

(17)
1

n ln(n)
ln

nn + 1 + a
n ln(n)

n + 1 + a
n ln(n)

 ≤ nn∑
k=1

1
n ln(n)(k + n) + a

≤
1

n ln(n)
ln

nn + a
n ln(n)

n + a
n ln(n)

 .
As n → ∞, both the left and right sides of (17) approach 1, and whence the sum in the
middle approaches 1. �

Lemma 3.2. The set of polynomials
{
qn(x) =

∏nn

k=1

(
1 + x

n ln(n)(k+n)

)
:n ∈ N, n ≥ 2

}
, forms a

normal family on C. There is a subsequence of {qn(x)}∞n=2 which converges uniformly on
compact subsets of C to ex.

Proof. Let K ⊂ C be any compact set and let R = supz∈K |z|. Recall the inequality

1
2
|z| ≤ | ln(1 + z)| ≤

3
2
|z| for |z| <

1
2

[2, p. 165]. Then for n > 2R,
∣∣∣∣ z

n ln(n)(k+n)

∣∣∣∣ < 1
2 , hence, for k ≥ 1 and z ∈ K

1
2

|z|
n ln(n)(k + n)

≤

∣∣∣∣∣∣ln
(
1 +

z
n ln(n)(k + n)

)∣∣∣∣∣∣ ≤ 3
2

|z|
n ln(n)(k + n)

,

and therefore

1
2

nn∑
k=1

|z|
n ln(n)(k + n)

≤

nn∑
k=1

∣∣∣∣∣∣ln
(
1 +

z
n ln(n)(k + n)

)∣∣∣∣∣∣ ≤ 3
2

nn∑
k=1

|z|
n ln(n)(k + n)

.

As n→ ∞ the sums on the left and right sides of the inequality converge by Lemma 3.1 to
1
2 |z| and 3

2 |z| respectively. In particular, for some ε > 0 and N > 2R sufficiently large, for
all n ≥ N and for all z ∈ K,

nn∑
k=1

∣∣∣∣∣∣ln
(
1 +

z
n ln(n)(k + n)

)∣∣∣∣∣∣ ≤ 3
2

R + ε.

Then for all n ≥ N, for all z ∈ K,

|qn(z)| ≤ e
∑nn

k=1

∣∣∣∣ln(1+ z
n ln(n)(k+n)

)∣∣∣∣ ≤ e
3
2 R+ε.

So for n > N sufficiently large, the sequence {qn(z)}∞n=2 is uniformly bounded on compact
subsets K ⊂ C and thus form a normal family by Montel’s theorem [2, p. 153]. Thus,
there is a subsequence of {qn(z)}∞n=2 which converges uniformly on compact subsets of C to
a function f , and therefore satisfies

(18)
f ′(x)
f (x)

= lim
n→∞

q′n(x)
qn(x)

= lim
n→∞

nn∑
k=1

1
n ln(n)(k + n) + x

= 1,

for a fixed x ∈ R, where the last equality is by Lemma 3.1. Equation (18) and f (0) = 1,
imply f (x) = ex on R, and thus f is the exponential function. �

Lemma 3.3. If ϕ(x) = p(x)ebx, b ∈ R, p ∈ L-Pn, n ≥ 2, and µ(p) ≥ 1, then f∞(x, 1, ϕ) ≥ 0
for all x ∈ R.
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Proof. By Lemma 3.2, there is a subsequence of
{
q j(x) =

∏ j j

k=1

(
1 + x

j ln( j)(k+ j)

)}∞
j=2

, call it

{q jm (x)}∞m=1, such that q jm (x) → ex uniformly on compact subsets of C, as m → ∞. Let
{αk}

n
k=1 be the zeros of p(x), and R = max

1≤k≤n
|αk |. The zero of least magnitude of q jm (bx), z jm ,

satisfies |z jm | =
jm ln( jm)(1+ jm)

b , b , 0. Both µ(q jm (bx)) → ∞ as m → ∞ and |z jm | → ∞ as
m → ∞. Thus, there is an M such that for all m > M, |z jm | > R + 1, and the sequence of
polynomials hm(x) = p(x)q jM+m (bx), m ≥ 1, is in L-P` for some `, and satisfies µ(hm) ≥ 1.
By Theorem 2.17, f∞(x, 1, hm) ≥ 0 for all x ∈ R, for all m. Since hm → p(x)ebx by
construction, limm→∞ f∞(x, 1, hm) = f∞(x, 1, p(x)ebx) ≥ 0. �

Theorem 3.4. If ϕ ∈ L-P has order ρ < 2, or if ϕ is of minimal type of order ρ = 2, and
µ∞(ϕ) ≥ 1, then f∞(x, 1, ϕ) ≥ 0 for all x ∈ R.

Proof. By the Hadamard factorization theorem, ϕ has the representation

ϕ(x) = cxmebx
ω∏

k=1

(
1 +

x
ak

)
e−

x
ak (ω ≤ ∞),

where ak, b, c ∈ R, m is a non-negative integer, ak , 0, and
∑ω

k=1
1
a2

k
< ∞. Let

gn(x) = cxmebx
n∏

k=1

(
1 +

x
ak

)
e−

x
ak .

Then, gn(x) = cebx−
∑n

k=1
x

ak xm ∏n
k=1

(
1 + x

ak

)
has the form p(x)eγx, γ ∈ R, p ∈ L-Pn, and thus

by Lemma 3.3, f∞(x, 1, gn) ≥ 0 for all x ∈ R, and for all n. Since we also have gn → ϕ by
construction, limn→∞ f∞(x, 1, gn) = f∞(x, 1, ϕ) ≥ 0 for all x ∈ R. �

In light of Theorem 3.4, we make the following conjecture.

Conjecture 3.5. If ϕ ∈ L-P and µ∞(ϕ) ≥ 1 then f∞(x, 1, ϕ) ≥ 0 for all x ∈ R.
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