Consensus Algorithms

Lecture 8
Principles of Wireless Sensor Networks

Carlo Fischione

Royal Institute of Technology - KTH
Stockholm, Sweden
e-mail: carlofi@ee.kth.se
Today's Lecture

- Previous lectures
 - the basic theory for distributed computation
 - important aspects of the physical layer, medium access control and routing

- Today we study an application: the consensus
 - Non expansive mappings
 - Agreement algorithm
 - Consensus Algorithm
 - Consensus with packet losses
The Agreement Algorithm

- By the agreement algorithm, a set of nodes try to reach agreement on a common scalar value by exchanging tentative values and summing them by a convex combination.

- The algorithm has applications for the:
 - invariant distribution of Markov chains
 - consensus algorithm
 - distributed estimation
 - synchronization
 - ...

- First, we need to recall the partial asynchronism and introduce non expansive mappings.
Partial asynchronism

Consider the mapping $x := f(x)$

Let T^i be the set of times when $x_i(t)$ is updated.

Let $\tau^i_j(t)$ be the time when the j-th component of $x_i(t)$ is updated.

Assumption (Partial asynchronism) There is a positive integer B such that

1. for every i and $t > 0$, at least one of the elements of the set \{t, t - 1, \ldots t - B + 1\} belongs to T^i.

2. there holds $t - B < \tau^i_j(t) \leq t$ for all i and j and all $t \geq 0$ belonging to T^i.

3. there holds $\tau^i_i(t) = t$ for all i and $t \in T^i$.
Definition Consider the partially asynchronous iteration $x := f(x)$, where $f : \mathbb{R}^n \to \mathbb{R}^n$. Let $X^* = \{x \in \mathbb{R}^n | f(x) = x\}$ be the set of fixed points of f.

- The set X^* is nonempty.
- The function f is continuous.
- The function f is nonexpansive if
 \[\|f(x) - x^*\|_\infty \leq \|x - x^*\|_\infty, \quad \forall x \in \mathbb{R}^n, \forall x^* \in X^*.\]

Non expansive mappings differs from contractive mappings because the modulus can be 1.
Example: weakly diagonally dominant system of equations

Consider a system $Ax = b$ of linear equations, with $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n}$.

Assumption

- $|1 - a_{ii}| + \sum_{j \neq i} |a_{ij}| \leq 1 \quad \forall i$.

- The set X^* of solutions of the equation $Ax = b$ is nonempty.

- The matrix A is irreducible, i.e. $(I + |A|)^n > 0$.

Note that $\|I - A\|_{\infty} \leq 1$

How to compute the solution to $Ax = b$ by a distributed algorithm?
Consider the partially asynchronous iteration

$$x := f(x) = x - \gamma(Ax - b) \quad 0 < \gamma < 1$$

Note that

$$\|I - \gamma A\|_\infty \leq (1 - \gamma) + \gamma\|I - A\|_\infty \leq 1 - \gamma + \gamma = 1$$

It follows that $\|I - \gamma A\|_\infty$ could be 1...

Convergence of the mapping?

Proposition The partial asynchronous iteration $x := f(x)$ converges to some x^* such that $Ax^* = b$.
The Agreement Algorithm

- Consider a set of \(N=\{1,\ldots,n\} \) nodes
- Assume that the i-th node has a scalar \(x_i(0) \) stored initially in its memory
- Each node exchange messages to agree eventually on a value
 \[\min_{i \in N} x_i(0) \leq y \leq \max_{i \in N} x_i(0) \]
- There is no central coordination in the network
- Node i builds a combination
 \[x_i := \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \ldots, n \]
 \[\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i \]
 \(n \) nodes
The Agreement Algorithm

\[x_i(t + 1) = x_i(t), \quad t \in T^i \]

\[x_i(t + 1) = \sum_{j=1}^{n} a_{ij} x_j(\tau_j^i(t)), \quad t \in T^i \]

- In matrix form \(f(x) = Ax \)

- Note that any vector \(x \) whose components are all equal is a fixed point of \(f \) (remember \(\sum_{j=1}^{n} a_{ij} = 1 \forall i \)).

- If \(A \) were irreducible or the diagonal elements of \(A \) were all strictly positive and weakly dominant, then the proposition about weakly diagonally dominant system of equations can be used and convergence of the iteration \(x := f(x) \) is guaranteed.

- However, we can give up to diagonal dominance and convergence can be guaranteed under more general assumptions
Distinguished nodes

Definition Let $G = (N, E)$ be a directed graph describing the communication network, where $N = \{1, \ldots, n\}$ and $E = \{(i, j)| i \neq j, a_{ji} \neq 0\}$.

Assumption There exists a non empty set $D \subseteq N$ of “distinguished” nodes such that

1. for every $i \in D$, $a_{ii} > 0$.

2. for every $i \in D$ and every $j \in N$, there exists a positive path from i to j in the graph G.

- The first assumption ensures that a node does not forget its initial value.
- The second assumption (e.g. clusterheads in a IEEE 802.15.4 network) ensures that a node has influence on the value of any other node in the network.
Proposition Consider the agreement algorithm \(x := Ax \) with partial asynchronous iterations. Let \(\alpha > 0 \) be the smallest of the nonzero entries of \(A \). Then, there exists constants \(\eta > 0, C > 0, \rho \in (0, 1) \) that depends only on the number of nodes, on \(\alpha \) and on the maximum delay \(B \), such that for any initial values \(x_i(t), t \leq 0 \), then

1. The sequence \(\{x_i(t)\} \) converges and its limit is the same for each node \(i \).

2. \(\max_i x_i(t) - \min_i x_i(t) \leq C \rho^t (\max_i \max_{-B+1 \leq \tau \leq 0} x_i(t) - \min_i \min_{-B+1 \leq \tau \leq 0} x_i(t)) \)

3. If \(x_i(\tau) \geq 0 \) for every \(i \) and \(\tau \), and if \(k \in D \), then \(y \geq \eta x_k(0) \).
The key parts of the proof are the definition of the functions

\[
M(t) = \max_i \max_{t-B+1 \leq \tau \leq t} x_i(\tau)
\]

\[
m(t) = \min_i \min_{t-B+1 \leq \tau \leq t} x_i(\tau)
\]

Then, it is easy to show that

- \(\forall t \geq 0, m(t+1) \geq m(t) \) and \(M(t+1) \leq M(t) \)
- \(\forall t \geq 0 \) and \(t' \geq t - B + 1 \), \(m(t) \leq x_i(t') \leq M(t) \)
Markov chains are widely used to model and analyze communication protocols (e.g., IEEE 802.15.4, IEEE 802.11,...).

Parallel computation allows one to compute the steady-state probability distribution of a Markov chain.

Let P be the transition probability of a discrete time homogeneous n-state Markov chain. Then,

$$P \geq 0$$

$$\sum_{j=1}^{n} p_{ij} = 1.$$

Proposition Let P be a stochastic matrix. Then

1. The spectral radius $\rho(P)$ of P is 1

2. Let $\pi \in \mathbb{R}^n$, $\pi \geq 0$. If $1^T \pi = 1$, then $1^T P \pi = 1$.

The algorithm for the computation of the invariant distribution is
\[\pi(t + 1) = P\pi(t) \]
or
\[\pi(t) = P^t\pi(0), \quad t > 0 \]

Proposition Let P be a primitive stochastic matrix. Then

1. There exists a unique row vector \(\pi^* \) such that \(\pi^* = P\pi^* \) and \(1^T\pi^* = 1 \)

2. \(\lim_{t \to \infty} P^t \) exists and is the matrix with all rows equal to \(\pi^* \). If \(1^T\pi(0) = 1 \), then the iteration \(\pi(t + 1) = P\pi(t) \) converges to \(\pi^* \).
Asynchronous Algorithm for the Invariant Distribution of a Markov Chain

\[
\pi_i(t + 1) = \pi_i(t), \quad t \in \mathcal{T}^i
\]

\[
\pi_i(t + 1) = \sum_{j=1}^{n} a_{ij} \pi_j(\tau_j^i(t)), \quad t \in \mathcal{T}^i
\]

Proposition Let \(P \) be a irreducible stochastic matrix. Suppose that there exists \(i^* \) such that \(p_{i^*i^*} > 0 \). Let the asynchronous iteration be initialized with positive values. Then, for any partially asynchronous iteration there exists a positive constant \(c \) such that \(\lim_{t \to \infty} \pi(t) = c\pi^* \). Convergence takes place at the rate of a geometric progression.

- The constant \(c \) is due to the asynchronous iteration.
The consensus is the problem of finding linear iterations that achieve the average of some initial values given at the nodes.

Definition Let $G = (N, E)$ be a connected graph that describes a network.

- $N = \{1, \ldots, n\}$ is a set of nodes.
- E is a set of edges, where an edge $\{i, j\} \in E$ in an unordered pair of distinct nodes.
- $N_i = \{j | \{i, j\} \in E\}$.

- Each node has an initial real scalar $x_i(0)$.
- How to compute the average of these initial values by a distributed algorithm, where nodes communicate only with their neighbors?
Consensus via distributed linear iterations

- Consensus via distributed linear iterations
 \[x_i(t+1) = W_{ii}x_i(t) + \sum_{j \in N_i} W_{ij}x_j(t) \quad i = 1, \ldots, n, \quad t = 0, 1, 2, \ldots \]

- In matrix form
 \[x(t + 1) = W x(t) \quad W \in \mathcal{S} = \{W \in \mathbb{R}^{n \times n} | W_{ij} = 0 \text{ if } \{i, j\} \ni \mathcal{E} \text{ and } i \neq j \} \]

- How to choose the weight matrix \(W \) so that for any initial value \(x(0) \), \(x(t) \) converges to the average vector
 \[\bar{x} = \left(1^T x(0) / n\right) 1 = \left(11^T / n\right) x(0) \]
 \[\lim_{t \to \infty} x(t) = \lim_{t \to \infty} W^t x(0) = \frac{11^T}{n} x(0) \]
Convergence speed measures

- **Asymptotic convergence factor**
 \[r_{\text{asym}}(W) = \sup_{x(0) \neq \bar{x}} \lim_{t \to \infty} \left(\frac{\|x(t) - \bar{x}\|_2}{\|x(0) - \bar{x}\|_2} \right)^{1/t} \]

- **Convergence time** (asymptotic number of steps for the error to decrease by a factor 1/e)
 \[\tau_{\text{asym}}(W) = \frac{1}{\log(1/r_{\text{asym}})} \]

- **Per-step convergence factor**
 \[r_{\text{step}}(W) = \sup_{x(0) \neq \bar{x}} \lim_{t \to \infty} \left(\frac{\|x(t + 1) - \bar{x}\|_2}{\|x(t) - \bar{x}\|_2} \right)^{1/t} \]
Theorem $\lim_{t \to \infty} W^t = 11^T/n$ if and only if

\[
1^T W = 1^T, \\
W1 = 1, \\
\rho(W - 11^T/n) < 1,
\]

where $\rho(\cdot)$ denotes the spectral radius of a matrix, and

\[
\begin{align*}
\rho_{\text{sym}}(W) & = \rho(W - 11^T/n) \\
\rho_{\text{step}}(W) & = \|W - 11^T/n\|_2,
\end{align*}
\]

where $\|\cdot\|_2$ is the spectral norm, or maximum singular value.
The first condition says that 1 is a left eigenvector of W with eigenvalue 1, and the sum of the vector of nodes value is preserved.

$$1^T x(t + 1) = 1^T x(t)$$

The second condition says that 1 is also a right eigenvector of W with eigenvalue 1, hence 1 is a fixed point of the iteration $W1 = 1$.

The first three conditions say that 1 is a simple eigenvalue of W, and all others eigenvalues have magnitude less than one.

If the elements of W are nonegative, then the first two conditions say that W is doubly stochastic and the last condition says that the associated Markov chain is primitive.
Some popular weights based on the Laplacian

- There are simple heuristics to choose weights W that give convergence.

- Suppose that the communication graph has m edges labeled from 1 to m. Suppose we assign a +1 or -1 direction to the edge.

- The incidence matrix of the graph

$$M \in \mathbb{R}^{n \times m}, M = \begin{cases} 1 & \text{if edge } l \text{ starts from node } i \\ -1 & \text{if edge } l \text{ ends at node } i \\ 0 & \text{otherwise} \end{cases}$$

- The Laplacian matrix of the graph is $L = MM^T$.

Fall 2009

Principles of Wireless Sensor Networks

Carlo Fischione
Some popular heuristic weights based on the Laplacian

- **Constant edge weights**
 \[W = I - \alpha MM^T = I - \alpha L \]
 \[W_{ij} = \begin{cases}
 \alpha & \text{if } \{i, j\} \in \mathcal{E} \\
 1 - d_i \alpha & \text{if } i=j \\
 0 & \text{otherwise}
 \end{cases} \]
 \(d_i\) is degree of node \(i\), i.e., the number of neighbours of node \(i\).

- **Maximum degree weights**
 \[W_{ij} = \begin{cases}
 1/n & \text{if } \{i, j\} \in \mathcal{E} \\
 1 - d_i/n & \text{if } i=j \\
 0 & \text{otherwise}
 \end{cases} \]

- **Metropolis weights**
 \[W_{ij} = \begin{cases}
 \frac{1}{1+\max\{d_i,d_j\}} & \text{if } \{i, j\} \in \mathcal{E} \\
 1 - \sum_{\{i,k\}\in \mathcal{E}} W_{ik} & \text{if } i=j \\
 0 & \text{otherwise}
 \end{cases} \]
Summary

- We studied the agreement algorithm among the nodes of a network and its application to the computation of the
 - invariant distribution of a Markov chain (simple stochastic matrixes are used)
 - consensus for static networks (double stochastic matrixes are used).

- References:
 - D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation, 1997
Next Lecture

- We consider another application over WSNs: distributed estimation