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Abstract

The work presented in this thesis focuses on information-flow control
systems for functional programs, particularly on the LIO library in Haskell.
The thesis considers three main aspects in this area: timing covert channels,
dynamic policies and enforcement mechanisms that improve precision of
the analysis.

Timing channels are dangerous in the presence of concurrency. We start
with the design, formalisation and implementation of a concurrent version
of LIO which is secure against them. More specifically, we remove leaks due
to non-terminating behaviour of programs (termination covert channel)
and leaks produced by forcing certain interleavings of threads, as a result of
affecting their timing behaviour (internal timing covert channel). The key
insight is to decouple computations so that threads observing the timing
or termination behaviour of other threads are required to be at the same
confidentiality level. This work only deals with internal timing that can be
exploited through language-level operations. We also mitigate leaks that
result from the precise measurement of the timing of observable events
(external timing covert channel), e.g. by using a stopwatch. In further
work, we tackle leaks that result from hardware-based shared resources,
such as the processor cache. This thesis presents a cache-based attack on
LIO and proposes two solutions that rely on time-agnostic scheduling: the
first one consists in a modification to the Haskell runtime and the other
one is a purely language-based implementation. We also present a new
manifestation of internal timing in Haskell, by exploiting lazy evaluation
to encode sensitive information as timing perturbations.

Dynamic policies arise when the set of allowed flows of information is
permitted to change as the program runs. Declassification can be viewed
as a special case of dynamic policies. This thesis introduces an extension
to LIO which supports dynamic policies and can encode well-known label
formats such as the DLM and DC labels. Moreover, we also present the
notion of restricted privileges, giving principals the ability to restrict the
ways in which their authority can be used in the system, and supporting
robust declassification.

We also add flow-sensitivity to LIO, which consists in the ability for the
security labels of references to mutate, depending on the sensitivity of what
is stored in them. Finally, we introduce a hybrid enforcement which mixes
static and dynamic analyses. In particular, we leverage advanced type system
features in Haskell to give the programmer control over which parts of the
program are dynamically checked and which parts are statically checked.
The core of this library is a general technique for deferring checking of type-
class constraints to runtime which is applicable to other domains beyond
language-based security.
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CHAPTER

ONE

INTRODUCTION

There is no arguing that Computer Science is one of the driving forces
behind innovation and development in the modern world. No other science
has ever managed to transform the world as a whole in such a radical
way as computing technology has during the last half of the 20th century.
Our lives changed dramatically as we entered the so-called Information
Age, and we started to become more and more reliant on computers for
everything, including critical tasks in our society such as managing the
social security system or the banking system. Information, and the way it
disseminates, is a crucial part of this infrastructure.

Nowadays, personal information has become a valuable commodity.
Many people own a smart phone, where they can install and use apps, and
access social media websites. These apps are usually given access to poten-
tially sensitive information such as contacts, text messages, and notes. Leak-
ing sensitive information to third-parties can have serious consequences for
the lives of the users, so it is necessary to develop mechanisms to secure this
information and control its propagation. The most widespread approach
is known as access control, where the user must give explicit permission to
the application to access sensitive information or functionality. Once this
access has been granted, there is no way of knowing how the application
will use this information, and where it will be propagated. For example, an
app with both read access to the phone’s contacts and Internet access might
send the contacts to a server on the Internet without explicit consent from
the user. More generally, data breaches can have potentially catastrophic
effects on the lives of individuals, including serious economic and personal
consequences such as property or identity theft. Recent prominent data
breaches, such as those at Target [Krebs, 2014], Home Depot [Sidel, 2014]
and JP Morgan [Agrawal et al., 2014] – believed to be one of the largest in
history – bring to light the impact of such incidents.
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Information flow control (IFC) [Sabelfeld and Myers, 2003] is an alter-
native to access control that tracks how information is disseminated in a
given program, and ensures that it is used according to a given policy. An
information-flow-aware system is usually pictured as having information
that concerns a number of agents or principals. A security policy specifies
how these principals are related to each other, specifically in terms of how
information is allowed to flow among them. For example, Alice, Bob and
Charlie might be principals in the system of the company where they work,
and Alice might trust Bob with her data but not Charlie, so she could use a
security policy to specify that her data should be allowed to flow only to
Bob. There are two sides to information flow control: confidentiality and
integrity of data. In the most typical scenario, we are mainly interested in
confidentiality, i.e. ensuring that secret information is not visible to unau-
thorised principals. Information-flow control aims to provide end-to-end
security [Saltzer et al., 1984].

Lately, concurrency has become a necessity for practical applications.
In the last decade, multi-core processors have become commonplace, so
programmers expect to leverage this capability by writing multi-threaded
programs. However, in the context of an information-flow control system,
naively adding concurrency introduces a new possibility to leak information
through covert channels [Lampson, 1973], i.e. leaking information by
exploiting system features not intended for communication.

This thesis mainly focuses on dynamic information flow control, which
involves enforcing security at runtime by checking all potentially insecure
operations as they are performed by the program. When such an operation
occurs, the program execution is stopped in some way, for example by
simply aborting the program or, in some cases, by throwing a runtime
exception.

This work is developed in the context of a specific kind of dynamic
enforcement, based on a floating-label approach, which borrows ideas
from the operating systems security research community [Zeldovich et al.,
2006], and brings them into the field of language-based security. The main
example of such an enforcement is LIO, a Haskell library for dynamic
information-flow control which allows programmers to write programs
with security guarantees.

Contributions The main contributions of this thesis revolve around making
embedded floating-label IFC systems like LIO more useful in practice, by
exploring how to add features that make it more resilient against attacks
or make it more convenient for the programmer. The work in this thesis is
divided into parts which contribute to the state of the art in the following
three general research directions:

Part I: Covert channels and concurrency This part introduces a version of
LIO with concurrency, while protecting against timing and termination
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covert channels. These chapters address attacks that arise both from
hardware-based timing perturbations and language-based channels.

Part II: Policy facets This part introduces mechanisms that allow for richer
policies, such as policies that may change at runtime or language-based
features to control information release.

Part III: Alternative enforcement mechanisms Information-flow control re-
lies on language-based mechanisms to enforce the desired security
properties. This part builds on the concurrent version of LIO and intro-
duces alternative enforcement mechanisms that are more convenient
– reducing programmer burden – and can improve efficiency and/or
permissiveness, e.g. by rejecting fewer source programs.

In what follows, we provide a brief overview of IFC, timing covert
channels, policy languages, enforcement mechanisms and LIO.

1.1 Information flow control

Information flow control first arose from the need to track the propaga-
tion of information in military contexts. The classic scenario for infor-
mation-flow control is a system which contains both secret and public
information, and we want to ensure that the public outputs of the program
cannot be influenced by secret information, a security condition known
as noninterference. One way of enforcing this is to think of a program as
having endpoints (inputs and outputs) where information is consumed and
produced. A label is attached to each of these endpoints, which indicates
whether the information at that point is public or secret. Whenever the pro-
gram attempts a write operation into a public output, the information-flow
control system must check whether the information that is being written
comes from (or, more generally, depends on) any secret input. If that is
the case, the program is in violation of the security policy, and therefore
considered insecure.

1.1.1 Policies

A policy is formalised as a relation among the security levels in the system,
which specifies how information is allowed to flow between different levels.
Typically, it is defined as a lattice structure [Denning, 1976] which induces
an ordering relation, usually written v. In general, l1 v l2 means that
information from level l1 is allowed to flow to level l2. A lattice also
includes, among others, a binary operation known as join, written t, such
that l1t l2 is the least upper bound on l1 and l2. This operation is important
for information-flow control as it can be used to find the least restrictive
level in the lattice to which information from l1 and l2 may flow. The
canonical example of a lattice is the two-point lattice with two levels, L and
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H, which respectively stand for low (public) and high (secret), and where
the only allowed flows are L v L, H v H, and L v H. In general, the
elements of the security lattice are used by the enforcement mechanism as
labels for the information flowing through the system. The lattice elements
can also be interpreted as actors/components in the system rather than
just levels of confidentiality, which allows to express policies in a mutual
distrust scenario [Myers and Liskov, 1997, Stefan et al., 2011]. Fig. 1
shows an example of such a security lattice. The arrows indicate allowed
flows. This policy allows public information to flow to hospitals (Public v
Hospitals) and insurance companies (Public v Insurance), but it does not
allow medical records in the hospital to be disclosed to the insurance
companies.

Government

Hospitals

77

Insurance

gg

Public

gg 77

Fig. 1. Security lattice

Downgrading and Dynamic poli-
cies In practice, most programs
need to allow certain information
leaks as part of their functional-
ity. An intentional violation of the
security policy is known as down-
grading. A typical example of the
need for downgrading is a pass-
word checker: given a guess for a
user’s password, the program must
check whether or not the guess is
correct. The answer to this ques-
tion naturally conveys some infor-
mation about the password, even if the guess is incorrect.

The password checker example involves a downgrading of the boolean
that represents whether the guess matches the password. Its security label
would be changed from H (secret) to L (public), going “against the flow”
specified by the usual two-point lattice. When the downgrading operation
pertains to confidentiality, it is also known as declassification. Dually,
downgrading also makes sense in terms of integrity, where it is known as
endorsement.

Most information-flow systems regard the policy as static and fixed for
the whole run on the program. However, in the real world there are situa-
tions which should be modelled as a change in the policy while the program
runs. For example, these can include changes in organisation structure or
subscription status in subscription-based services. An information-flow
control system that allows such changes is said to support dynamic policies.
Downgrading can be viewed as a special case of dynamic policies, where
the current policy is temporarily weakened to allow the desired leak.
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DC labels The systems that we consider in this thesis support rich security
policies known as Disjunction Category (DC) labels [Stefan et al., 2011]
that can model scenarios with several mutually-distrusting principals with
mixed security concerns on data. DC labels are pairs of confidentiality
and integrity policies. Confidentiality policies describe who may learn
information. Integrity policies describe who takes responsibility or vouches
for information. Both confidentiality and integrity policies are positive
propositional formulas in conjunctive normal form, where propositional
constants represent principals. For example, the formula Alice∨Bob, when
interpreted as a confidentiality formula, means that data with this label
should be readable by either Alice or Bob. As an integrity policy, Alice∨Bob
means that Alice and Bob collectively are responsible for the data, i.e.,
both may have contributed to, or influenced the computation of the data,
but none of them takes sole responsibility. A conjunction Alice ∧ Bob for
confidentiality means that both principals need to agree or be involved
in order to read the data, while for integrity it means that they both take
responsibility for the data individually.

DC labels use logical implication to check for valid flows. For confi-
dentiality, C1 can flow to C2 if C2 logically implies C1. Implication is used
since it reflects the intuition that stronger formulas represent more sensitive
information. Conversely, for integrity we have that I1 can flow to I2 if I1
implies I2. For example, data with confidentiality Alice ∨ Bob can flow to
a sink labelled Alice since, as propositional formulas, Alice⇒ Alice ∨ Bob.
This matches the intuition that, if something is readable for either of two
principals, it can be safely sent to one of themwithout breaking confidential-
ity. An example of an integrity flow would be for data labelled Alice ∧ Bob
to flow to a sink with integrity Alice, since Alice ∧ Bob⇒ Alice. Intuitively,
this means that if both Alice and Bob take responsibility for some data
individually, then certainly Alice can take responsibility for it.

Privileges DC labels also support a notion of downgrading by means
of privileges, special tokens that represent the authority of one or more
principals. Every principal has an associated privilege, and any code holding
a principal’s privilege is allowed to perform downgrading on that principal’s
behalf. DC label privileges are usually first-class values, which means that
principals can pass their privileges around to delegate their authority to
trusted parties. For example, consider a system where Alice and Bob are
principals. If a piece of data is labelled as Alice ∧ Bob, Alice can use her
privilege to declassify the data and relabel it to Bob, effectively removing
herself from the conjunction and relinquishing her concerns on the data.
This is how Alice can express that she trusts Bob with this piece of data.
After this, Bob can do what he pleases with the data, including declassifying
it to the public by exercising his own privilege. Alternatively, Alice could
give Bob her privilege, which allows Bob to declassify all data labelled with
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Alice as if he were Alice. This is how Alice can express complete trust in
Bob, giving him the power to act on her behalf in the future.

1.1.2 Security property

In order to connect the meaning of security policies with the semantics of
programs, we need a security property, a predicate that defines what it
means for a program to be secure.

In information-flow control, the kind of security properties we would
usually like to guarantee are known as noninterference [Goguen and
Meseguer, 1982] properties. They can be informally stated in terms of
a general malicious entity (the adversary), which has the ability to observe
data below or at a given security level, but would like to observe confiden-
tial information not below that level. Then, we consider two independent
runs of a program with inputs that are indistinguishable to the adversary,
i.e. they only (potentially) differ in the parts that the adversary cannot see.
We say that the program in question is noninterfering if the observable
effects of these runs (outputs, return values, etc.) are also indistinguish-
able, as far as the adversary is concerned. In the scenarios that concern this
thesis, the adversary is the provider of the source program that will be run.

Sometimes noninterference is too strong for practical purposes. Going
back to the password checker example, we see that for the program to
work as expected it must leak some information about the password after
each attempt, which breaks noninterference. More generally, in contexts
where dynamic policies or some form of information release is expected, we
need a weaker property that allows downgrading but still provides some
guarantees. In the example, we still want to ensure that the only data that is
potentially leaked is the boolean representing whether the guess is correct.
In order to express these richer conditions, in this work we will resort to
knowledge-based properties [Askarov and Chong, 2012], which model
how the knowledge of the adversary changes as the program produces
observable outputs.

1.1.3 Enforcement mechanisms

In this thesis, we take a mostly dynamic approach to IFC. In a dynamic
IFC system, the program is run alongside an execution monitor, a software
component that is in charge of supervising the operations performed by the
program (input/output in general) and checking that they comply with the
security policy. The monitor will interrupt the execution of the program if a
forbidden flow of information is detected. Apart from LIO, other examples
of tools for dynamic IFC are JSFlow [Hedin et al., 2014], an information-
flow-aware JavaScript interpreter which runs as a browser plugin, and
Breeze [Hritcu et al., 2013], a high-level programming language for writing
secure software with fine-grained IFC.
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The alternative to the dynamic approach is static information flow
control [Volpano et al., 1996], which consists in statically analysing a
program, just by examining its text, and classifying it as either secure
or insecure depending on how information is propagated by it. There are
several examples of static IFC systems, such as Jif [Myers and Liskov, 2000]
and Paragon [Broberg et al., 2013] (based on Java) and SecLib [Russo
et al., 2008a] (based on Haskell). Jif and Paragon are extensions to the Java
language that allow programmers to express security policies, which are
enforced using a type system. SecLib is embedded as a library and leverages
Haskell’s type system to enforce information-flow security.

Lately, there has been much work attempting to combine these two
approaches into hybrid enforcement mechanisms [Fennell and Thiemann,
2013, Askarov et al., 2015, Hedin et al., 2015]. A hybrid enforcement
combines static and dynamic analyses in one system, typically by running
a static analysis on the code at compile time and an execution monitor at
runtime. From the point of view of type systems, a hybrid enforcement
usually consists in a system which mixes static and dynamic types, such as
gradual typing [Siek and Taha, 2006] or hybrid types [Flanagan, 2006].

1.2 Timing covert channels

Covert channels arise when information is leaked through mechanisms
that were not originally designed for that purpose [Lampson, 1973]. For
example, the execution time of a program, the number of open files, or
even the current volume of the speakers can be used by malicious programs
to convey information to each other. In particular, timing channels affect
the timing of programs to cause observable events to depend on secrets.
Covert channels are, in some cases, easy to exploit if the adversary has
access to the source code of the program, and especially so if the adversary
is the one who writes it.

One of the main lines of work in this thesis concerns the internal timing
covert channel [Smith and Volpano, 1998]. This is a timing channel that
exploits the interleaving of threads in a concurrent system to make the
outcome of data races depend on sensitive information. The adversary can
learn some of this information by observing these outcomes. In the rest of
the thesis, the way in which the threads can encode bits of the secret into a
data race usually depends on shared resources among the threads. Note
that we do not assume the adversary to have the ability to precisely measure
time when considering this channel. The channel where the information
is conveyed by the measurement of time (using a stopwatch) is known as
external timing covert channel. Termination can be regarded as a special
case, where the program takes an infinite amount of time to produce an
output, and this fact can be used by the adversary to obtain sensitive
information.
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It has been shown that termination and timing channels are capable
of leaking a considerable amount of information in a concurrent set-
ting [Askarov et al., 2008]. For this reason, care must be taken when
adding concurrency to an IFC system. In this work, we start with an ex-
isting dynamic IFC system, LIO, and show how to make it secure against
certain classes of timing covert channels. The following section is a brief
introduction to this IFC system.

1.3 LIO

LIO, which stands for Labelled IO, is a dynamic information flow control
system for Haskell, a purely functional language with strong static typ-
ing [Peyton Jones et al., 2003]. Purity, or the absence of side-effects, means
that pure code is only vulnerable to flows of information from parame-
ters to return values. Additionally, the effectful part of an LIO program
is written in an embedded language for describing computations, which
allows direct control over all side-effects performed by the program. Unlike
mainstream programming languages, where any effects are allowed any-
where by default, Haskell in principle disallows effects everywhere, except
for special parts of the program where effects are explicitly marked by the
type system. These blocks are written using monads [Moggi, 1991], an
abstract construction for specifying and combining effectful computations.
As can be seen from earlier work [Russo et al., 2008b], this makes Haskell
a suitable language for information-flow analysis. LIO leverages this func-
tionality to restrict the side-effects that the program can perform in order
to enforce security.

LIO is embedded in Haskell as a library: programmers write their
programs using the LIO interface, and their execution will also perform
security checks to enforce a given policy. This library provides security
guarantees in the form of noninterference properties, in the sense that
every valid LIO program is noninterfering by construction (modulo covert
channels). LIO is also parameterised in the security policy, which is specified
as a lattice over a type of security labels.

LIO uses a floating-label approach to information flow control. An LIO
computation has a current label attached to it, which is an upper bound
on the sensitivity of the data in scope. When a computation with current
label LC observes an object A with label LA, its current label must change
(possibly rise) to the least upper bound or join of the two labels, written
LCtLA. The current label effectively “floats above” the labels of all objects
it observes. When performing a side-effect that will be visible to label L,
LIO first checks that the current label flows to L (LC v L) before allowing
the operation to take place.

Fig. 2 shows a basic example of how LIO works, assuming the se-
curity lattice from Fig. 1. The code is the definition of a malicious func-
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tion stealInfo, which attempts to steal confidential medical information
and send it to an insurance company. The function takes one argument,
medicalRecord , which has the label Hospital, and is supposed to contain
the medical record of a person. This is an example of an LIO labelled
value, which is simply a value protected by a security label. Labelled values
must be unlabelled using the unlabel primitive, which returns the value
itself and raises the current label of the LIO computation accordingly. In
this example, we assume that the LIO computation has the label Public as
its current label. After the first line has been executed, the current label
of the computation would be Hospital. The medical record itself would
be bound to m. In the second line, the program attempts to send1 m to
some insurance company, which has label Insurance, so the security check
Hospital v Insurance is performed. Since the policy does not allow this
flow, the program would be stopped at this point, and m would not reach
insuranceCompany .

stealInfo medicalRecord =
do m ← unlabel medicalRecord

sendTo insuranceCompany m

Fig. 2. Simple LIO code.

When writing LIO pro-
grams, one must be careful
in the way that the program
is structured and how the
operations interact with the
current label. It is a com-
mon mistake to unlabel too
many values from several
sources in the same con-
text, inadvertently raising
the current label so much
that no useful outputs can be performed any more. This effect is known as
label creep, and can be alleviated by a combination of mindful program-
ming and a local scoping primitive called toLabeled . The changes to the
current label in a toLabeled block are undone after the block is executed,
restoring the current label to what it was before running the block. In this
sense, the floating-label approach seems to be a double-edged sword: on
the one hand, it is perhaps a good idea to force programmers to structure
their programs as a collection of blocks of code with different labels; on the
other hand, the current label imposes a restrictive style that may constrain
the programmer too much. Practical experience from the developers of
GitStar [Giffin et al., 2012], an information-flow-aware system built on
top of LIO, seem to indicate that the model is appropriate for writing such
systems and that the programmers did not feel overly constrained by it.

1 The operation sendTo does not exist as a primitive, but it is just meant as an
example of an effectful operation that performs an output.
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1.4 Thesis overview

The contents of this thesis have been published as individual papers in
the proceedings of peer-reviewed conferences and symposia. Each of the
eight chapters that follow presents one of these papers. This section briefly
outlines their contents and states the contributions of the author.

Fig. 3 gives an overview of the work in this thesis. Part I concerns
covert timing channels: Chapters 2 and 5 deal with language-based covert
channels, while Chapters 3 and 4 present two different ways of addressing
hardware-based timing perturbations such as those caused by the processor
cache.

Taking the system in chapter 2 as a baseline, this work presents several
extensions or modifications that make it more convenient to use. Part II
(Chapters 6 and 7) explores different facets of security policies, such as
dynamic policies and restricting the use of privileges for downgrading in DC
labels. Finally, Part III (Chapters 8 and 9) explores alternative enforcement
mechanisms for floating-labels systems, such as a system where the security
label of references can change at runtime and a language-based hybrid
enforcement of information-flow security fully embedded in Haskell using
advanced type system features.

Chapter 2: Addressing Covert Termination and Timing Channels in Con-
current Information Flow Systems

As explained before, confidential information may be leaked through
termination and timing channels. The termination covert channel has lim-
ited bandwidth for sequential programs [Askarov et al., 2008], but it is a
more dangerous source of information leakage in concurrent settings.

In this chapter, we present an information-flow control system that is
secure against the termination and internal timing channels, i.e. situations
in which the outcome of a race among several threads depends on confi-
dential information. Intuitively, we leverage concurrency by placing such
potentially sensitive actions in separate threads, each with its own floating
label. Then, we require other threads to raise their current label accordingly
before observing termination and timing of higher-confidentiality contexts.
Additionally, we show how to mitigate external timing in this setting using
ideas from Askarov et al [Askarov et al., 2010]. The chapter introduces
the concurrent version of LIO, which is, to the best of our knowledge, the
first concurrent dynamic IFC system that deals with timing channels.

Statement of contributions The paper was co-authored with Deian
Stefan, Alejandro Russo, Amit Levy, John C. Mitchell, and David Mazières.
Pablo was mainly responsible for the contents of the Soundness section.

This chapter was published as a paper in the proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming
(ICFP) 2012.
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Chapter 3: Eliminating cache-based timing attacks with instruction-based
scheduling

In this chapter, we show that concurrent deterministic IFC systems
that use time-based scheduling are vulnerable to a cache-based internal
timing channel. We demonstrate this vulnerability with a concrete attack
on LIO, which can be used to attack GitStar. The secret is encoded in the
hardware cache, a resource that is implicitly shared among all threads and
not modelled in the previous chapter. As a result, the cache is not subject
to LIO’s usual IFC mechanisms, and the attack succeeds.

To eliminate this internal timing channel, we implement instruction-
based scheduling, a new kind of scheduler that is indifferent to timing
perturbations from underlying hardware components, such as the cache,
TLB, and CPU buses. We show this scheduler is secure against cache-based
internal timing attacks for applications using a single CPU.

Statement of contributions This paper was co-authored with Deian Ste-
fan, Edward Z. Yang, Amit Levy, David Terei, Alejandro Russo, and David
Mazières. Pablo discovered the cache-based attack for LIO, contributed
to the design of the cache-aware semantics and was responsible for the
Semantics and Formal guarantees sections.

This chapter was published as a paper in the proceedings of the 18th
European Symposium on Research in Computer Security (ESORICS) 2013.

Chapter 4: A library for removing cache-based attacks in concurrent infor-
mation flow systems

In the previous chapter we present cache-based attacks in concurrent
information flow systems, and provide a solution which involves modifying
the scheduler in the Haskell runtime. In this chapter, we tackle the same
problem from a purely language-based perspective, by providing a Haskell
library that can be used as a replacement for concurrent LIO and which is
resilient against cache-based attacks.We leverage resumptions – a tame form
of continuations – to attain fine-grained control over the interleaving of
thread computations at the library level. Specifically, we remove cache-based
attacks by ensuring that every thread yields after executing an “instruction”,
i.e., an atomic action, in analogy with the behaviour of the instruction-based
scheduler from the previous chapter. In addition, this library supports
running pure computations in parallel with the side-effecting ones.

Statement of contributions This paper was co-authored with Amit Levy,
Deian Stefan, Alejandro Russo and David Mazières. Pablo contributed to
the design and implementation of the library, and was responsible for the
formalisation and proofs.

This chapter was published as a paper in the proceedings of the 8th
International Symposium on Trustworthy Global Computing (TGC) 2013.

Chapter 5: Lazy Programs Leak Secrets
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Haskell’s evaluation mechanism is lazy, which means that arguments to
functions are not evaluated until they are needed in the body of the func-
tion. Crucially, when such an argument (also known as a thunk) is finally
evaluated, its value gets cached and is reused in subsequent occurrences
of the same argument. In this chapter, we describe a novel exploit of lazy
evaluation to reveal secrets in IFC systems through internal timing. We
illustrate our claim with an attack on LIO. This attack is analogous to
the cache-based attack, since thunks work like caches and can be shared
by multiple threads by merely holding a pointer to them. We propose a
countermeasure based on restricting the implicit sharing caused by lazy
evaluation, but we do not implement these ideas, leaving them for future
work.

Statement of contributions This paper was co-authored with Alejandro
Russo. Pablo discovered the attack and contributed to the design of the
proposed solution.

This chapter was published as a paper in the proceedings of the 8th
Nordic Conference on Secure IT Systems (NordSec) 2013.

Chapter 6: Dynamic enforcement of dynamic policies
This chapter presents Stateful LIO, an information-flow control mecha-

nism enforcing dynamic policies: security policies which change the relation
between security levels while the system is running. We identify an im-
plicit flow arising from the decision to change the policy based on sensitive
information and introduce a corresponding check in the enforcement mech-
anism. We provide a formal security guarantee for Stateful LIO, presented
as a knowledge-based property, which specifies that observers can only
learn information in accordance with the level ordering. To illustrate the
applicability of our results, we implement well-known label models such
as DLM, the Flowlocks framework, and DC labels in Stateful LIO.

Statement of contributions This paper was co-authored with Bart van
Delft. Both authors contributed equally to the writing of the paper.

This chapter was published as a paper in the proceedings of the 10th
ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security (PLAS) 2015.

Chapter 7: It’s my privilege: controlling downgrading in DC labels
As explained before, DC labels use capability-like privileges to down-

grade information. Inappropriate use of privileges can compromise security,
but DC labels provide no mechanism to ensure appropriate use. We extend
DC labels with the novel notions of bounded privileges and robust privi-
leges. Bounded privileges specify and enforce upper and lower bounds on
the labels of data that may be downgraded. Bounded privileges are sim-
ple and intuitive, yet can express a rich set of desirable security policies.
Robust privileges can be used only in downgrading operations that are
robust, i.e., the code exercising privileges cannot be abused to release or
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certify more information than intended. Surprisingly, robust downgrades
can be expressed in DC labels as downgrading operations using a weak-
ened privilege. We provide sound and complete run-time security checks to
ensure downgrading operations are robust. We illustrate the applicability
of bounded and robust privileges in a case study as well as by identifying a
vulnerability in an existing application based on DC labels.

Statement of contributions This paper was co-authored with Lucas
Waye, Dan King, Stephen Chong and Alejandro Russo. All authors worked
equally on the formal aspects of the paper. Additionally, Pablo was in
charge of devising and implementing the case study.

This chapter was published as a paper in the proceedings of the 11th
International Workshop on Security and Trust Management (STM) 2015.

Chapter 8: On dynamic flow-sensitive floating-label systems
Flow-sensitivity consists in allowing data structures to have mutable se-

curity labels, i.e., labels that can change over the course of the computation,
depending on the sensitivity of the data stored in the structure. This feature
is often used to boost the permissiveness of the IFC monitor, by rejecting
fewer programs, and to reduce the burden of explicit label annotations.
However, when added naively, in a purely dynamic setting, mutable labels
can expose a high bandwidth covert channel. In this work, we present an
extension for LIO that safely handles flow-sensitive references. The key
insight to safely manipulating the label of a reference is to not only consider
the label on the data stored in the reference, i.e., the reference label, but
also the label on the reference label itself. Taking this into consideration,
we provide an upgrade primitive that can be used to change the label of a
reference in a safe manner. To eliminate the burden of determining when a
reference should be upgraded, we additionally provide a mechanism for au-
tomatic upgrades. Our approach naturally extends to a concurrent setting,
not previously considered by dynamic flow-sensitive systems. For both our
sequential and concurrent calculi, we prove non-interference by embedding
the flow-sensitive system into the flow-insensitive LIO calculus, a surprising
result on its own.

Statement of contributions This paper was co-authored with Deian
Stefan and Alejandro Russo. Pablo was in charge of the formal results and
all authors contributed equally to the writing of the paper.

This chapter was published as a paper in the proceedings of the 27th
IEEE Computer Security Foundations Symposium (CSF) 2014.

Chapter 9: HLIO: Mixing static and dynamic typing for information-flow
control in Haskell

In this chapter, we show how to give programmers the flexibility of
deferring IFC checks to runtime, while also providing static guarantees
– and the absence of runtime checks – for parts of their programs that
can be statically verified. We present the design and implementation of
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our approach, HLIO (Hybrid LIO), as an embedding in Haskell that uses
a novel technique for deferring IFC checks based on singleton types and
constraint polymorphism. We formalise HLIO, prove non-interference, and
show how interesting IFC examples can be programmed. Although our
motivation is IFC, our technique for deferring constraints goes well beyond
and offers a methodology for programmer-controlled hybrid type checking
in Haskell.

Statement of contributions This paper was co-authored with Dimitrios
Vytiniotis and Alejandro Russo. All authors contributed equally to the
writing of the paper.

This chapter was published as a paper in the proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming
(ICFP) 2015.
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Covert timing channels





CHAPTER

TWO

ADDRESSING COVERT TERMINATION AND
TIMING CHANNELS IN CONCURRENT

INFORMATION FLOW SYSTEMS

Deian Stefan, Alejandro Russo, Pablo Buiras
Amit Levy, John C. Mitchell, David Mazières

Abstract. When termination of a program is observable by an adver-
sary, confidential information may be leaked by terminating accord-
ingly. While this termination covert channel has limited bandwidth
for sequential programs, it is a more dangerous source of informa-
tion leakage in concurrent settings. We address concurrent termina-
tion and timing channels by presenting an information-flow control
system that mitigates and eliminates these channels while allowing
termination and timing to depend on secret values. Intuitively, we
leverage concurrency by placing such potentially sensitive actions
in separate threads. While termination and timing of these threads
may expose secret values, our system requires any thread observing
these properties to raise its information-flow label accordingly, pre-
venting leaks to lower-labeled contexts. We develop our approach in
a Haskell library and demonstrate its applicability by implementing
a web server that uses information-flow control to restrict untrusted
web applications.
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2.1 Introduction

Covert channels arise when programming language features are misused
to leak information [Lampson, 1973]. For example, when termination of
a program is observable to an adversary, a program may intentionally or
accidentally communicate a confidential bit by terminating according to
the value of that bit. While this termination covert channel has limited
bandwidth for sequential programs, it is a significant source of information
leakage in concurrent settings. Similar issues arise with covert timing chan-
nels, which are potentially widespread because so many programs involve
loops or recursive functions. These channels, based on either internal obser-
vation by portions of the system or external observation, are also effective
in concurrent settings.

We present an information-flow system that mitigates and eliminates
termination and timing channels in concurrent systems, while allowing
timing and termination of loops and recursion to depend on secret values.
Because the significance of these covert channels depends on concurrency,
we fight fire with fire by leveraging concurrency to mitigate these chan-
nels: we place potentially nonterminating actions, or actions whose timing
may depend on secret values, in separate threads. While termination and
timing of these threads may expose secret values, our system requires any
thread observing these properties to raise its information-flow label accord-
ingly. We develop our approach in a Haskell library that uses the Haskell
type system to prevent code from circumventing dynamic information-flow
tracking. We demonstrate the applicability of this approach by implement-
ing a web server that applies information-flow control to untrusted web
applications. Although we do not address underlying hardware issues
such as cache timing, our language-level methods can be combined with
hardware-level mechanisms as needed to provide comprehensive defenses
against covert channels.

Termination covert channel Askarov et al. [Askarov et al., 2008] show
that for sequential programs with outputs, the termination covert channel
can only be exploited by exponentially complex brute-force: no attacker
can reliably learn the secret in time polynomial in the size of the secret.
Moreover, if secrets are uniformly distributed, the attacker’s advantage
(after observing a polynomial amount of output) is negligible in compari-
son with the size of the secret. Because of this relatively low risk, accepted
sequential information-flow tools such as Jif [Myers et al., 2001], and Flow-
Caml [Simonet, 2003], are only designed to address termination-insensitive
noninterference. In a concurrent setting, however, the termination covert
channel may be exploited more significantly [Hedin and Sabelfeld, 2011].
We therefore focus on termination covert channels in concurrent programs
and present an extension to our Haskell LIO library [Stefan et al., 2011],
which provides dynamic tracking of labeled values. By providing labeled
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forkLIO and waitLIO, our extension removes the termination covert chan-
nel from sequential and concurrent programs while allowing loops whose
termination conditions depend on secret information.

Internal timing channel Multi-threaded programs can leak information
through an internal timing covert channel [Volpano and Smith, 1999] when
the observable timing behavior of a thread depends on secret data. This
occurs when the time to produce a public event, such as placing public data
on a public channel, depends on secret data, or, more generally, when a
race to acquire a shared resource may be affected by secrets. We close this
covert channel using the same approach as termination leaks: we decouple
the execution of public events from computations that manipulate secret
data. Using labeled forkLIO and waitLIO, computation depending on secret
data proceeds in a new thread, and the number of instructions executed
before producing public events does not depend on secrets. Therefore, a
possible race to a shared public resource does not depend on the secret,
eliminating internal timing leaks.

External timing channel External timing covert channels, which involve
externally measuring the time used to complete operations that may depend
on secret information, have been used in practice to leak information [Felten
and Schneider, 2000, Bortz and Boneh, 2007] and break cryptography
[Kocher, 1996, Handschuh and Heys, 1999, Wong, 2005]. While several
mechanisms exist to mitigate external timing channels [Agat, 2000, Hedin
and Sands, 2005, Barthe et al., 2006], external timing channels are not
addressed by conventional information-flow tools and in fact most of the
previous techniques for language-based information-flow control appear to
have limited application. Our contribution to external timing channels is to
bring the mitigation techniques from the OS community into the language-
based security setting. Generalizing previous work [Askarov et al., 2010],
Zhang et al. [Zhang et al., 2011] propose a black-box mitigation technique
that we adapt to a language-based security setting. In this approach, the
source of observable events is wrapped by a timing mitigator that delays
output events so that they contain only a bounded amount of information.
We take advantage of the way Haskell makes it possible to identify when
outputs are produced and implement the mitigator as part of the LIO library.
Leveraging Haskell monad transformers [Liang et al., 1995], we show how
to modularly extend LIO, or any other library performing side-effects in
Haskell, to provide a suitable form of Zhang et al.’s mitigator.

In summary, the main contributions of this paper are:

▸ We present an information flow control (IFC) system that eliminates
the termination and internal timing covert channels, while mitigating
the external timing one. The system provides support for threads, light-
weight synchronization primitives, and allows loops and branches to
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depend on sensitive (high) values. We believe this is the first implemen-
tation of a language-based IFC system for concurrency that does not
rely on cooperative-scheduling.

▸ We eliminate termination and internal-timing covert channels using
concurrency, with potentially sensitive actions run in separate threads.
This is implemented in a Haskell library that uses labeled concurrency
primitives1.

▸ We provide language-based support for resource-usage mitigation using
monad transformers. We use this method to implement the black-box
external timing mitigation approach of Zhang et al.; the method is also
applicable to other covert channels, such as storage.

▸ We demonstrate the language implementation by building a simple
server-side web application framework. In this framework, untrusted
applications have access to a persistent key-value store. Moreover, re-
quests to apps may be from malicious clients colluding with the applica-
tion in order to learn sensitive information. We show several potential
leaks through timing and termination and show how our library is used
to address them.
Section 2.2.3 provides background on information flow, Haskell, and

the Haskell LIO monad. We discuss the termination covert channel and
its elimination in Section 2.3, the internal timing covert channel and its
elimination in Section 2.4, and the external timing channel and its mitigation
in Section 2.5. Formalization of the library is given in Section 2.6 and the
security guarantees in Section 2.7. The implementation and experimental
evaluation are presented in Section 2.8. Related work is described in Section
2.9. We conclude in Section 2.10.

2.2 Background

We build on a dynamic information flow control library in Haskell called
LIO [Stefan et al., 2011]. This section describes LIO and some of its relevant
background.We first give an overview of IFC in abstract terms.We then give
a brief overview of Haskell. Finally, we describe how LIO is implemented
taking advantage of Haskell’s static typing and pure functional nature.

2.2.1 Information flow control

IFC’s goal is to track and control the propagation of information. In an
IFC system, every observable bit has an associated label. Moreover, labels
form a lattice [Denning, 1976] governed by a partial order ⊑ pronounced

1 The library implementations discussed in this paper can be found at http://
www.scs.stanford.edu/~deian/concurrent_lio



26 Background

“can flow to.” The value of a bit labeled Lout can depend on a bit labeled
Lin only if Lin ⊑ Lout.

In a floating-label system, every execution context has a label that can
rise to accommodate reading more sensitive data. For a process P labeled
LP to observe an object labeled LO, P ’s label must rise to the least upper
bound or join of the two labels, written LP ⊔LO. P ’s label effectively “floats
above” the labels of all objects it observes. Furthermore, systems frequently
associate a clearance with each execution context that bounds its label.

Specific label formats depend on the application and are not the focus
of this work. Instead, we will focus on a very simple two-point lattice
with labels Low and High, where Low ⊑ High and High /⊑ Low. We, however,
note that our implementation is polymorphic in the label type and any
label format that implements a few basic relations (e.g., ⊑, join ⊔, and
meet ⊓) can be used when building applications. The LIO library supports
privileges which are used to implement decentralized information flow
control as originally presented in [Myers and Liskov, 1997]; though we
do not discuss privileges in this paper, our implementation also provides
privileged-versions of the combinators described in later sections.

2.2.2 Haskell

We choose theHaskell programming language because its abstractions allow
IFC to be implemented in a library [Li and Zdancewic, 2006]. Building a
library is far simpler than developing a programming language from scratch
(or heavily modifying a compiler). Moreover, a library offers backwards
compatibility with a large body of existing Haskell code.

From a security point of view, Haskell’s most distinctive feature is a
clear separation of pure computations from those with side-effects. Any
computation with side-effects must have a type encapsulated by the monad
IO. The main idea behind the LIO library is that untrusted actions must
be specified with a new LIO monad instead of IO. Because the types are
different, untrusted code cannot bind IO actions to LIO ones. The only IO
actions that can be executed within LIO actions are the ones that have been
wrapped in the LIO type using a private constructor only visible to trusted
code. All such wrapped IO actions perform label checks to enforce IFC.

2.2.3 The LIO monad

In this section, we give an overview of LIO. LIO dynamically enforces IFC,
but without the features described in this paper, provides only termina-
tion-insensitive IFC [Askarov et al., 2008] for sequential programs. At a
high level, LIO provides a monad called LIO (Labeled I/O) intended to be
used in place of IO. The library furthermore contains a collection of LIO
actions, many of them similar to IO actions from standard Haskell libraries,
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except that the LIO versions contain label checks that enforce IFC. For in-
stance, LIO provides file operations that look like those of the standard
library, except that they confine the application to a dedicated portion of
the file system where they store a label along with each file.

LIO is a floating-label system. The LIO monad keeps a current label,
Lcur, that is effectively a ceiling over the labels of all data that the current
computation may depend on. LIO also maintains a current clearance, Ccur,
which specifies an upper bound on permissible values of Lcur.

LIO does not individually label definitions and bindings. Rather, all
symbols in scope are identically labeled with Lcur. The only way to observe
or modify differently labeled data is to execute actions that internally
access privileged symbols. Such actions are responsible for appropriately
validating and adjusting the current label.

As an example, the LIO file-reading function readFile, when executed
on a file labeled LF , first checks that LF ⊑ Ccur, throwing an exception
if not. If the check succeeds, the function raises Lcur to Lcur ⊔ LF before
returning the file content. The LIO file-writing function, writeFile, throws
an exception if Lcur /⊑ LF .

As previously mentioned, allowing experimentation with different label
formats, LIO actions are parameterized by the label type. For instance,
simplifying slightly:

readFile :: (Label l) => FilePath -> LIO l String

To be more precise, it is really (LIO l) that is a replacement for the IO
monad, where l can be any label type. The context (Label l)=> in readFile’s
type signature restricts l to types that are instances of the Label typeclass,
which abstracts the label specifics behind the basic methods ⊑, ⊔, and ⊓.

2.2.4 Labeled values

Since LIO protects all nameable values with Lcur, we need a way to ma-
nipulate differently-labeled data without monotonically increasing Lcur.
For this purpose, LIO provides explicit references to labeled, immutable
data through a polymorphic data type called Labeled. A locally accessible
symbol (at Lcur) can name, say, a Labeled l Int (for some label type l),
which contains an Int protected by a different label.

Several functions allow creating and using Labeled values:
▸ label :: (Label l)=> l -> a -> LIO l (Labeled l a)

Given label l ∶ Lcur ⊑ l ⊑ Ccur and value v, action label l v returns a
Labeled value guarding v with label l.

▸ unlabel :: (Label l)=> Labeled l a -> LIO l a
If lv is a Labeled value v with label l, unlabel lv raises Lcur to Lcur ⊔ l
(provided Lcur ⊑ Ccur still holds, otherwise it throws an exception) and
returns v.
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Listing 1 Exploiting the termination channel by brute-force

bruteForce:: String -> Int -> Labeled l Int -> LIO l ()
bruteForce msg n secret = forM_ [0..n] $ \i -> do

toLabeled High $ do
s <- unlabel secret
if s == i then undefined else return ()

outputLow (msg ++ show i)

▸ toLabeled :: (Label l) =>
l -> LIO l a -> LIO l (Labeled l a)

The dual of unlabel: given an action m that would raise Lcur to L′cur
where L′cur ⊑ l ⊑ Ccur, toLabeled l m executes m without raising Lcur, and
instead encapsulates m’s result in a Labeled value protected by label l.

▸ labelOf :: (Label l)=> Labeled l a -> l
Returns the label of a Labeled value.

As an example, we show an LIO action that adds two Labeled Ints:
addLIO lA lB = do a <- unlabel lA

b <- unlabel lB
return (a + b)

If the inputs’ labels are LA and LB , this action raises Lcur to LA ⊔LB ⊔Lcur

and returns the sum of the values.
We note that in an imperative language with labeled variables, dynamic

labels can lead to implicit flows [Denning and Denning, 1977]. The canoni-
cal example is as follows:

public := 0; // public has a Low label
if (secret) // secret has a High label

public := 1; // public depends on secret

To avoid directly leaking the secret bit into public, one should track
the label of the program counter and determine that execution of the as-
signment public := 1 depends on secret, and raise public’s label when
assigning public := 1. However, since the assignment executes condition-
ally depending on secret, now public’s label leaks the secret bit. LIO
does not suffer from implicit flows. When branching on a secret, Lcur be-
comes High and therefore no public events are possible.

2.3 The termination covert channel

As mentioned in the introduction, information-flow control results and
techniques for sequential settings do not naturally generalize to concurrent
settings. In this section we highlight that the sequential LIO library allows
leaks due to termination and show that a naive (but typical) extension that
adds concurrency drastically amplifies this leak. We present a modification
to the LIO library that eliminates the termination covert channel from
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Listing 2 A concurrent termination channel attack

concurrentAttack :: Int -> Labeled l Int -> LIO l ()
concurrentAttack k secret = forM_ [0..k] $ \i -> do

iBit <- toLabeled High $ do
s <- unlabel secret
return (extractBit i s)

fork $ bruteForce (show k ++ "-bit:") 1 iBit
where extractBit :: Int -> Int -> Int

extractBit i n = (shiftR n i) .&. (bit 0)

both sequential and concurrent programs; our solution allows for flexible
programming patterns, even writing loops whose termination condition
depends on secret data.

Listing 1 shows an implementation of an attack (previously described
by Askarov et al. in [Askarov et al., 2008]) that leaks a secret in a brute-
force way through the termination covert channel. Function bruteForce
takes three arguments: a string message, the public maximum value that
a non-negative secret Int can have, and a secret labeled Int. Given these
arguments the function returns an LIO action that when executed returns
unit (), but producing intermediate side-effects. Namely, bruteForce writes
to a Low labeled channel using outputLow while Lcur is Low. We assume that
bruteForce is executed with the initial Lcur as Low.

The attack consists of iterating (variable i) over the domain of the secret
(forM_ [0..n]), producing a publicly-observable output if the guess, i, is not
the value of the secret. When i is equal to the secret, the program diverges
(if s == i then undefined). We use the constant undefined to denote any
non-terminating computation. Observe that on every iteration Lcur is raised
to the label of the secret within the toLabeled block. However, as described
in Section 2.2.3, the current label outside the toLabeled block remains unaf-
fected, and so the computation can continue producing publicly-observable
outputs. The leak due to termination is obvious: when the attacker, observ-
ing the Low labeled output channel, no longer receives any data, the value
of the secret can be inferred given the previous outputs. For instance, to
leak a 16-bit bounded secret, we can execute bruteForce "It is not: "
65536 secret. Assuming the value of the secret is 4, executing the action
produces the outputs “It is not: 0”, “It is not: 1”, “It is not: 2”, “It is
not: 3” before diverging. An observer that knows the implementation of
bruteForce can directly infer that the value of the secret is 4. Observe that
the code producing public outputs (outputLow (msg ++ show i)) does not
inspect secret data at all, which makes it difficult to avoid termination leaks
by simply tracking the flow of labeled data inside programs.

Suppose that we (naively) add support for concurrency to LIO using
a hypothetical primitive fork, which simply spawns computations in new
threads. Although we can preserve termination-insensitive non-interference
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(i.e., retain the property of no-explicit nor implicit-flows), we can extend
the previous brute force attack to leak information in linear, as opposed to
exponential, time in the length of the secret. In general, adding concurrency
primitives in a straight-forward manner makes attacks that leverage the
termination covert channel very effective [Hedin and Sabelfeld, 2011]. To
illustrate this point, the attack of Listing 2 leaks the bit-contents of a secret
value in linear time as follows. Given the bit-length k of a secret and the
labeled secret, concurrentAttack returns an action which, when executed,
extracts the bits of the secret (extractBit i s) and spawns a corresponding
thread to recover them by executing the brute-force attack of Listing 1
(bruteForce (show k ++ "-bit:") 1 iBit). Hence, by collecting the public
outputs generated by the different threads (having the form “0-bit:0”, “1-
bit:0”, “2-bit:0”, etc.), it is directly possible to recover the secret value.

2.3.1 Removing the termination covert channel in LIO

Since LIO is a floating-label system and at each point in the computation
the evaluation context has a current label, a leak to a Low channel due to
termination cannot occur after the current label is raised to High, unless the
label-raise is within an enclosed toLabeled computation. Unless enclosed
within a toLabeled, having Lcur=High implies that publicly-observable side-
effects are no longer allowed. Hence, we can deduce that a piece of LIO
code can exploit the termination covert channel only when using toLabeled.
The key insight is that toLabeled is the single primitive in LIO that effectively
allows a piece of code to temporarily raise its current label, perform a
computation, and then continue with the starting current label. The attack
in Listing 1 is a clear example that leverages this property of toLabeled to
leak information.

Consider the necessary conditions for eliminating the termination chan-
nel present in Listing 1: the execution of the publicly-observable outputLow
action must not depend on, or wait for, the secret computation executed
within the toLabeled block. More generally, to close the termination covert
channel, it is necessary to decouple the execution of computations enclosed
by toLabeled. To achieve such decoupling, instead of using toLabeled, we
provide an alternative primitive that executes computations that might raise
the current label (as in toLabeled) in a newly-spawned thread. Moreover,
to observe the result (or non-termination) of a spawned computation, the
current label is firstly raised to the label of the (possibly) returned result. In
doing so, after observing a secret result (or non-termination) of a spawned
computation, actions that produce publicly-observable side-effects can no
longer be executed. In this manner, the termination channel is closed.

In Listing 1, the execution of outputLow is bound to the termination
of the computation described by toLabeled. However, using our proposed
approach of spawning a new thread when performing toLabeled, if the
code following the toLabeled wishes to observe whether or not the High
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computation has terminated, it would first need to raise the current label
to High. Thereafter, an outputLow action cannot be executed regardless of
the result (or termination) of the toLabeled computation.

Concretely, we close the termination channel by removing the insecure
function toLabeled from LIO and, instead, provide the following (termina-
tion sensitive) primitives.

forkLIO :: Label l => l -> LIO l a -> LIO l (Result l a)
waitLIO :: Label l => Result l a -> LIO l a

Intuitively, forkLIO can be considered as a concurrent version of toLabeled.
forkLIO l lio spawns a new thread to perform the computation lio, whose
current label may rise, and whose result is a value labeled with l. Rather
than block, immediately after spawning a new thread, the primitive returns
a value of type Result l a, which is simple a handler to access the labeled
result produced by the spawned computation. Similar to unlabel, we pro-
vide waitLIO, which inspects values returned by spawned computations,
i.e., values of type Result l a. The labeled wait, waitLIO, raises the current
label to the label of its argument and then proceeds to inspect it.

In principle, rather than forking threads, it would be enough to prove
that computations involving secrets terminate, e.g., by writing them in Coq
or Agda. However, while this idea works in theory, it is still possible to
crash an Agda or Coq program at runtime: for example, with a stack
overflow. Generally, abnormal termination due to resource exhaustion
exploits the termination channel and it could be hard to counter. In this
light, forking threads is a manner to remove the termination channel by
design. Although it might seem expensive, forking threads in Haskell is a
light-weight operation2.

We note that adding concurrency to LIO is a major modification which
introduces security implications beyond that of handling the termination
channel. In the following section, we describe the internal timing covert
channel, a channel present in programming languages that have support
for concurrency and shared-resources.

2.4 The Internal timing covert channel

In a concurrent setting, the possibility that threads have to share resources
opens up new information channels. Specifically, multi-threaded programs
can leak information through the internal timing covert channel [Volpano
and Smith, 1999]. The source of the leaks comes from the ability of threads
to affect their timing behavior based on secret data and thus affect, via the
scheduler, the order of public events.

2 http://www.haskell.org/ghc/docs/latest/html/libraries/base/
Control-Concurrent.html
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Listing 3 Internal timing leak

sthread :: String -> Int -> Labeled l Bool -> LIO l ()
sthread msg n secret = do toLabeled High

( do s <- unlabel secret
if s then sleep n
else return () )

outputLow msg

pthread :: String -> Int -> LIO l ()
pthread msg n = do sleep n

outputLow msg

attack :: Labeled l Bool -> LIO l ()
attack secret = do fork (sthread "True" 5000 secret)

fork (pthread "False" 1000)

To illustrate internal timing attacks, we consider the LIO library from
Section 2.2.3 with the added hypothetical primitive fork used to spawn a
new thread. Listing 3 illustrates an internal timing attack. It consists of two
threads: sthread and pthread. Command sleep n puts a thread to sleep for
n milliseconds. Thread sthread takes a string to output in a public channel
(outputLow msg) and the number of milliseconds to sleep (sleep n) if the
secret boolean taken as argument (secret) is true. Thread pthread, on the
other hand, does not take any secret but it writes a message (msg) to the
same output channel as sthread after sleeping some milliseconds. Observe
that both threads share a resource (i.e., the output channel) and that the
timing behavior of sthread depends on the secret boolean.

With this example, sthread should take longer to execute the outputLow
action than pthread if and only if the secret boolean is true. In isolation,
both threads are secure, i.e., they satisfy non-interference. In fact, when
considering them in isolation, both threads always produce the public
output given by the argument msg. However, by running them concurrently,
it is possible to leak information about secret. Function attack spawns
two threads that execute sthread and pthread concurrently. Under many
reasonable schedulers, if secret is true, it is more likely that the instruction
outputLow "False" is executed first. On the other hand, if secret is false, it
is more likely that outputLow "True" is executed first. An attacker can then
observe the value of secret by just observing the second produced output.

Unlike other timing channel attacks, internal timing attacks do not
require an attacker to measure the actual execution time to deduce secret
information. The interleaving of threads is simply responsible for producing
leaks! Although the example in Listing 3 shows how to leak one bit, it is
easy to place the attack in a loop that leaks bit by bit a whole secret value
in linear time. Tsai et al. [Tsai et al., 2007] show how effective the attack is
even without having much information about the run-time system (e.g., the
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scheduler). The authors implemented the magnified version of the attack
in Listing 3 and showed how to leak a credit card number.

2.4.1 Removing the internal timing channel

As indicated by the code in Listing 3, the internal timing covert channel
can be exploited when the time to produce public events (e.g., sending
some data in a public channel) depends on secrets. In other words, internal
timing arises when there is a race to acquire a shared resource that may be
affected by secret data. In order to close this channel, we apply the same
technique as for dealing with termination leaks: we decouple the execution
of public events from computations that manipulate secret data. By using
forkLIO and waitLIO, computations dealing with secrets are spawned in a
new thread. In that manner, any possible race to a shared public resource
does not depend on the secret anymore and thus internal timing leaks are
no longer possible.

2.4.2 Synchronization primitives in concurrent LIO

In the presence of concurrency, synchronization is vital. This section intro-
duces an IFC-aware version of MVars, which are well-established synchro-
nization Haskell primitives [Jones et al., 1996]. As with MVars, LMVars can
be used in different manners: as synchronized mutable variables, as chan-
nels of depth one, or as building blocks for more complex communication
and synchronization primitives.

A value of type LMVar l a is mutable location that is either empty or
contains a value of type a labeled with l. LMVars are associated with the
following operations:
newEmptyLMVar :: (Label l) => l -> LIO l (LMVar l a)
putLMVar :: (Label l) => LMVar l a -> a -> LIO l ()
takeLMVar :: (Label l) => LMVar l a -> LIO l a
Function newEmptyLMVar takes a label l and creates an empty LMVar l a for
any desired type a. The creation succeeds only if the label l is between the
current label and clearance of the LIO computation that creates it. Function
putLMVar fills an LMVar l a with a value of type a if it is empty and blocks
otherwise. Dually, takeLMVar empties an LMVar l a if it is full and blocks
otherwise.

Note that both takeLMVar and putLMVar check if the LMVar is empty
in order to proceed, and they both end up modifying it in some way. It
might seem like takeLMVar is only a read and putLMVar is only a write, but
takeLMVar also does a write by emptying the location, and putLMVar also
does a read by checking if the location is empty. Therefore, takeLMVar and
putLMVar perform both a read and a write of the mutable location, which
means that from a security point of view, operations on a given LMVar l a
are executed only when the label l is below or equal to the clearance (i.e.,
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l ⊑ Ccur due to the read) and above or equal to the current label (i.e., Lcur ⊑ l
due to the write). Moreover, after either operation, Lcur is raised to l.

Many communication channels used in practice are often bi-directional,
i.e., a read produces a write (and vice versa). For instance, reading a file
may modify the access time in the inode; writing to a socket may produce
an observable error if the connection is closed, etc. As described above,
LMVar are bi-directional channels. If we were to treat them as uni-directional,
observe that a termination leak would be possible: a thread, whose current
label is Low can use a LMVar labeled Low to send information to a computation
whose current label is High; the High thread can then decide to empty
the LMVar according to a secret value and thus leak information to the Low
thread.

2.5 The external timing covert channel

In a real-world scenario IFC applications interact with unlabeled, or pub-
licly observable, resources. For example, a server-side IFC web application
interacts with a browser, which may itself be IFC-unaware, over a public
network channel. Consequently, an adversary can take measurements exter-
nal to the application (e.g., the application response time) from which they
may infer information about confidential data computed by the applica-
tion. Although our results generalize (e.g., to the storage covert channel), in
this section we address the external timing covert channel: an application
can leak information over a public channel to an observer that precisely
measures message-arrival timings. Note that the content of a message does
not need to be public (hence why the channel is considered covert); this is
the case in a web application where a message may be encrypted with SSL,
but the actual placement of a message on the channel is observable by a
network attacker.

Most of the language-based IFC techniques that consider external tim-
ing channels are limited. Despite the successful use of external timing at-
tacks to leak information in web [Felten and Schneider, 2000, Bortz and
Boneh, 2007] and cryptographic [Kocher, 1996, Handschuh and Heys,
1999, Wong, 2005] applications, they remain widely unaddressed by main-
stream, practical IFC tools, including Jif [Myers et al., 2001]. Furthermore,
most techniques that provide IFC in the presence of the external timing
channel [Agat, 2000, Hedin and Sands, 2005, Barthe et al., 2006] are overly
restrictive, e.g., they do not allow folding over secret data.

2.5.1 Mitigating the external timing channel

Recently, a predictive black-box mitigation technique for external timing
channels has been proposed [Askarov et al., 2010, Zhang et al., 2011].
The predictive mitigation technique assumes that the attacker has control
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of the application (which computes on secret data) and can measure the
time a message is placed on a channel (e.g., when a response is sent to
the browser). Treating the application as a black-box source of events, a
mitigator is interposed between the application and the system output.

Internally, the mitigator keeps a schedule describing when outputs are
to be produced. For example, the time mitigator might keep a schedule
“predicting” that an output is to be produced every 1ms. If the application
delivers events according to the schedule, or at a higher rate, the mitigator
will be able to produce an output at every 1ms interval, according to the
schedule, and thus leak no information.

Of course, the application may fail to deliver an event to the mitigator on
time, and thus render the mitigator’s schedule prediction false. At this point,
the mitigator must handle the misprediction by selecting, or “predicting”, a
new schedule for the application. Inmost cases, this corresponds to doubling
the application’s quantum. For instance, following a misprediction of a
quantum of 1 ms, an application will be then expected to produce an output
every 2 ms. It is at the point of switching schedules where an attacker learns
information: rather than seeing events spaced at 1 ms intervals, the attacker
now observes outputs at 2 ms intervals, indicating that the application
violated the predicted behavior (a decision that can be affected by secret
data). However, Askarov et al. [Askarov et al., 2010] show that the amount
of information leaked by this slow-doubling mitigator is polylogarithmic
in the application runtime.

Furthermore, the aspects of the predictivemitigation technique of [Askarov
et al., 2010, Zhang et al., 2011] that makes it particularly attractive for
use in LIO are:
▸ The mitigator can adaptively reduce the quantum, as to increase the

throughput of a well-behaved application in a manner that bounds the
covert channel bandwidth (though the leakage factor is still greater than
that of the slow-doubling mitigator);

▸ The mitigator can leverage public factors to decide a schedule. For
example, in a web application setting where responses are mitigated,
the arrival of an HTTP request can be used as a “reset” event. This
is particularly useful as a quiescent application would otherwise be
penalized (by increasing its quantum) for not producing an output
according to the predicted schedule. Our web application of Section 2.8
implements this mitigation technique

▸ The amount of information leaked is bound by a combinatorial analysis
on the number of observations an attacker can perform.

Monadic approach to black-box mitigation Pure functional programming
languages, such as Haskell, are particularly suitable for mitigating external
timing covert channels. Specifically, the use of monads for enforcing an
evaluation-order and introducing side-effects allows for the reasoning and
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control of output events. Among many others, LIO is an example library
that leverages this property of monads; LIO is simply a monad that performs
side-effects according to IFC.

The functionality of different monads, such as I/O and error handling,
can be combined in a modular fashion using monad transformers [Liang
et al., 1995]. A monad transformer t, when applied to a monadm, generates
a new, combined monad t m, that shares the behavior of monad m as
well as the behavior of the monad encoded in the monad transformer.
The modularity of monad transformers comes from the fact that they
consider the underlying monad m opaque, i.e., the behavior of the monad
transformer t does not depend on the internal structure of m. In this light,
we adopt Zhang et al.’s system-oriented predictive black-box mitigator to
a language-based security setting in the form of a monad transformer.

2.5.2 Language-based mitigators

We envision the implementation of mitigators that address covert channels
other than external timing. For example, our ongoing work includes the
implementation of a storage mitigator that addresses attacks which vary
message (packet) length to encode secret information. Hence, our mitigation
monad transformer MitM s q is polymorphic in the mitigator-specific state
s and quantum type q :

newtype MitM s q m a = MitM ...

The time-mitigated monad transformer is a special case:

type TimeMitM = MitM TStamp TStampDiff

where the internal state TStamp is a time stamp, and the quantum
TStampDiff is a time difference. Superficially, a value of type TimeMitM m a
is a computation that produces a value of type a. Internally, a time measure-
ment is taken whenever an output is to be emitted in the underlying monad
m, the internal state and quantum are adjusted to reflect the event, and the
output is delayed if it was produced ahead of the predicted schedule.

We provide the function evalMitM, which takes an action of type MitM s q
m a and returns an action of type m a, which when executed will mitigate
the computation outputs. Observe that the monad transformer leaves the
possibility to use (almost) any underlying monad m, not just LIO or IO; this
makes the monad transformer approach to mitigation quite general.

Unfortunately, this generality comes with a trade-off: either every com-
putation m is mitigated, or trustworthy programmers must define what
objects they wish to mitigate and how to mitigate them. Given that the for-
mer design choice would not allow for distinguishing between inputs and
outputs, we implemented the latter and more explicit mitigation approach.

To definewhat is to be mitigated (e.g., a file handle, a socket, a reference,
etc.), we provide the data type:
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data Mitigated s q a = Mitigated ...

For example, a time-mitigated I/O file handle is simply:

type TimeMitigated = Mitigated TStamp TStampDiff
type Handle = TimeMitigated IO.Handle

The use of Mitigated allows us to do mitigation at very fine grain level.
Specifically, the monad transformer can be used to implement a mitigator
for each Mitigated value (henceforth “handle”). This allows an application
to write to multiple files, all of which are mitigated independently, and thus
may be written to, at different rates3. It remains for us to address: how are
the mitigators defined?

Mitigators are defined as instances of the type class Mitigator, which
provides two functions:

class MonadConcur m => Mitigator m s q where
-- ∣ Create a Mitigated "handle".
mkMitigated :: Maybe s -- ^ Internal state

-> q -- ^ Quantum
-> m a -- ^ Handle constructor
-> MitM s q m (Mitigated s q a)

-- ∣ Mitigate an operation
mitigate :: Mitigated s q a -- ^ Mitigated "handle"

-> (a -> m ()) -- ^ Output computation
-> MitM s q m ()

Firstly, we note the context MonadConcur m is used to impose the requirement
that the underlying monad be an IO-like monad which allows forking
new threads (as to separate the mitigator from the computation being
mitigated) and operations on mutable MVars (which are internal to the
MitM transformer). Secondly, we highlight the mkMitigated function, which
is used to create a mitigated handle given an initial state, quantum, and
underlying constructor. The default implementation of mkMitigated creates
the mitigator state (internal to the transformer) corresponding to the handle.
A simplified version of our openFile operation shows how mkMitigated is
used:

openFile :: FilePath -> IOMode -> TimeMitigated IO.Handle
openFile f mode = mkMitigated Nothing q $ do

h <- IO.openFile f mode -- Handle constructor
return h

where q = mkQuant 1000 -- Initial quantum of 1ms

xo Here, the constructor IO.openFile creates a file handle to the file at
path f. This constructor is supplied to mkMitigated, in addition to the

3 In cases where schedule mispredictions are common, it is important to implement
the l-grace period policy of [Zhang et al., 2011]. The policy states that when there
are more than l mispredictions, the new scheduling should affect all mitigators.
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“empty” state Nothing, and initial quantum q of 1 ms, which creates the
corresponding mitigator and Mitigated handle (recall Handle is a type alias
to TimeMitigated IO.Handle). We note that although the default definition
of mkMitigated creates a mitigator per handle, instances may provide a
definition that is more coarse-grained (e.g., associate mitigator with current
thread).

Finally, each mitigator provides a definition for mitigate, which specifies
how a computation should be mitigated. The function takes two arguments:
the mitigated handle and a computation that produces an output on the
handle. Our time mitigator instance

instance ... => Mitigator m TStamp TStampDiff where
mitigate mh act = ...

provides a definition for mitigate. The action first retrieves the internal
state of the mitigator corresponding to the mitigated handle mh and forks a
new thread (allowing other mitigated actions to be executed). In the new
thread, a time measurement t1 is taken. Then, if the time difference between
t1 and the mitigator time stamp t0 exceeds the quantum q, the newmitigator
quantum is set to 2q; otherwise, the computation is “suspended” for t1 − t0
microseconds. Following, act is executed, and the internal timestamp is
replaced with the current time. Using MVars, we force operations on the
same handle to be sequential and thus follow the latest schedule.

Continuing the example, we can now define a function we wish to be
mitigated:

hPut :: Handle -> ByteString -> TimeMitigated IO ()
hPut mH bs = mitigate mH (\h -> IO.hPut h bs)

If hPut is invoked according to schedule (at least every 1 ms), the actual
output function IO.hPut is used to write the provided byte-strings every
1 ms. Conversely, if the function does not follow the predicted schedule, the
quantum will be increased and write-throughput to the file will decrease.
Of course, this does not affect the schedule on a different handle (until a
large number of mispredictions occur).

Adapting an existing program to have mitigated outputs comes almost
for free: a trustworthy programmer needs to define the constructor func-
tions, such as openFile, and output functions, such as hPut, and simply lift
all the remaining operations. Recall that MitM is a monad transformer, and
thus we provide a definition for the function:

lift ::: Monad m => m a -> MitM s q m a

which lifts a computation in the m monad into the mitigation monad, with-
out performing any actual mitigation. A simple example illustrating this
is the definition of hGet which reads a specified number of bytes from a
handle:

hGet :: Handle -> Int -> TimeMitigated IO ByteString
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Listing 4 Syntax for values, expressions, and types.

Label: l

LMVar: m

Value: v ∶∶= true ∣ false ∣ () ∣ l ∣ m ∣ x ∣ λx.e ∣ fix e

∣ Lb l e ∣ (e)LIO
∣ � ∣ R m ∣ ●

Expression: e ∶∶= v ∣ e e ∣ if e then e else e ∣ let x = e in e

∣ return e ∣ e >>= e ∣ label e e

∣ unlabel e ∣ lowerClr e ∣ getLabel
∣ getClearance ∣ labelOf e ∣ out e e

∣ forkLIO e e ∣ waitLIO e ∣ newLMVar e e

∣ takeLMVar e ∣ putLMVar e e ∣ labelOfLMVar e

Type: τ ∶∶= Bool ∣ () ∣ τ → τ ∣ ` ∣ Labeled ` τ ∣ Result ` τ

∣ LMVar ` τ ∣ LIO ` τ

hGet mH = lift . IO.hGet . mitVal

where mitVal returns the handle encapsulated by Mitigated. It is worth
noting that, although we focus on mitigating writing operations, in some
systems a file read will be reflected in the file’s inode atime, and thus should
be also accordingly mitigated.

2.6 Formal semantics for LIO

In this section, we formalise our library for a simply typed Curry-style
call-by-name λ-calculus with some extensions. Listing 4 defines the formal
syntax for the language. Syntactic categories v, e, and τ represent values,
expressions, and types, respectively. Values are side-effect free while expres-
sions denote (possible) side-effecting computations. Due to lack of space,
we only show the reduction and typing rules for the core part of the li-
brary. For more details, readers can refer to Appendix A available in the
supplementary material.

Values The syntax category v includes the symbol true and false rep-
resenting Boolean values. Symbol () represents the unit value. Symbol `
denotes security labels. Symbolm represents MVars. Values include variables
(x), functions (λx.e), and recursive functions (fix e). Special syntax nodes
are added to this category: Lb v e, (e)LIO, R m, �, and ●. Node Lb v e de-
notes the run-time representation of a labeled value. Similarly, node (e)LIO

denotes the run-time representation of a monadic LIO computation. Node
� denotes the run-time representation of an empty MVar. Node R m is the
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Listing 5 Typing rules for special syntax nodes.

Γ ⊢ ● ∶ τ Γ ⊢m ∶ LMVar ` τ

Γ ⊢ e ∶ τ

Γ ⊢ Lb l e ∶ Labeled ` τ

Γ ⊢ e ∶ τ

Γ ⊢ (e)LIO
∶ LIO ` τ Γ ⊢ � ∶ τ

Γ ⊢m ∶ LMVar ` τ

Γ ⊢ R m ∶ Result ` τ

run-time representation of a handle, implemented as an MVar, that is used
to access the result produced by spawned computations. Alternatively, R m
can be thought of as an explicit future. Node ● represents an erased term
(explained in Section 2.7). None of these special nodes appear in programs
written by users and they are merely introduced for technical reasons.

Expressions Expressions are composed of values (v), function applica-
tions (e e), conditional branches (if e then e else e), and local definitions
(let x = e in e). Additionally, expressions may involve operations related
to monadic computations in the LIO monad. More precisely, return e and
e >>= e represent the monadic return and bind operations. Monadic opera-
tions related to the manipulation of labeled values inside the LIO monad are
given by label, and unlabel. Expression unlabel e acquires the content
of the labeled value e while in a LIO computation. Expression label e1 e2
creates a labeled value, with label e1, of the result obtained by evaluating
the LIO computation e2. Expression lowerClr e allows lowering of the
current clearance to e. Expressions getLabel and getClearance return
the current label and current clearance of an LIO computation. Expression
labelOf e obtains the security label of labeled values. Expression out e1 e2
denotes the output of e2 to the output channel at security level e1. For sim-
plicity, we assume that there is only one output channel per security level.
Expression forkLIO e1 e2 spawns a thread that computes e2 and returns
a labeled value with label e1. Expression waitLIO e inspects the value re-
turned by the spawned computation whose result is accessed by the handle
e. Monadic operations related to creating, reading, and writing labeled
MVars are respectively captured by expressions newLMVar, takeLMVar, and
putLMVar.

Types We consider standard types for Booleans (Bool), unit (()), and
function (τ → τ) values. Type ` describes security labels. Type Result ` τ
denotes handles used to access labeled results produced by spawned com-
putations, where the results are of type τ and labeled with labels of type `.
Type LMVar ` τ describes labeled MVars, with labels of type ` and storing
values of type τ . Type LIO ` τ represents monadic LIO computations, with
a result type τ and the security labels of type `.

The typing judgments have the standard form Γ ⊢ e ∶ τ , such that
expression e has type τ assuming the typing environment Γ ; we use Γ
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for both variable and store typings. Typing rules for the special syntax
nodes are shown in Listing 5. These rules are liberal on purpose. Recall
that special syntax nodes are run-time representations of certain values,
e.g., labeled MVars. Thus, they are only considered in a context where it is
possible to uniquely deduce their types. The typing for the remaining terms
and expressions are standard and we therefore do not describe them any
further. We do not require any of the sophisticated features of Haskell’s type-
system, a direct consequence of the fact that security checks are performed
at run-time. Since typing rules are straightforward, we assume that the type
system is sound with respect to our semantics.

The LIO monad is essentially implemented as a State monad. To simplify
the formalization and description of expressions, without loss of generality,
we make the state of the monad part of the run-time environment. More
precisely, each thread is accompanied by a local security run-time envi-
ronment σ, which keeps track of the current label (σ.lbl) and clearence
(σ.clr) of the running LIO computation. Common to every thread, the sym-
bol Σ holds the global LMVar store (Σ.φ) and the output channels (Σ.αl,
one for every security label l). A store φ is a mapping from LMVars to
labeled values, while an output channel is a queue of events of the form
out(v) (output) or exit(v) (termination), for some value v. For simplicity,
we assume that every store contains a mapping for every possible LMVar,
which is initially the syntax node (●). The run-time environments Σ, σ, and
a LIO computation form a sequential configuration jΣ, ⟨σ, e⟩o.

The relation jΣ, ⟨σ, e⟩o
α
Ð→ jΣ′, ⟨σ′, e′⟩o represents a single evaluation

step from expression e, under the run-time environments Σ and σ, to
expression e′ and run-time environments Σ′ and σ′. We define such re-
lation in terms of a structured operational semantics via evaluation con-
texts [Felleisen, 1988]. We say that e reduces to e′ in one step. We write
Ð→* for the reflexive and transitive closure of Ð→. Symbol α ranges over
the internal events triggered by expressions (as illustrated in Listing 6 and
explained below). We utilize internal events to communicate between the
threads and the scheduler. Listing 6 shows the reductions rules for the core
contributions in our library. Rules (Lab) and (unLab) impose the same
security constrains as for the sequential version of LIO [Stefan et al., 2011].
Rule (Lab) generates a labeled value if and only if the label is between
the current label and clearance of the LIO computation. Rule (unLab) re-
quires that, when the content of a labeled value is “retrieved” and used
in a LIO computation, the current label is raised (σ′ = σ[lbl↦ l′], where
l′ = σ.lbl ⊔ l), thus capturing the fact that the remaining computation
might depend on e. Output channels are treated as deques of events. We
use a standard deque-like interface with operations (⊲) and (⊳) for front
and back insertion (respectively), and we also allow pattern-matching in
the rules as a representation of deconstruction operations. Rule (output)
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adds the event out(v) to the end of the output channel at security level l
(Σ.αl ⊳ out(v)).

The main contributions of our language are related to the primitives
for concurrency and synchronization. Rule (lFork) allows for the cre-
ation of a thread and generates the internal event fork(e), where e is
the computation to spawn. The rule allocates a new LMVar in order to
store the result produced by the spawned thread (e >>= λx.putLMVar m x).
Using that LMVar, the rule provides a handle to access to the thread’s re-
sult (return (R m)). Rule (lwait) simply uses the LMVar for the handle. As
mentioned in Section 2.4, operations on LMVar are bi-directional and conse-
quently the rules (nlmvar), (tlmvar), and (plmvar) require not only that
the label of the mentioned LMVar be between the current label and current
clearance of the thread (σ.lbl ⊑ l ⊑ σ.clr), but that the current labe be
raised appropriately. Considering the security level of a LMVar (l), rule (tlm-
var) accordingly raises the current label (σ′ = σ[lbl ↦ σ.lbl ⊔ l]) when
emptying (Σ.φ[m↦ Lb l �]) its content (Σ.φ(m) = Lb l e). Similarly, con-
sidering the security level of a LMVar (l), rule (plmvar) accordingly raises
the current label (σ′ = σ[lbl ↦ σ.lbl ⊔ l]) when filling (Σ.φ[m ↦ Lb l e])
its content (Σ.φ(m) = Lb l �). Finally, rule (glabR) fetches a labeled LMVar
from the LMVar store (e = Σ.φ(m), i.e., a value of the form Lb l m), and
returns its label.

Listing 7 shows the formal semantics for threadpools. The relation ↪
represents a single evaluation step for the threadpool, in contrast with Ð→
which is only for a single thread. We write ↪* for the reflexive and tran-
sitive closure of ↪. As mentioned, configurations are of the form jΣ, tso,
where Σ is the global runtime environment and ts is a queue of sequen-
tial configurations. The front of the queue is the thread that is currently
executing. Threads are scheduled in a round-robin fashion, like GHC. The
thread at the front of the queue executes one step, and it is then moved
to the back of the queue (see Rule (step)). If this step involves a fork (rep-

resented by
fork(e)
Ð→ ), a new thread is created at the back of the queue (see

Rule (fork)). Threads are also moved to the back of the threadpool if they
are blocked, e.g., waiting to read a value from an empty LMVar (see Rule
(no-step), we define /Ð→ as the impossibility to make any progress). When
a thread finishes, i.e., it can no longer reduce, the final value is placed in
the output channel indicated by the current label (σ.lbl), and the thread is
removed from the queue (see Rule (exit)).

2.7 Security guarantees

In this section, we show that LIO computations have the property of
termination-sensitive non-interference. As in [Li and Zdancewic, 2010,
Russo et al., 2008, Stefan et al., 2011], we prove this property by using the



Timing Channels in Concurrent IFC Systems 43

term erasure technique. The erasure function εL rewrites data at security
levels that the attacker cannot observe into the syntax node ●.

Listing 8 defines the erasure function εL. This function is defined in such
a way that εL(e) contains no information above level L, i.e., the function
εL replaces all the information more sensitive than L in e with a hole (●). In
most of the cases, the erasure function is simply applied homomorphically
(e.g., εL(e1 e2) = εL(e1) εL(e2)). For threadpools, the erasure function
is mapped into all sequential configurations; all threads with a current
label above L are removed from the pool (filter (λ⟨σ, e⟩.e /≡ ●) (map εL ts),
where ≡ denotes syntactic equivalence). The computation performed in a
certain sequential configuration is erased if the current label is above L. For
runtime environments and stores, we map the erasure function into their
components. An output channel is erased into the empty channel (ε) if it is
above L, otherwise the individual output events are erased according to εL.
Similarly, a labeled value is erased if the label assigned to it is above L.

Following the definition of the erasure function, we introduce a new
evaluation relation Ð→L as follows:

jΣ, tso Ð→ jΣ
′, t′so

jΣ, tso Ð→L εL(jΣ
′, t′so)

The relation Ð→L guarantees that confidential data, i.e., data not below
level L, is erased as soon as it is created. We write Ð→*

L for the reflexive
and transitive closure of Ð→L. Similarly, we introduce a relation ↪L as
follows:

jΣ, tso ↪ jΣ
′, t′so

jΣ, tso ↪L εL(jΣ
′, t′so)

As usual, we write ↪*
L for the reflexive and transitive closure of ↪L.

In order to prove non-interference, we will establish a simulation rela-
tion between ↪* and ↪*

L through the erasure function: erasing all secret
data and then taking evaluation steps in ↪L is equivalent to taking steps
in ↪ first, and then erasing all secret values in the resulting configuration.
Note that this relation would not hold if information from some level above
L was being leaked by the program. In the rest of this section, we only
consider well-typed terms to ensure there are no stuck configurations.

For simplicity, we assume that the space address of the memory store
is split into different security levels and that allocation is deterministic.
Therefore, the address returned when creating an LMVar with label l
depends only on the LMVars with label l already in the store. For the sake
of brevity, the proofs have been shortened in this section, but more details
can be found in Appendix A.

We start by showing that the evaluation relations Ð→L and ↪L are
deterministic.

Proposition 1 (Determinacy of Ð→L). If jΣ, to Ð→L jΣ
′, t′o and

jΣ, to Ð→L jΣ
′′, t′′o, then jΣ′, t′o = jΣ′′, t′′o.
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Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step.

Proposition 2 (Determinacy of ↪L). If jΣ, tso ↪L jΣ
′, t′so and jΣ, tso ↪L

jΣ′′, t′′s o, then jΣ
′, t′so = jΣ

′′, t′′s o.

Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step and using Proposition 1.

The next lemma establishes a simulation between ↪* and ↪*
L.

Lemma 1 (Many-step simulation).Given a well-typed thread pool ts (with
no Lb, ()LIO, �, R, and ●), an attacker at level L, and a runtime environment
Σ, if jΣ, tso ↪

* jΣ′, t′so, then εL(jΣ, tso) ↪
*
L εL(jΣ

′, t′so).

Proof. In order to prove this result, we rely on properties of the erasure
function, such as the fact that it is idempotent and homomorphic to the
application of evaluation contexts and substitution. We show that the result
holds by case analysis on the rule used to derive jΣ, tso ↪

* jΣ′, t′so, and
considering different cases for threads whose current label is below (or not)
level L. For more details, see Appendix A.

The L-equivalence relation ≈L is an equivalence relation between con-
figurations (and their parts), defined as the equivalence kernel of the era-
sure function εL: jΣ, tso ≈L jΣ

′, rso iff εL(jΣ, tso) = εL(jΣ
′, rso). If two

configurations are L-equivalent, they agree on all data below or at level L,
i.e., they cannot be distinguished by an attacker at level L. Note that two
queues are L-equivalent iff the threads with current label no higher than L
are pairwise L-equivalent in the order that they appear in the queue.

The next theorem shows the non-interference property. It essentially
states that if we take two executions of a program with two L-equivalent
inputs, then for every intermediate step of the computation of the first run,
there is a corresponding step in the computation of the second run which
results in an L-equivalent configuration. Note that this also includes the
termination channel, since L-equivalence of configurations requires that
output channels have matching events, and termination is modelled as a
special kind of output event.

Theorem 1 (Termination-sensitive non-interference).Given a computation
e (with no Lb, ()LIO, �, R, and ●) where it holds that Γ ⊢ e ∶ Labeled ` τ →
LIO ` (Labeled ` τ ′), an attacker at level L, an initial securiy context
σ, and runtime environments Σ1 and Σ2 where Σ1.φ = Σ2.φ = ∅ and
Σ1.αk = Σ2.αk = ε for all levels k, then

∀e1e2.(Γ ⊢ ei ∶ Labeled ` τ)i=1,2 ∧ e1 ≈L e2
∧ jΣ1, ⟨σ, e e1⟩o ↪

* jΣ′1, t
1
so

⇒ ∃Σ′2t
2
s.jΣ2, ⟨σ, e e2⟩o ↪

* jΣ′2, t
2
so ∧ jΣ

′

1, t
1
so ≈L jΣ

′

2, t
2
so

Proof. The result follows by combining Lemma 1 and Proposition 2 (De-
terminacy).
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2.8 Example Application: Dating Website

In this section we evaluate the feasibility of leaking information through
timing-based covert channels as well as the effectiveness and expressiveness
of our extensions to LIO.

We built a simple dating website that allows third-party developers
to build applications that interact with a common database. Our website
exposes a shared key-value store to third-party apps encoding interested-
in relationships. A key correspond to a user ID and its associated value
represent the users that he/she is interested in. For simplicity, we do not
consider the list of users sensitive, but interested-in relationships should
remain confidential. In particular, a user should be able to learn which other
users are interested in them, but should not be able to learn the interested-in
relationships of other users.

The website consists of two main components: 1) a trusted web server
that executes apps written using LIO and 2) untrusted third-party apps that
may interact with users and read and write to the database. The database
is simply a list of tuples mapping keys (users) to LMVars storing lists of
users. Apps are separated from each other by URL prefixes. For example,
the URL http://xycombinator.biz/App1 points to App1. Requests with
a particular app’s URL prefix are serviced by invoking the app’s request
handler in an IFC-constrained, and time-mitigated, environemt. We assume
a powerful, but realistic adversary. In particular, malicious application
writers may themselves be users of the dating site. We now consider the
effectiveness of termination and timing channels in leaking the database.

Termination covert channel As detailed in Section 2.3, the implementation
of LIO [Stefan et al., 2011], with toLabeled, is susceptible to a termination
channel attack. In the context of our dating-website, a malicious application
term, running on behalf of an (authenticated) user a can be used to leak
information on another (target) user t as follows:

▸ Authenticated adversary a issues a request that contains a guess that
user t has an interest in g: GET /term?target=t&guess=g

▸ The trusted app container invokes the app term and forwards the
request to it.

▸ The application term then executes the following LIO code:

toLabeled ⊺ $ do v <- lookupDB t
if g == v then � else return ()

return $ mkHtmlResp200 "Bad guess"

Here, lookupDB t is used to perform a database lookup with key t. If g
is present in the database entry, the app will not terminate, otherwise it
will respond, denoting the guess was wrong.
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We found the termination attack to be very effective. Specifically, we mea-
sured the time required to reconstruct a database of 10 users to be 73
seconds4.

If toLabeled is prohibited and forkLIO is used instead, the termination
attack cannot be mounted. This is because waitLIO first raises the label
of the app request handler. An attempt to output a response to the client
browser will not succeed since the current label of the handler cannot flow
to the label of the client’s browser. It is important to note that errors of
this kind are made indistinguishable from non-terminating requests. To
accomplish this, our dating site catches label violation errors and converts
them to �.

Internal timing covert channel To carry out an internal timing attack, an
app must execute two threads that share a common resource. Concretely,
an app can use internal timing to leak information on a target user t as
follows:
▸ Authenticated adversary a issue a request containing a guess that t is

interested-in g: GET /internal?target=t&guess=g

▸ The trusted app container invokes the app internal.
▸ App internal then executes the following LIO code:

varHigh <- fork $
toLabeled ⊺ $ do

v <- lookupDB t
if g == v then sleep 5000 else return ()

appendToAppStorage g
varLow <- fork $ do sleep 3000

appendToAppStore -1
wait varHigh
wait varLow
r <- readFromAppStore
return $ mkHtmlResp200 r

The code spawns two threads. The first reads the high value in a
toLabeled then outputs the guess to a low-label store, however, if the
guess is correct, it sleeps for five seconds before outputting the guess. The
second thread simply outputs a place holder after waiting for three seconds.
The result is that the ordering of outputs reveals whether the guess is cor-
rect. If the guess is incorrect, the store will read g,-1; if the guess is correct,
the store will read -1,g.

We implemented a magnified version of the attack above by sending
several requests to the server. The adversary repeatedly sends requests to
internal for each user in the system as a guess g. As with the termination
channel attack, we found that internal timing attack is feasible. For a
database of 10 users we managed to recover the entries in 66.92 seconds.

4 All our measurements were conducted on a laptop with a Intel Core i7 2620M
(2.7GHz) processor and 8GB of RAM, with GHC 7.4.1.
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Our modifications to LIO can be used to address the internal timing
attacks described above; replacing toLabeled with forkLIO eliminates the
internal timing leaks. More generally, we observe that by using forkLIO,
the time when the app writes to the persistent storage (appendToAppStore)
cannot be influenced by sensitive data. Similarly, replacing fork and wait
by their LIO counterparts renders the attack futile.

External timing covert channel We consider a simple external timing attack
to our dating website in which the adversary a has access to a high-precision
timer. An app external colluding with a can use external timing to leak a
target user t’s interested-in relationship as follows:
▸ Authenticated adversary a issues requests containing the target user t:

GET /external?target=t&guess=g

▸ The trusted container invokes external with the request.
▸ App external then proceeds to execute the following LIO code:

toLabeled ⊺ $ do
v <- lookupDB t
if g == v then sleep 5000 else return ()

return $ mkHtmlResp200 "done"

The attack is a component of the internal timing attack: given a target t and
guess g, if the g was correct the thread sleeps; otherwise it does nothing.
The attacker simply measures the response time – recognizing a delay as a
correct guess.

Despite its simplicity, we also found this attack to be plausible. In 33
seconds, we recovered a database of 10 users. Addressing this attack we
mitigated the app handler, as described in Section 2.5. The response time of
an app is mitigated, taking into account the arrival of a request. Although
we manged to recover 3 of the 10 user entries in 64 seconds—we found
that recovering the remaining user entries was infeasible. Of course, the
performance of well-behaved apps was unaffected.

2.9 Related Work

IFC security libraries The seminal work by Li and Zdancewic [Li and
Zdancewic, 2006] presents an implementation of information-flow secu-
rity as a library using a generalization of monads called Arrows [Hughes,
2000]. Following this line of work, Tsai et al. [Tsai et al., 2007] further con-
sider side-effects and concurrency. Different from our approach, Tsai et al.
provide termination-insensitive non-interference under a cooperative sched-
uler and no synchronization primitives. Russo et al. [Russo et al., 2008]
eliminate the need for Arrows by showing an IFC security library based
solely on monads. Their library leverages Haskell’s type-system to stati-
cally enforce non-interference. Jaskelioff and Russo [Jaskelioff and Russo,
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2011] propose a library that enforces non-interference by executing the
program as many times as security levels, which is known as secure multi-
execution [Devriese and Piessens, 2010]. Recently, Stefan et al. propose
the use of the monad LIO to track information-flow dynamically [Stefan
et al., 2011]. Morgenstern et al. [Morgenstern and Licata, 2010] encoded
an authorization- and IFC-aware programming language in Agda. Their
encoding, however, does not consider computations with side-effects. De-
vriese and Piessens [Devriese and Piessens, 2011] used monad transformers
and parametrized monads [Atkey, 2006] to enforce non-interference, both
dynamically and statically. None of the approaches mentioned above deals
with the termination channel. Moreover, none of them (except from Tsai et
al.) handle concurrency.

Internal timing covert channel There are several approaches to deal with
the internal timing covert channel. The work in [Smith and Volpano, 1998,
Volpano and Smith, 1999, Smith, 2001, 2003] relies on the non-realistic
primitive protect(c) which, by definition, hides the timing behaviour of
c. Our approach, on the other hand, relies on the fork primitive and the
semantics for mutable locations. Assuming a scenario where it is possible
to modify the scheduler, the work in [Russo and Sabelfeld, 2006a, Barthe
et al., 2007] propose a novel interaction between threads and the sched-
uler that is able to implement a generalized version of protect(c). A series
of work [Zdancewic and Myers, 2003, Huisman et al., 2006, Terauchi,
2008] prevents internal timing leaks by avoiding any races on public data.
Boudol and Castellani [Boudol and Castellani, 2001, 2002] avoid inter-
nal timing leaks by disallowing public events after branching on secret
data. The authors consider a fixed number of threads and no synchro-
nization primitives. Russo and Sabelfeld [Russo and Sabelfeld, 2006b]
show how to remove internal timing leaks under a cooperative scheduling
by manipulating yield commands. The termination channel is intrinsically
present under cooperative scheduling, i.e., there is no way to decouple ex-
ecutions between threads. The work by Russo et al. [Russo et al., 2006]
is the closest one to our approach to internal timing leaks. In that work,
the authors introduce a code transformation, from a sequential program
into a concurrent one, that spawns threads to execute branches and loops
whose conditionals depend on secret values. The idea of spawning threads
when computations use secrets is similar to ours, but it is used in a quite
different context. Firstly, Russo et al. apply their technique for a simple
sequential while-language, while we consider concurrent programs with
synchronization primitives. Secondly, and different from our work, their
approach does not consider leaks due to termination, i.e., the transforma-
tion guarantess termination-insensitive non-interference. Finally, incurring
high synchronization costs, the code transformation introduces synchro-
nization between spawned threads in order to preserve the semantics of the
original sequential program. The transformation might change the termi-
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nating behavior of programs in order to preserve security. Our proposal,
on the other hand, guarantees that the semantics of the program is the one
that the programmer writes in the code.

Termination and external covert channels There are several language-based
mechanisms to tackle the termination and external timing channels. Vol-
pano [Volpano and Smith, 1997] describes a type-system that removes the
termination channel by forbidding loops whose conditional depend on se-
crets. The work by Hedin and Sands [Hedin and Sands, 2005] avoids the
termination and external timing covert channels for sequential Java byte-
code by disallowing outputs after branching on secrets. Similarly, LIO com-
putations do not allow public outputs after observing secret data. However,
the programmer can spawn new threads to perform such computations and
thus allowing the rest of the system to still perform public outputs. Agat
[Agat, 2000] describes a code transformation that removes external timing
leaks by padding programs with dummy computations. The termination
channel is closed by disallowing loops on secrets. One drawback of Agat’s
transformation is that if there is an if-then-else, whose guard depends on
secret data, and only one of its branches is non-terminating, then the trans-
formed program becomes non-terminating. This approach has been adapted
for languages with concurrency [Sabelfeld and Sands, 2000, Sabelfeld,
2001, Sabelfeld and Mantel, 2002]. Moreover, the transformation has been
rephrased as a unification problem [Köpf and Mantel, 2006] as well as
being implemented using transactions [Barthe et al., 2006]. While targeting
sequential programs, secure multi-execution [Devriese and Piessens, 2010]
removes both the termination and external timing channel. However, the
latter is only closed if there are as many CPUs (or cores) as security levels
being considered by the technique. We refer the reader to [Kashyap et al.,
2011] for a more detailed description of possible enforcements for timing-
and termination-sensitive non-interference. Recently, Zhang et al. [Zhang
et al., 2012] propose a language-based mitigation approach for a simple
while-language extended with a mitigate primitive. Their work relies on
static annotations to provide information about the underlying hardware.
Compared to their work, our functional approach is more general and can
be extended to address other covert channels (e.g., storage). However, their
attack model is more powerful in considering the effects of hardware (e.g.,
cache). Nevertheless, we find their work to be complimentary: our system
can leverage static annotations and the Xenon “no-fill” mode to address
attacks relying on underlying hardware.

2.10 Summary

Many information flow control systems allow applications to sequence
code with publicly visible side-effects after code computing over private
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data. Unfortunately, such sequencing leaks private data through termination
channels (which affect whether the public side-effects ever happen), internal
timing channels (which affect the order of publicly visible side-effects), and
external timing channels (which affect the response time of visible side-
effects). Such leaks are far worse in the presence of concurrency, particularly
when untrusted code can spawn new threads.

We demonstrate that such sequencing can be avoided by introducing
additional concurrency when public values must reference the results of
computations over private data. We implemented this idea in an existing
Haskell information flow library, LIO. In addition, we show how our
library is amenable to mitigating external timing attacks by quantizing
the appearance of externally visible side-effects. To evaluate our ideas,
we prototyped the core of a dating web site showing that our interfaces
are practical and our implementation does indeed mitigate these covert
channels.
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Listing 6 Semantics for non-standard expressions.

E ∶∶= . . . ∣ label E e ∣ unlabel E ∣ out E e ∣ out l E

∣ forkLIO E e ∣ newLMVar E e ∣ takeLMVar E

∣ putLMVar E e ∣ labelOfLMVar E

(Lab)
σ.lbl ⊑ l ⊑ σ.clr

jΣ, ⟨σ,E[label l e]⟩o Ð→ jΣ, ⟨σ,E[return (Lb l e)]⟩o

(unLab)
l′ = σ.lbl ⊔ l l′ ⊑ σ.clr σ′ = σ[lbl↦ l′]

jΣ, ⟨σ,E[unlabel (Lb l e)]⟩o Ð→ jΣ, ⟨σ′,E[return e]⟩o

(output)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[αl ↦ Σ.αl ⊳ out(v)]
jΣ, ⟨σ,E[out l v]⟩o Ð→ jΣ′, ⟨σ,E[return ()]⟩o

(lFork)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l �]]

α = e >>= λx.putLMVar m x m fresh

jΣ, ⟨σ,E[forkLIO l e]⟩o
fork(e)
Ð→ jΣ′, ⟨σ,E[return (R m)]⟩o

(lWait)
jΣ, ⟨σ,E[waitLIO (R m)]⟩o Ð→ jΣ, ⟨σ,E[takeLMVar m]⟩o

(nLMVar)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]] m fresh

jΣ, ⟨σ,E[newLMVar l e]⟩o Ð→ jΣ′, ⟨σ,E[return m]⟩o

(tLMVar)
Σ.φ(m) = Lb l e σ.lbl ⊑ l ⊑ σ.clr

σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l �]]
jΣ, ⟨σ,E[takeLMVar m]⟩o Ð→ jΣ′, ⟨σ′,E[return e]⟩o

(pLMVar)
Σ.φ(m) = Lb l � σ.lbl ⊑ l ⊑ σ.clr

σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]]

jΣ, ⟨σ,E[putLMVar m e]⟩o Ð→ jΣ′, ⟨σ′,E[return ()]⟩o

(gLabR)
e = Σ.φ(m)

jΣ, ⟨σ,E[labelOfLMVar m]⟩o Ð→ jΣ, ⟨σ,E[labelOf e]⟩o
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Listing 7 Semantics for threadpools.

(step)
jΣ, to Ð→ jΣ′, t′o

jΣ, t ⊲ tso ↪ jΣ
′, ts ⊳ t

′
o

(no-step)
jΣ, to /Ð→

jΣ, t ⊲ tso ↪ jΣ, ts ⊳ to

(fork)

jΣ, to
fork(e)
Ð→ jΣ′, ⟨σ, e′⟩o tnew = ⟨σ, e⟩

jΣ, t ⊲ tso ↪ jΣ
′, ts ⊳ ⟨σ, e

′
⟩ ⊳ tnewo

(exit)
l = σ.lbl Σ′ = Σ[αl ↦ Σ.αl ⊳ exit(v)]

jΣ, ⟨σ, v⟩ ⊲ tso ↪ jΣ
′, tso

Listing 8 Erasure function.

εL(jΣ, tso) = jεL(Σ),filter (λ⟨σ, e⟩.e /≡ ●) (map εL ts)o

εL(⟨σ, e⟩) = {
⟨σ, ●⟩ σ.lbl /⊑ L
⟨σ, εL(e)⟩ otherwise

εL(Σ) = Σ[φ↦ εL(Σ.φ)][αl ↦ εL(αl)]l∈Labels

εL(αl) = {
ε l /⊑ L
map εL αl otherwise

εL(φ) = {(x, εL(φ(x))) ∶ x ∈ dom(φ)}

εL(Lb l e) = {
Lb l ● l /⊑ L
Lb l εL(e) otherwise

In the rest of the cases, εL is homomorphic.
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A Detailed proofs

In this section, we provide more details about the proofs for the results in
Section 2.7 as well as some auxiliary lemmas.

The following lemmas are necessary to prove that Ð→*
L and ↪*

L are
deterministic.

Proposition 3 (Determinacy of Ð→). If jΣ, tso Ð→ jΣ
′, t′so and jΣ, tso Ð→

jΣ′′, t′′s o, then jΣ
′, t′so = jΣ

′′, t′′s o.

Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step.

Proposition 1 (Determinacy of Ð→L). If jΣ, to Ð→L jΣ
′, t′o and

jΣ, to Ð→L jΣ
′′, t′′o, then jΣ′, t′o = jΣ′′, t′′o.

Proof. By Proposition 3 and definition of εL.

Proposition 4 (Determinacy of ↪). If jΣ, tso ↪ jΣ
′, t′so and jΣ, tso ↪

jΣ′′, t′′s o, then jΣ
′, t′so = jΣ

′′, t′′s o.

Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step, and using Proposition 3.

Proposition 2 (Determinacy of ↪L). If jΣ, tso ↪L jΣ
′, t′so and jΣ, tso ↪L

jΣ′′, t′′s o, then jΣ
′, t′so = jΣ

′′, t′′s o.

Proof. By Proposition 4 and the definition of εL.

The following proposition shows that the erasure function is homomor-
phic to the application of evaluation contexts and substitution, and that it
is idempotent.

Proposition 5 (Properties of erasure function).

1. εL(E[e]) = εL(E)[εL(e)]
2. εL([e2/x]e1) = [εL(e2)/x]εL(e1)
3. εL(εL(e)) = εL(e)
4. εL(εL(E)) = εL(E)
5. εL(εL(Σ)) = εL(Σ)
6. εL(εL(⟨σ, e⟩)) = εL(⟨σ, e⟩)
7. εL(εL(ts)) = εL(ts)
8. εL(εL(jΣ, tso)) = εL(jΣ, tso)

Proof. All follow from the definition of the erasure function εL, and by
induction on expressions and evaluation contexts.
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Most of the reduction rules in Listing 6 will change the runtime en-
vironment. In addition, these transformations usually depend on a given
expression, e.g. Σ ↦ Σ[φ ↦ Σ.φ[m ↦ e]] can be seen as a function of e.
We will represent these runtime transformations as functions h ∶ e×Σ → Σ,
where e is the set of expressions and Σ is the set of runtime environments.
We will also write he ∶ Σ → Σ for the partial application of h to an expres-
sion e. We extend this notation to transformations of stores and output
channels.

We say that a transformation f ∶ e×A→ A isL-independent if the secrets
introduced in structure A by the application of fe cannot be observed by
an attacker at level L, i.e.

εL ○ fe = εL ○ fεL(e) ○ εL.

The next lemma is useful in proving that a given environment trans-
formation is L-independent, by showing that its corresponding store and
output channel transformations are L-independent.

Lemma 2. Let he be a transformation for runtime environments that de-
pends on an expression e, given as he(Σ) = Σ[φ↦ fe(Σ.φ)][αl ↦ gel (Σ.αl)]

and thus uniquely determined by functions fe and gel for every label l and
expression e. If f and gl are all L-independent, then h is L-independent.

Proof.
εL(hεL(e)(εL(Σ)))
= εL(εL(Σ)[φ↦ fεL(e)(εL(Σ).φ)]

[αl ↦ g
εL(e)
l (εL(Σ).αl)])

= εL(εL(Σ)[φ↦ fεL(e)(εL(Σ.φ))]

[αl ↦ g
εL(e)
l (εL(Σ.αl))])

= εL(εL(Σ))[φ↦ εL(fεL(e)(εL(Σ.φ)))]

[αl ↦ εL(g
εL(e)
l (εL(Σ.αl)))]

= εL(Σ)[φ↦ εL(fe(Σ.φ))][αl ↦ εL(g
e
l (Σ.αl))]

= εL(Σ)[φ↦ fe(Σ.φ)][αl ↦ gel (Σ.αl)]

= εL(he(Σ))

The next lemma shows that the environment transformations in the
reduction rules are all L-independent.

Lemma 3. All runtime transformations he in the reduction rules in Listing 6
are L-independent.

Proof. There are two cases to consider: modifications to the store (φ),
which only update the contents of one reference, or appending a value to
an output channel.

▸ Case he(Σ) = Σ[φ ↦ fe(Σ.φ)], with fe(φ) = φ[m ↦ Lb l e]. By
Lemma 2, we only have to prove that f is L-independent. We con-
sider two cases:
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● l ⊑ L:
εL(fεL(e)(εL(φ)))
= εL(εL(φ)[m↦ Lb l εL(e)])
= εL(εL(φ[m↦ Lb l e]))
= εL(fe(φ))

● l /⊑ L:
εL(fεL(e)(εL(φ)))
= εL(εL(φ)[m↦ Lb l εL(e)])
= εL(εL(φ))[m↦ Lb l ●]
= εL(φ)[m↦ Lb l ●]
= εL(fe(φ))

▸ Case he(Σ) = Σ[αl ↦ gel (Σ.αl)] with gel (α) = α ⊳ e. By Lemma 2, we
only have to prove that gl is L-independent.
εL(g

εL(e)
l (εL(α)))

= εL(εL(α) ⊳ εL(e))
= εL(εL(α ⊳ e))
= εL(g

e
l (α))

▸ The rest of the cases are similar.

The following lemma establishes a simulation between Ð→ and Ð→L

when reducing the body of a thread whose current label is below or equal
to level L.

Lemma 4 (Single-step simulation for public computations).
If jΣ, ⟨σ, t⟩o Ð→ jΣ′, t′owith σ.lbl ⊑ L, then εL(jΣ, ⟨σ, t⟩o) Ð→L εL(jΣ

′, t′o).

jΣ, ⟨σ, e⟩o //

εL

��

jΣ1, t′o

εL

��
εL(jΣ, ⟨σ, e⟩o)

L
// εL(jΣ1, t′o)

Proof. The proof is by case analysis on the rule used to derive
jΣ, ⟨σ, t⟩o Ð→ jΣ′, t′o. As shown in Lemma 3, all environment modifi-
cations are consistent with the simulation: erasing secret data and then
modifying the environment with erased data is equivalent to modifying the
environment and then erasing the secrets.

▸ Case t = E[forkLIO l e]
εL(jΣ, ⟨σ,E[forkLIO l e]⟩o)
= jεL(Σ), ⟨σ, εL(E)[forkLIO l εL(e)]⟩o

fork(α)
Ð→ L εL(jεL(Σ

1), ⟨σ, εL(E)[return ()]⟩o)
= εL(jεL(Σ

1), εL(⟨σ,E[return ()]⟩)o)
(by Lemma 3, εL(Σ1) = εL(Σ

′))

= εL(jΣ
′, ⟨σ,E[return ()]⟩o)
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▸ Case t = E[out l e]
εL(jΣ, ⟨σ,E[out l e]⟩o)
= jεL(Σ), ⟨σ, εL(E)[out l εL(e)]⟩o

Ð→L εL(jεL(Σ
1), ⟨σ, εL(E)[return ()]⟩o)

= εL(jεL(Σ
1), εL(⟨σ,E[return ()]⟩)o)

= εL(jΣ
′, ⟨σ,E[return ()]⟩o)

▸ Case t = E[takeLMVar m]
εL(jΣ, ⟨σ,E[takeLMVar m]⟩o)
= jεL(Σ), ⟨σ, εL(E)[takeLMVar m]⟩o

Ð→L εL(jεL(Σ
1), ⟨σ′, εL(E)[return εL(e)]⟩o)

Note that now σ′.lbl = l. We consider two cases:
● l ⊑ L:
εL(jεL(Σ

1), ⟨σ′, εL(E)[return εL(e)]⟩o)
= εL(jΣ

′, ⟨σ′,E[return e]⟩o)
● l /⊑ L:
εL(jεL(Σ

1), ⟨σ′, εL(E)[return εL(e)]⟩o)
= jεL(Σ

′), ⟨σ′, ●⟩o
= εL(jΣ

′, ⟨σ′,E[return e]⟩o)

In both cases, it follows that εL(Σ1) = εL(Σ
′) by Lemma 3.

▸ Trivially reduces to the t = E[takeLMVar m] case.
▸ Case t = E[newLMVar l e].

εL(jΣ, ⟨σ,E[newLMVar l e]⟩o)
= jεL(Σ), ⟨σ, εL(E)[newLMVar l e]⟩o

Ð→L εL(jΣ
1, ⟨σ, εL(E)[return m]⟩o)

= εL(jΣ
1, εL(⟨σ,E[return m]⟩)o)

= εL(jΣ
′, ⟨σ,E[return m]⟩o)

▸ Case t = E[putLMVar m e].
εL(jΣ, ⟨σ,E[putLMVar m e]⟩o)
= jεL(Σ), ⟨σ, εL(E)[putLMVar m εL(e)]⟩o

Ð→L εL(jΣ
1, ⟨σ, εL(E)[return ()]⟩o)

= εL(jΣ
1, εL(⟨σ,E[return ()]⟩)o)

= εL(jΣ
′, ⟨σ,E[return ()]⟩o)

▸ The rest of the cases are similar.

The following lemma establishes a simulation between ↪ and ↪L when
reducing the body of a thread whose current label is below or equal to level
L.

Lemma 5 (Single-step simulation for public computations). If jΣ, ⟨σ, t⟩ ⊲
tso ↪ jΣ

′, t′so with σ.lbl ⊑ L, then εL(jΣ, ⟨σ, t⟩ ⊲ tso) ↪L εL(jΣ
′, t′so).

jΣ, ⟨σ, e⟩ ⊲ tso
� � //

εL

��

jΣ′, t′so

εL

��
εL(jΣ, ⟨σ, e⟩ ⊲ tso)

� �

L
// εL(jΣ′, t′so)
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Proof. The proof is by case analysis on the rule used to derive jΣ, ⟨σ, t⟩ ⊲
tso ↪ jΣ

′, t′so.

▸ Case (Step). By Lemma 4, we know that εL(jΣ, to) Ð→L εL(jΣ
′, t′o),

so jεL(Σ), εL(t) ⊲ εL(ts)o ↪L εL(jεL(Σ
′), εL(ts) ⊳ εL(t

′)o).
εL(jΣ, t ⊲ tso)
= jεL(Σ), εL(t) ⊲ εL(ts)o
↪L εL(jεL(Σ

′), εL(ts) ⊳ εL(t
′)o)

= εL(jΣ
′, ts ⊳ t

′o)

▸ Case (No-Step).
εL(jΣ, t ⊲ tso)
= jεL(Σ), εL(t) ⊲ εL(ts)o
↪L εL(jεL(Σ), εL(ts) ⊳ εL(t)o)
= εL(jΣ, ts ⊳ to)

▸ Case (Fork).
εL(jΣ, ⟨σ, t⟩ ⊲ tso)
= jεL(Σ), ⟨σ, εL(t)⟩ ⊲ εL(ts)o
↪L εL(jεL(Σ

′), εL(ts) ⊳ ⟨σ, εL(t
′)⟩ ⊳ tnewo)

= jεL(Σ
′), εL(ts ⊳ ⟨σ, t

′⟩ ⊳ tnew)o
= εL(jΣ

′, ts ⊳ ⟨σ, t
′⟩ ⊳ tnewo)

▸ Case (Exit).
εL(jΣ, ⟨σ, v⟩ ⊲ tso)
= jεL(Σ), ⟨σ, εL(v)⟩ ⊲ εL(ts)o
↪L εL(jΣ

1, εL(ts)o)
= εL(jΣ

′, tso)

We can also show that initial and final configurations for any reduction
steps taken from a thread above L are equal when erased.

Lemma 6. If jΣ, ⟨σ, e⟩o Ð→ jΣ1, t′o with σ.lbl /⊑ L, then εL(jΣ, ⟨σ, e⟩o) =
εL(jΣ

1, t′o), i.e.,

jΣ, ⟨σ, e⟩o //

εL

��

jΣ1, t′o

εL

��
εL(jΣ, ⟨σ, e⟩o) εL(jΣ

1, t′o)

Proof. Since εL(jΣ, ⟨σ, e⟩o) = jεL(Σ), ⟨σ, ●⟩o, we only have to show that
εL(Σ) = εL(Σ

1), where Σ1 is the modified environment after performing
the reduction step. The proof is similar toL-independence for the simulation
lemma: for an arbitrary environment transformation he, we have to prove
that εL ○ he = εL.

▸ Case he(Σ) = Σ[φ↦ fe(Σ.φ)], with fe(φ) = φ[m↦ Lb l e]. We prove
that εL ○ fe = εL.
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εL(fe(φ))
= εL(φ[m↦ Lb l e])
= εL(φ[m↦ Lb l ●])
= εL(φ)

▸ Case he(Σ) = Σ[αl ↦ gel (Σ.αl)] with gel (α) = α ⊳ e. Analogous.

Lemma 7. If jΣ, ⟨σ, e⟩ ⊲ tso ↪ jΣ
1, t′sowith σ.lbl /⊑ L, then εL(jΣ, ⟨σ, e⟩ ⊲

tso) = εL(jΣ
1, t′so), i.e.,

jΣ, ⟨σ, e⟩ ⊲ tso
� � //

εL

��

jΣ1, t′so

εL

��
εL(jΣ, ⟨σ, e⟩ ⊲ tso) εL(jΣ

1, t′so)

Proof. We illustrate the proof in the case of rule (Step). Let jΣ, ⟨σ, e⟩ ⊲
tso Ð→ jΣ

1, ts ⊳ ⟨σ, e
′⟩o, then

εL(jΣ, ⟨σ, e⟩ ⊲ tso)
= jεL(Σ), εL(ts)o
= jεL(Σ

1), εL(ts)o
= εL(jΣ

1, ts ⊳ ⟨σ, e
′⟩o)

The other cases are similar.

The next lemma establishes a simulation between ↪* and ↪*
L.

Lemma 1 (Many-step simulation).Given a well-typed thread pool ts (with
no Lb, ()LIO, �, R, and ●), an attacker at level L, and a runtime environment
Σ, if jΣ, tso ↪

* jΣ′, t′so, then εL(jΣ, tso) ↪
*
L εL(jΣ

′, t′so).

Proof. In order to prove this result, we rely on properties of the erasure
function, such as the fact that it is idempotent and homomorphic to the
application of evaluation contexts and substitution.

The proof is by induction on the derivation of jΣ, tso ↪
* jΣ′, t′so. We

consider a thread queue of the form ⟨σ, e⟩ ⊲ rs, and suppose that jΣ, ⟨σ, e⟩ ⊲
rso ↪ jΣ

1, r′so and jΣ
1, r′so ↪

* jΣ′, t′so (otherwise the reduction is not
making any progress, and the result is trivial).

▸ If σ.lbl ⊑ L, the result follows by Lemma 5 and the induction hypoth-
esis.

▸ If σ.lbl /⊑ L, the result follows by Lemma 7 and the induction hypoth-
esis.

We can now prove the non-interference theorem.
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Theorem 2 (Termination-sensitive non-interference).Given a computation
e (with no Lb, ()LIO,�, R, and ●) where Γ ⊢ e ∶ Labeled ` τ → LIO ` (Labeled ` τ ′),
an attacker at level L, an initial securiy context σ, and runtime environ-
ments Σ1 and Σ2 where Σ1.φ = Σ2.φ = ∅ and Σ1.αk = Σ2.αk = ε for all
levels k, then

∀e1e2.(Γ ⊢ ei ∶ Labeled ` τ)i=1,2 ∧ e1 ≈L e2
∧ jΣ1, ⟨σ, e e1⟩o ↪

* jΣ′1, t
1
so

⇒ ∃Σ′2t
2
s.jΣ2, ⟨σ, e e2⟩o ↪

* jΣ′2, t
2
so ∧ jΣ

′

1, t
1
so ≈L jΣ

′

2, t
2
so

Proof. Take jΣ1, ⟨σ, e e1⟩o ↪
* jΣ′1, t

1
so and apply Lemma 1 to get

εL(jΣ1, ⟨σ, e e1⟩o) ↪
*
L εL(jΣ

′

1, t
1
so). We know this reduction only includes

public (⊑ L) steps, so the number of steps is lower than or equal to the
number of steps in the first reduction.

We can always find a reduction starting from εL(jΣ2, ⟨σ, e e2⟩o) with
the same number of steps as εL(jΣ1, ⟨σ, e e1⟩o) ↪

*
L εL(jΣ

′

1, t
1
so), so by

the Determinacy Lemma we have εL(jΣ2, ⟨σ, e e2⟩o) ↪
*
L εL(jΣ

′

2, t
2
so). By

Lemma 1 again, we get jΣ2, ⟨σ, e e2⟩o ↪
* jΣ′2, t

2
so and therefore jΣ′1, t

1
so ≈L

jΣ′2, t
2
so.

B Semantics and typing rules

Listings 9 and 10 show the missing typing rules for the calculus. Similarly,
Listing 11 shows the reduction rules that were not included in Section 2.6.

Listing 9 Typing rules for values.

⊢ true ∶ Bool ⊢ false ∶ Bool ⊢ () ∶ () ⊢ l ∶ `

Γ (x) = τ

Γ ⊢ x ∶ τ

Γ [x↦ τ1] ⊢ e ∶ τ2

Γ ⊢ λx.e ∶ τ1 → τ2

Γ ⊢ e ∶ τ → τ

Γ ⊢ fix e ∶ τ

C Application: Mitigating attack on RSA

As in [Askarov et al., 2010], to highlight the effectiveness of our mitigator
implementation, we re-implement the timing attack on the OpenSSL 0.9.7
RSA implementation as originally presented in [Brumley and Boneh, 2003].
Compared to the previous dating-website scenario, in which a malicious
app deliberately delayed computations, the covert timing channel in this
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case is present due to the non-trivial operations performed in a decryption.
Hence, an attacker can recover an RSA key by repeatedly requesting the
RSA oracle, which may be a web server using SSL, to decrypt different
ciphertext messages.

Following [Brumley and Boneh, 2003], one can reveal the secret key
indirectly, by recovering q and exposing the factorization of RSA modulus
N = pq, for q < p. To do so, the attack proceeds as follows. Firstly, it guesses
an initial value for q, named g, that is between 2log2 N/2 and 2log2 N/2−1,
and plots the decryption times (in nanoseconds) of all the most significant
2-3 bits. The expected peak in the plot graph corresponds to our first
approximation of q. Assuming that the most significant i − 1 bits of q have
been already recovered, we recover the ith bit according to:

▸ Set the i−1 most significant bits (MSB) of gi to the i−1 recovered MSB
of q, leaving the remaining bits unset.

▸ Let ghi being the same as gi but with the ith bit set.
▸ Measure the time to decrypt gi, written t1.
▸ Measure the time to decrypt ghi, written t2.
▸ Compute ∆ =∣ t2 − t1 ∣. If ∆ is large, bit i of q is unset, otherwise it is

set.

As in [Brumley and Boneh, 2003, Askarov et al., 2010], we overcome noise
due to the operating system being a multi-user environment by repeating
the decryption for gi and ghi numerous times (in our experiments, 7) and
taking the median time difference. Additionally, to build a strong indicator
for the bits of q, we take the time difference of decrypting a neighborhood
of values gi, . . . , gi + n and the corresponding neighborhood of high values
ghi, . . . , ghi + n; in our experiments n = 600.

To evaluate our Haskell mitigator implementation with the RSA attack,
we extended the HsOpenSSL package with bindings for the C
OpenSSL RSA encryption and decryption functions. On a laptop with a
Intel Core i7 2620M (2.7GHz) processor with 8GB of RAM, we built
our extended Haskell OpenSSL library with GHC 7.2.1, linking it against
the C OpenSSL 0.9.7 library. The attack against a “toy” 512-bit key is
shown Figure 1. We only carried out the attack against the 256 MSBs
as Coppersmith’s algorithm can be used to recover the rest in an efficient
manner [Coppersmith, 1997]. As the figure shows, there is a clear distinction
between when the bits of q are 0 and 1. Finally, applying the fast-doubling
time mitigator with an initial quantum of 500 microseconds, we bound the
key leakage as shown by the results of Figure 2.

D Evaluation: Overhead of a fork

To analyze the performance penalty in using forkLIO and waitLIO as op-
posed to toLabeled we micro-benchmarked the two approaches. As ex-
pected, Figure 3, the performance overhead of forking is unnoticeable.
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bitno  bit=1 bit=0
254 2363
253 11344
252 8867
251 10056
250 50
249 5668
248 1012
247 19233
246 1203
245 656
244 10756
243 9142
242 13351
241 4296
240 11212
239 9507
238 731
237 9052
236 9338
235 1227
234 10716
233 7667
232 13922
231 9655
230 6029
229 1153
228 2766
227 8931
226 6645
225 5623
224 1299
223 8407
222 2296
221 7484
220 1340
219 2231
218 3444
217 57
216 996
215 481
214 421
213 797
212 5071
211 7223
210 2961
209 3363
208 6564
207 9362
206 373
205 218
204 492
203 6248
202 7764
201 6133
200 848
199 684
198 9211
197 9893
196 8156
195 8702
194 541
193 11635
192 4678
191 1106
190 10322
189 10469
188 11659
187 1193
186 390
185 337
184 1803
183 1269
182 11193
181 393
180 353
179 2704
178 11315
177 3070
176 7874
175 9029
174 7677
173 833
172 1009
171 1201
170 848
169 238
168 15217
167 7863
166 1510
165 458
164 525
163 11230
162 10541
161 12590
160 14275
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Fig. 1. Unmitigated RSA attack. Time difference is in nanoseconds.

bitno  bit=1 bit=0
254 2.95E+10
253 2.95E+10
252 2.95E+10
251 2.95E+10
250 2.96E+10
249 2.95E+10
248 2.96E+10
247 2.95E+10
246 2.95E+10
245 2.96E+10
244 2.95E+10
243 2.95E+10
242 2.96E+10
241 2.95E+10
240 2.95E+10
239 2.94E+10
238 2.96E+10
237 2.95E+10
236 2.96E+10
235 2.95E+10
234 2.95E+10
233 2.95E+10
232 2.97E+10
231 2.95E+10
230 2.95E+10
229 2.95E+10
228 2.95E+10
227 2.93E+10
226 2.95E+10
225 2.95E+10
224 2.95E+10
223 2.95E+10
222 2.95E+10
221 2.94E+10
220 2.95E+10
219 2.95E+10
218 2.95E+10
217 2.95E+10
216 2.95E+10
215 2.93E+10
214 2.95E+10
213 2.95E+10
212 2.95E+10
211 2.95E+10
210 2.95E+10
209 2.95E+10
208 2.95E+10
207 2.91E+10
206 2.95E+10
205 2.95E+10
204 2.95E+10
203 2.95E+10
202 2.95E+10
201 2.95E+10
200 2.95E+10
199 2.95E+10
198 2.94E+10
197 2.93E+10
196 2.94E+10
195 2.95E+10
194 2.95E+10
193 2.94E+10
192 2.95E+10
191 2.95E+10
190 2.95E+10
189 2.94E+10
188 2.94E+10
187 2.94E+10
186 2.91E+10
185 2.95E+10
184 2.95E+10
183 2.95E+10
182 2.94E+10
181 2.94E+10
180 2.93E+10
179 2.94E+10
178 2.94E+10
177 2.94E+10
176 2.94E+10
175 2.94E+10
174 2.94E+10
173 2.87E+10
172 2.94E+10
171 2.94E+10
170 2.94E+10
169 2.94E+10
168 2.94E+10
167 2.94E+10
166 2.94E+10
165 2.94E+10
164 2.94E+10
163 2.94E+10
162 2.94E+10
161 2.94E+10
160 2.94E+10
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Fig. 2. Mitigated RSA attack. Time difference is in nanoseconds.
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Fig. 3. Execution time in milliseconds for performing a forkLIO and waitLIO or
toLabeled. The x-axis specifies the number of operations performed inside the
forkLIO or toLabeled.
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Listing 10 Typing rules for expressions.

Γ ⊢ e1 ∶ τ1 → τ2 Γ ⊢ e2 ∶ τ1

Γ ⊢ e1 e2 ∶ τ2

Γ ⊢ e1 ∶ Bool Γ ⊢ e2 ∶ τ Γ ⊢ e3 ∶ τ

Γ ⊢ if e1 then e2 else e3 ∶ τ

Γ ⊢ e1 ∶ τ1 Γ [x↦ τ1] ⊢ e2 ∶ τ2

Γ ⊢ let x = e1 in e2 ∶ τ2

Γ ⊢ e ∶ τ

Γ ⊢ return e ∶ LIO ` τ

Γ ⊢ e1 ∶ LIO ` τ1 Γ ⊢ e2 ∶ τ1 → LIO ` τ2

Γ ⊢ e1 >>= e2 ∶ LIO ` τ2

Γ ⊢ e1 ∶ ` Γ ⊢ e2 ∶ τ

Γ ⊢ label e1 e2 ∶ LIO ` (Labeled ` τ)

Γ ⊢ e ∶ Labeled ` τ

Γ ⊢ unlabel e ∶ LIO ` τ

Γ ⊢ e1 ∶ ` Γ ⊢ e2 ∶ LIO ` τ

Γ ⊢ forkLIO e1 e2 ∶ LIO ` (Result ` τ)

Γ ⊢ e ∶ Result ` τ

Γ ⊢ waitLIO e ∶ LIO ` τ

Γ ⊢ e1 ∶ ` Γ ⊢ e2 ∶ τ

Γ ⊢ out e1 e2 ∶ LIO ` ()

Γ ⊢ e1 ∶ ` Γ ⊢ e2 ∶ τ

Γ ⊢ newLMVar e1 e2 ∶ LIO ` (LMVar ` τ)

Γ ⊢ e ∶ LMVar ` τ

Γ ⊢ takeLMVar e ∶ LIO ` τ

Γ ⊢ e1 ∶ LMVar ` τ Γ ⊢ e2 ∶ τ

Γ ⊢ putLMVar e1 e2 ∶ LIO ` ()

Γ ⊢ e ∶ `

⊢ lowerClr e ∶ LIO ` ()
⊢ getLabel ∶ LIO ` `

⊢ getClearance ∶ LIO ` `
Γ ⊢ e ∶ Lb ` τ

Γ ⊢ labelOf e ∶ `

Γ ⊢m ∶ LMVar ` τ

Γ ⊢ labelOfLMVar m ∶ `
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Listing 11 Semantics for standard constructs.

E ∶∶= [⋅] ∣ E e ∣ if E then e else e

∣ return E ∣ E >>= e

∣ lowerClr E ∣ labelOf E ∣ . . .

jΣ, ⟨σ,E[(λx.e1) e2]⟩o Ð→ jΣ, ⟨σ,E[[e2/x]e1]⟩o

jΣ, ⟨σ,E[fix e]⟩o Ð→ jΣ, ⟨σ,E[e (fix e)]⟩o

jΣ, ⟨σ,E[if true then e1 else e2]⟩o Ð→ jΣ, ⟨σ,E[e1]⟩o

jΣ, ⟨σ,E[if false then e1 else e2]⟩o Ð→ jΣ, ⟨σ,E[e2]⟩o

jΣ, ⟨σ,E[let x = e1 in e2]⟩o Ð→ jΣ, ⟨σ,E[[e1/x]e2]⟩o

jΣ, ⟨σ,E[return v]⟩o Ð→ jΣ, ⟨σ,E[(v)LIO
]⟩o

jΣ, ⟨σ,E[(v)LIO >>= e2]⟩o Ð→ jΣ, ⟨σ,E[e2 v]⟩o

σ.lbl ⊑ l ⊑ σ.clr
jΣ, ⟨σ,E[label l e]⟩o Ð→ jΣ, ⟨σ,E[return (Lb l e)]⟩o

l′ = σ.lbl ⊔ l l′ ⊑ σ.clr σ′ = σ[lbl↦ l′]

jΣ, ⟨σ,E[unlabel (Lb l e)]⟩o Ð→ jΣ, ⟨σ′,E[return e]⟩o

σ.lbl ⊑ l ⊑ σ.clr σ′ = σ[clr↦ l]

jΣ, ⟨σ,E[lowerClr l]⟩o Ð→ jΣ, ⟨σ′,E[return ()]⟩o

jΣ, ⟨σ,E[getLabel]⟩o Ð→ jΣ, ⟨σ,E[return σ.lbl]⟩o

jΣ, ⟨σ,E[getClearance]⟩o Ð→ jΣ, ⟨σ,E[return σ.clr]⟩o

jΣ, ⟨σ,E[labelOf (Lb l e)]⟩o Ð→ jΣ, ⟨σ,E[l]⟩o
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Abstract. Information flow control allows untrusted code to access
sensitive and trustworthy information without leaking this infor-
mation. However, the presence of covert channels subverts this se-
curity mechanism, allowing processes to communicate information
in violation of IFC policies. In this paper, we show that concurrent
deterministic IFC systems that use time-based scheduling are vulner-
able to a cache-based internal timing channel. We demonstrate this
vulnerability with a concrete attack on Hails, one particular IFC web
framework. To eliminate this internal timing channel, we implement
instruction-based scheduling, a new kind of scheduler that is indiffer-
ent to timing perturbations from underlying hardware components,
such as the cache, TLB, and CPU buses. We show this scheduler is
secure against cache-based internal timing attacks for applications
using a single CPU. To show the feasibility of instruction-based
scheduling, we have implemented a version of Hails that uses the
CPU retired-instruction counters available on commodity Intel and
AMD hardware. We show that instruction-based scheduling does
not impose significant performance penalties. Additionally, we for-
mally prove that our modifications to Hails’ underlying IFC system
preserve non-interference in the presence of caches.
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3.1 Introduction

The rise of extensible web applications, like the Facebook Platform, is
spurring interest in information flow control (IFC) [Myers and Liskov,
1997, Sabelfeld and Myers, 2003]. Popular platforms like Facebook give
approved apps full access to users’ sensitive data, including the ability to
violate security policies set by users. In contrast, IFC allows websites to
run untrusted, third-party apps that operate on sensitive user data [Krohn
et al., 2007a, Giffin et al., 2012], ensuring they abide by security policies
in a mandatory fashion.

Recently, Hails [Giffin et al., 2012], a web-platform framework built
atop the LIO IFC system [Stefan et al., 2011, 2012], has been used to
implement websites that integrate third-party untrusted apps. For example,
the code-hosting website GitStar.com built with Hails uses untrusted apps
to deliver core features, including a code viewer and wiki. GitStar relies on
LIO’s IFC mechanism to enforce robust privacy policies on user data and
code.

LIO, like other IFC systems, ensures that untrusted code does not write
data that may have been influenced by sensitive sources to public sinks.
For example, an untrusted address-book app is allowed to compute over
Alice’s friends list and display a stylized version of the list to Alice, but it
cannot leak any information about her friends to arbitrary end-points. The
flexibility of IFC makes it particularly suitable for the web, where access
control lists often prove either too permissive or too restrictive.

However, a key limitation of IFC is the presence of covert channels,
i.e., “channels” not intended for communication that nevertheless allow
code to subvert security policies and share information [Lampson, 1973]. A
great deal of research has identified and analyzed covert channels [Millen,
1999]. In this work, we focus on the internal timing covert channel, which
occurs when sensitive data is used to manipulate the timing behavior of
threads so that other threads can observe the order in which shared public
resources are used [Smith and Volpano, 1998, Volpano and Smith, 1999].
Though we do not believe our solution to the internal timing covert channel
affects (either positively or negatively) other timing channels, such as the
external timing covert channel, which is derived from measuring external
events [Agat, 2000, Hedin and Sands, 2005, Barthe et al., 2006] (e.g., wall-
clock), addressing these channels is beyond our present scope.

LIO eliminates the internal timing covert channel by restricting how
programmers write code. Programmers are required to explicitly decouple
computations that manipulate sensitive data from those that can write to
public resources, eliminating covert channels by construction. However,
decoupling only works when all shared resources are modeled. LIO only
considers shared resources that are expressible by the programming lan-
guage, e.g., shared-variables, file descriptors, semaphores, channels, etc.
Implicit operating system and hardware state can still be exploited to alter
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the timing behavior of threads, and thus leak information. Reexamining
LIO, we found that the underlying CPU cache can be used to introduce an
internal timing covert channel that leaks sensitive data. A trivial attack can
leak data at 0.75 bits/s and, despite the low bandwidth, we were able to
leak all the collaborators on a private GitStar.com project in less than a
minute.

Several countermeasures to cache-based attacks have previously been
considered, primarily in the context of cryptosystems following the work
of Kocher [Kocher, 1996] (see Section 3.8). Unfortunately, many of the
techniques are not designed for IFC scenarios. For example, modifying an
algorithm implementation, as in the case of AES [Bonneau and Mironov,
2006], does not naturally generalize to arbitrary untrusted code. Similarly,
flushing or disabling the cache when switching protection domains, as
suggested in [Barthe et al., 2012, Zhang et al., 2012], is prohibitively expen-
sive in systems like Hails, where context switches occur hundreds of times
per second. Finally, relying on specialized hardware, such as partitioned
caches [Page, 2005], which isolate the effects of one partition from code
using a different partition, restricts the deployability and scalability of the
solution; partitioned caches are not readily available and often cannot be
partitioned to an arbitrary security lattice.

This paper describes a countermeasure for cache-based attacks when
execution is confined to a single CPU. Our method generalizes to arbitrary
code, imposes minimal performance overhead, scales to an arbitrary se-
curity lattice, and leverages hardware features already present in modern
CPUs. Specifically, we present an instruction-based scheduler that elimi-
nates internal timing channels in concurrent programs that time-slice a
single CPU and contend for the same cache, TLB, bus, and other hard-
ware facilities. We implement the scheduler for the LIO IFC system and
demonstrate that, under realistic restrictions, our scheduler eliminates such
attacks in Hails web applications.

Our contributions are as follows.

▸ We implement a cache-based internal timing attack for LIO.
▸ We close the cache-based covert channel by scheduling user-level threads

on a single CPU core based on the number of instructions they execute
(as opposed to the amount of time they execute). Our scheduler can
be used to implement other concurrent IFC systems which implicitly
assume instruction-level scheduling (e.g., [Smith and Volpano, 1998,
Honda et al., 2000, Zdancewic and Myers, 2003, Huisman et al., 2006,
Russo and Sabelfeld, 2006a]).

▸ We implement our instruction-based scheduler as part of the Glasgow
Haskell Compiler (GHC) runtime system, atop which LIO and Hails
are built. We use CPU performance counters, prevalent on most mod-
ern CPUs, to pre-empt threads according to the number of retired in-
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structions. The measured impact on performance, when compared to
time-based scheduling, is negligible.
We believe these techniques to be applicable to operating systems that
enforce IFC, including [Zeldovich et al., 2006, Krohn et al., 2007b,
Murray et al., 2013], though at a higher cost in performance for appli-
cation code that is highly optimized for locality (see Section 3.5).

▸ We augment the LIO [Stefan et al., 2012] semantics to model the cache
and formally prove that instruction-based scheduling removes leaks due
to caches.
The paper is organized as follows. Section 3.2 discusses cache-based at-

tacks and existing countermeasures. In Section 3.3 presents our instruction-
based scheduling solution. Section 3.4 describes our modifications to GHC’s
runtime, while Section 3.5 analyses their performance impact. Formal guar-
antees and discussions of our approach are detailed in Sections 3.6 and 3.7.
We describe related work in Section 3.8 and conclude in Section 3.9.

3.2 Cache Attacks and Countermeasures

The severity of information leakage attacks through the CPU hardware
cache has been widely considered by the cryptographic community (e.g.
[Percival, 2005, Osvik et al., 2006]). Unlike crypto work, where attackers
extract sensitive information through the execution of a fixed crypto algo-
rithm, we consider a scenario in which the attacker provides arbitrary code
in a concurrent IFC system. In our scenario, the adversary is a developer
that implements a Hails app that interfaces with user-sensitive data using
LIO libraries.

We found that, knowing only the cache size of the underlying CPU,
we can easily build an app that exploits the shared cache to carry out
an internal timing attack that leaks sensitive data at 0.75 bits/s. Several
IFC systems, including [Honda et al., 2000, Smith and Volpano, 1998,
Zdancewic and Myers, 2003, Huisman et al., 2006, Russo and Sabelfeld,
2006a, Stefan et al., 2012], model internal timing attacks and address them
by ensuring that the outcome of a race to a public resource does not depend
on secret data. Unfortunately, these systems only account for resources
explicitly modeled at the programming language level and not underlying
OS or hardware state, such as the CPU cache or TLB. Hence, even though
the semantics of these systems rely on instruction-based scheduling (usually
to simplify expressing reduction rules), real-world implementations use
time-based scheduling for which the formal guarantees do not hold. The
instruction-based scheduler proposed in this work can be used to make
the assumptions of such concurrent IFC systems match the situation in
practice. In the remainder of this section, we show the internal timing
attack that leverages the hardware cache. We also discuss several existing
countermeasures that could be employed by Hails.
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1. lowArray := new Array[M];
2. fillArray (lowArray)

1. if secret 1. for i in [1.. n] 1. for i in [1.. n+m]
2. then highArray := new Array[M] 2. skip 2. skip
3. fillArray (highArray) 3. readArray(lowArray) 3. outputLow(0)
4. else skip 4. outputLow(1)

thread 1 thread 2 thread 3

Fig. 1. A simple cache attack.

3.2.1 Example cache attack

We mount an internal timing attack by influencing the scheduling behavior
of threads through the cache. Consider the code shown in Figure 1. The
attack leaks the secret boolean value secret in thread 1 by affecting when
thread 2 writes to the public channel relative to thread 3.

The program starts (lines 1–2) by creating and initializing a public array
lowArray whose size M corresponds to the cache size; fillArray simply sets
every element of the array to 0 (this will place the array in the cache). The
program then spawns three threads that run concurrently. Assuming a
round-robin time-based scheduler, the execution of the attack proceeds as
illustrated in Figure 2, where secret is set to true (top) and false (bottom),
respectively.
▸ Depending on the secret value secret, thread 1 either performs a no-

operation (skip on line 4), leaving the cache intact, or evicts lowArray
from the cache (lines 2–3) by creating and initializing a new (non-public)
array highArray.

▸ We assume that thread 1 takes less than n steps to complete its execu-
tion—a number that can be determined experimentally; in Figure 2, n is
four. Hence, to allow all the effects on the cache due to thread 1 to settle,
thread 2 delays its computation by n steps (lines 1–2). Subsequently, the
thread reads every element of the public array lowArray (line 3), and
finally writes 1 to a public output channel (line 4). Crucial to carrying
out the attack, the duration of thread 2’s reads (line 3) depends on the
state of the cache: if the cache was modified by thread 1, i.e., secret is
true, thread 2 needs to wait for all the public data to be retrieved from
memory (as opposed to the cache) before producing an output. This
requires evicting highArray from the cache and fetching lowArray, a
process that takes a non-negligible amount of time. However, if the
cache was not touched by thread 1, i.e., secret is false, thread 2 will get
few cache misses and thus produce its output with no delay.

▸ We assume that thread 2 takes less than m, where m<n, steps to complete
reading lowArray (line 3) when the reads hit the cache, i.e., lowArray
was not replaced by highArray. Like n, this metric can be determined
experimentally; in Figure 2, m is three. Using this, thread 3 simply
delays its computation by n+m steps (lines 1–2) and then writes 0 to



Instruction-based Scheduling 75

a public output channel (line 3). The role of thread 3 is solely to serve
as a baseline for thread 2’s output: producing its output before thread
2 when the latter is filling the cache, i.e., secret is true; conversely, it
produces an output after thread 2 if thread 1 did not touch the cache,
i.e., secret is false.

thread 1
thread 2
thread 3

cache

thread 1
thread 2
thread 3

cache

readArray
1

0

fillArray

1

0 time

low
high

readArray

mn

Fig. 2. Execution of the cache attack with secret true (top) and false (bottom).

We remark that the race between thread 2 and thread 3 to write to
a shared public channel, influenced by the cache state, is precisely what
facilitates the attack. We described how to leak a single bit, but the attack
can easily be magnified by wrapping it in a loop. Note also that we have
assumed the attacker has complete control of the cache—i.e., the cache is
not affected by other code running in parallel. However, the attack is still
plausible under weaker assumptions so long as the attacker deals with the
additional noise, as exemplified by the timing attacks on AES [Osvik et al.,
2006].

3.2.2 Existing countermeasures

The internal timing attack arises as a result of cache effects influencing
thread-scheduling behavior. Hence, one series of countermeasures addresses
the problem through low-level CPU features that provide better control of
the cache.

Flushing the cache Naively, we can flush the cache on every context switch.
In the context of Figure 1, this guarantees that, when thread 2 executes
the readArray instruction, its duration is not affected by thread 1 evicting
lowArray from the cache—the cache will always be flushed on a context
switch, hence thread 3 will always write to the output channel first.

No-fill cache mode Several architectures, including Intel’s Xeon and Pen-
tium 4, support a cache no-fill mode [Intel, 2012]. In this mode, read/write
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hits access the cache; misses, however, read from and write to memory di-
rectly, leaving the cache unchanged. As considered by Zhang et al. [Zhang
et al., 2012], we can execute all threads that operate on non-public data in
this mode. This approach guarantees that sensitive data cannot affect the
cache. Unfortunately, threads operating on non-public data and relying on
the cache will suffer from performance degradation.

Partitioned cache Another approach is to partition the cache according to
the number of security levels, as suggested in [Zhang et al., 2012]. Using
this architecture, a thread computing on secret data only accesses the secret
partition, while a thread computing on public data only access the public
one. This approach effectively corresponds to giving each differently-labeled
thread access to its own cache and, as a result, the scheduling behavior of
public threads cannot be affected by evicting data from the cache.

Unfortunately, none of the aforementioned solutions can be used in
systems built with Hails (e.g., GitStar). Flushing the cache is prohibitively
expensive for preemptive systems that perform a context switch hundreds
of times per second—the impact on performance would gravely reduce
usability. The no-fill mode solution is well suited for systems wherein the
majority of the threads operate on public data. In such cases, only threads
operating on sensitive data will incur a performance penalty. However,
in the context of Hails, the solution is only slightly less expensive than
flushing the cache. Hails threads handle HTTP requests that operate on
individual (non-public) user data, hence most threads will not be using
the cache. Another consequence of threads handling differently-labeled
data is that partitioned caches can only be used in a limited way (see
Section 3.8). Specifically, to address internal timing attacks, it is required
that we partition the cache according to the number of security levels in the
lattice. Given that most existing approaches can only partition caches up to
16-ways at the OS level [Lin et al., 2008], and fewer at the hardware level,
an alternative scalable approach is necessary. Moreover, neither flushing
nor partitioning the cache can handle timing perturbations arising from
other pieces of hardware such as the TLB, buses, etc.

3.3 Instruction-based Scheduling

As the example in Figure 2 shows, races to acquire public resources are
affected by the cache state, which in turn might be affected by secret values.
It is important to highlight that the number of instructions executed in a
given quantum of time might vary depending on the state of the cache. It
is precisely this variability that reintroduces dangerous races into systems.
However, the actual set of instructions executed is not affected by the
cache. Hence, we propose scheduling threads according to the number of
instructions they execute, rather than the amount of time they consume.
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thread 1
thread 2
thread 3

cache

thread 1
thread 2
thread 3

cache

readArray 1

0

fillArray

1

0 time

low
high

rdArr

Fig. 3. Execution of cache attack program of Figure 1 with secret set to true (top)
and false (bottom). In both executions, we highlight that the threads execute one
“instruction” at a time in a round-robin fashion. The concurrent threads take the
same amount of time to complete execution as in Figure 2. However, since we use
instructions to context switch threads, the interleaving between thread 2 or 3 is not
influenced by the actions in thread 1, and thus the internal timing attack does not
arise—the threads’ output order cannot encode sensitive data.

The point at which a thread produces an output (or any other visible
operation) is determined according to the number of instructions it has
executed, a measurement unaffected by the amount of time it takes to
perform a read/write from memory.

Consider the code in Figure 1 executing atop an instruction-based
scheduler. An illustration of this is shown in Figure 3. For simplicity of
exposition, the instruction granularity is at the level of commands (skip,
readArray, etc.) and therefore context switches are triggered after one
command gets executed. (In Section 3.4, we describe a more practical
and realistic instruction-based scheduler.) Observe that the amount of time
it takes to execute an instruction has not changed from the time-based
scheduler of Figure 2. For example, readArray still takes 6 units of time
when secret is true, and 2 when it is false. Unlike Figure 2, however, the
interleaving between thread 2 and thread 3 did not change depending on
the state of the cache (which did change according to secret). Therefore, a
race to write to the public channel between thread 2 and thread 3 cannot be
caused by the secret, through the cache. The second thread always executes
n+1 = 5 instructions before writing 1 to the public channel, while the third
thread always executes n+m+1 = 8 instructions before writing 0.

Our proposed countermeasure, the implementation of which is detailed
in Section 3.4, eliminates the cache-based internal timing attacks with-
out sacrificing scalability and with a minor performance impact. With
instruction-based scheduling, we do not require flushing of the cache. In
this manner, applications can safely utilize the cache to retain most of their
performance without giving up system security, and unlike current parti-
tioned caches, we can scale up to consider arbitrarily complex lattices.
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3.4 Implementation

We implemented an instruction-based scheduler for LIO. In this section,
we describe this implementation and detail some key design features we
believe to be useful when modifying concurrent IFC systems to address
cache-based timing attacks.

3.4.1 LIO and Haskell

LIO is a Haskell library that exposes concurrency to programmers in the
form of “green,” lightweight threads. Each LIO thread is a native Haskell
thread that has an associated security level (label) which is used to track and
control the flow of information to/from the thread. LIO relies on Haskell
libraries for creating new threads and the runtime system for managing
them.

In general, M lightweight Haskell threads may concurrently execute
on N OS threads. (It is common, however, for multiple Haskell threads to
execute on a single OS thread, i.e., a many-to-one mapping.) The Haskell
runtime, as implemented by the GHC system, uses a round-robin scheduler
to context switch between concurrently executing threads. Specifically,
the scheduler is invoked whenever a thread blocks/terminates or a timer
signal alarm is received. The timer is used to guarantee that the scheduler
is periodically executed, allowing the runtime to implement preemptive
scheduling.

3.4.2 Instruction-based scheduler

As previously mentioned, timing-based schedulers render systems, such as
LIO, vulnerable to cache-based internal timing attacks. We implement our
instruction-based scheduler as a drop-in replacement for the existing GHC
scheduler, using the number of retired instructions to trigger a context
switch.

Specifically, we use performance monitoring units (PMUs) present in
almost all recent Intel [Intel, 2012] and AMD [AMD, 2008] CPUs. PMUs
expose hardware performance counters that are typically used by developers
to optimize code—they provide metrics such as the number of cache misses,
instructions executed per cycle, branch mispredictions, etc. Importantly,
PMUs also provide a means for counting the number of retired instructions.

Using the perfmon2 [Eranian, 2006] Linux monitoring interface and
helper user-level library libpfm4, we modified the GHC runtime to configure
the underlying PMU to count the number of retired instructions the Haskell
process is executing. Specifically, with perfmon2 we set a data performance
counter register to 264 − n, which the CPU increments upon retiring an
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instruction.1 Once the counter overflows, i.e., n instructions have been
retired, perfmon2 is sent a hardware interrupt. In our implementation, we
configured perfmon2 to handle the interrupt by delivering a signal to the
GHC runtime.

If threads share no resources, upon receiving a signal, the executing
Haskell thread can immediately save its state and jump to the scheduler.
However, preempting a thread which is operating on a shared memory space
can be dangerous, as the thread may have left memory in an inconsistent
state. (This is the case for many language runtimes, not solely GHC’s.) To
avoid this, GHC produces code that contains safe pointswhere threads may
yield. Hence, a signal does not cause an immediate preemption. Instead,
the signal handler simply sets a flag indicating the arrival of a signal; at the
next safe point, the thread “cooperatively” yields to the scheduler.

To ensure liveness, we must guarantee that given any point in execution,
a safe point is reached in n instructions. Though GHC already inserts
many safe points as a means of invoking the garbage collector (via the
scheduler), tight loops that do not perform any allocation are known to
hang execution [GHC, 2005]. Addressing this eight-year old bug, which
would otherwise be a security concern in LIO, we modified the compiler to
insert safe points on function entry points. This modification, integrated in
the mainline GHC, has almost no effect on performance and only a 7%
bloat in average binary size.

3.4.3 Handling IO

Threads yield at safe points in their execution paths as a result of a retired
instruction signal. However, there are circumstances in which threads would
like to explicitly yield prior to the reception of a retired instruction signal.
In particular, when a thread performs a blocking operation, it immediately
yields to the scheduler, registering itself to wake up when the operation
completes. Thus, any IO action is a yield which allows the thread to give
up the rest of its scheduling quantum.

While yields are not intrinsically unsafe, it is not safe to allow the
leftover scheduling quantum to be passed on to the next thread. Thus, after
running any asynchronous IO action, the runtime must reset the retired
instruction counter. Hence, whenever a thread enters the scheduler loop
due to being blocked, we reset the retired instruction counter.

3.5 Performance Evaluation

We evaluated the performance of instruction-based scheduling against
existing time-based approaches using the nofib benchmark suite [Partain,

1 Though the bit-width of the hardware counters vary (they are typically 40-bits
wide) perfmon2 internally manages a 64-bit counter.
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Fig. 4. Mean time between timer signal and retired-instruction signal. Each point
represents a program from nofib, which have been sorted on the x-axis by their
mean time.

1992]. nofib is the standard benchmarking suite used for measuring the
performance of Haskell implementations.

In our experimental setup, we used the latest development version of
GHC (the Git master branch as of November 6, 2012). The measurements
were taken on the same hardware as Hails [Giffin et al., 2012]: a machine
with two dual-core Intel Xeon E5620 (2.4GHz) processors, and 48GB of
RAM.

We first needed to find an instruction budget—number of instructions to
retire before triggering the scheduler. We found a poorly chosen instruction
budget could increase runtime by 100%. To determine a good parameter,
we measured the mean time between retired-instruction signals with an
initially guessed instruction budget parameter. We then adjusted the param-
eter so the median test program had a 10 millisecond mean time-slice (the
default quantum size in vanilla GHC with time-based scheduling) and veri-
fied our final choice by re-running the measurements. For our specific setup,
an instruction budget of approximately 37,100,000 retired-instructions
corresponded to a 10 millisecond time quantum. We plot the mean and
standard deviation across all nofib applications with the final tuning pa-
rameter in Figure 4. We found that most programs receive a signal within
2 milliseconds of when they would have normally received the signal using
the standard time-based scheduler. While the instruction budget parameter
will vary across machines, it is relatively simple to bootstrap this param-
eter by performing these measurements at startup and tuning the budget
accordingly.

Next, we compared the performance of Haskell’s timer-based sched-
uler with our instruction-based scheduler. We used a subset of the nofib
benchmark suite called the real benchmark, which consists of “real world
programs”, as opposed to synthetic benchmarks (however, results for the
whole nofib suite are comparable). Figure 5 shows the run time of these
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Fig. 5. Change to run time from instruction-based scheduling

programs with both scheduling approaches. With an optimized instruction
budget parameter, instruction-based scheduling has no impact to the run-
time of the majority of nofib applications and results in only a very slight
increase in runtime for others (about 1%).

This result may seem surprising: instruction-based scheduling purposely
punishes threads with good data locality, so one might expect a more sub-
stantial performance impact. We hypothesize that this is the case due to two
reasons. First, with preemptive scheduling, we are already inducing cache
misses when we switch from running one thread to another—instruction-
based scheduling only perturbs when these preempts occur, and as seen in
Figure 4, these perturbations are very minor. Second, modern L2 caches
are quite large, meaning that hardware is more forgiving of poor data
locality—an effect that has been measured in the behavior of stock lazy
functional programs [Ahmad and DeYoung, 2009].

3.6 Cache-aware semantics

In this section we recall relevant design aspects of LIO [Stefan et al., 2012]
and extend the original formalization to consider how caches affect the
timing behavior of programs. Importantly, we formalize instruction-based
scheduling and show how it removes cache-based internal timing covert
channels.

3.6.1 LIO Overview

At a high level, LIO provides the LIO monad, which is used in place of IO.
Wrapping standard Haskell libraries, LIO exports a collection of functions
that untrusted code may use to access the filesystem, network, shared
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variables, etc. Unlike the standard libraries, which usually return IO actions,
these functions return actions in the LIO monad, thus allowing LIO to
perform label checks before executing a potentially unsafe action.

Internally, the LIO monad keeps track of a current label, Lcur. The
current label is effectively a ceiling over the labels of all data that the
current computation may depend on. This label eliminates the need to label
individual definitions and bindings: symbols in scope are (conceptually)
labeled with Lcur.2 Hence, when a computation C, with current label LC ,
observes an object labeled LO, C’s label is raised to the least upper bound
or join of the two labels, written LC ⊔LO. Importantly the current label
governs where the current computation can write, what labels may be used
when creating new channels or threads, etc. For example, after reading
O, the computation should not be able to write to a channel K if LC is
more restricting than LK—this would potentially leak sensitive information
(about O) into a less sensitive channel.

Note that an LIO computation can only execute a sub-computation on
sensitive data by either raising its current label or forking a new thread
in which to execute this sub-computation. In the former case, raising the
current label prevents writing to less sensitive endpoints. In the latter case,
to observe the result (or timing and termination behavior) of the sub-
computation the thread must wait for the forked thread to finish, which
first raises the current label. A consequence of this design is that differently-
labeled computations are decoupled, which, as mentioned in Section 3.1,
is key to eliminating the internal timing covert channel.

In the next subsection, we will outline the semantics for a cache-aware,
time-based scheduler where the cache attack described in Section 3.2 is
possible. Moreover, we show that we can easily adapt this semantics to
model the new LIO instruction-based scheduler.

3.6.2 Cache-aware semantics

We model the underlying CPU cache as an abstract memory shared among
all running threads, which we will denote with the symbol ζ. Every step
of the sequential execution relation will affect ζ according to the current
instruction being executed, the runtime environment, and the existing state
of the cache. As in [Stefan et al., 2012], each LIO thread has a thread-
local runtime environment σ, which contains the current label σ.lbl. The
global environment Σ, common to all threads, holds references to shared
resources.

In addition, we explicitly model the number of machine cycles taken by
a single execution step as a result of the cache. Specifically, the transition

2 As described in [Stefan et al., 2011], LIO does, however, allow programmers to
heterogeneously label data they consider sensitive.
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(step)
jΣ, ⟨σ, e⟩oζ Ð→k jΣ

′, ⟨σ′, e′⟩oζ′ q > 0

jΣ, ζ, q, ⟨σ, e⟩ ⊲ tso ↪ jΣ
′, ζ ′, q − k, ⟨σ′, e′⟩ ⊲ tso

(preempt)
q ≤ 0

jΣ, ζ, q, t ⊲ tso ↪ jΣ
′, ζ, qi, ts ⊳ to

Fig. 6. Semantics for threadpools under round-robin time-based scheduling

ζ ⇁(Σ,σ,e)
k ζ ′ captures the parameters that influence the cache (Σ, σ, and e)

as well as the number of cycles k it takes for the cache to be updated.
A cache-aware evaluation step is obtained by merging the reduction

rule of LIO with our formalization of CPU cache as given below:

jΣ, ⟨σ, e⟩o γ⇀ jΣ′, ⟨σ′, e′⟩o ζ ⇁(Σ,σ,e)
k ζ ′ k ≥ 1

jΣ, ⟨σ, e⟩oζ γÐ→k jΣ′, ⟨σ′, e′⟩oζ′

We read jΣ, ⟨σ, e⟩oζ γÐ→k jΣ′, ⟨σ′, e′⟩oζ′ as “the configuration jΣ, ⟨σ, e⟩o
reduces to
jΣ′, ⟨σ′, e′⟩o in one step, but k machine cycles, producing event γ and
modifying the cache from ζ to ζ ′.” As in LIO [Stefan et al., 2012], the
relation jΣ, ⟨σ, e⟩o γ⇀ jΣ′, ⟨σ′, e′⟩o represents a single execution step from
thread expression e, under the run-time environments Σ and σ, to thread
expression e′ and run-time environments Σ′ and σ′. Events are used to
communicate information between the threads and the scheduler, e.g., when
spawning new threads.

Figure 6 shows the most important rules of our time-based scheduler in
the presence of cache effects. We elide the rest of the rules for brevity. The
relation ↪ represents a single evaluation step for the program threadpool,
in contrast with Ð→ which is only for a single thread. Configurations are
of the form jΣ, ζ, q, tso, where q is the number of cycles available in the
current time slice and ts is a queue of thread configurations of the form
⟨σ, e⟩. We use a standard deque-like interface with operations ⊲ and ⊳ for
front and back insertion, respectively, i.e., ⟨σ, e⟩ ⊲ ts denotes a threadpool
in which the first thread is ⟨σ, e⟩ while ts ⊳ ⟨σ, e⟩ indicates that ⟨σ, e⟩ is the
last one.

As in LIO, threads are scheduled in a round-robin fashion. Our scheduler
relies on the number of cycles that each step takes; we respectively write qi
and q as the initial and remaining number of cycles assigned to a thread
in each quantum. In rule (Step), the number of cycles k that the current
instruction takes is reflected in the scheduling quantum. Consequently,
threads that compute on data that is not present in the cache will take more
cycles, i.e., have a higher k, so they will run “slower” because they are
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allowed to perform fewer reduction steps in the remaining time slice. In
practice, this permits attacks, such as that in Figure 1, where the interleaving
of the threads can be affected by sensitive data. Rule (Preempt) is used
when the thread has exhausted its cycle budget, triggering a context switch
by moving the current thread to the end of the queue.

We can adapt this semantics to reflect the behavior of the new instruc-
tion-based scheduler. To this end, we replace the number of cycles q with an
instruction budget; we write bi for the initial instruction budget and b for
the current budget. Crucially, we change rule (Step) into rule (Step-CA),
given by

(Step-CA)
jΣ, ⟨σ, e⟩oζ Ð→k jΣ′, ⟨σ′, e′⟩oζ′ b > 0

jΣ, ζ, b, ⟨σ, e⟩ ⊲ tso ↪ jΣ′, ζ ′, b − 1, ⟨σ′, e′⟩ ⊲ tso
.

Rule (Step-CA) executes a sequential instruction in the current
thread, provided the instruction budget is not empty (b > 0), and updates
the cache accordingly
(jΣ, ⟨σ, e⟩oζ Ð→k jΣ′, ⟨σ′, e′⟩oζ′ ). It is important to remark that the effects
of the underlying cache ζ, as indicated by k, are intentionally ignored by
the scheduler. This subtle detail captures the essence of removing the cache-
based internal timing channel. (Our formalization of a time-based scheduler
does not ignore k and thus is vulnerable.) Similarly, rule (Preempt) turns
into rule (Preempt-CA), where q and qi are respectively replaced with b
and bi to reflect the fact that there is an instruction budget instead of a cycle
count. The rest of the rules can be adapted in a straightforward manner.
Our rules have the invariant that the instruction budget gets decremented
by one when a thread executes one instruction.

By changing the cache-aware semantics in this way, we obtain a gener-
alized semantics for LIO. In fact, the previous semantics for LIO [Stefan
et al., 2012], is a special case, with bi = 1, i.e., the threads perform only
one reduction step before a context-switch happens. In addition, it is easy
to extend our previous termination-sensitive non-interference result to the
instruction-based semantics. The security guarantees of our approach are
stated below.

Theorem 1 (Termination-sensitive non-interference).Given a program func-
tion f , an attacker that observes data at level L, and a pair of inputs e1
and e2 indistinguishable to the attacker, then for every reduction sequence
starting from f(e1) there is a corresponding reduction sequence starting
from f(e2) such that both sequences reach indistinguishable configurations.
Proof Sketch: Our proof relies on the term erasure technique as used in [Li
and Zdancewic, 2010, Russo et al., 2008, Stefan et al., 2011], and follows
in a similar fashion to that of [Stefan et al., 2012]. More details can be
found in Appendix A.
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3.7 Limitations

This section discusses some limitations of our current implementation, the
significance of these limitations, and how the limitations can be addressed.

Nondeterminism in the hardware counters While the retired-instruction
counter should be deterministic, in most hardware implementations there is
some degree of nondeterminism. For example, on most x86 processors the
instruction counter adds an extra instruction every time a hardware inter-
rupt occurs [Weaver and McKee, 2008]. This anomaly could be exploited
to affect the behavior of an instruction-based scheduler, causing it to trigger
a signal early. However, this is only a problem if a high thread is able to
cause a large number of hardware interrupts in the underlying operating
system. In the Hails framework, attackers can trigger interrupts by forcing
a server to frequently receive HTTP responses, i.e., trigger a hardware inter-
rupt from the network interface card. Hails, however, provides mechanisms
to mitigate the effects of external events, using the techniques of [Askarov
et al., 2010, Zhang et al., 2011], that can reduce the frequency of such
operations. Nevertheless, the feasibility of such attacks is not directly clear
and left as future work.

Scheduler and garbage collector instruction counts For performance rea-
sons, we do not reset the retired-instruction counter prior to re-entering user
code. This means that instruction counts include the instructions executed
from when the previous thread received the signal, to when the previous
thread yields, to when the next thread is scheduled. While this suggests
that thread are not completely isolated, we think that this interaction is
extremely difficult to exploit. This is because the number of instructions it
takes for the scheduler to schedule a new thread is essentially fixed, and the
“time to yield” for any code is highly dependent on the compiler, which we
assume is not under the control of an adversary.

Parallelism Unfortunately, we cannot simply run instruction-based sche-
duling on multiple cores. Threads running in parallel will be able to race to
public resources. Under normal conditions, such races can be still influenced
by the state of the (L3) cache. Some parallelism is, however, possible. For in-
stance, we can extend the instruction-based scheduler to parallelize regions
of code that do not share state or have side effects (e.g., synchronization
operations or writes to channels). To this end, when a thread wishes to
perform a side effect, it is required that all the other threads lagging behind
(as per retired-instruction count) first complete the execution of their side
effects. Hence, an implementation would rely on a synchronization barrier
whenever a side-effecting computation is executed; at the barrier, the exe-
cution of all the side effects is done in a pre-determined order. Although
we believe that this “optimization” is viable, we have not implemented it,
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since it requires major modifications to the GHC runtime system and the
performance gains due to parallelism requiring such strict synchronization
barriers are not clear. We leave this investigation to future work.

Even without built-in parallelism, we believe that instruction-based
scheduling represents a viable and deployable solution when consider-
ing modern web applications and data-centers. In particular, when an
application is distributed over multiple machines, these machines do not
share a processor cache and thus can safely run the application concur-
rently. Attacks which involve making these two machines access shared
external resources can be mitigated in the same fashion as external timing
attacks [Askarov et al., 2010, Zhang et al., 2011, 2012, Stefan et al., 2012].
Load-balancing an application in this manner is already a well-established
technique for deploying applications.

3.8 Related work

Impact of cache on cryptosystems Kocher [Kocher, 1996] was one of the
first to consider the security implications of memory access-time in imple-
mentations of cryptographic primitives and systems. Since then, several
attacks (e.g., [Percival, 2005, Osvik et al., 2006]) against popular systems
have successfully extracted secret keys by using the cache as a covert chan-
nel. As a countermeasure, several authors propose partitioning the cache
(e.g., [Page, 2005]). Until recently, partitioned caches have been of limited
application in dynamic information flow control systems due to the small
number of partitions available. The recent Vantage cache partition scheme
of Sanchez and Kozyrakis [Sanchez and Kozyrakis, 2011], however, offers
tens to hundreds of configurable partitions and high performance. As hard-
ware is not yet available with Vantage, it is hard to evaluate its effectiveness
for our problem domain. However, we expect it to be mostly complimen-
tary to our instruction-based scheduler. Specifically, a partitioned cache
can be used to safely run threads in parallel, each group of threads using
instruction-based schedulers. Other countermeasures (e.g., [Osvik et al.,
2006]) are primarily implementation-specific, and, while applicable to cryp-
tographic primitives, they do not easily generalize to arbitrary code.

Language-based information-flow security Several works (e.g., [Honda
et al., 2000]) consider systems that satisfy the notion of possibilistic non-
interference [Smith and Volpano, 1998], which states that a concurrent
program is secure iff the possible observable events do not depend on sensi-
tive data. An alternative notion, probabilistic non-interference, considers a
concurrent program secure iff the probability distribution over observable
events is not affected by sensitive data [Volpano and Smith, 1999]. Zdan-
cewic and Myers introduce observational low-determinism [Zdancewic
and Myers, 2003], which intuitively states that the observable behavior of
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concurrent systems must be deterministic. After this seminal work, several
authors improve on each other’s definitions on low-determinism (e.g., [Huis-
man et al., 2006]). Other IFC systems rely on deterministic semantics and a
determined class of runtime schedulers (e.g., [Russo and Sabelfeld, 2006a]).

The lines of work mentioned above assume that the execution of a single
step is performed in a single unit of time, corresponding to an instruction,
and show that races to publicly-observable events cannot be influenced
by secret data. Unfortunately, the presence of the cache breaks the corre-
spondence between an instruction and a single unit of time, making cache
attacks viable. Instruction-based scheduling could be seen as a necessary
component in making the previous concurrent IFC approaches practical.

Agat [Agat, 2000] presents a code transformation for sequential pro-
grams such that both code paths of a branch have the same memory ac-
cess pattern. This eliminates timing covert channels, even those relying
on the cache. This transformation has been adapted by several authors
(e.g., [Sabelfeld and Sands, 2000]). This approach, however, focuses on
avoiding attacks relying on the data cache, while leaving the instruction
cache unattended.

Russo and Sabelfeld [Russo and Sabelfeld, 2006b] consider non-interfe-
rence for concurrent systems under cooperative and deterministic schedul-
ing. An implementation of such a system was presented by Tsai et al. in [Tsai
et al., 2007]. This approach eliminates internal timing leaks, including those
relying on the cache, by restricting the use of yields. Cooperative sched-
ulers are intrinsically vulnerable to attacks that use termination as a covert
channel. In contrast, our solution is able to safely preempt non-terminating
computations while guaranteeing termination-sensitive non-interference.

Secure multi-execution [Devriese and Piessens, 2010] preserves confi-
dentiality of data by executing the same sequential program several times,
one for each security level. In this scenario, the cache-based covert chan-
nel can only be removed in specific configurations [Kashyap et al., 2011].
Zhang et al. [Zhang et al., 2012] provide a method to mitigate external
events when their timing behavior could be affected by the underlying hard-
ware. This solution is directly applicable to our system when considering
external events. Similar to our work, they consider an abstract model of
the hardware machine state which includes a description of time. However,
their semantics focus on sequential programs, wherein attacks due to the
cache arise in the form of externally visible events.

Hedin and Sands [Hedin and Sands, 2005] present a type-system for
preventing external timing attacks for bytecode. Their semantics is aug-
mented to incorporate history, which enables the modeling of cache effects.
We proceed in a similar manner when extending the original LIO seman-
tics [Stefan et al., 2012] to consider caches.

System security In order to achieve strong isolation, Barthe et al. [Barthe
et al., 2012] present a model of virtualization which flushes the cache upon
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switching between guest operating systems. Different from our scenario,
flushing the cache in such scenarios is common and does not impact the
already-costly context-switch.

Allowing some information leakage, Köpft et al. [Köpf et al., 2012]
combines abstract interpretation and quantitative information-flow to ana-
lyze leakage bounds for cache attacks. Kim et al. [Kim et al., 2012] propose
StealthMem, a system level protection against cache attacks. StealthMem
allows programs to allocate memory which does not get evicted from the
cache. In fact, this approach could be seen as a software-level partition of
the cache. StealthMem is capable of enforcing confidentiality for a stronger
attacker model than ours, i.e., they consider programs with access to wall-
clock and perhaps running on multi-cores. As other works on partition
caches, StealthMem does not scale to scenarios with arbitrarily complex
security lattices.

Performance monitoring counters The use of PMUs for tasks other than
performance monitoring is a relatively recent one. Vogl and Ekert [Vogl
and Eckert, 2012] also use PMUs, but for monitoring applications running
within a virtual machine, allowing instruction level monitoring of all or
specific instructions. While the mechanism is the same, our goals are differ-
ent: we merely seek to replace interrupts generated by a clock-based timer
with interrupts generated by hardware counters; their work introduces new
interrupts that trigger vmexits. This causes a considerable slowdown, while
we achieve no major performance impact.

3.9 Conclusion

Cache-based internal timing attacks constitute a practical set of attacks.
We present instruction-based scheduling as a solution to remove such
attacks. Different from simply flushing the cache on a context switch or
partitioning the cache, this new class of schedulers also removes timing
perturbations introduced by other components of the underlying hardware
(e.g., the TLB, CPU buses, etc.). To demonstrate the applicability of our
solution, we implemented a scheduler using the CPU retired-instruction
counters available on commodity Intel and AMD hardware. We integrated
the scheduler into the Hails IFC web framework, replacing the timing-based
scheduler. This integration was, in part, possible because of the scheduler’s
negligible performance impact and, in part, due to our formal guarantees.
Specifically, by generalizing previous results, we proved that instruction-
based scheduling for LIO preserves confidentiality and integrity of data,
i.e., termination-sensitive non-interference. Finally, we remark that our
design, implementation, and proof are not limited to LIO; we believe that
instruction-based scheduling is applicable to other concurrent deterministic
IFC systems where cache-based timing attacks could be a concern.
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A Formalization of LIO with instruction-based scheduling

LIO is formalized as a simply typed Curry-style call-by-name λ-calculus
with some extensions. Figure 7 defines the formal syntax for the language.
Syntactic categories v, e, and τ represent values, expressions, and types,
respectively.

The values in the calculus have their usual meaning for typed λ-calculi.
Symbol m represents LMVars. Special syntax nodes are added to this cat-
egory: Lb v e, (e)LIO, R m, and ⊡. Node Lb v e denotes the run-time rep-
resentation of a labeled value. Similarly, node (e)LIO denotes the run-time
result of a monadic LIO computation. Node ⊡ denotes the run-time repre-
sentation of an empty LMVar. Node R m is the run-time representation of a
Result, implemented as a LMVar, that is used to access the result produced
by spawned computations.

Label: l

LMVar: m

Value: v ∶∶= true ∣ false ∣ () ∣ l ∣ m ∣ x ∣ λx.e

∣ fix e ∣ Lb l e ∣ (e)LIO
∣ ⊡ ∣ R m

Expression: e ∶∶= v ∣ ● ∣ e e ∣ if e then e else e

∣ let x = e in e ∣ return e ∣ e >>= e

∣ label e e ∣ unlabel e ∣ getLabel
∣ labelOf e ∣ lFork e e ∣ lWait e
∣ newLMVar e e ∣ takeLMVar e
∣ putLMVar e e ∣ labelOfLMVar e

Type: τ ∶∶= Bool ∣ () ∣ τ → τ ∣ ` ∣ Labeled ` τ

∣ Result ` τ ∣ LMVar ` τ ∣ LIO ` τ

Fig. 7. Syntax for values, expressions, and types.

Expressions are composed of values (v), the special node ●, representing
an erased term, function applications (e e), conditional branches (if e then e
else e), and local definitions (let x = e in e). Additionally, expressions may
involve operations related to monadic computations in the LIO monad.
More precisely, return e and e >>= e represent the monadic return and bind
operations. Monadic operations related to the manipulation of labeled
values inside the LIO monad are given by label and unlabel. Expression
unlabel e acquires the content of the labeled value e while in an LIO
computation. Expression label e1 e2 creates a labeled value, with label e1,
of the result obtained by evaluating the LIO computation e2. Expression
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lFork e1 e2 spawns a thread that computes e2 and returns a handle with
label e1. Expression lWait e inspects the value returned by the spawned
computation whose result is accessed by the handle e. Creating, reading, and
writing labeled MVars are respectively captured by expressions newLMVar,
takeLMVar, and putLMVar.

We consider standard types for Booleans (Bool), unit (()), and function
(τ → τ) values. Type ` describes security labels. Type Result ` τ denotes
handles used to access labeled results produced by spawned computations,
where the results are of type τ and labeled with labels of type `. Type
LMVar ` τ describes labeled MVars, with labels of type ` and storing values
of type τ . Type LIO ` τ represents monadic LIO computations, with a result
type τ and the security labels of type `.

As in [Stefan et al., 2012], we consider that each thread has a thread-
local runtime environment σ, which contains the current label σ.lbl and
the current clearance σ.clr. The global environment Σ, common to every
thread, holds the global memory store φ, which is a mapping from LMVar
names to Lb nodes.

The relation jΣ, ⟨σ, e⟩o γ⇀ jΣ′, ⟨σ′, e′⟩o represents a single execution
step from thread e, under the run-time environments Σ and σ, to thread e′

and run-time environments Σ′ and σ′. (This relation does not account for
the effects of the cache.) We say that e reduces to e′ in one step. Symbol
γ ranges over the internal events triggered by threads. We utilize internal
events to communicate between the threads and the scheduler, e.g., when
spawning new threads.

We show the most relevant rules for
γ⇀ in Figure 8. Rule (Lab) generates

a labeled value if and only if the label is between the current label and
clearance of the LIO computation. Rule (unLab) requires that, when the
content of a labeled value is “retrieved” and used in a LIO computation,
the current label is raised (σ′ = σ[lbl ↦ l′], where l′ = σ.lbl ⊔ l), thus
capturing the fact that the remaining computation might depend on e.
Rule (lFork) allows for the creation of a thread and generates the internal
event fork(e′), where e′ is the computation to spawn. The rule allocates a
new LMVar in order to store the result produced by the spawned thread
(e >>= λx.putLMVar m x). Using that LMVar, the rule provides a handle
to access to the thread’s result (return (R m)). Rule (lWait) simply uses
the LMVar for the handle. Rule (nLMVar) describes the creation of a new
LMVar with a label bounded by the current label and clearance (σ.lbl ⊑
l ⊑ σ.clr). Rule (tLMVar) raises the current label (σ′ = σ[lbl ↦ σ.lbl ⊔
l]) when emptying (Σ.φ[m ↦ Lb l ⊡]) its content (Σ.φ(m) = Lb l e).
Similarly, considering the security level l of a LMVar, rule (pLMVar) raises
the current label (σ′ = σ[lbl ↦ σ.lbl ⊔ l]) when filling (Σ.φ[m ↦ Lb l e])
its content (Σ.φ(m) = Lb l ⊡). Note that both takeLMVar and putLMVar
observe if the LMVar is empty in order to proceed to modify its content.
Precisely, takeLMVar and putLMVar perform a read and a write of the
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(Lab)
σ.lbl ⊑ l ⊑ σ.clr

jΣ, ⟨σ,E[label l e]⟩o Ð→ jΣ, ⟨σ,E[return (Lb l e)]⟩o

(unLab)
l′ = σ.lbl ⊔ l l′ ⊑ σ.clr σ′ = σ[lbl↦ l′]

jΣ, ⟨σ,E[unlabel (Lb l e)]⟩o Ð→ jΣ, ⟨σ′,E[return e]⟩o

(lFork)
σ.lbl ⊑ l ⊑ σ.clr

Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l ⊡]] e′ = e >>= λx.putLMVar m x m fresh

jΣ, ⟨σ,E[lFork l e]⟩o
fork(e′)
Ð→ jΣ′, ⟨σ,E[return (R m)]⟩o

(lWait)
jΣ, ⟨σ,E[lWait (R m)]⟩o Ð→ jΣ, ⟨σ,E[takeLMVar m]⟩o

(nLMVar)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]] m fresh

jΣ, ⟨σ,E[newLMVar l e]⟩o Ð→ jΣ′, ⟨σ,E[return m]⟩o

(tLMVar)
Σ.φ(m) = Lb l e e ≠ ⊡

σ.lbl ⊑ l ⊑ σ.clr σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l ⊡]]

jΣ, ⟨σ,E[takeLMVar m]⟩o Ð→ jΣ′, ⟨σ′,E[return e]⟩o

(pLMVar)
Σ.φ(m) = Lb l ⊡

σ.lbl ⊑ l ⊑ σ.clr σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]]

jΣ, ⟨σ,E[putLMVar m e]⟩o Ð→ jΣ′, ⟨σ′,E[return ()]⟩o

Fig. 8. Semantics for expressions.

mutable location. Operations on LMVar are bi-directional and consequently
the rules (tLMVar), and (pLMVar) require not only that the label of the
mentioned LMVar be between the current label and current clearance of the
thread (σ.lbl ⊑ l ⊑ σ.clr), but that the current label be raised appropriately.

A.1 Cache-aware semantics using instruction-based scheduling

Figure 9 presents cache-aware reduction rules for concurrent execution
using instruction-based scheduling. The configurations for this relation are
very similar to the ones for time-based scheduling in Figure 6 except that
we use an instruction budget b rather than a time quantum q. We write bi
for the initial budget for threads.

The main difference between these semantics and the time-based ones is
the cache-aware transition rule (Step-CA). In this rule, the number of cycles
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k that the current instruction takes is ignored by the scheduler, counting as
one instruction regardless of the time its execution took.

(Step-CA)
jΣ, ⟨σ, e⟩oζ Ð→k jΣ

′, ⟨σ′, e′⟩oζ′ q > 0

jΣ, ζ, b, ⟨σ, e⟩ ⊲ tso ↪ jΣ
′, ζ ′, b − 1, ⟨σ′, e′⟩ ⊲ tso

(Preempt-CA)
q ≤ 0

jΣ, ζ, b, t ⊲ tso ↪ jΣ
′, ζ, bi, ts ⊳ to

(No-Step-CA)
jΣ, toζ /Ð→ t = ⟨σ, e⟩ e ≠ v

jΣ, ζ, b, t ⊲ tso ↪ jΣ, ζ, bi, ts ⊳ to

(Fork-CA)

jΣ, toζ
fork(e)
Ð→ k jΣ

′, ⟨σ, e′⟩oζ′ tnew = ⟨σ, e⟩ q > 0

jΣ, ζ, b, t ⊲ tso ↪ jΣ
′, ζ ′, b − 1, ⟨σ, e′⟩ ⊲ ts ⊳ tnewo

(Exit-CA)
jΣ, toζ Ð→k jΣ

′, ⟨σ, v⟩oζ′ b > 0

jΣ, ζ, b, t ⊲ tso ↪ jΣ
′, ζ ′, bi, tso

Fig. 9. Semantics for threadpools under round-robin instruction-based scheduling

A.2 Security guarantees

In this section, we show that LIO computations satisfy termination-sensitive
non-interference. As in [Li and Zdancewic, 2010, Russo et al., 2008, Stefan
et al., 2011], we prove this property by using the term erasure technique.
The erasure function εL rewrites data at security levels that the attacker
cannot observe into the syntax node ●.

The function εL is defined in such a way that εL(e) contains no infor-
mation above level L, i.e., the function εL replaces all the information more
sensitive thanL in ewith a hole (●). In most of the cases, the erasure function
is simply applied homomorphically (e.g., εL(e1 e2) = εL(e1) εL(e2)). For
run expressions, the erasure function is mapped into all threads; all threads
with a current label above L are removed from the pool (filter (λ⟨σ, e⟩.e /≡
●) (map εL ts), where ≡ denotes syntactic equivalence). The computation
performed in a certain sequential configuration is erased if the current la-
bel is above L. For runtime environments and stores, we map the erasure
function into their components. Similarly, a labeled value is erased if the
label assigned to it is above L.
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Following the definition of the erasure function, we introduce a new
evaluation relation Ð→L as follows:

jΣ, ⟨σ, t⟩o Ð→ jΣ′, ⟨σ′, t⟩o
jΣ, ⟨σ, t⟩o Ð→L εL(jΣ′, ⟨σ′, t′⟩o)

The relation Ð→L guarantees that confidential data, i.e., data not below
level L, is erased as soon as it is created. We write Ð→*

L for the reflexive
and transitive closure of Ð→L.

In order to prove non-interference, we will establish a simulation rela-
tion between Ð→* and Ð→*

L through the erasure function: erasing all secret
data and then taking evaluation steps in Ð→L is equivalent to taking steps
in Ð→ first, and then erasing all secret values in the resulting configura-
tion. Note that this relation would not hold if information from some level
above L was being leaked by the program. In the rest of this section, we
only consider well-typed terms to ensure there are no stuck configurations.

We start by showing that the evaluation relation Ð→L is deterministic

Proposition 1 (Determinacy of Ð→L). If jΣ, toζ Ð→L jΣ′, t′oζ′ and
jΣ, toζ Ð→L jΣ′′, t′′oζ′′ , then jΣ′, t′oζ′ = jΣ′′, t′′oζ′′ .
Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step.

The next lemma establishes a simulation between ↪* and ↪*
L.

Lemma 1 (Many-step simulation). If jΣ, ζ, b, tso ↪* jΣ′, ζ ′, b′, t′so, then
εL(jΣ, ζ, b, tso) ↪*

L εL(jΣ′, ζ ′, b′, t′so).
Proof. In order to prove this result, we rely on properties of the erasure
function, such as the fact that it is idempotent and homomorphic to the
application of evaluation contexts and substitution. We show that the result
holds by case analysis on the rule used to derive jΣ, tso ↪* jΣ′, t′so, and
considering different cases for threads whose current label is below (or not)
level L.

The L-equivalence relation ≈L is an equivalence relation between con-
figurations (and their parts), defined as the equivalence kernel of the erasure
function εL: jΣ, ζ, b, tso ≈L jΣ′, ζ ′, b′, rso iff εL(jΣ, ζ, b, tso) = εL(jΣ′, ζ ′, b′, rso).
If two configurations are L-equivalent, they agree on all data below or at
level L, i.e., they cannot be distinguished by an attacker at level L. Note
that two queues are L-equivalent iff the threads with current label no higher
than L are pairwise L-equivalent in the order that they appear in the queue.

The next theorem shows the non-interference property. It essentially
states that if we take two executions of a program with two L-equivalent
inputs, then for every intermediate step of the computation of the first run,
there is a corresponding step in the computation of the second run which
results in an L-equivalent configuration.
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Theorem 2 (Termination-sensitive non-interference).Given a computation
e (with no Lb, ()LIO, ⊡, R, and ●) where Γ ⊢ e ∶ Labeled ` τ →
LIO ` (Labeled ` τ ′), an attacker at level L, an initial securiy context σ,
runtime environments Σ1 and Σ2 where Σ1.φ = Σ2.φ = ∅, and initial cache
states ζ1 and ζ2, then

∀e1e2.(Γ ⊢ ei ∶ Labeled ` τ)i=1,2 ∧ e1 ≈L e2
∧ jΣ1, ζ1, bi, ⟨σ, e e1⟩o ↪* jΣ′1, ζ ′1, b′1, t1so

⇒ ∃Σ′2ζ ′2b′2t2s.jΣ2, ζ2, bi, ⟨σ, e e2⟩o ↪* jΣ′2, ζ ′2, b′2, t2so
∧ jΣ′1, ζ ′1, b′1, t1so ≈L jΣ′2, ζ ′2, b′2, t2so

Proof. Take jΣ1, ζ1, bi, ⟨σ, e e1⟩o ↪* jΣ′1, ζ ′1, b′1, t1so and apply Lemma 1 to
get εL(jΣ1, ζ1, bi, ⟨σ, e e1⟩o) ↪*

L εL(jΣ′1, ζ ′1, b′1, t1so). We know this reduc-
tion only includes public (⊑ L) steps, so the number of steps is lower than
or equal to the number of steps in the first reduction.

We can always find a reduction starting from εL(jΣ2, ζ2, bi, ⟨σ, e e2⟩o)
with the same number of steps as εL(jΣ1, ζ1, bi, ⟨σ, e e1⟩o) ↪*

L

εL(jΣ′1, ζ ′1, b′1, t1so), so by the Determinacy Lemma we have
εL(jΣ2, ζ2, bi, ⟨σ, e e2⟩o) ↪*

L εL(jΣ′2, ζ ′2, b′2, t2so). By Lemma 1 again, we
get jΣ2, ζ2, bi, ⟨σ, e e2⟩o ↪* jΣ′2, ζ ′2, b′2, t2so and therefore jΣ′1, ζ ′1, b′1, t1so ≈L
jΣ′2, ζ ′2, b′2, t2so.
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FLOW SYSTEMS
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Abstract. Information-flow control (IFC) is a security mechanism
conceived to allow untrusted code to manipulate sensitive data with-
out compromising confidentiality. Unfortunately, untrusted code
might exploit some covert channels in order to reveal information.
In this paper, we focus on the LIO concurrent IFC system. By lever-
aging the effects of hardware caches (e.g., the CPU cache), LIO is
susceptible to attacks that leak information through the internal
timing covert channel. We present a resumption-based approach
to address such attacks. Resumptions provide fine-grained control
over the interleaving of thread computations at the library level.
Specifically, we remove cache-based attacks by enforcing that every
thread yield after executing an “instruction,” i.e., atomic action. Im-
portantly, our library allows for porting the full LIO library—our
resumption approach handles local state and exceptions, both fea-
tures present in LIO. To amend for performance degradations due to
the library-level thread scheduling, we provide two novel primitives.
First, we supply a primitive for securely executing pure code in par-
allel. Second, we provide developers a primitive for controlling the
granularity of “instructions”; this allows developers to adjust the
frequency of context switching to suit application demands.
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4.1 Introduction

Popular website platforms, such as Facebook, run third-party applications
(apps) to enhance the user experience. Unfortunately, in most of today’s
platforms, once an app is installed it is usually granted full or partial access
to the user’s sensitive data—the users have no guarantees that their data is
not arbitrarily ex-filtrated once apps are granted access to it [Krohn et al.,
2007]. As demonstrated by Hails [Giffin et al., 2012], information-flow
control (IFC) addresses many of these limitations by restricting how sensi-
tive data is disseminated. While promising, IFC systems are not impervious
to attacks; the presence of covert channels allows attackers to leak sensitive
information.

Covert channels are mediums not intended for communication, which
nevertheless can be used to carry and, thus, reveal information [Lampson,
1973]. In this work, we focus on the internal timing covert channel [Smith
and Volpano, 1998]. This channel emanates from the mere presence of con-
currency and shared resources. A system is said to have an internal timing
covert channel when an attacker, as to reveal sensitive data, can alter the
order of public events by affecting the timing behavior of threads. To avoid
such attacks, several authors propose decoupling computations manipulat-
ing sensitive data from those writing into public resources (e.g., [Boudol
and Castellani, 2001, 2002, Pottier, 2002, Russo et al., 2006, Stefan et al.,
2012a]).

Decoupling computations by security levels only works when all shared
resources are modeled. Similar to most IFC systems, the concurrent IFC
system LIO [Stefan et al., 2012a] only models shared resources at the
programming language level and does not explicitly consider the effects
of hardware. As shown in [Stefan et al., 2013], LIO threads can exploit
the underlying CPU cache to leak information through the internal timing
covert channel.

We propose using resumptions to model interleaved computations. (We
refer the interested reader to [Harrison, 2004] for an excellent survey of
resumptions.) A resumption is either a (computed) value or an atomic action
which, when executed, returns a new resumption. By expressing thread
computations as a series of resumptions, we can leverage resumptions for
controlling concurrency. Specifically, we can interleave atomic actions, or
“instructions,” from different threads, effectively forcing each thread to
yield at deterministic points. This ensures that scheduling is not influenced
by underlying caches and thus cannot be used to leak secret data. We
address the attacks on the recent version of LIO [Stefan et al., 2012a] by
implementing a Haskell library which ports the LIO API to use resumptions.
Since LIO threads possess local state and handle exceptions, we extend
resumptions to account for these features.

In principle, it is possible to force deterministic interleaving by means
other than resumptions; in [Stefan et al., 2013] we show an instruction-
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based scheduler that achieves this goal. However, Haskell’s monad abstrac-
tion allows us to to easily model resumptions as a library. This has two
consequences. First, and different from [Stefan et al., 2013], it allows us
to deploy a version of LIO that does not rely on changes to the Haskell
compiler. Importantly, LIO’s concurrency primitives can be modularly re-
defined, with little effort, to operate on resumptions. Second, by effectively
implementing “instruction based-scheduling” at the level of library primi-
tives, we can address cache attacks not covered by the approach described
in [Stefan et al., 2013] (see Section 4.5 ).

In practice, a library-level interleaved model of computations imposes
performance penalties. With this in mind, we provide primitives that allow
developers to execute code in parallel, and means for securely controlling
the granularity of atomic actions (which directly affects performance).

Although our approach addresses internal timing attacks in the pres-
ence of shared hardware, the library suffers from leaks that exploit the
termination channel, i.e., programs can leak information by not terminat-
ing. However, this channel can only be exploited by brute-force attacks that
leak data external to the program—an attacker cannot leak data within
the program, as can be done with the internal timing covert channel.

4.2 Cache Attacks on Concurrent IFC Systems

fillCache(highArray)

skip

fillCache(lowArray)

h == 0

Thread A

l := 0

l := 0

l := 1

accessArray(lowArray)

lowArray
in cache?

Thread B Thread C

Fig. 1. Cache attack

Figure 1 shows an attack that lever-
ages the timing effects of the un-
derlying cache in order to leak in-
formation through the internal tim-
ing covert channel. In isolation,
all three threads are secure. How-
ever, when executed concurrently,
threads B and C race to write to
a public, shared variable l. Impor-
tantly, the race outcome depends
on the state of the secret variable
h, by changing the contents of un-
derlying CPU cache according to its
value (e.g., by creating and travers-
ing a large array as to fill the cache
with new data).

The attack proceeds as follows.
First, thread A fills the cache with
the contents of a public array
lowArray. Then, depending on the
secret variable h, it evicts data from
the cache (by filling it with arbitrary
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data) or leaves it intact. Concur-
rently, public threads B and C delay
execution long enough for A to finish. Subsequently, thread B accesses
elements of the public array lowArray, and writes 0 to public variable l;
if the array has been evicted from the cache (h==0), the amount of time
it takes to perform the read, and thus the write to l, will be much longer
than if the array is still in the cache. Hence, to leak the value of h, thread
C simply needs to delay writing 1 to l long enough so that it is above the
case where the cache is full (with the public array), but shorter than it take
to refill the cache with the (public) array. Observing the contents of l, the
attacker directly learns the value of h.

Appendix A shows the concrete code of the attack for LIO. This simple
attack has previously been demonstrated in [Stefan et al., 2013], where
confidential data from the GitStar system [Giffin et al., 2012], build atop
LIO, was leaked. Such attacks are not limited to LIO or IFC systems; cache-
based attacks against many system, including cryptographic primitives (e.g.,
RSA and AES), are well known [Wong, 2005, Osvik et al., 2006, Percival,
2005, Aciiçmez, 2007].

The next section details the use of resumptions in modeling concurrency
at the programming language level by defining atomic steps, which are used
as the thread scheduling quantum unit. By scheduling threads according
to the number of executed atoms, the attack in Figure 1 is eliminated.
As in [Stefan et al., 2013], this is the case because an atomic step runs
till completion, regardless of the state of the cache. Hence, the timing
behavior of thread B, which was previously leaked to thread C by the time
of preemption, is no longer disclosed. Specifically, the scheduling of thread
C’s l:=1 does not depend on the time it takes thread B to read the public
array from the cache; rather it depends on the atomic actions, which do
not depend on the cache state. In addition, our use of resumptions also
eliminates attacks that exploit other timing perturbations produced by the
underlying hardware, e.g., TLB misses, CPU bus contention, etc.

4.3 Modeling Concurrency with Resumptions

In pure functional languages, computations with side-effects are encoded
as values of abstract data types called monads [Moggi, 1991]. We use the
type m a to denote computations that produce results of type a and may
perform side-effects in monad m. Different side-effects are often handled
by different monads. In Haskell, there are monads for performing inputs
and outputs (monad IO), handling errors (monad Error ), etc. The IFC
system LIO simply exposes a monad, LIO , in which security checks are
performed before any IO side-effecting action.

Resumptions are a simple approach to modeling interleaved computa-
tions of concurrent programs. A resumption, which has the form res ::=
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data Thread m a where
Done :: a → Thread m a
Atom ::m (Thread m a)

→ Thread m a
Fork :: Thread m ()

→ Thread m a
→ Thread m a

Fig. 2. Threads as Resumptions

sch :: [Thread m ()]→ m ()
sch [ ] = return ()
sch ((Done ) : thrds) = sch thrds
sch ((Atom m) : thrds) =

do res ← m; sch (thrds ++ [res ])
sch ((Fork res res ′) : thrds) =

sch ((res : thrds) ++ [res ′ ])

Fig. 3. Simple round-robin scheduler

x | α . res, is either a computed value x or an atomic action α followed by
a new resumption res. Using this notion, we can break down a program
that is composed of a series of instructions into a program that executes an
atomic action and yields control to a scheduler by giving it its subsequent re-
sumption. For example, program P := i1; i2; i3, which performs three side-
effecting instructions in sequence, can be written as resP := i1; i2 . i3 . (),
where () is a value of a type with just one element, known as unit. Here, an
atomic action α is any sequence of instructions. When executing resP , in-
structions i1 and i2 execute atomically, after which it yields control back to
the scheduler by supplying it the resumption res ′P := i3 . (). At this point,
the scheduler may schedule atomic actions from other threads or execute
res ′P to resume the execution of P . Suppose program Q := j1; j2, rewritten
as j1 . j2 . (), runs concurrently with P . Our concurrent execution of P
and Q can be modeled with resumptions, under a round-robin scheduler,
by writing it as P ||Q := i1; i2 . j1 . i3 . j2 . (), where the return value of P
(namely ()) is discarded.

In other words, resumptions allow us to implement a scheduler that
executes i1; i2, postponing the execution of i3, and executing atomic actions
from Q in the interim.

Implementing threads as resumptions As previously done in [Harrison,
2004, Harrison and Hook, 2005], Fig. 2 defines threads as resumptions
at the programming language level. The thread type (Thread m a) is
parametric in the resumption computation value type (a) and the monad in
which atomic actions execute (m)1. (Symbol :: introduces type declarations
and→ denotes function types.) The definition has several value constructors
for a thread. Constructor Done captures computed values; a value Done a
represents the computed value a. Constructor Atom captures a resumption
of the form α . res. Specifically, Atom takes a monadic action of type
m (Thread m a), which denotes an atomic computation in monad m
that returns a new resumption as a result. In other words, Atom captures
both the atomic action that is being executed (α) and the subsequent

1 In our implementation, atomic actions α (as referred as in α . res) are actions
described by the monad m.
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resumption (res). Finally, constructor Fork captures the action of spawning
new threads; value Fork res res ′ encodes a computation wherein a new
thread runs resumption res and the original thread continues as res ′.2 As
in the standard Haskell libraries, we assume that a fork does not return the
new thread’s final value and thus the type of the new thread/resumption is
simply Thread m ().

Programming with resumptions Users do not build programs based on
resumptions by directly using the constructors of Thread m a. Instead,
they use the interface provided by Haskell monads:
return :: a → Thread m a and (>>=) :: Thread m a → (a → Thread m b)
→ Thread m b. The expression return a creates a resumption which con-
sists of the computed value a, i.e., it corresponds to Done a. The operator
(>>=), called bind, is used to sequence atomic computations. Specifically,
the expression res >>= f returns a resumption that consists of the execution
of the atomic actions in res followed by the atomic actions obtained from
applying f to the result produced by res. (The precise definition of return
and >>= can be found in Appendix B.) We sometimes use Haskell’s do-
notation to write such monadic computations. For example, the expression
res >>=(λa → return (a +1)), i.e., actions described by the resumption res
followed by return (a +1) where a is the result produced by res , is written
as do a ← res; return (a + 1).

Scheduling computations We use round-robin to schedule atomic actions
of different threads. Fig. 3 shows our scheduler implemented as a function
from a list of threads into an interleaved computation in the monad m.
The scheduler behaves as follows. If there is an empty list of resumptions,
the scheduler, and thus the program, terminates. If the resumption at the
head of the list is a computed value (Done ), the scheduler removes it
and continues scheduling the remaining threads (sch thrds). (Recall that
we are primarily concerned with the side-effects produced by threads and
not about their final values.) When the head of the list is an atomic step
(Atom m), sch runs it (res ← m), takes the resulting resumption (res), and
appends it to the end of the thread list (sch (thrds ++ [res ])). Finally, when
a thread is forked, i.e., the head of the list is a Fork res res ′, the spawned
resumption is placed at the front of the list (res : thrds). Observe that in
both of the latter cases the scheduler is invoked recursively—hence we keep
evaluating the program until there are no more threads to schedule. We
note that although we choose a particular, simple scheduling approach, our
results naturally extend for a wide class of deterministic schedulers [Russo
and Sabelfeld, 2006a, Swierstra, 2008].

2 Spawning threads could also be represented by a equivalent constructor Fork ′ ::
Thread m ()→ Thread m a, we choose Fork for pedagogical reasons.
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4.4 Extending Resumptions with State and Exceptions

LIO provides general programming language abstrations (e.g., state and
exceptions), which our library must preserve to retain expressiveness. To
this end, we extend the notion of resumptions and modify the scheduler to
handle thread local state and exceptions.

sch ((Atom m) : thrds) =
do res ← m

st ← get
sch (thrds ++ [put st � res ])

sch ((Fork res res ′) : thrds) =
do st ← get

sch ((res : thrds) ++ [put st � res ′ ])

Fig. 4. Context-switch of local state

Thread local state As de-
scribed in [Stefan et al.,
2011], the LIO monad
keeps track of a current
label, Lcur. This label is
an upper bound on the
labels of all data in lex-
ical scope. When a com-
putation C, with current
label LC , observes an ob-
ject labeled LO, C’s label
is raised to the least upper
bound or join of the two labels, written LC t LO. Importantly, the current
label governs where the current computation can write, what labels may be
used when creating new channels or threads, etc. For example, after read-
ing an object O, the computation should not be able to write to a channel
K if LO is more confidential than LK—this would potentially leak sensitive
information (about O) into a less sensitive channel. We write LC v LK

when LK at least as confidential as LC and information is allowed to flow
from the computation to the channel.

Using our resumption definition of Section 4.3, we can model concur-
rent LIO programs as values of type Thread LIO . Unfortunately, such pro-
grams are overly restrictive—since LIO threads would be sharing a single
current label—and do not allow for the implementation of many important
applications. Instead, and as done in the concurrent version of LIO [Stefan
et al., 2012a], we track the state of each thread, independently, by mod-
ifying resumptions, and the scheduler, with the ability to context-switch
threads with state.

Figure 4 shows these changes to sch. The context-switching mechanism
relies on the fact that monad m is a state monad, i.e., provides operations
to retrieve (get) and set (put) its state. LIO is a state monad,3 where the state
contains (among other things) Lcur. Operation (�)::m b → Thread m a →
Thread m a modifies a resumption in such a way that its first atomic

3 For simplicity of exposition, we use get and set . However, LIO only provides
such functions to trusted code. In fact, the monad LIO is not an instance of
MonadState since this would allow untrusted code to arbitrarily modify the
current label—a clear security violation.
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step (Atom) is extended with m b as the first action. Here, Atom consists
of executing the atomic step (res ← m), taking a snapshot of the state
(st ← get), and restoring it when executing the thread again (put st � res).
Similarly, the case for Fork saves the state before creating the child thread
and restores it when the parent thread executes again (put st � res ′).

Exception handling As described in [Stefan et al., 2012b], LIO provides
a secure way to throw and catch exceptions—a feature crucial to many
real-world applications. Unfortunately, simply using LIO’s throw and catch
as atomic actions, as in the case of local state, results in non-standard
behavior. In particular, in the interleaved computation produced by sch, an
atomic action from a thread may throw an exception that would propagate
outside the thread group and crash the program. Since we do not consider
leaks due to termination, this does not impact security; however, it would
have non-standard and restricted semantics. Hence, we first extend our
scheduler to introduce a top-level catch for every spawned thread.

Besides such an extension, our approach still remains quite limiting.
Specifically, LIO’s catch is defined at the level of the monad LIO , i.e., it
can only be used inside atomic steps. Therefore, catch-blocks are prevented
from being extended beyond atomic actions. To address this limitation, we
lift exception handling to work at the level of resumptions.

throw e = Atom (LIO .throw e)

catch (Done a) = Done a
catch (Atom a) handler =

Atom (LIO .catch
(do res ← a

return (catch res handler))
(λe → return (handler e)))

catch (Fork res res ′) handler =
Fork res (catch res ′ handler)

Fig. 5. Exception handling for resumptions

To this end, we con-
sider a monad m that
handles exceptions, i.e.,
a monad for which
throw :: e → m a and
catch :: m a → (e →
m a) → m a, where
e is a type denoting
exceptions, are accord-
ingly defined. Function
throw throws the excep-
tion supplied as an ar-
gument. Function catch runs the action supplied as the first argument
(m a), and if an exception is thrown, then executes the handler (e → m a)
with the value of the exception passed as an argument. If no exceptions are
raised, the result of the computation (of type a) is simply returned.

Figure 5 shows the definition of exception handling for resumptions.
Since LIO defines throw and catch [Stefan et al., 2012b], we qualify these
underlying functions with LIO to distinguish them from our resumption-
level throw and catch. When throwing an exception, the resumption simply
executes an atomic step that throws the exception in LIO (LIO .throw e).

The definitions of catch for Done and Fork are self explanatory. The
most interesting case for catch is when the resumption is an Atom. Here,
catch applies LIO .catch step by step to each atomic action in the sequence;
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this is necessary because exceptions can only be caught in the LIO monad.
As shown in Fig. 5, if no exception is thrown, we simply return the resump-
tion produced by m. Conversely, if an exception is raised, LIO .catch will
trigger the exception handler which will return a resumption by applying
the top-level handler to the exception e. To clarify, consider catching an
exception in the resumption α1 .α2 . x. Here, catch executes α1 as the first
atomic step, and if no exception is raised, it executes α2 as the next atomic
step; on the other hand, if an exception is raised, the resumption α2 . x
is discarded and catch, instead, executes the resumption produced when
applying the exception handler to the exception.

4.5 Performance Tuning

Unsurprisingly, interleaving computations at the library-level introduces
performance degradation. To alleviate this, we provide primitives that
allow developers to control the granularity of atomic steps—fine-grained
atoms allow for more flexible programs, but also lead to more context
switches and thus performance degradation (as we spend more time context
switching). Additionally, we provide a primitive for the parallel execution
of pure code. We describe these features—which do not affect our security
guarantees—below.

Granularity of atomic steps To decrease the frequency of context switches,
programmers can treat a complex set of atoms (which are composed us-
ing monadic bind) as a single atom using singleAtom :: Thread m a →
Thread m a. (See Appendix C.) This function takes a resumption and
“compresses” all its atomic steps into one. Although singleAtom may seem
unsafe, e.g., because we do not restrict threads from adjust the granularity
of atomic steps according to secrets, in Section 4.6 we show that this is not
the case—it is the atomic execution of atoms, regardless of their granularity,
that ensures security.

Parallelism As in [Stefan et al., 2013], we cannot run one scheduler sch per
core to gain performance through parallelism. Threads running in parallel
can still race to public resources, and thus vulnerable to internal timing
attacks (that may, for example, rely on the L3 CPU cache). In principle, it is
possible to securely parallelize arbitrary side-effecting computations if races
(or their outcomes) to shared public resource are eliminated. Similar to
observational low-determinism [Zdancewic and Myers, 2003], our library
could allow parallel computations to compute on disjoint portions of the
memory. However, whenever side-effecting computations follow parallel
code, we would need to impose synchronization barriers to enforce that
all side-effects are performed in a pre-determined order. It is precisely this
order, and LIO’s safe side-effecting primitives for shared-resources, that
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hides the outcome of any potential dangerous parallel race. In this paper,
we focus on executing pure code in parallel; we leave side-effecting code to
future work.

Pure computations, by definition, cannot introduce races to shared
resources since they do not produce side effects.4 To consider such compu-
tations, we simply extend the definition of Thread with a new constructor:
Parallel :: pure b → (b → Thread m a) → Thread m a. Here, pure
is a monad that characterizes pure expressions, providing the primitive
runPure :: pure b → b to obtain the value denoted by the code given as
argument. The monad pure could be instantiated to Par , a monad that par-
allelizes pure computations in Haskell [Marlow et al., 2011], with runPure
set to runPar . In a resumption, Parallel p f specifies that p is to be exe-
cuted in a separate Haskell thread—potentially running on a different core
than the interleaved computation. Once p produces a value x , f is applied
to x to produce the next resumption to execute.

sch (Parallel p f : thrds) =
do res ← sync (λv → putMVar v (runPure p))

(λv → takeMVar v)
f

sch (thrds ++ [res ])

Fig. 6. Scheduler for parallel computations

Figure 6 defines sch for pure computations, where interaction between
resumptions and Haskell-threads gets regulated. The scheduler relies on
well-established synchronization primitives called MVars [Jones et al.,
1996]. A value of type MVar is a mutable location that is either empty or
contains a value. Function putMVar fills the MVar with a value if it is empty
and blocks otherwise. Dually, takeMVar empties an MVar if it is full and re-
turns the value; otherwise it blocks. Our scheduler implementation sch sim-
ply takes the resumption produced by the sync function and schedules it at
the end of the thread pool. Function sync, internally creates a fresh MVar v
and spawns a new Haskell-thread to execute putMVar v (runPure p). This
action will store the result of the parallel computation in the providedMVar.
Subsequently, sync returns the resumption res , whose first atomic action is
to read the parallel computation’s result from the MVar (takeMVar v ). At
the time of reading, if a value is not yet ready, the atomic action will block
the whole interleaved computation. However, once a value x is produced
(in the separate thread), f is applied to it and the execution proceeds with
the produced resumption (f x ).

4 In the case of Haskell, lazy evaluation may pose a challenge since whether or
not a thunk has been evaluated is indeed an effect on a cache [Buiras and Russo,
2013]. Though our resumption-based approach handles this for the single-core
case, handling this in general is part of our ongoing work.
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(Done)

〈Σ, sch (Done x : ts)〉 −→ 〈Σ, sch ts〉

(Atom)
〈Σ[lbl 7→ l ],m〉 −→* 〈Σ′, (e)LIO〉

〈Σ, sch (Atom (put l >>m) : ts)〉 −→ 〈Σ′, sch (ts ++ [put Σ′.lbl � e ])〉

(Fork)

〈Σ, sch (Fork m1 m2 : ts)〉 −→ 〈Σ, sch ((m1 : ts) ++ [put Σ.lbl � m2 ])〉

Fig. 7. Semantics for sch expressions.

4.6 Soundness

In this section, we extend the previous formalization of LIO [Stefan et al.,
2011] to model the semantics of our concurrency library. We present the
syntax extensions that we require to model the behavior of the Thread
monad:

Expression: e ::= . . . | sch es | Atom e | Done e | Fork e e | Parallel e e

where es is a list of expressions. For brevity, we omit a full presentation
of the syntax and semantics, since we rely on previous results in order to
prove the security property of our approach.

Expressions are the usual λ-calculus expressions with special syntax for
monadic effects and LIO operations. The syntax node sch es denotes the
scheduler running with the list of threads es as its thread pool. The nodes
Atom e, Done e, Fork e e and Parallel e e correspond to the construc-
tors of the Thread data type. In what follows, we will use metavariables
x,m, p, t, v and f for different kinds of expressions, namely values, mo-
nadic computations, pure computations, threads, MVars and functions,
respectively.

We consider a global environment Σ which contains the current label of
the computation (Σ.lbl), and also represents the resources shared among
all threads, such as mutable references. We start from the one-step reduction
relation5 〈Σ, e〉 −→ 〈Σ′, e′〉, which has already been defined for LIO [Stefan
et al., 2011]. This relation represents a single evaluation step from e to
e′, with Σ as the initial environment and Σ′ as the final one. Presented
as an extension to the −→ relation, Figure 7 shows the reduction rules
for concurrent execution using sch. The configurations for this relation
are of the form 〈Σ, sch ts〉, where Σ is a runtime environment and ts is
a list of Thread computations. Note that the computation in an Atom

5 As in [Stefan et al., 2012a], we consider a version of −→ which does not include
the operation toLabeled , since it is susceptible to internal timing attacks.
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(Seq)
〈Σ, e〉 −→ 〈Σ′, e′〉 P ⇒ P ′

〈Σ, e ‖ P 〉 ↪→ 〈Σ′, e′ ‖ P ′〉

(Pure)
P ⇒ P ′ vs fresh MVar s = Σ.lbl
〈Σ, sch (Parallel p f : ts) ‖ P 〉 ↪→

〈Σ, sch (ts ++ [Atom (takeMVar vs >>= f )]) ‖ P ′ ‖ (putMVar vs (runPure p))s〉

(Sync)
P ⇒ P ′

〈Σ, sch (Atom (takeMVar vs >>= f ) : ts) ‖ (putMVar vs x)s ‖ P 〉 ↪→
〈Σ, sch (f x : ts) ‖ P ′〉

Fig. 8. Semantics for sch expressions with parallel processes.

always begins with either put l for some label l , or with takeMVar v for
some MVar v . Rules (Done), (Atom), and (Fork) basically behave like
the corresponding equations in the definition of sch (see Figures 3 and
4). In rule (Atom), the syntax node (e)LIO represents an LIO computation
that has produced expression e as its result. Although sch applications
should expand to their definitions, for brevity we show the unfolding of the
resulting expressions into the next recursive call. This unfolding follows
from repeated application of basic λ-calculus reductions.

Figure 8 extends relation −→ into ↪→ to express pure parallel computa-
tions. The configurations for this relation are of the form 〈Σ, sch ts ‖ P 〉,
where P is an abstract process representing a pure computation that is
performed in parallel. These abstract processes would be reified as native
Haskell threads. The operator (‖), representing parallel process composi-
tion, is commutative and associative.

As described in the previous section, when aThread evaluates aParallel
computation, a new native Haskell thread should be spawned in order to
run it. Rule (Pure) captures this intuition. A fresh MVar vs (where s is
the current label) is used for synchronization between the parent and the
spawned thread. A process is denoted by putMVar vs followed by a pure
expression, and it is also tagged with the security level of the thread that
spawned it.

Pure processes are evaluated in parallel with the main threads managed
by sch. The relation ⇒ nondeterministically evaluates one process in a
parallel composition and is defined as follows.

runPure p −→* x

(putMVar vs (runPure p))s ‖ P ⇒ (putMVar vs x)s ‖ P
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For simplicity, we consider the full evaluation of one process until it yields
a value as just one step, since the computations involved are pure and
therefore cannot leak data. Rule (Seq) in Figure 8 represents steps where
no parallel forking or synchronization is performed, so it executes one −→
step alongside a⇒ step.

Rule (Sync) models the synchronization barrier technique from Sec-
tion 4.5. When an Atom of the form (takeMVar vs >>= f ) is evaluated,
execution blocks until the pure process with the corresponding MVar
vs completes its computation. After that, the process is removed and the
scheduler resumes execution.

Security guarantees We show that programs written using our library
satisfy termination-insensitive non-interference, i.e., an attacker at level L
cannot distinguish the results of programs that run with indistinguishable
inputs (see Appendix D for more details) . This result has been previously
established for the sequential version of LIO [Stefan et al., 2011]. As in [Li
and Zdancewic, 2010, Russo et al., 2008, Stefan et al., 2011], we prove
this property by using the term erasure technique.

In this proof technique, we define function εL in such a way that εL(e)
contains only information below or equal to level L, i.e., the function εL
replaces all the information more sensitive than L or incomparable to L
in e with a hole (•). We adapt the previous definition of εL to handle the
new constructs in the library. In most of the cases, the erasure function is
simply applied homomorphically (e.g., εL(e1 e2) = εL(e1) εL(e2)). For sch
expressions, the erasure function is mapped into the list; all threads with a
current label above L are removed from the pool (filter (6≡ •) (map εL ts)),
where ≡ denotes syntactic equivalence). Analogously, erasure for a parallel
composition consists of removing all processes using an MVar tagged with
a level not strictly below or equal to L. The computation performed in a
certain Atom is erased if the label is not strictly below or equal than L.
This is given by

εL(Atom (put s >>m)) =

{
• , s 6v L
put s >> εL (m) , otherwise

A similar rule exists for expressions of the form Atom (takeMVar vs
>>=f ). Note that this relies on the fact that an atom must be of the form
Atom (put s >> m) or Atom (takeMVar vs >>= f ) by construction. For
expressions of the form Parallel p f , erasure behaves homomorphically,
i.e. εL(Parallel p f ) =
Parallel εL(p) (εL ◦ f ).

Following the definition of the erasure function, we introduce the
evaluation relation ↪→L as follows: 〈Σ, t ‖ P 〉 ↪→L εL(〈Σ′, t′ ‖ P ′〉) if
〈Σ, t ‖ P 〉 ↪→ 〈Σ′, t′ ‖ P ′〉. The relation ↪→L guarantees that confiden-
tial data, i.e., data not below or equal-to level L, is erased as soon as it is
created. We write ↪→*

L for the reflexive and transitive closure of ↪→L.
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In order to prove non-interference, we will establish a simulation rela-
tion between ↪→* and ↪→*

L through the erasure function: erasing all secret
data and then taking evaluation steps in ↪→L is equivalent to taking steps
in ↪→ first, and then erasing all secret values in the resulting configuration.
In the rest of this section, we consider well-typed terms to avoid stuck con-
figurations.

Proposition 1 (Many-step simulation). If 〈Σ, sch ts ‖ P 〉 ↪→*

〈Σ′, sch t′s ‖ P ′〉, then it holds that εL(〈Σ, sch ts ‖ P 〉) ↪→*
L

εL(〈Σ′, sch t′s ‖ P ′〉).

The L-equivalence relation ≈L is an equivalence relation between con-
figurations and their parts, defined as the equivalence kernel of the erasure
function εL: 〈Σ, sch ts ‖ P 〉 ≈L 〈Σ′, sch rs ‖ Q〉 iff
εL(〈Σ, sch ts ‖ P 〉) = εL(〈Σ′, sch rs ‖ Q〉). If two configurations are L-
equivalent, they agree on all data below or at level L, i.e., an attacker at
level L is not able to distinguish them.

The next theorem shows the non-interference property. The configura-
tion 〈Σ, sch []〉 represents a final configuration, where the thread pool is
empty and there are no more threads to run.

Theorem 1 (Termination-insensitive non-interference). Given a computa-
tion e, inputs e1 and e2, an attacker at level L, runtime environments Σ1

and Σ2, then for all inputs e1, e2 such that e1 ≈L e2, if 〈Σ1, sch [e e1]〉 ↪→*

〈Σ′
1, sch []〉 and 〈Σ2, sch [e e2]〉 ↪→* 〈Σ′

2, sch []〉, then 〈Σ′
1, sch []〉 ≈L

〈Σ′
2, sch []〉.

This theorem essentially states that if we take two executions from config-
urations 〈Σ1, sch [e e1]〉 and 〈Σ2, sch [e e2]〉, which are indistinguishable
to an attacker at level L (e1 ≈L e2), then the final configurations for the
executions 〈Σ′

1, sch []〉 and 〈Σ′
2, sch []〉 are also indistinguishable to the

attacker (〈Σ′
1, sch []〉 ≈L 〈Σ′

2, sch []〉). This result generalizes when con-
structors Done, Atom, and Fork involve exception handling (see Figure 5).
The reason for this lies in the fact that catch and throw defer all excep-
tion handling to LIO .throw and LIO .catch, which have been proved secure
in [Stefan et al., 2012b].

4.7 Case study: Classifying location data

We evaluated the trade-offs between performance, expressiveness and secu-
rity through an LIO case study. We implemented an untrusted application
that performs K-means clustering on sensitive user location data, in order
to classify GPS-enabled cell phone into locations on a map, e.g., home,
work, gym, etc. Importantly, this app is untrusted yet computes clusters for
users without leaking their location (e.g., the fact that Alice frequents the
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local chapter of the Rebel Alliance). K-means is a particularly interesting
application for evaluating our scheduler as the classification phase is highly
parallelizable—each data point can be evaluated independently.

We implemented and benchmarked three versions of this app: (i) A
baseline implementation that does not use our scheduler and parallelizes
the computation using Haskell’s Par Monad [Marlow et al., 2011]. Since
in this implementation, the scheduler is not modeled using resumptions,
it leverages the parallelism features of Par . (ii) An implementation in
the resumption based scheduler, but pinned to a single core (therefore
not taking advantage of parallelizing pure computations). (iii) A parallel
implementation using the resumption-based scheduler. This implementation
expresses the exact same computation as the first one, but is not vulnerable
to cache-based leaks, even in the face of parallel execution on multiple
cores.

We ran each implementation against one month of randomly generated
data, where data points are collected each minute (so, 43200 data points
in total). All experiments were run ten times on a machine with two 4-core
(with hyperthreading) 2.4Ghz Intel Xeon processors and 48GB of RAM.
The secure, but non-parallel implementation using resumptions performed
extremely poorly. With mean 204.55 seconds (standard deviation 7.19
seconds), it performed over eight times slower than the baseline at 17.17
seconds (standard deviation 1.16 seconds). This was expected since K-
means is highly parallelizable. Conversely, the parallel implementation
in the resumption based scheduler performed more comparably to the
baseline, at 17.83 seconds (standard deviation 1.15 seconds).

To state any conclusive facts on the overhead introduce by our library,
it is necessary to perform a more exhaustive analysis involving more than
a single case study.

4.8 Related work

Cryptosystems Attacks exploiting the CPU cache have been considered
by the cryptographic community [Kocher, 1996]. Our attacker model is
weaker than the one typically considered in cryptosystems, i.e., attackers
with access to a stopwatch. As a countermeasure, several authors propose
partitioning the cache (e.g., [Page, 2005]), which often requires special
hardware. Other countermeasures (e.g. [Osvik et al., 2006]) are mainly
implementation-specific and, while applicable to cryptographic primitives,
they do not easily generalize to arbitrary code (as required in our scenario).

Resumptions While CPS can be used to model concurrency in a functional
setting [Claessen, 1999], resumptions are often simpler to reason about
when considering security guarantees [Harrison, 2004, Harrison and Hook,
2005]. The closest related work is that of Harrison and Hook [Harrison
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and Hook, 2005]; inspired by a secure multi-level operating system, the
authors utilize resumptions to model interleaving and layered state mon-
ads to represent threads. Every layer corresponds to an individual thread,
thereby providing a notion of local state. Since we do not require such
generality, we simply adapt the scheduler to context-switch the local state
underlying the LIO monad. We believe that authors overlooked the power
of resumptions to deal with timing perturbations produced by the underly-
ing hardware. In [Harrison, 2004], Harrison hints that resumptions could
handle exceptions; in this work, we consummate his claim by describing
precicely how to implement throw and catch.

Language-based IFC There has been a considerable amount of literature
on applying programming languages techniques to address the internal
timing covert channel (e.g. [Smith and Volpano, 1998, Volpano and Smith,
1999, Zdancewic and Myers, 2003, Russo and Sabelfeld, 2006a, Stefan
et al., 2012a]). Many of these works assume that the execution of a single
step, i.e., a reduction step in some transition system, is performed in a sin-
gle unit of time. This assumption is often made so that security guarantees
can be easily shown using programming language semantics. Unfortunately,
the presence of the CPU cache (or other hardware shared state) breaks this
correspondence, making cache attacks viable. Our resumption approach
establishes a correspondence between atomic steps at the implementation-
level and reduction step in a transition system. Previous approaches can
leverage this technique when implementing systems, as to avoid the reap-
pearance of the internal timing channel.

Agat [Agat, 2000] presents a code transformation for sequential pro-
grams such that both code paths of a branch have the same memory ac-
cess pattern. This transformation has been adapted in different works
(e.g., [Sabelfeld and Sands, 2000]). Agat’s approach, however, focuses on
avoiding attacks relying on the data cache, while leaving the instruction
cache unattended.

Russo and Sabelfeld [Russo and Sabelfeld, 2006b] consider non-inter-
ference for concurrent while-like-programs under cooperative and deter-
ministic scheduling. Similar to our work, this approach eliminates cache-
attacks by restricting the use of yields. Differently, our library targets a
richer programming languages, i.e., it supports parallelism, exceptions, and
dynamically adjusting the granularity of atomic actions.

Secure multi-execution [Devriese and Piessens, 2010] preserves confi-
dentiality of data by executing the same sequential program several times,
one for each security level. In this scenario, cache-based attacks can only
be removed in specific configurations [Kashyap et al., 2011] (e.g., when
there are as many CPU cores as security levels).

Hedin and Sands [Hedin and Sands, 2005] present a type-system for
preventing external timing attacks for bytecode. Their semantics is aug-
mented to incorporate history, which enables the modeling of cache effects.
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Zhang et al. [Zhang et al., 2012] provide a method for mitigating external
events when their timing behavior could be affected by the underlying hard-
ware. Their semantics focusses on sequential programs, wherein attacks
due to the cache arise in the form of externally visible events. Their solution
is directly applicable to our system when considering external events.

System security In order to achieve strong isolation, Barthe et al. [Barthe
et al., 2012] present a model of virtualization which flushes the cache upon
switching between guest operating systems. Flushing the cache in such
scenarios is common and does not impact the already-costly context-switch.
Although this technique addresses attacks that leverage the CPU cache, it
does not address the case where a shared resource cannot be controlled
(e.g., CPU bus).

Allowing some information leakage, Kopft et al. [Köpf et al., 2012]
combines abstract interpretation and quantitative information-flow to ana-
lyze leakage bounds for cache attacks. Kim et al. [Kim et al., 2012] propose
StealthMem, a system level protection against cache attacks. StealthMem
allows programs to allocate memory that does not get evicted from the
cache. StealthMem is capable of enforcing confidentiality for a stronger
attacker model than ours, i.e., they consider programs with access to a
stopwatch and running on multiple cores. However, we suspect that Stealth-
Mem is not adequate for scenarios with arbitrarily complex security lattices,
wherein not flushing the cache would be overly restricting.

4.9 Conclusion

We present a library for LIO that leverages resumptions to expose concur-
rency. Our resumption-based approach and “instruction”- or atom-based
scheduling removes internal timing leaks induced by timing perturbations of
the underlying hardware. We extend the notion of resumptions to support
state and exceptions and provide a scheduler which context-switches pro-
grams with such features. Though our approach eliminates internal-timing
attacks that leverage hardware caches, library-level threading imposes con-
siderable performance penalties. Addressing this, we provide programmers
with a safe mean for controlling the context-switching frequency, i.e., al-
lowing for the adjustment of the “size” of atomic actions. Moreover, we
provide a primitive for spawning computations in parallel, a novel feature
not previously available in IFC tools. We prove soundness of our approach
and implement a simple case study to demonstrate its use. Our techniques
can be adapted to other Haskell-like IFC systems beyond LIO. The library
and case study can be found at [Buiras et al., 2013].
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attack :: LMVar LH Int → LIORef LH [Int ]→ LIORef LH [Int ]→
Labeled LH Int → LIO LH Int

attack lmv lref href h
= do b ← traverse lref

when b (do – Thread C
forkLIO (do x ← unlabel h

when (x ≡ 0) (do b ← traverse href
when b (return ())))

threadDelay delay_C

– Thread A
forkLIO (do b ← traverse lref

when b (putLMVar lmv 1))

– Thread B
forkLIO (do threadDelay delay_B

putLMVar lmv 0)
return ()

w ← takeLMVar lmv
← takeLMVar lmv

return w

Fig. 9. Cache-attack that leaks one bit of a secret in LIO

A Cache-attack for LIO

guess hs = do let lL = [1 . . constant ] :: [Int ]
lH = [1 . . constant ] :: [Int ]

lmv ← newEmptyLMVar L
lref ← newLIORef L lL
href ← newLIORef H lH
mapM (attack lmv lref href ) hs

Fig. 10. Magnification of the attack in Figure 9

Fig. 9 shows the cache-attack described in Section 4.2 for LIO . We
assume the classic two-point lattice (of type LH ) where security levels L
and H denote public and secret data, respectively. Function attack takes
a public shared LMVar (lmv ), two references to lists of public (lref ) and
secret data (href ), and a secret integer h. The goal of attack is to return a
public integer equal to h. For simplicity, we use threadDelay n, which places
a thread to sleep for n micro seconds, to exploit the race to lmv—using
a loop would work equally well. In Fig. 9, parameter delay_C is set to
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return x = Done x

Done x >>= f = f x
Atom m >>= f = Atom (do res ← m

return (res >>= f ))
Fork res res ′ >>= f = Fork res (res ′ >>= f )
Parallel p g >>= f = Parallel p (λr → g r >>= f )

Fig. 11. Defintions return and >>=.

wait for thread C to finish running. Similarly, parameter delay_B imposes
a delay on thread B before attempting to update lmv with 0. Variable w
stores the first written value in lmv , which will coincide with the value of
h.

Figure 10 shows the magnification of the attack for a list of secret
integers (hs). Parameter constant determines the size of the lists with public
and secret data, respectively. The magnification is simply to map function
attack to the list of secrets. (The precise values of these parameters are
machine-specific and experimentally determined.) Below we present the
final component required for the attack:

traverse ref =
do ls ← readLIORef ref

return ((ls ≡ [x | x ← ls ]) ∧ (reverse (reverse ls) ≡ ls))

B Monadic Operations for (Thread m)

Figure 11 shows the precise definition for return and >>=. The interesting
definitions are the ones related to bind. Computed values are represented
by Done, so this is the only case when f is applied. The case for Atom
constructs a resumption consisting in the first atomic step in m (res ← m)
and returning a new resumption sequencing the subsequent atomic steps in
m (return (res >>= f )). In this case, the do-notation describes operations
in the monad m (not Thread m). The definition of Fork sequences the
atomic actions found in the resumption res ′ (res ′ >>= f ). Similarly, the case
Parallel p g sequences the atomic steps generated by g r (g r >>= f ), where
r is the result of the spawned parallel computation.

C Granularity of Atomic Steps

Figure 12 shows the definition of function singleAtom. When applied,
singleAtom collapses the atomic steps found between constructors Fork
and Parallel. The cases for Done, Fork , and Parallel are self-explanatory.
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singleAtom ::Monad m ⇒ Thread m a → Thread m a
singleAtom (Done x ) = Done x
singleAtom (Atom m) = Atom (m >>= atomically)
where
atomically (Done x ) = return (Done x )
atomically (Atom m ′) = m ′ >>= atomically
atomically (Fork res res ′) = return (Fork res (singleAtom res ′))
atomically (Parallel p f ) = return (Parallel p (λr → singleAtom (f r)))

singleAtom (Fork res res ′) = Fork res (singleAtom res ′)
singleAtom (Parallel p f ) = Parallel p (λr → singleAtom (f r))

Fig. 12. Collapsing atomic steps

The case for Atom deserves some explanation. It only creates an Atom
(Atom (m >>= atomically)), which first atomic step is performed by m,
and the resulting resumption is given to the auxiliary function atomically .
This function removes all the consecutive constructors Atom (atomically
(Atom m ′) = m ′ >>= atomically).

D Soundness

We start by showing that the evaluation relations ↪→ and ↪→L are determin-
istic. Note that this is possible because we assume deterministic parallelism
in our pure parallel computations. The following results rely on the previ-
ous determinacy results for sequential LIO.

Lemma 0 (Determinacy of ↪→). If 〈Σ, e〉 ↪→ 〈Σ′, e′〉 and 〈Σ, e〉 ↪→ 〈Σ′′, e′′〉,
then 〈Σ′, e′〉 = 〈Σ′′, e′′〉.

Proof. By induction on expressions and evaluation contexts, showing there
is always a unique redex in every step.

Lemma 1 (Determinacy of ↪→L). If 〈Σ, e〉 ↪→L 〈Σ′, e′〉 and 〈Σ, e〉 ↪→L

〈Σ′′, e′′〉, then 〈Σ′, e′〉 = 〈Σ′′, e′′〉.

Proof. By Lemma 0 and definition of εL.

The following lemma establishes a simulation between ↪→ and ↪→L

when reducing the body of a thread whose current label is below or equal
to level L. In this result, we use the fact that the reduction −→ from the
original LIO formalization has been proved to have this property.

Lemma 2 (Single-step simulation for public computations).
If 〈Σ, sch (t : ts) ‖ P 〉 ↪→ 〈Σ′, sch t′s ‖ P ′〉 with Σ.lbl v L, then

εL(〈Σ, sch (t : ts) ‖ P 〉) ↪→L εL(〈Σ′, sch t′s ‖ P ′〉).
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Proof. From previous results, we know that if m is a sequential LIO com-
putation and 〈Σ,m〉 −→ 〈Σ′, e〉, then εL(〈Σ,m〉) −→L εL(〈Σ′, e〉).

– Case t = Atom (put Σ.lbl >>m):
εL(〈Σ, sch (Atom (put l >>m) : ts) ‖ P 〉)

= 〈εL(Σ), sch (Atom (put l >> εL(m)) : εL(ts)) ‖ εL(P )〉
↪→L εL(〈εL(Σ1), sch (εL(ts) ++ [put Σ′.lbl � εL(e)]) ‖ εL(P ′)〉)
We know that εL(Σ1) = εL(Σ) from previous results, since LIO state
transformations cannot introduce secrets observable by an attacker.

– Case t = Parallel p f :
εL(〈Σ, sch (Parallel p f : ts) ‖ P 〉)

= 〈εL(Σ), sch (Parallel εL(p) (εL ◦ f ) : εL(ts)) ‖ εL(P )〉
↪→L εL(〈εL(Σ1), sch (εL(ts) ++ [Atom (readLMVar vs >>= εL ◦ f )]) ‖ εL(P )

‖ putLMVar vs (runPure εL(p))〉)
As before, we know that εL(Σ1) = εL(Σ), so the result follows directly
from the properties of the erasure function.

– The other cases are similar.

We can also show that initial and final configurations for any reduction
steps taken from a thread above L are equal when erased.

Lemma 3. If 〈Σ, sch (t : ts) ‖ P 〉 ↪→ 〈Σ′, sch t′s ‖ P ′〉 with Σ.lbl 6v L,
then
εL(〈Σ, sch (t : ts) ‖ P 〉) = εL(〈Σ′, sch t′s ‖ P ′〉).

Proof. Since εL(〈Σ, sch (t : ts) ‖ P 〉) = 〈εL(Σ1), •〉, we only have to show
that εL(Σ) = εL(Σ

1), whereΣ1 is the modified environment after perform-
ing the reduction step. The proof is similar to the corresponding lemma in
the original version of LIO, since the possible environment modifications
are the same.

We can now prove the many-step simulation lemma.

Proposition 1 (Many-step simulation). If 〈Σ, sch ts ‖ P 〉 ↪→∗

〈Σ′, sch t′s ‖ P ′〉, then it holds that

εL(〈Σ, sch ts ‖ P 〉) ↪→∗
L εL(〈Σ′, sch t′s ‖ P ′〉).

Proof. The proof is by induction on the derivation of 〈Σ, sch ts ‖ P 〉 ↪→∗

〈Σ′, sch t′s ‖ P ′〉. We consider a thread queue of the form r :rs , and suppose
that 〈Σ, sch (e : rs) ‖ P 〉 ↪→ 〈Σ1, r′s〉 and 〈Σ1, r′s〉 ↪→∗ 〈Σ′, sch t′s ‖ P ′〉
(otherwise the reduction is not making any progress, and the result is trivial).

– If Σ.lbl v L, the result follows by Lemma 2 and the induction hypoth-
esis.

– If Σ.lbl 6v L, the result follows by Lemma 3 and the induction hypoth-
esis.
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Finally, we prove the non-interference result, showing that two ter-
minating runs that start with L-equivalent configurations must end in
L-equivalent configurations.

Theorem 1 (Termination-insensitive non-interference). Given a computa-
tion e, inputs e1 and e2, an attacker at level L, runtime environments Σ1

and Σ2, then for all inputs e1, e2 such that e1 ≈L e2, if 〈Σ1, sch [e e1]〉 ↪→∗

〈Σ′
1, sch []〉 and 〈Σ2, sch [e e2]〉 ↪→∗ 〈Σ′

2, sch []〉, then 〈Σ′
1, sch []〉 ≈L

〈Σ′
2, sch []〉.

Proof. By definition of ≈L, we have

εL(〈Σ1, sch [e e1]〉) = εL(〈Σ2, sch [e e2]〉).

Then, by the simulation lemma (Proposition 1), we have

εL(〈Σ1, sch [e e1]〉) ↪→∗
L εL(〈Σ′

1, sch []〉)
εL(〈Σ2, sch [e e2]〉) ↪→∗

L εL(〈Σ′
2, sch []〉)

Moreover, from the determinacy of ↪→∗
L given in Lemma 1, the end config-

urations must be the same, i.e. εL(〈Σ′
1, sch []〉) = εL(〈Σ′

2, sch []〉). Finally,
by definition of ≈L, we conclude 〈Σ′

1, sch []〉 ≈L 〈Σ′
2, sch []〉.
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FIVE

LAZY PROGRAMS LEAK SECRETS

Pablo Buiras, Alejandro Russo

Abstract. To preserve confidentiality, information-flow control re-
stricts how untrusted code handles secret data. While promising,
IFC systems are not perfect; they can still leak sensitive information
via covert channels. In this work, we describe a novel exploit of lazy
evaluation to reveal secrets in IFC systems. Specifically, we show that
lazy evaluation might transport information through the internal
timing covert channel, a channel present in systems with concur-
rency and shared resources. We illustrate our claim with an attack
for LIO, a concurrent IFC system for Haskell. We propose a coun-
termeasure based on restricting the implicit sharing caused by lazy
evaluation.
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5.1 Introduction

Information-flow control (IFC) permits untrusted code to safely operate
on secret data. By tracking how data is disseminated inside programs, IFC
can avoid leaking secrets into public channels—a policy known as non-
interference [Goguen and Meseguer, 1982]. Despite being promising, IFC
systems are not flawless; the presence of covert channels allows attackers
to still leak sensitive information.

Covert channels arise when programming language features are misused
to leak information [Lampson, 1973]. The tolerance to such channels is
determined by their bandwidth and how easy it is to exploit them. For
instance, the termination covert channel, which exploits divergence of
programs, has a different bandwidth in systems with intermediate outputs
than in batch processes [Askarov et al., 2008].

Lazy evaluation is the default evaluation strategy of the purely functional
programming language Haskell. This evaluation strategy has two distinctive
features which can be used together to reveal secrets. Firstly, since it is a form
of non-strict evaluation, it delays the evaluation of function/constructor
arguments and let-bound identifiers until their denoted values are needed.
Secondly, when the evaluation of such expressions is required, their resulting
value is stored (cached) for subsequent uses of the same expression, a
feature known as sharing or memoisation. This is known as call-by-need
semantics or simply lazy evaluation. In Haskell, a thunk, also known as
a delayed computation, is a parameterless closure created to prevent the
evaluation of an expression until it is required at a later time. The process
of evaluating a thunk is known as forcing. While lazy evaluation does not
affect the denotation of expressions with respect to non-strict semantics,
it affects the timing behaviour of programs. For instance, if a function
argument is used more than once in the body of a function, it is almost
always faster to use lazy evaluation as opposed to call-by-name, since it
avoids re-evaluating every occurrence of the argument.

From a security point of view, it is unclear what type of semantics (non-
strict versus strict) is desirable in order to deal with covert channels. In
sequential settings, Sabelfeld and Sands [Sabelfeld and Sands, 2001] suggest
that a non-strict semantics might be intrinsically safer than a strict one.
This observation is based on the ability to exploit the termination covert
channel. Although it could avoid termination leaks, lazy evaluation can
compromise security in other ways. For instance, Rafnsson et al. [Rafnsson
et al., 2013] describe how to exploit the Java (lazy) class initialisation
process to reveal secrets. Not surprinsingly, lazy evaluation might also
reveal secrets through the external timing covert channel. This channel
involves externally measuring the time used to complete operations that
may depend on secret data.

More interestingly, and totally unexplored until this work, lazy eval-
uation might transport information through the internal timing covert
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channel. This covert channel arises by the mere presence of concurrency
and shared resources. Malicious code can exploit it by setting up threads
to race for a public shared resource and, depending on the secret, affecting
their timing behaviour to determine the winner. With lazy evaluation in
place, thunks become shared resources and forcing their evaluation corre-
sponds to affecting the threads’ timing behaviour—subsequent evaluations
of previously forced thunks take practically no time.

We present an attack for LIO [Stefan et al., 2012], a concurrent IFC sys-
tem for Haskell, that leverages lazy evaluation to leak secrets. LIO presents
countermeasures for internal timing leaks based on programming language
level abstractions. Since LIO is embedded in Haskell as a library, lazy evalu-
ation, as a feature that primarily affects pure values, is handled by the host
language. Lazy evaluation is essentially built into Haskell’s internals, hence
there are no programming language-level mechanisms for inspecting or
creating thunks that could be used to implement a countermeasure. Thunks
for pure values are transparently injected into LIO computations, so the
library could not be capable of explicitly considering whether they have
been memoised at any given time.

This paper is organised as follows. Section 5.2 briefly recaps the basics
of LIO . Section 5.3 presents the attack. Section 5.4 describes a possible
countermeasure. Conclusions are drawn in Section 5.5.

5.2 LIO : a concurrent IFC system for Haskell

In purely functional languages, computations with side-effects are encoded
as values of abstract data types called monads [Moggi, 1991]. In Haskell,
there are monads for performing inputs and outputs (monad IO), handling
errors (monad Error ), etc. The IFC system LIO is simply another monad
in which security checks are performed before side-effects are performed.

The LIO monad keeps track of a current label. This label is an upper
bound on the labels of all data in lexical scope. When a computation
C, with current label LC , observes an object labelled LO, C’s label is
raised to the least upper bound or join of the two labels, written LC t LO.
Importantly, the current label governs where the current computation can
write, what labels may be used when creating new channels or threads,
etc. For example, after reading an object O, the computation should not
be able to write to a channel K if LO is more confidential than LK—this
would potentially leak sensitive information (about O) into a less sensitive
channel.

Since the current label protects all the variables in scope, in practical
programs we need a way of manipulating differently-labelled data without
monotonically increasing the current label. For this purpose, LIO provides
explicit references to labelled, immutable data through a parametric data
type called Labeled . A locally accessible symbol can bind, for example,
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attack :: LMVar LH Int → Labeled LH Int → LIO LH Int
attack lmv secret

= do let thunk = [1 . . constant ] :: [Int ]

– Thread C
forkLIO (do s ← unlabel secret

when (s 6≡ 0) (do n ← traverse thunk
when (n > 0) (return ())))

threadDelay delay_C

– Thread A
forkLIO (do n ← traverse thunk

when (n > 0) (putLMVar lmv 1))

– Thread B
forkLIO (do threadDelay delay_B

putLMVar lmv 0)

w ← takeLMVar lmv
← takeLMVar lmv

return w

Fig. 1: Attack exploiting lazy evaluation

a value of type Labeled l Int (for some label type l ), which contains an
Int protected by a label different from the current one. Function unlabel ::
Labeled l a → a1 brings the labelled value into the current lexical scope
and updates the current label accordingly.

LIO also includes IFC-aware versions of well-established synchroni-
sation primitives known as MVars [Jones et al., 1996]. A value of type
LMVar is a mutable location that is either empty or contains a value. Func-
tion putLMVar
fills the LMVar with a value if it is empty and blocks otherwise. Dually,
readLMVar empties an LMVar if it is full and blocks otherwise.

5.3 A lazy attack for LIO

Figure 1 shows the attack for LIO . The code essentially implements an
internal timing attack [Smith and Volpano, 1998] which leverages lazy eval-
uation to affect the timing behaviour of threads. We assume the classic
two-point lattice (of type LH ) where security levels L and H denote public
and secret data, respectively, and the only disallowed flow is the one from
H to L. Function attack takes a public, shared LMVar lmv , and a labelled
boolean secret (encoded as an integer for simplicity). The goal of attack is

1 Symbol :: introduces type declarations and→ denotes function types.
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to return a public integer equal to secret , thus exposing an LIO vulnera-
bility. In isolation, all the threads are secure. When executed concurrently,
however, secret gets leaked into lmv . For simplicity, we use threadDelay n,
which causes a thread to sleep for n micro seconds, to exploit the race
to lmv—if such an operation was not allowed, using a loop would work
equally well.

The attack proceeds as follows. Threads A and B do not start running
until thread C finishes. This effect can be easily achieved by adjusting the
parameter delay_C . The role of thread C is to force the evaluation of
the list thunk when the value of secret is not zero (s 6≡ 0). To that end,
function traverse goes over thunk , returning one of its elements. Condition
n > 0 always holds and it is only used to force Haskell to fully evaluate
the closure returned by traverse. Threads A and B will eventually start
racing. Thread A executes the command traverse thunk before writing
the constant 1 into lmv (putLMVar lmv 1). Thread B delays writing 0
into lmv (putLMVar lmv 0) by some (carefully chosen) time delay_B . If
s 6≡ 0, thunk will have already been evaluated when thread A traverses its
elements, thus taking less time than thread B’s delay. As a result, value 1
is first written into lmv . Otherwise, thread B’s delay is shorter than the
time taken by thread A to force the evaluation of thunk . In this case, value
0 is first written into lmv . Variable w observes the first written value in
lmv , which will coincide with the value of the secret. The precise values
of parameters constant , delay_C , and delay_B are machine-specific and
experimentally determined.

The following code shows the magnification of the attack for a list of
secret integers.

magnify :: [Labeled LH Int ]→ LIO LH [Int ]
magnify ss = do lmv ← newEmptyLMVar L

mapM (attack lmv) ss

Function magnify takes a list of secret values ss (of type [Labeled LH Int ]).
The magnification proceeds by creating the public LMVar
(newEmptyLMVar L) needed by the attack. Function mapM sequentially
applies function attack lmv (i.e. the attack) to every element in ss and
collects the results in a public list ([Int ]).

Below, we present the final component required for the attack:

traverse :: [a ]→ LIO LH a
traverse xs = return (last xs)

This function simply returns the last element of the list given as argument.
The code for the attack can be downloaded from http://www.cse.

chalmers.se/~buiras/LazyAttack.tar.gz.
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5.4 Restricting sharing

We propose a countermeasure based on restricting the sharing feature of
lazy evaluation. Specifically, we propose duplicating shared thunks when
spawning new threads. In that manner, sharing gets restricted to the lexical
scope of each thread. Thunks being forced in one thread will then not affect
the timing behaviour of the others. To illustrate this point, consider the
shared thunk from Figure 1. If this countermeasure was implemented,
forcing the evaluation of thunk by thread C would not affect the time
taken by thread A to evaluate traverse thunk , making the attack no longer
possible. An important drawback of this approach is that there would
be a performance penalty incurred by disabling sharing among threads.
Benchmarking and evaluation would be necessary to determine the full
extent of the overhead inherent in the technique. Presumably, programmers
could restructure their programs to minimise the effect of this penalty.

As an optimisation, it is possible to only duplicate thunks denoting pure
expressions. Thunks denoting side-effecting expressions can be shared
across threads without jeopardising security. The reason for that relies
on LIO ’s ability to monitor side-effects. If a thread that depends on the
secret forces the evaluation of side-effecting computations, the resulting
side-effects are required to agree with the IFC policy. For instance, threads
with secrets in lexical scope can only force thunks that perform no public
side-effects; otherwise LIO will abort the execution in order to preserve
confidentiality.

To implement our approach, we propose using deepDup, an operation
introduced by Joachim Breitner [Breitner, 2012] to prevent sharing in
Haskell. Essentially, deepDup takes a variable as its argument and creates
a private copy of the whole heap reachable from it, effectively duplicating
the argument thunk and disabling sharing between it and the original
thunk. In his paper, Breitner shows how to extend Launchbury’s natural
semantics for lazy evaluation [Launchbury, 1993] with deepDup. The
natural semantics is given by a relation Γ : t ⇓ ∆ : v, which represents the
fact that from the heap Γ we can reduce term t to the value v, producing
a new heap ∆. It is the relation between Γ and ∆ which captures heap
modifications caused by memoisation. In this setting, the rule for deepDup
is

Γ, x 7→ e, x′ 7→ ê[y′1/y1. . . . , y
′
n/yn], (y

′
i 7→ deepDup yi)i∈1...n : x′ ⇓ ∆ : z

ufv(e) = {y1, . . . , yn} x′, y′1, . . . , y
′
n fresh

Γ, x 7→ e : deepDup x ⇓ ∆ : z

where ufv(e) is the set of unguarded2 free variables of e and ê is e with
all bound variables renamed to fresh variables in order to avoid variable
2 Function ufv(e) is defined as the set of free variables that are not already marked
for duplication, i.e. ufv(deepDup x ) = ∅, and in the rest of the cases it is
inductively defined as usual.
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capture when applying substitutions. Note that deepDup x duplicates all
the thunks reachable from x in a lazy manner: the free variables y1, . . . , yn
are replaced with calls to deepDup for each variable, so these duplications
will not be performed until those variables are actually evaluated. Laziness
is necessary to properly handle cyclic data structures, since the duplication
process would loop indefinitely if it were to eagerly copy all thunks for
such structures. As explained below, this design decision has important
consequences for security.

In practice, we would use this primitive every time we fork a new thread:
we take the body of the new thread m1 and the body of the parent thread
m2, and replace them with deepDup m1 and deepDup m2. Due to the
lazy nature of the duplication performed by deepDup, it is necessary to
duplicate both thunks, i.e., m1 and m2. Consider two threads A and B with
current labels L and H, respectively, and suppose that they both have a
pointer to a certain thunk x in the same scope. If we only duplicated the
thunk in A (the public thread), thread B could evaluate parts of x depending
on the secret, before they have been duplicated in thread A—recall that
deepDup is lazy. This would cause the evaluation of the same parts of the
duplicated version of x in A to go faster, thus conveying some information
about the secret to thread A. In addition, note that it is not possible to
determine in advance—at the time forkLIO is called—which thread will
raise its current label to H. Therefore, we must take care to duplicate all
further references to shared thunks every time a fork occurs.

As a possible optimisation, we advise designing a data dependency anal-
ysis capable of over-approximating which expressions are shared among
threads. Once the list of expressions (and their scope) has been calculated,
we would proceed to instrument the code, introducing instructions that
duplicate only the truly shared thunks at runtime, as opposed to duplicat-
ing every pure thunk in the body of each thread. We believe that HER-
MIT [Farmer et al., 2012] is an appropriate tool to deploy such instrumen-
tation as a code-to-code transformation.

5.5 Conclusions

We describe and implement a new way of leveraging lazy evaluation to leak
secrets in LIO , a concurrent IFC system in Haskell. Beyond LIO , the attack
points out a subtlety of IFC for programming languages with lazy seman-
tics and concurrency. We propose a countermeasure based on duplicating
thunks at the time of forking in order to restrict sharing among threads. For
that, we propose to use the experimental Haskell package ghc-dup. This
package provides operations that copy thunks in a lazy manner. Although
convenient for preserving program semantics, such design decision has im-
plications for security. To deal with that, our solution requires duplicating
thunks for both the newly spawned thread and its parent. As future work,
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we will implement the proposed countermeasure, prove soundness (non-
interference), evaluate its applicability through different case studies, and
introduce some optimisations to reduce the amount of duplicated thunks.
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Policy facets





CHAPTER

SIX

DYNAMIC ENFORCEMENT OF DYNAMIC
POLICIES

Pablo Buiras, Bart van Delft

Abstract. This paper presents SLIO, an information-flow control
mechanism enforcing dynamic policies: security policies which change
the relation between security levels while the system is running. SLIO
builds on LIO, a floating-label information-flow control system em-
bedded in Haskell that uses a runtime monitor to enforce security.
We identify an implicit flow arising from the decision to change the
policy based on sensitive information and introduce a corresponding
check in the enforcement mechanism. We provide a formal security
guarantee for SLIO, presented as a knowledge-based property, which
specifies that observers can only learn information in accordance
with the level ordering. Like LIO, SLIO is a generic enforcement
mechanism, parametrised on the concrete instantiation of security
labels and their policy change mechanism. To illustrate the applica-
bility of our results, we implement well-known label models such as
DLM, the Flowlocks framework, and DC labels in SLIO.
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Dave

Bob Carl

Alice

(a) Before.

Alice

Dave Carl

Bob

(b) After.

Fig. 1: Company’s hierarchy before and after Alice leaves.

6.1 Introduction

Many computing systems, such as personal computers, mobile phones and
web pages, allow for the installation or inclusion of third-party code. This
introduces the risk that untrusted code, either by intention or program-
ming errors, leaks confidential information or violates the integrity of data.
Information-flow control (IFC) mechanisms aim to ensure that the infor-
mation flows in a system abide by the desired security policy.

As a running example we consider an application responsible for com-
bining and sharing employee files, where each file is labeled with the em-
ployee’s name as security level. The application requires read and write
access to all files, but the security policy dictates that information may only
flow in accordance to the company’s hierarchy. That is, an employee’s file
can only contain information from that employee, whereas information
from files of all employees in a division may be written to the files of the
divison manager. 1

Many IFC mechanisms assume a static partial ordering (v) between
security levels (e.g. [Simonet, 2003, Li and Zdancewic, 2006, Russo et al.,
2008]). Figure 1a shows such an ordering for a company where Alice is
the chief executive, Bob and Carl are managers of two different divisions,
and Dave is an employee in both divisions. A commonly enforced security
poperty is the notion of noninterference [Goguen and Meseguer, 1982]:
sensitive inputs may not influence outputs to less-sensitive locations. How-
ever, some mechanisms allow for occasional exceptions to this ordering in
the form of declassification [Sabelfeld and Sands, 2005]. For example, a file
of Alice’s security level may be sent to the division managers in redacted
form.

In this paper, we argue that the ordering between security levels can be
much more dynamic, as others have argued before [Askarov and Chong,
2012, Broberg and Sands, 2010, Matos and Boudol, 2005]. That is, rather

1 One could argue that this particular situation could instead be modelled using
roles for manager, employee etc. rather than employee names. We use this model
for the sake of simplicity in our examples.
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than an occasional exception to the static ordering, the ordering might
change much more drastically and permanently. As an example, we con-
sider that Alice has accepted a position in a different company and leaves.
Consequently, Bob and Dave are promoted and Alice’s documents have
become isolated from the rest of the company, as show in Figure 1b. To
enforce such dynamic policies, we need mechanisms that can account for
the addition, as well as the removal of allowed information flows during
program execution.

Similar changes in the information flow policy might occur in subscrip-
tion-based services (such as music streaming) where information is only
available for the time that the user paid for. Other examples are applications
where users can change the policy themselves (e.g. in a smart phone system),
and situations where the inherent value of information changes over time
(e.g. revealing cards at the end of a poker game [Askarov and Sabelfeld,
2005]). These examples show that it is natural for the value of information
to change over time, motivating the need to support dynamic information-
flow policies.

Enforcing dynamic policies brings new challenges when compared to
IFC for static policies.

– Under the assumption of the static nature of a partial ordering it possible
to approximate the security level of information. For example, a file
containing information of both Bob and Carl could, in Figure 1a, be
approximated with the security level Alice. Such approximations are
incorrect when we need to account for the possibility that the ordering
might change.

– With static orderings, IFC typically enforces noninterference [Cohen,
1977, Goguen and Meseguer, 1982]. In the dynamic setting, the order-
ing between levels might be different at the moment of (each) output,
so a different security condition is necessary.

– As the decision to modify the label ordering might be affected by
sensitive inputs to the system, this creates a new potential flow of
information that needs to be controlled.

This paper investigates the field of dynamic policies on both a theoreti-
cal and practical level in the context of dynamic enforcement, i.e. enforce-
ment that checks information flows at runtime. As a starting point we use
LIO [Stefan et al., 2011], a dynamic information-flow control library for
Haskell implemented as an embedded language augmented with runtime
security checks. In its most general form, LIO is parametric on the pol-
icy specification language and label ordering to be used in the program;
this ordering must be defined in advance and cannot change at runtime.
The library provides a noninterference guarantee with respect to this order-
ing. LIO’s genericity makes it a suitable framework for our exploration of
dynamic policies and for implementing our results.
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Contributions Concretely, our contributions are:

– We present a new enforcement mechanism for dynamic policies, called
SLIO. SLIO is a strict generalisation of LIO which, by providing a
modifiable state component, allows for the generic enforcement of
dynamic policies. We preserve LIO’s genericity and abstract away from
a concrete choice for both policy specification language and ordering
change mechanism. (§ 6.3)

– We identify a clear constraint that needs to be checked for each ordering
change to prevent information flow leaks via sensitive modifications to
the label ordering. (§ 6.4)

– The original noninterference guarantee from LIO does not generalise
to a setting with dynamic policies. For this purpose we introduce a new
knowledge-based security condition. Though based on existing work
([Askarov and Chong, 2012]), we introduce a novel extension to allow
for the persistent relabeling (or: declassification) of information. (§ 6.5,
§ 6.6)

– To demonstrate the practicality of SLIO, we implement multiple in-
stances for various policy specification languages, including the Decen-
tralized Label Model (DLM) [Myers and Liskov, 1998], Disjunction
Category Labels [Stefan et al., 2012b] and Paralocks [Broberg and
Sands, 2010]. (§ 6.7)

Before turning to the details of these contributions, we summarise the
essentials of LIO.

6.2 LIO

Labeled IO, or LIO [Stefan et al., 2011], is a Haskell library that dynamically
enforces information flow control, providing termination-insensitive non-
interference [Askarov et al., 2008] for sequential programs2.

LIO leverages Haskell’s monadic encapsulation of side-effects to provide
security. A monad [Moggi, 1989] is an abstract data type that can be
used to structure effectful computations in purely functional languages.
Monads specify how to build and bind computations together in sequence,
and typically provide distinguished operations that model specific side-
effects. Different monads are often used to model different kinds of effectful
computations. In Haskell, monads are used to express all effects, including
exception handling, nondeterminism, and input/output.

LIO leverages monads to precisely control what (side-effecting) oper-
ations the programmer is allowed to perform at any given time. An LIO
program is a computation in the LIO monad, composed from simpler

2 A concurrent version of LIO exists [Stefan et al., 2012a], but this work is largely
orthogonal to the work presented here.
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monadic terms using the fundamental monadic combinators return and
(>>=) (read as “bind”).

The operation return x produces a computation which returns the
value denoted by x . Function (>>=) is used to sequence LIO computations.
Specifically, t>>=(λx .t ′) takes the result produced by t and applies function
λx .t ′ to it. (This operator allows computation t ′ to depend on the value
produced by t .) We sometimes use Haskell’s do-notation to write such
monadic computations. For example, the program t >>=λx .return (x +1),
which adds 1 to the value produced by t , can be written as shown below.

do x ← t
return (x + 1)

In Haskell, input/output operations are provided by the IO monad. That
is, all computations that want to perform I/O operations have to be of the
type IO a, where a is the type of the returned value of the computation.
The LIO monad provided by the LIO library is intended to be used as a
replacement for this type. It provides a collection of operations similar to
IO , but enriched with security checks that prevent unwanted information
flows. The noninterference guarantees provided by LIO only hold within
this monad: an attacker is a piece of untrusted, potentially malicious LIO
code that is run in the same context as the trusted code.

The LIO library employs the floating-label approach to dynamic in-
formation-flow control, which borrows ideas from the operating systems
security research community [Zeldovich et al., 2006] and brings them into
the field of language-based security. Assuming a security lattice of labels
(with operations t, u and v defined on them), the LIO monad uses its state
to keep track of a current label, lcur. This label represents the least upper
bound over the labels on which the current computation depends. All the
(I/O) operations provided by LIO take care to appropriately validate and
adjust this label.

For example, when an LIO computation with current label lcur observes
an entity with label lA, its current label must change (possibly rise) to the
least upper bound of the two labels, written lcurt lA. As it were, the current
label floats up in the security lattice, to maintain its position as an upper
bound on the security levels of the information that is currently in scope.
Similarly, before performing a side-effect visible to label l, LIO first checks
that the current label flows to l (lcur v l) before allowing the operation to
take place.

LIO is parameterised by a label format, i.e. the type of the labels is not
fixed. Instead, actions work on a generic label type. The library leverages
Haskell type classes, an overloading mechanism, to implement this: LIO
actions have the context (Label α)⇒ in their type signature, which restricts
α to types that are instances of the Label type class. This class requires the
label type to implement security lattice operations such as v, t, and u,
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making the behaviour of these operators depend on the particular label
type of the labels to which they are applied.

Labeled values Since LIO protects all values in scope with lcur, the li-
brary also provides a way to manipulate differently-labeled data without
monotonically increasing the current label, lcur. For this purpose, there is a
data type called Labeled , which represents explicit references to labeled, im-
mutable data. It is still possible to bind a variable of, say, type Labeled L Int ,
which contains an Int protected by a label (of type L) different from lcur.

The twomost important functions that work on labeled values are label
and unlabel. The action label l v creates a Labeled value with label l and
contents v , provided that lcur v l . That is, the label l has to reflect that
the value v can depend on data of label lcur. Dually, the action unlabel lv
raises lcur to lcur t l , where l is the label on lv , and returns v.

Labeled references LIO also provides mutable state in the form of ref-
erences. In Haskell, references are of type IORef a, where a is the type
of the contents of the reference. LIO introduces labeled references, typed
LIORef L a, where L is the type of the labels and a is the type of the contents
of the reference. The primitive operations on LIORef s are newLIORef ,
readLIORef and writeLIORef .

The action newLIORef l v creates an LIORef with label l and con-
tents v , provided that lcur v l . Given an LIORef r with label lr , the action
readLIORef r returns the value of r , and raises lcur to lcur t lr . The
action writeLIORef r v replaces the contents of r with v , provided that
lcur v lr . Note that the operations on LIORef s and Labeled values inter-
act with the current label in analogous ways.

In floating-label systems, any computation on sensitive data raises the
current label, even though the result of the computation may never be
observable on a lower security level. As a result, it is possible for programs
to inadvertently raise their current label to a point where they can no
longer perform any useful side-effects, a situation known as label creep.
For example, after a program reads from a file of a high security level, it is
no longer allowed to write to a file of a lower security level, even when the
information written does not depend in any way on the information read.

In order to mitigate this label creep, LIO provides the toLabeled oper-
ation. Given a computation m that would raise lcur to l′cur, toLabeled l m
executes m without raising lcur, and instead encapsulates m’s result in a
Labeled value protected by label l – provided that l′cur v l . This allows for
sub-computations that work on data above lcur without causing the main
computation to raise its current label.

Example Figure 2 shows an LIO program working with the lattice given
in Figure 1a, of type User . The code defines a function report , which takes
three labeled values as arguments. Information from these values is written
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into the files of certain principals, the LIORef s aliceReport and bobReport .
These files are assumed to be in scope, with labels Alice and Bob respectively.
Firstly, Bob’s data is unlabeled with unlabel, which raises the current
label to Bob and binds b to the contents of the labeled value. Then, a
toLabeled computation is started, which unlabels data from Alice (raising
the current label to Alice), binding it to a. Depending on the value of b, the
block returns either a + b or just a, which is bound to the main code block
as a labeled value with label Alice. Note the use of toLabeled to delimit
the scope of Alice’s data and demarcate the block of code where her data
might influence control flow: after the toLabeled block is finished, the
current label is restored to Bob and the binding a is no longer accessible.

report :: Labeled User Int → Labeled User Int
→ Labeled User Int → LIO User ()

report bobData daveData aliceData =
do b ← unlabel bobData

lv ← (toLabeled Alice
(do a ← unlabel aliceData

if b > 10
then return (a + b)
else return a))

d ← unlabel daveData
writeLIORef bobReport (combine d b)
v ← unlabel lv
writeLIORef aliceReport v

Fig. 2: LIO code example

Afterwards, the function unlabels data from Dave, combines it with
Bob’s data, and writes it to the reference bobReport . These operations would
be potentially forbidden if we had not used toLabeled, since unlabeling
aliceData would have permanently raised the current label to Alice. Finally,
the code unlabels the value returned from toLabeled, which raises the
current label to Alice, and writes its contents to the reference aliceReport .
Using toLabeled made it possible to perform side-effects at the level of
Bob before the final write to aliceReport . As an illustration of the coarse-
grainedness of the approach, note that in the label checks that are performed
upon execution of writeLIORef , the particular values written to the
references are irrelevant; when we write to aliceReport , the current label
must flow to Alice, even if what we are attempting to write did not originate
from an entity with label Alice.
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6.3 Stateful LIO

In this section we introduce Stateful LIO, or SLIO for short: an extension
of LIO with support for dynamic policies.

The key aspect of dynamic policies is that the ordering between labels
can vary during execution. We therefore parametrise SLIO not only on
the label format, but also on a data type representing the policy-relevant
state of the application necessary to derive the relationship between labels.
That is, the label type class now takes the form Label α β, where α is the
label format as before and β is the type of the structure representing the
policy-relevant state.

As exemplified in Figure 1b, the ordering between labels does not have to
form a lattice per se in a dynamic setting, and the Label type class therefore
no longer requires instances to implement lattice operations such as t and
u. The only operation that a Label instance is required to provide is the
(reflexive and transitive) relation between labels in a given state, which we
denote by v. That is, v is of the type S → L→ L→ Bool and v s l1 l2,
denoted l1 vs l2, returns True iff l1 is less restrictive than l2 in state s.

The LIO library only allows its own operations to interact with the
current label. That is, only operations such as readFile and unlabel are
allowed to read and modify lcur. Similarly, SLIO’s state contains both the
current label and the current policy state st. The SLIO library exports
operations that allow computations to read and modify st. Further encap-
sulations of the SLIO library may decide to only provide a limited interface
to these operations, so as to better control the policy changes.

The floating label SLIO only requires label formats to provide the v
relation, but this clashes with the original floating label approach of LIO.
LIO tracks l -labeled information entering the computation by computing
lcurtl . With varying policy states, the join-operator t gives a different result
in a different state – at times an upper bound may not even exist, as is the
case for Alice t Bob in Figure 1b. We address this in a manner inspired by
the theoretical enforcement mechanisms suggested in [Askarov and Chong,
2012]. We define lset to be a set of labels, to be used instead of the current
label lcur, and representing all labeled information that is present in the
computation. Recording that l -labeled information has become accessible
is then done by letting lset ‘float up’ to lset ∪ {l}. Thus, lset behaves as the
floating label in the powerset lattice of labels.

The original checks of the form lcur v lr that occurred e.g. when writing
to a reference are replaced with a series of checks ∀l ∈ lset .l vs lr – where
all checks need to hold in order for the flow to be allowed. That is, if all
information that has entered the computation is allowed to flow to the
label lr (according to the current policy), we allow the program to write to
a file with that label. We abbreviate this check as lset vs lr.
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The toLabeled operation requires the programmer to explicitly spec-
ify the label to be placed on the result of the provided computation. Its
operation becomes stateful as well, now checking that lset ′ vst′ l where
lset ′ and st′ are the current label resp. current policy state after executing
the computation and l is the provided label.

6.3.1 Exploring SLIO

The principal function of SLIO is to provide off-the-shelf enforcement for
encodings of dynamic policy languages such as Paralocks [Broberg and
Sands, 2010] and DCLabels [Stefan et al., 2012b]. Before discussing this
use of SLIO in more detail in § 6.7, we introduce the basic behaviour of
SLIO programs using simple instantiations.

Static Policies SLIO is a strict generalisation of LIO. More concretely, if
an instance of Label does not use the policy state component in vs , SLIO
behaves exactly like LIO. We demonstrate this for the static lattice shown
in Figure 1a by using the unit type () for policy state.

data User = Alice | Bob | Carl | Dave

instance Label User () where
l1 vs Alice = True
Dave vs l2 = True
l1 vs l2 = False

Instantiating SLIO with this Label format effectively enforces noninterfer-
ence. To demonstrate this and later flows, we introduce a function copy
which copies information from one reference into another. As is common
in LIO we perform this operation in a toLabeled computation, to avoid
tainting the current label unnecessarily.

copy :: LIORef User String → LIORef User String
→ SLIO () User ()

copy from to = toLabeled (labelOf from) (do
info ← readLIORef from
writeLIORef to info)

SLIO detects a violation of noninterference when data from Carl is
copied to Bob.

nonInterfering :: SLIO () User ()
nonInterfering = do

dataAlice ← newLIORef Alice "Alice's data"
dataBob ← newLIORef Bob "Bob's data"
dataCarl ← newLIORef Carl "Carl's data"
copy dataCarl dataAlice – Allowed flow.
copy dataCarl dataBob – Violation detected.
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relabel l lv = toLabeled l (unlabel lv)

declassify l lv = do
setState True
result ← relabel l lv
setState False
return result

Fig. 3: Declassification.

Dynamic Policies The last information flow to Bob would have been
allowed if Bob had been promoted according to the policy depicted in
Figure 1b. To enforce this dynamic policy using SLIOwe need to incorporate
the state component. The most direct way to encode the dynamic nature
of the policy is to store the set of allowed flows in the state. In Haskell
notation, this is a list of User pairs: [(User ,User)].

instance Label User [(User ,User)] where
l1 vs l2 = l1 ≡ l2 ∨ (l1, l2) ∈ transClosure s

type LIOCompany = SLIO [(User ,User)] User

We definevs such that we can minimise the set of flow relations in the state,
using transClosure to ensure that the relation is transitive. For brevity we
introduce the type synonym LIOCompany for this kind of SLIO compu-
tations. The following function initialises the policy state to the situation
shown in Figure 1a:

setInitState :: LIOCompany ()
setInitState = putState [ (Dave,Bob), (Dave,Carl)

, (Bob,Alice), (Carl,Alice)]

The function aliceLeaves implements the event where Alice leaves the com-
pany, changing the label ordering from Figure 1a to Figure 1b.

aliceLeaves :: LIOCompany ()
aliceLeaves = do
s ← getState
putState ((s ++ [(Carl,Bob)]) \\

[(Bob,Alice), (Carl,Alice), (Dave,Carl)])

Assuming the references from the previous example, the dynamic nature of
the information-flow policy can be manifested as follows:

dynamic :: LIOCompany ()
dynamic = do
setInitState
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copyFile dataCarl dataAlice – Allowed flow.
aliceLeaves
copyFile dataCarl dataBob – Allowed flow.
copyFile dataCarl dataAlice – Violation detected.

Relabeling Figure 3 shows the function relabel which relabels a labeled
value lv with the label l . This function can be used to perform declassifica-
tion [Sabelfeld and Sands, 2005] using the following technique, described
in [Broberg et al., 2013]. Assume two security levels Low and High. The
policy state is of type Bool and information can only flow fromHigh to Low
when the state is True. All other flows are allowed in either state. Figure 3
displays how this allows us to write declassify by temporarily changing the
state and calling relabel . We revisit this pattern in § 6.6 where we construct
a security condition which explicitly allows for persistent relabelings of
information.

6.4 Conditional Change in Label Ordering

Allowing programs to freely change the policy state results in uncontrolled
information flows, previously not present in LIO. This section establishes
a condition on state change which ensures the absence of such flows. We
identify this condition as a separate contribution of this paper, since it can
also be applied on other enforcement mechanisms with dynamic policies
(e.g. Paragon [Broberg et al., 2013]).

We demonstrate the type of flow via a minimal example, assuming
levels Low and High and a boolean state as in the relabeling example
discussed above. Figure 4 displays a program which creates a Low reference
r . When the High information provided equals 0 the computation changes
the state to allow this information to flow to r . The result of the toLabeled
computation gets labeled High but is ignored by the rest of the computation.

We assume the computation starts with lset = ∅ and policy state False.
If the value of highData is 0, r is updated while lcur = {High}, which is
allowed since lcur vTrue Low . lset is set back to ∅ after the toLabeled
computation, and the policy state is again False. Thus after reading r and
returning its value, lset = {Low}.

Although it might appear as if information only flows from High to
Low when the policy state is True, this is not the case. In particular, when
highData 6= 0, we learn this by observing that the value in r did not change.
Thus information flows from High to Low even though the policy state is
never set to True in the entire computation. Clearly the program should
not be considered secure.

The computation’s decision to allow the flow to Low is based on in-
formation which, at the moment of decision, is not allowed to flow to
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leak highData = do
r ← newLIORef Low 1
← toLabeled High (do
h ← unlabel highData
when (h ≡ 0) (do

setState True
writeLIORef r 0))

v ← readLIORef r
return v

Fig. 4: Information leaks via conditional state change.

Low . We identify this as the root of the problem. If instead the policy state
changes to True just before the when condition, the program would se-
mantically be secure as it would allow the conditional flow, rather than
to conditionally allow the flow.3 This could be interpreted as the need to
preserve the monotonicity property of the original LIO: information in
scope can only become more confidential. That is, if at some point during
the computation information can no longer flow to some label l , nothing
can flow to l in the rest of this (toLabeled) computation either.

In general, whenever the policy state changes from s1 to s2, we need to
ensure that s2 does not allow flows from labels in lset which were previously
disallowed in s1. In other words, the upper closure of lset should not
increase by changing the ordering from vs1 to vs2 . To enforce this we
require each instance of Label to define an operation incUpperSet :: S →
S → L→ Bool , where incUpperSet s1 s2 l returns True if the upper set for
label l increases; that is, if there exists an l ′ such that l 6vs1 l ′ and l vs2 l ′.
The SLIO library then checks whether ∀l ∈ lset . ¬ (incUpperSet s1 s2 l).

In the example displayed in Figure 4, the call setState causes the SLIO
library to check incUpperSet False True {High}. This should under a
correct implementation return True, since the change in ordering increases
the upper closure of lset = {High} from {High} to {Low ,High}.

The requirement that vs is a transitive relation is especially relevant
here, since this check aims to control the yet unknown remainder of the
execution, where flows might happen in a transitive manner. That this check
enforces the monotone property of SLIO and prevents the information
flows arising from policy state change is an essential step in the proof for
our security condition (§ 6.6).

3 Since the floating label approach does not distinguish explicit from implicit flows,
the setState operation should, in practice, be placed before the unlabeling of
highData.
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Values v ::= True | False | () | λx .e | ` | SLIO e | Lb l e
Expr . e ::= v | x | e e | fix e | if t then e else e

| return e | e >>= e | getLabel
| toLabeled l e | toLabeledRet ls s l e
| label e e | unlabel e
| labelOf e | v| newLIORef e e
| writeLIORef e e | readLIORef e
| setState e | getState

Fig. 5: λSLIO syntax.

6.5 Semantics

In this section we formalise SLIO as a simply-typed, call-by-name λ-calculus,
which we call λSLIO. Figure 5 gives the formal syntax of λSLIO, parametric in
the label type `. Syntactic categories v and e represent values and expres-
sions, respectively. Expressions of the form SLIO e, Lb l e and
toLabeledRet ls s l e are not part of the surface syntax, i.e., they are
not made available to programmers and are solely used internally to pro-
vide semantics to the other expressions. Values include standard primitives
(Booleans, unit, and λ-abstractions) and terminals corresponding to labels
(`) and monadic values (SLIO e). The latter denote effectful computations
subject to security checks. Expressions consist of standard constructs (val-
ues, variables x , function application, the fix operator, and conditionals), a
terminal corresponding tov (the partial order on labels), standard monadic
operators (return e and e >>= e), getLabel, toLabeled, operations on
labeled values and references, and operations for setting and getting the
policy state (setState and getState). Even though the full LIO library
can handle several other kinds of entities, such as files, we focus on labeled
values and references since they accurately represent the security mech-
anisms of LIO; the security checks and effects on other kinds of labeled
entities are analogous. For brevity, we do not describe the λSLIO type system
since it is standard and is not relevant for security checks. In what follows,
we assume that all expressions involved are well-typed.

A top-level λSLIO computation is a configuration of the form 〈Σ|e〉, where
e is the monadic expression andΣ is the state associated with the expression.
The state Σ contains the current label set lset , the current policy state st ,
and the store φ (for references). We give a small-step operational semantics
for λSLIO in the form of a reduction relation −→. Figure 6 shows the relevant
reduction rules for −→. Intuitively, 〈Σ|e〉 −→ 〈Σ′|e ′〉 means that, starting
from a configuration 〈Σ|e〉, it is possible to take a step to 〈Σ′|e ′〉. We write
−→∗ for the reflexive and transitive closure of −→.
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The reduction rules for λSLIO are specified using evaluation contexts
in the style of Felleisen and Hieb [Felleisen and Hieb, 1992]. Figure 7
defines the evaluation contexts for pure expressions (E) and monadic
(E) expressions for λSLIO. The definitions are mostly standard. Note that
monadic expressions are evaluated only at the outermost use of bind (E>>=
e), as in Haskell.

Rule (writeLIORef) is used to assign a value to a mutable reference.
The rule looks up the reference in the memory store φ, where it is represented
as a labeled value Lb l v . Then, a security check is performed to ensure that
the current label set flows to l (lset vst l ) (note that this is actually the
conjunction of several checks, one per label in the label set). If the check
passes, the memory store is updated with the new value.

Rule (readLIORef) reads a value from a mutable reference. The current
label set is updated to include the label of the reference, to reflect the fact
that the contents of the reference are now in scope and could potentially
influence side-effects in the future. The rules for labeled values interact with
the current label set in an analogous manner.

Rules (set) and (get) define the semantics for the new operations in λSLIO,
namely setState and getState. As expected, they work by writing and
reading the policy state in the λSLIO state, except that setState additionally
checks that the upper closure is not increased. This check is performed by
a user-supplied function, as explained in Section 6.4.

Finally, the rule (toLabeled) binds the monadic computation m to the
internal-only expression toLabeledRet. The rule (toLabeledRet) resets
the policy-relevant components to their value beforem, returning the result
of m as a labeled value only if the current configuration allows information
to flow to the label l specified by the programmer.

6.6 Semantic Soundness

In this section we define a security condition for dynamic policies and show
that it is guaranteed by λSLIO. We first present the attacker model, which is
similar to the one used for static policies in LIO [Stefan et al., 2011].

6.6.1 Attacker model

SLIO aims to provide security guarantees even in the presence of untrusted
code. Following this assumption, we make configurations the observations
of our model.

Definition 1 (Trace). A configuration produces a trace of configurations,
written 〈Σ0|e0〉 ⇓ t with t a sequence of configurations 〈Σ0|e0〉 . . . 〈Σn |en〉,
if there exists an evaluation 〈Σ0|e0〉 −→ . . . −→ 〈Σn |en〉.
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getLabel
Σ = (lset , st, φ)

〈Σ|E [getLabel ]〉 −→ 〈Σ|E [return lset ]〉

label
Σ = (lset , st, φ) lset vst l

〈Σ|E [label l e ]〉 −→ 〈Σ|E [return (Lb l e)]〉

unlabel
Σ = (lset , st, φ) lset ′ = lset ∪ { l } Σ′ = (lset ′, st, φ)

〈Σ|E [unlabel (Lb l e)]〉 −→ 〈Σ′|E [return e ]〉

labelOf
E [labelOf (Lb l e)] −→ E [ l ]

newLIORef
Σ = (lset , st, φ) lset vst l Σ′ = (lset , st, φ [x → Lb l e ]) fresh(x )

〈Σ|E [newLIORef l e ]〉 −→ 〈Σ′|E [return x ]〉

writeLIORef
Σ = (lset , st, φ)

Lb l v = φ (x ) lset vst l Σ′ = (lset , st, φ [x → Lb l e ])

〈Σ|E [writeLIORef x e ]〉 −→ 〈Σ′|E [return ()]〉

readLIORef

Σ = (lset , st, φ) Lb l e = φ (x )
lset ′ = lset ∪ { l } Σ′ = (lset ′, st, φ)

〈Σ|E [readLIORef x ]〉 −→ 〈Σ′|E [return e ]〉

set
Σ = (lset , st, φ) ∀l ∈ lset . ¬ incUpperSet (st, v , l) Σ′ = (lset , v , φ)

〈Σ|E [setState v ]〉 −→ 〈Σ′|E [return ()]〉

get
Σ = (lset , st, φ)

〈Σ|E [getState]〉 −→ 〈Σ|E [return st ]〉

toLabeled
Σ = (lset , st, φ)

〈Σ|E [toLabeled l m ]〉−→〈Σ|E [m >>= toLabeledRet lset st l ]〉

toLabeledRet
Σ = (lset , st, φ) lset vst l

〈Σ|E [toLabeledRet ls s l v ]〉−→〈(ls, s, φ)|E [return (Lb l v)]〉

Fig. 6: SLIO semantics (standard λ-calculus rules elided).
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E ::= [ ] | E e | fix E | if E then e else e
| label E e | unlabel E | labelOf E | toLabeled E e
| newLIORef E e | writeLIORef E e | readLIORef E
| setState E

E ::= E | E>>= e

Fig. 7: Evaluation contexts for SLIO.

εA(〈Σ|e〉 · t) =


〈εsA(Σ)|εsA(e)〉 · εA(t) if obsA(〈Σ|e〉),

with s = Σ.st

εA(t) otherwise

εsA(Σ) = Σ[φ 7→ εsA(Σ.φ)] εsA(Σ.φ) = {(x, εsA(Σ.φ (x ))) | x ∈ dom(Σ.φ)}

εsA(Lb l e) =

{
Lb l εsA(e) if l vs A

Lb l • otherwise

Fig. 8: Erasure function for non-trivial cases.

As in [Stefan et al., 2011] we use a technique called term erasure. At-
tackers are represented by a security level A. The function εA(t) erases
from the trace of configurations t all the information which is not observ-
able on level A.

Since the current label set protects all available information, A can only
observe configurations where the current label set can flow to A (according
to the current policy state).

Definition 2 (A-observable configuration).A configuration 〈Σ|e〉 is observ-
able to an attacker on level A, written obsA(〈Σ|e〉), iff Σ.lset vΣ.st A.

Configurations which are not observable to A are removed from the
trace entirely, as shown in Figure 8. From the configurations that are not
removed, the erasure function erases only the information that cannot flow
to A, so the erased configuration is 〈εsA(Σ)|εsA(e)〉. Here we fix s as the
current policy state in that configuration, i.e, s = Σ.st.

For most cases, the erasure function is simply applied homomorphically
(e.g., εsA( if e then e1 else e2) = if εsA(e) then εsA(e1) else εsA(e2)). The
interesting cases for this function are displayed in Figure 8. The syntax
node • represents an erased expression: information that is not observable
to an attacker at level A. In particular, εsA(Lb l e) erases to Lb l • when
l 6vs A.
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6.6.2 Security Condition

The two-run noninterference condition associated with LIO does not trans-
late well to a setting with dynamic policies. Instead, we find that epistemic
properties [Askarov and Sabelfeld, 2007, Balliu et al., 2011, Broberg and
Sands, 2010] form a more natural basis for defining information flow con-
ditions, in particular in the context of dynamic policies.

As a starting point we adapt the security condition from Askarov and
Chong [Askarov and Chong, 2012]. This condition extends from the notion
of gradual release [Askarov and Sabelfeld, 2007], which builds around the
concept of a knowledge set: the set of initial inputs that could have resulted
in the observations made by an attacker. Following Delft et al. [Delft et al.,
2015] we instead talk about the exclusion knowledge set: the set of initial
inputs that could not have resulted in these observations. This matches the
intuition that a larger (exclusion) knowledge set implies more knowledge.

Since λSLIO values can be SLIO computations, we let the initial expression
take the role of initial (secret) input. Let e be such a secret input which is
evaluated in Σ0, the initial state with lset = ∅ and φ = ∅ – the initial value
of st varies between instantiations. Given 〈Σ0|e〉 ⇓ t, i.e. this configuration
produces a sequence of configurations t, let o = εA(t) the observations
made by attacker A. The exclusion knowledge of A is then defined as the
set of inputs that could not have produced the same observations:

ekA(o) = {e ′ | ¬∃t′.〈Σ0|e ′〉 ⇓ t′ with εA(t
′) = o}

Now let 〈Σ0|e〉 ⇓ t ·α, with obsA(α). What an attacker learns from this
new configuration α can then be expressed as ekA(εA(t · α)) \ ekA(εA(t)):
the set of inputs additionally excluded. To specify that the attacker does
not learn anything new from this observation, we can simply require that
ekA(εA(t · α)) \ ekA(εA(t)) = ∅.

This definition would also not allow the attacker to learn anything from
the fact that the computation produced another output after producing trace
t. SLIO, and LIO, however do not check for leaks via progress and allow
computations to diverge based on sensitive information. This means that
information might e.g. be leaked by the fact that a toLabeled computation
terminated. Askarov and Chong present a termination-insensitive condition
by introducing the attacker’s progress knowledge. That is, we allow the
attacker to exclude also those initial commands e ′ that cannot produce
another observation:

ek+
A(o) = {e

′ | ¬∃t′, α′.〈Σ0|e ′〉 ⇓ t′ · α′

with εA(t
′) = o and obsA(α

′)}

Finally, we do allow the attacker to exclude some initial inputs using
observation α, as long as this is in accordance with the ordering determined
by the state s in which α was produced. Following Askarov and Chong,
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we allow the attacker to exclude those inputs that are not equal to e when
observed under state s.

Definition 3 (Input release). Given input e, the state s allows an attacker
A to exclude the set of inputs IA(e, s), where

IA(e, s) = {e′ | εsA(e) 6= εsA(e
′)}

The security condition is then that for every 〈Σ0|e〉 ⇓ t ·α with obsA(α),
α = 〈Σn |en〉 and Σn .st = s, the attacker’s increase in knowledge is
bounded by IA(e, s):

ekA(εA(t · α)) \ ek+
A(εA(t)) ⊆ IA(e, s)

Relabeling support The examples from § 6.3.1 show that SLIO allows
for persistent relabelings of data. By this we mean that we want to have
the possibility to place a value of label l1 in a container with label l2, after
which the value from this container is treated as if it has label l2. We used
this in a simple encoding of declassification, shown in Figure 3.

Such relabelings are a desirable feature of an IFC language. The fact
that persistent relabelings are part of various policy languages that we
would like SLIO to encode, notably including the DLM described in § 6.7,
further motivates the need for a security condition that supports them.

It turns out that our direct adaptation of Askarov and Chong’s secu-
rity condition does not allow for persistent relabelings, as the example in
Figure 9 shows. An attacker of level Public observes the value of pub (and
therefore learns the value of top) when the current ordering does not al-
low flows from TopSecret to Public. The security condition requires that a
run started in a state with a different value for top should yield the same
value for pub as in the observed run. Since this is not the case, the program
violates the security condition. In the terminology of facets of dynamic
policies [Broberg et al., 2015], the condition does not allow for the time-
transitive flows that we desire.

add (TopSecret v Secret)
sec ← relabel Secret top
remove (TopSecret v Secret)
add (Secret v Public)
pub ← relabel Public sec

Fig. 9: Relabeling example.

We conclude that we need to allow the attacker to exclude inputs based
on relabeled information, in addition to the inputs described by IA(e, s).
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Given the flow relation determined by policy state s, let L be the set
of levels from which A is allowed to learn. That is, L = {l | l vs A}. To
define the information that is collectively known by L, we introduce the
erasure function on traces for multiple levels εL(t), shown in Figure 10.
This function only erases labeled data or configurations if none of the levels
in L can observe it.

Given 〈Σ0|e〉 ⇓ t · α, with obsA(α), and s the policy state in α. We can
specify the information that is released to A by relabelings in t as follows.

Definition 4 (Relabeling release). Given a trace t, the policy state s allows
an attacker A to exclude the set of inputsRA(t, s), where L = {l | l vs A}
in

RA(t, s) = {e′ | ¬∃t′, α′.〈Σ0|e ′〉 ⇓ t′ · α′ with obsA(α
′)

and εL(t) = εL(t
′)}

We straightforwardly extend the security condition to additionally allow
an attacker to learn information that has been released by relabelings.

Definition 5 (Termination-insensitive security). The command e is secure
against an attacker A if for all traces t and configurations α such that
〈Σ0|e〉 ⇓ t · α with obsA(α), α = 〈Σn |en〉 and Σn .st = s, the attacker’s
increase in knowledge is bounded by IA(e, s) and RA(t, s):

ekA(εA(t · α)) \ ek+
A(εA(t)) ⊆ IA(e, s) ∪RA(t, s)

εL(〈Σ|e〉 · t) =


〈εsL(Σ)|εsL(e)〉 · εL(t)
if ∃l ∈ L . obs l(〈Σ|e〉), s = Σ.st

εL(t) otherwise

εsL(Lb l e) =

{
Lb l εsL(e) if ∃l′ ∈ L . l vs l ′

Lb l • otherwise

Fig. 10: Multi-level erasure function for cases different from single-level
erasure.

Remark 1. Our choice in defining the set RA(t, s) is not an arbitrary one.
In Appendix C we list a collection of other possible definitions that also
appear reasonable, but either do not support relabelings to the extent that
we find natural, or allow for flows that we consider insecure, such as the
release of information via conditional state change.



Dynamic enforcement of dynamic policies 161

Remark 2. Askarov and Chong identify that a perfect recall attacker might
learn less from an observation than an attacker who has forgotten part of the
earlier knowledge (i.e. an attacker with some knowledge wk ⊂ ek+

A(εA(t)).
Although our definitions assume a perfect recall attacker, we observe that
ek+

A(εA(t)) ⊆ RA(t, s) since L always includes A itself. Therefore the
security condition could be specified as ekA(εA(t ·α)) ⊆ IA(e, s)∪RA(t, s).
Hence by allowing for relabeling release by Definition 4, a program that is
secure by Definition 5 is also secure against even the most forgetful attacker
with wk = ∅.

Theorem 1. All λSLIO computations are termination-insensitive secure.

Proof. See Appendix A.

6.7 Encodings

To demonstrate the genericity of SLIO we provide encodings for various
policy specification frameworks. For each policy language, SLIO provides
an enforcement mechanism in exchange for the relatively minor effort
of encoding that language. This allows for easy exploration of policy
languages, as well as the effects of modifying and extending them. We
expect user applications to be typically written against such an encoding,
rather than creating an ad hoc policy language using ‘bare’ SLIO (as we
did in § 6.3.1). Using an existing policy language one can write natural
policy labels with well-established semantics.

The following policy languages have been encoded in SLIO and are
available from [Buiras and van Delft]: Two-Point Lattice, Flow-policies for
non-disclosure [Matos and Boudol, 2005], the Decentralized Label Model
(DLM) [Myers and Liskov, 1998], Disjunction Category Labels [Stefan
et al., 2012b] and Paralocks [Broberg and Sands, 2010].

Rather than the dynamic policy-oriented Disjunction Category labels
or Paralocks, we use this section to present the DLM encoding in more
detail, for the following reasons.

– The DLM is well-known and widely used in research.
– All information relabelings need to pass a dedicated declassify function.
We show how this common pattern can be enforced with dynamic
policies using the right encoding in SLIO (following an encapsulation
technique similar to [Broberg et al., 2013]).

– Although typically not supported by implementations, the DLM does
contain dynamic features. More specifically, the DLM includes a hierar-
chy among principals which is subject to change, but these changes are
‘assumed to occur infrequently’ [Myers, 1999]. Jif, an extension to Java
with support for the DLM, relies on this assumption when verifying
that applications are information-flow secure. By encoding the DLM
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in SLIO we can guarantee security even in the presence of hierarchy
change.

Remark 3. Since its introduction by Myers and Liskov [Myers and Liskov,
1997], various information-flow concepts have been added to the DLM,
such as robust declassification [Zdancewic and Myers, 2001] and informa-
tion erasure [Chong and Myers, 2005]. We consider the DLM as used in
the first iteration of the Jif compiler [Myers, 1999], matching most closely
the model described in [Myers and Liskov, 1998].

TheDLMLanguage In DLM, the security label l1 = {o1 : r2, r3; o2 : r3, r4}
specifies that data is owned by the principals o1 and o2. Each owner specifies
a different set of principals they allow to read this data. Effectively, the only
principal that they both allow to read the data is r3. The DLM includes
an ordering among principals, the acts-for hierarchy �. In a setting where
principal r2 � r4, label l1 is equivalent to the label l2 = {o1 : r2, r3; o2 :
r2, r3, r4}. That is, since o2 allows r4 to read the data, o2 implictly allows
r2 as well. Labels l1 and l2 are also equivalent in a setting where o1 � o2.
That is, each principal that is allowed to read data by o1 is implicitly also
allowed to read that data by o2. This hierarchy may be modified at run
time.

The DLM assumes the existence of a declassify statement which makes
the label of the provided data more permissive, either by extending an
owner’s reader-set or by removing an owner’s concern entirely. Declassifi-
cation is only permitted if the owners for whom information is declassified
allowed for this by giving the computation their authority.

Representing the DLM in SLIO The state component of the SLIO encod-
ing of the DLM contains i) a boolean indicating whether or not declas-
sification is allowed; ii) a set of principals who have given authority to
the current computation; and iii) the set of principal pairs indicating the
current hierarchy �, similar to the hierarchy among Users in Section 6.3.1.
The DLM encoding does not expose the setState operation from SLIO
directly to user code. Helper functions are provided to change the hierarchy,
and information can be declassified using the exposed declassify function.
The declassify function uses the boolean element of the state as in Figure 3
to relabel the information, but only if such declassification is allowed at
that moment. By means of this encapsulation, we can provide the necessary
guarantees on declassifications, even in the presence of a changing acts-for
hierarchy. A more detailed discussion of the DLM encoding can be found
in Appendix B.

6.8 Related work

Supporting dynamic policies is the next step in the natural evolution of
security conditions from noninterference and declassification [Goguen and



Dynamic enforcement of dynamic policies 163

Meseguer, 1982, McCullough, 1988, Sabelfeld and Sands, 2005]. Bal-
liu [Balliu et al., 2011], Broberg and Sands [Broberg and Sands, 2010] and
Askarov and Chong [Askarov and Chong, 2012] construct conditions for
dynamic policies on top of the epistemic gradual release property, originally
created to support declassification [Askarov and Sabelfeld, 2007]. Delft et
al. [Delft et al., 2015] show that epistemic properties can be unfolded into
two-run properties, a technique we also use in the proof the soundness of
our enforcement system.

A different approach to defining dynamic security policies can be traced
back to the early work of Goguen and Meseguer on conditional noninter-
ference [Goguen and Meseguer, 1984], where noninterference relations on
machine models only need to hold provided that some condition on the
execution history holds. Zhang [Zhang, 2012] expands on this, presenting
a set of unwinding relations that can be verified by existing proof assistants.

The dynamic policies considered by SLIO are of a synchronous nature.
That is, the policy changes deterministically with program execution. Other
work considers asynchronous policies, such as Hicks et al. [Hicks et al.,
2005] and Swamy et al. [Swamy et al., 2006]. Both approaches do require
some synchronisation mechanism between the policy and the program
execution.

Concerning IFC libraries for Haskell, the seminal work by Li and
Zdancewic [Li and Zdancewic, 2006] consists in a library for enforcing
information-flow security using arrows [Hughes, 2005], a generalisation
of monads. Russo et al. [Russo et al., 2008] show a monadic IFC security
library, which statically enforces noninterference by leveraging Haskell’s
type system. Stefan et al. [Stefan et al., 2011] propose LIO, which uses
monads to track information-flow dynamically. Morgenstern et al. [Mor-
genstern and Licata, 2010] encode an IF-aware programming language
in Agda, without considering computations with side-effects. Devriese
and Piessens [Devriese and Piessens, 2010] use monad transformers and
parametrised monads to enforce noninterference. Unlike SLIO, none of the
approaches mentioned above support dynamic policies or declassification
in their semantic conditions, although for practical reasons some of them
provide special constructs for declassification in their implementation.

Breeze is a programming language with IFC proposed by Hritcu et
al. [Hritcu et al., 2013] which, like LIO, is based on the floating-label
approach. In this system, lowering labels on values or the program counter
(c.f. current label in LIO) is a privileged operation that requires special
authority. Given the design similarities with LIO [Stefan et al., 2011], we
believe that our results could be easily adapted to Breeze.
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6.9 Conclusions and Future Work

We have explored dynamic policies in a dynamic IFC setting by presenting
SLIO, a strict generalisation of LIO with support for generic enforcement of
dynamic policies. We have shown SLIO sound with respect to an epistemic
security condition for dynamic policies with relabelings. We also demon-
strated its practical use by encoding multiple policy frameworks which are
available on [Buiras and van Delft] together with the SLIO library and the
technical report version of this paper.

As future work, we intend to generalise the singular labels on labeled
values and references to become sets of labels, thereby making them more
homogenous with the rest of the enforcement. That is, like the current label
set, these labels become elements in the power set lattice of security labels.

We also propose to examine extensions of SLIO with more advanced
language-level features, such as concurreny and exceptions. Supporting
concurreny appears to be particularly challenging, since it is not clear
whether the policy changes performed in one thread can be made available
to other threads while preserving soundness.

Finally, we remark that the library presented here could serve as a con-
venient testbed for future encodings of policy frameworks and comparing
their relative expressive power.
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A Proof for Theorem 1

Notation As additional notation for this appendix, we introduce εA(〈Σ|e〉)
as a shorthand for 〈εsA(Σ)|εsA(e)〉 where s = Σ.st .

The theorem states that for all commands e, for all traces t and configu-
rations α such that 〈Σ0|e〉 ⇓ t·αwith obsA(α), α = 〈Σn |en〉 andΣn .st = s ,

ekA(εA(t · α)) \ ek+
A(εA(t)) ⊆ IA(e, s) ∪RA(t, s)

Simple set-theoretic rearrangements give the equivalent containment:

ek+
A(εA(t)) ∩ IA(e, s) ∩RA(t, s) ⊆ ekA(εA(t · α))

Following Delft et al. [2015], we rewrite the set containment using logical
connectives.

∀e, e′, t, t′, t′′, t′′′.
〈Σ0|e〉 ⇓ t · 〈Σn |en〉

∧ obsA(〈Σn |en〉)
∧ Σn .st = s

 Set up

∧ 〈Σ0|e ′〉 ⇓ t′ · α′

∧ obsA(α
′)

∧ εA(t) = εA(t
′)

 ek+
A(εA(t))

∧ εsA(e) = εsA(e
′)

}
IA(e, s)

∧ 〈Σ0|e ′〉 ⇓ t′′ · α′′

∧ obsA(α
′′)

∧ εL(t) = εL(t
′′)

 RA(t, s)

⇒ 〈Σ0|e ′〉 ⇓ t′′′

∧ εA(t · 〈Σn |en〉) = εA(t
′′′)

}
ek(εA(t · α))

We observe that e′ is deterministic, and that since for all s, A vs A
(reflexivity of v), we have A ∈ L. Therefore εL(t) = εL(t

′′) implies εA(t) =
εA(t

′′). Since both obsA(α
′) and obsA(α

′′), it has to be that t′ = t′′ and
α′ = α′′.

Furthermore, to satisfy εA(t · 〈Σn |en〉) = εA(t
′′′) we simply need that

εA(〈Σn |en〉) = εA(α
′). Unfolding α′ to 〈Σm |em〉, this simplifies the impli-

cation to:
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∀e, e′, t, t′.
〈Σ0|e〉 ⇓ t · 〈Σn |en〉

∧ obsA(〈Σn |en〉)
∧ Σn .st = s

 Set up

∧ 〈Σ0|e ′〉 ⇓ t′ · 〈Σm |em〉
∧ obsA(〈Σm |em〉)
∧ εA(t) = εA(t

′)

 ek+
A(εA(t))

∧ εsA(e) = εsA(e
′)

}
IA(e, s)

∧ εL(t) = εL(t
′)

}
RA(t, s)

⇒ εA(〈Σn |en〉) = εA(〈Σm |em〉)
}

ek(εA(t · α))

Proof. We show this by induction on n in

〈Σ0|e〉 −→∗ 〈Σn−1|en−1〉 −→ 〈Σn |en〉

– Case n = 0: This means that both t and t′ are empty, Σn = Σm = Σ0,
en = e and em = e ′. Hence proving εA(〈Σn |en〉) = εA(〈Σm |em〉) is
equivalent to showing εA(〈Σ0|e〉) = εA(〈Σ0|e ′〉), which follows from
εsA(e) = εsA(e

′) (by IA(e, s)).
– Case n > 0: We have:

〈Σ0|e〉 −→∗ 〈Σn−1|en−1〉 −→ 〈Σn |en〉
〈Σ0|e ′〉 −→∗ 〈Σm−1|em−1〉 −→ 〈Σm |em〉

By cases on the reduced expression in en−1:

• Case en−1 = E [setState s ]: Considering obsA(〈Σn |en〉), we
have by the incUpperSet check on evaluating setState that also
obsA(〈Σn−1|en−1〉). By ek+

A(εA(t)) the lastA-observable configura-
tion in trace t′ must be of the form 〈Σi |E′ [setState s ]〉 and equiva-
lent, i.e., εA(〈Σi |E′ [setState s ]〉) = εA(〈Σn−1|E [setState s ]〉).
We thus have that Σi .lset = Σn−1.lset .
Since, by obsA(〈Σn |en〉), Σn−1.lset vs A, also the next con-
figuration following 〈Σi |E′ [setState s ]〉 must be observable to
A. Hence the next configuration is 〈Σm |em〉 which implies that
〈Σi |E′ [setState s ]〉 = 〈Σm−1|em−1〉.
Since A ∈ L, we also have that ∃l ∈ L such that obs l(〈Σn−1|en−1〉)
and obs l(〈Σm−1|em−1〉). Therefore, by RA(t, s), these last config-
uration must be equivalent: εL(〈Σn−1|en−1〉) = εL(〈Σm−1|em−1〉).
Since the only change in each configuration is setting the policy
state to s, which reveals exactly information labelled with L to A,
it follows that εA(〈Σn |en〉) = εA(〈Σm |em〉).
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• Case en−1 = E [toLabeledRet ls s l v ]: Since obsA(〈Σn |en〉),
the trace produced by 〈Σ0|e〉 must be of the form

〈Σ0|e〉 −→∗ 〈Σi |E [toLabeled l m ]〉 −→∗

〈Σn−1|E [toLabeledRet ls s l v ]〉 −→
〈(ls, s, Σn−1.φ)|E [return (Lb l v)]〉

whereΣi .lset = ls = Σn .lset andΣi .st = s = Σn .st, with ls vs A.
By ek+

A(εA(t)), we also have that the trace produced by 〈Σ0|e ′〉
must be of the form

〈Σ0|e ′〉 −→∗ 〈Σ′
i |E′ [toLabeled l m ′ ]〉 −→∗

〈Σm−1|E′ [toLabeledRet ls s l v ′ ]〉 −→
〈(ls, s, Σm−1.φ)|E′ [return (Lb l v ′)]〉

where Σi .lset = Σ′
i .lset and Σi .st = Σ′

i .st. Note that in config-
uration m− 1 the evaluated expression must be toLabeledRet,
because
* Case Σn−1.lset vΣn−1.st A, the expression must be equal due

to ek+
A(εA(t)).

* CaseΣn−1.lset 6vΣn−1.st A, it follows thatΣm−1.lset 6vΣm−1.st

A due to ek+
A(εA(t)) (and incUpperSet), therefore the only way

that obsA(〈Σm |em〉) is if the expression immediately before it
is toLabeledRet.

We already have by ek+
A(εA(t)) that ε

s
A(E) = εsA(E

′). We thus need
to show that εsA(Σn−1.φ) = εsA(Σm−1.φ) and that εsA(Lb l v) =
εsA(Lb l v ′).
For each reference x in Σn−1.φ, we have that reference x also exists
inΣm−1.φ (by ek+

A(εA(t)) on configuration i, i′). LetΣn−1.φ (x ) =
Lb lx w and Σm−1.φ (x ) = Lb lx w ′.
If lx 6vs A then in both configurations the value erases to Lb lx •
and we are done.
If lx vs A then lx ∈ L. All writes to x, if any, must have happened
when lset vst lx . By RA(t, s), this means that εstL (w) = εstL (w ′).
Regardless of the value of st, this means that εsA(w) = εsA(w

′).
Since this holds for each reference, εsA(Σn−1.φ) = εsA(Σm−1.φ).
For the returned value Lb l v resp. Lv l v ′, if l 6vs A then both
returned values erase to Lb l •.
If l vs A, this means that l ∈ L. As the rule for toLabeledRet re-
quiresΣn−1.lset vΣn−1.st l, this means that (byRA(t, s)) ε

Σn−1.st
L (v)

= ε
Σm−1.st
L (v ′). Again, regardless of the used policy states, this

means that εsA(v) = εsA(v
′).

• All other cases: For the reductions in which the policy state is
unchanged, we have by obsA(〈Σn |en〉) and obsA(〈Σm |em〉) that
also obsA(〈Σn−1|en−1〉) and obsA(〈Σm−1|em−1〉).
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By ek+
A(εA(t))we have that εA(〈Σn−1|en−1〉) = εA(〈Σm−1|em−1〉).

By the Fixed-State Lemma 1 (below), this gives us εA(〈Σn |en〉) =
εA(〈Σm |em〉).

Lemma 1 (Fixed-State Lemma). Given two single-step evaluations 〈Σ1|e1〉
−→ 〈Σ′

1|e ′1〉 and 〈Σ2|e2〉 −→ 〈Σ′
2|e ′2〉 with Σ1.st = Σ′

1.st and Σ1.lset vs

A. For all attacker levels A, if εA(〈Σ1|e1〉) = εA(〈Σ2|e2〉) then εA(〈Σ′
1|e ′1〉)

= εA(〈Σ′
2|e ′2〉).

Proof. Let s = Σ1.st. Since Σ1.lset vs A also Σ2.lset vs A and
therefore the next redex in e1 and e2 is equal and their evaluation contexts
are equal after erasure. We thus have that εsA(e

′
1) = εsA(e

′
2). By cases on the

next redex.

– Case redex is label l v , writeLIORef r v , newLIORef l v . In all
cases, the values v , l and r appear unlabeled in the redex and are
therefore equal in e1 and e2. Thus, changes to Σ1 are equal to changes
to Σ2. It therefore follows that εA(〈Σ′

1|e ′1〉) = εA(〈Σ′
2|e ′2〉).

– Any other redex. In these evaluation steps the state component is not
used, and the result follows directly from Lemma 1 in the formalisation
of LIO with static policies Stefan et al. [2011].

B DLM encoding

Exported API The complete enconding of the DLM can be found in
Figure 11. A DLM label consists of multiple components (Comp), and each
component consists of an owner principal and a set (list) of readers. As
discussed in § 6.7, the policy state component contains a boolean indicating
whether declassification is allowed, a list of the principals who authorised
this computation to perform declassifications for them, and the acts-for
hierarchy (denoted �), stored as a list of acts-for relations.

The Label instance for this label and state implements the required v
and incUpperSet functions. If the declassification-component of the state is
set to True, this means that the declassification check was successful so any
relabelling is allowed (see the function declassify). Otherwise, l1 vs l2 if
every owners concern in label l1 is reflected in label l2, which matches the
relabeling rule from Myers and Liskov [1998]. For incUpperSet , clearly
the decision to declassify increase the upper set from any label. Effectively,
this means that user code written against this DLM encoding should never
have unlabeled data in scope when declassifying. The only other change to
the state by user code is changing the acts-for hierarchy. This increases the
upper set of label l if for any of the principals p in l there exists a principal
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type Princ = String
data Comp = Comp Princ [Princ ]
type DLMLabel = [Comp ]
type DLMState =
(Bool – Allowing declassification.
, [Princ ] – Computation’s authority.
, [(Princ,Princ)] – Acts-for hierarchy.
)

instance Label DLMLabel DLMState where
l1 vs l2 = case s of

(True , , )⇒ True
(False , ,� )⇒
∀ Comp o1 rs1 ∈ l1
∃ Comp o2 rs2 ∈ l2

o2 � o1 ∧ ∀ r2 ∈ rs2 ∃ r1 ∈ rs1 r1 � r2
incUpperSet (False, , ) (True, , ) l = True
incUpperSet ( , ,�O) ( , ,�N ) l =
∃ p ∈ l .∃ p′.p′ 6�O p ∧ p′ �N p

type DLM = SLIO DLMLabel DLMState

declassify :: Labeled DLMLabel a → DLMLabel
→ DLM (Maybe (Labeled DLMLabel a))

declassify lv l = do
s ← getState
let ( , auth,�) = s
let checkAuth = l ++ {Comp p ∅ | p ∈ auth }
if (labelOf lv) vs checkAuth

then do (res ← toLabeled (do
setState (True, auth,�)
v ← unlabel lv
return v)
return (Just res))

else return Nothing

addActsFor :: (Princ,Princ)→ LIO DLM ()
addActsFor rel = do
(d , a,�)← getState
putState (d , a, rel : �)

removeActsFor :: (Princ,Princ)→ LIO DLM ()
removeActsFor rel = do
(d , a,�)← getState
setState (d , a,� \\[rel ])

runDLM � auth comp = runLIO comp (LIOState
{lcur = ∅, st = (False, auth,�), φ = ∅})

Fig. 11: Encoding DLM in SLIO.
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p′ that did not act for p in the old hierarcy �O , but does so in the new
hierarchy �N .

The function declassify attempts to relabel a labeled value lv with the
provided label l . Since declassification needs to be permitted by the right
principals in the authority of the computation, the function constructs the
label checkAuth to check this. The label checkAuth is defined by adding
p : ∅ for each principal p ∈ auth, effectively removing the concerns for these
principals (conform LA in Myers and Liskov [1997]). If the computation
does not have sufficient authority, the option type Maybe is used to return
the value Nothing instead of the relabeld value.

The DLM encoding only provides restricted state modification oper-
ations (addActsFor and removeActsFor ), using Haskell’s encapsulation
to prevent user code from declassifying information without using the
exported declassify function. To give a complete guarantee on this, Safe
Haskell should be used Terei et al. [2012].

Finally, the runDLM function starts a computation with the specified
authority and initial acts-for hierarchy.

Example We consider a simple program that combines information of em-
ployees Bob and Carl in one document. While combining the information,
we explicitly include Dave as a reader for this document. The acts-for hier-
archy between all the employees in the company is displayed in Figure 12.

Bob Carl

Alice

Dave

John

Fig. 12: Acts-for hierarchy.

The function addInfo emp doc in Figure 13 creates some data labeled
with {emp:} and adds it to the document doc (using the unspecified function
combine). It then declassifies this document to include Dave as a reader.

The example code calls this function on an intially empty document for
both Bob and Carl. It is therefore important that main calls this function
with their authority otherwise the declassifications would fail. After adding
both employees’ information, the label on doc has become {Bob:Dave;Carl:
Dave}.

Since Alice acts for both Bob and Carl, she can claim ownership over this
report. And because John, acting for Dave, was already implicitly a reader
of the data, the relabeling to {Alice : John} succeeds, without requiring
any authority or declassification. Were we instead to uncomment the line
removing the acts-for relation between John and Dave, the relabeling would
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become invalid. The encoding and example serve to illustrate that SLIO
easily captures the dynamic nature of the DLM.

addInfo emp doc = do
let dl = labelOf doc
d ← label {emp:} (emp ++ "'s data.")
d ′ ← toLabeled ({emp:}++ dl) (combine d doc)
(Just d ′′)← declassify d ′ ({emp :Dave}++ dl)
return d ′′

example = do
doc ← label { } ""
doc ← addInfo Bob doc
doc ← addInfo Carl doc

– delActsFor (John,Dave)
doc ← relabel {Alice : John} doc

main = runDLM � {Bob,Carl} example

Fig. 13: Using the DLM encoding.

C Other Relabeling Release Definitions

Our definition of Relabeling Release (Definition 4) is not arbitrary. In this
appendix we list a number of different definitions that, although sounding
reasonable at first glance, do not match our intuition of what is released
via relabelings.

C.1 Release knowledge by A and s

Consider an attacker As who also makes observations on level A, but pre-
tending that the policy state was s for the duration of the whole execution.
To allow the attacker A to learn information resulting from relabelings to
levels l vs A, we share the knowledge that As has gained so far:

RA(t, s) = {e′ | ¬∃t′, α′.〈Σ0|e ′〉 ⇓ t′ · α′ with obsA(α
′)

and εsA(t) = εsA(t
′)}

Here, εsA(t) fixes the policy state s to consider already at the level of the
trace, ignoring the actual state in each configuration:

εsA(〈Σ|e〉 · t) =

{
〈εsA(Σ)|εsA(e)〉 · εsA(t) if Σ.lset vs A

εsA(t) otherwise



Dynamic enforcement of dynamic policies 175

Although this does release the relabeling information from our example
program in Figure 9, it does not allow all relabelings that we would intu-
itively mark secure. As an example, consider the following program (in the
dynamic policy User setting from § 6.3):

setState [(Bob,Carl)]
← toLabeled Bob (do
setState [(Alice,Bob)]
a ← readLIORef aliceRef
writeLIORef bobRef a)

When returning from this toLabeled computation, Carl learns the infor-
mation that is in aliceRef since the current state allows him to see Bob’s
data, thus bobRef . We would argue that this is secure, since Bob learns
Alice’s data in a state where this was allowed, and Carl in turn learns Bob’s
(and thereby Alice’s data via relabeling) in a state where this is allowed.
However, the suggested set RA(t, s) does not release the value of aliceRef
to Carl.

Consider the observer Carls who observes as if the policy state is always
[(Bob,Carl)]. After the instruction readLIORef aliceRef the current label
becomes {Alice}, meaning that this and all configuration to the end of the
toLabeled computation are not visible to Carls. Hence, Carls does not
learn the value of aliceRef and this is therefore not released to Carl.

C.2 Release knowledge by A, s and lset

As a possible correction to the As attacker, we could consider the Alset
s

attacker who also makes observations on level A, but pretending that the
policy state was s and the current label set was lset for the duration of the
whole execution. Here lset is the current label set when the new observation
α was produced – i.e. this attacker fixes all the policy-relevant components.
To allow the attacker A to learn information resulting from relabelings to
levels l vs A, we share the knowledge that Alset

s has gained so far:

RA(t, s) = {e′ | ¬∃t′, α′.〈Σ0|e ′〉 ⇓ t′ · α′ with obsA(α
′)

and εs,lsetA (t) = εs,lsetA (t ′)}

Here, εs,lsetA (t) fixes the policy state s amd the current label set, ignoring
their actual values in each configuration. Hence since obsA(α), all previous
configurations are observable:

εs,lsetA (〈Σ|e〉 · t) = 〈εsA(Σ)|εsA(e)〉 · ε
s,lset
A (t)

This indeed allows the secure program from § C.1, but also labels the
following program secure, which we argued in § 6.4 to be clearly insecure
due to conditionally allowing the flow from High to Low :
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leak highData = do
r ← newLIORef Low 1
← toLabeled High (do
h ← unlabel highData
when (h ≡ 0) (do

setState True
writeLIORef r 0

v ← readLIORef r))
return v

Although the Low lset
s attacker does not observe the value of h when it is

not 0, still this attacker learns that since the next expression to reduce after
unlabel is toLabeledRet, that the value of h was not 0. This is exactly
the information leaked to Low , so this release policy allows for that leak.

C.3 Release knowledge by all l vs A

Finally we consider one definition that is close to the one we selected. Rather
than defining the multi-level erasure function εL(·), we could say that we
release the knowledge for each level l vs A individually:

RA(t, s) = {e′ | ¬∃t′, α′.〈Σ0|e ′〉 ⇓ t′ · α′ with obsA(α
′)

and εl(t) = εl(t
′) for all l vs A}

This does disallow the leak via policy state change and it allows for the
relabel examples shown in this paper so far. However, it does not consider
the following program secure, which we would intuitively label as such:

setState [ ]
one ← label Alice 1
two ← label Alice 2
bobData ← toLabeled Bob (do

setState [(Carl,Bob)]
d ← unlabel carlData
return (if d then one else two))

daveData ← toLabeled Dave (do
setState [(Bob,Dave)]
d ← unlabel bobData
return d)

setState [(Alice,Dave)]

Returning from the second toLabeled command, information from Alice
is not allowed to flow to Dave, so the value of daveData as observed by
Dave is (Lb Dave (Lb Alice •)). After the last setState command Dave
learns that the value at • was either 1 or 2, and from that gains knowledge
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about the value in carlData. The problem with the suggested definition is
that it does allow Dave to learn this information, but not at the right point
in the execution!

When unlabeling bobData, information may flow from Bob to Dave.
Hence, at this point RA(t, s) allows Dave to learn what Bob has learned,
which include the earlier observation of the value in carlData. However,
Dave only sees (Lb Alice •) and does not learn this information yet. When
Dave does learn the information, the state only allow information from
Alice to flow to Dave. Alice has not been able to observe any configuration
where carlData was unlabeled, so sharing Alice’s knowledge with Dave
does not allow Dave to learn anything about carlData.

The final definition for RA(t, s) given in Definition 4 resolves this by
combining the observations from all levels l vs A at each point. With
L = {Alice,Dave} the projection εL(t) contains unlabel bobData which
releases whether the value labeled with Alice is 1 or 2, as we desired.
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IT’S MY PRIVILEGE: CONTROLLING
DOWNGRADING IN DC-LABELS

Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, Alejandro Russo

Abstract. Disjunction Category Labels (DC-labels) are an expressive
label format used to classify the sensitivity of data in information-
flow control systems. DC-labels use capability-like privileges to
downgrade information. Inappropriate use of privileges can com-
promise security, but DC-labels provide no mechanism to ensure
appropriate use. We extend DC-labels with the novel notions of
bounded privileges and robust privileges. Bounded privileges specify
and enforce upper and lower bounds on the labels of data that may
be downgraded. Bounded privileges are simple and intuitive, yet can
express a rich set of desirable security policies. Robust privileges can
be used only in downgrading operations that are robust, i.e., the
code exercising privileges cannot be abused to release or certify more
information than intended. Surprisingly, robust downgrades can be
expressed in DC-labels as downgrading operations using a weak-
ened privilege. We provide sound and complete run-time security
checks to ensure downgrading operations are robust. We illustrate
the applicability of bounded and robust privileges in a case study as
well as by identifying a vulnerability in an existing DC-label-based
application.
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7.1 Introduction

Information-flow control (IFC) systems track the flow of information by
associating labels with data. Disjunction Category Labels (DC-labels) are a
practical and expressive label format that can capture the security concerns
of principals. IFC systems and DC-labels can provide strong, expressive,
and practical information security guarantees, preventing exploitation of,
for example, cross-site scripting and code injection vulnerabilities [Stefan
et al., 2014, Giffin et al., 2012, Sabelfeld and Myers, 2003, Zeldovich et al.,
2006, Krohn et al., 2007].

IFC systems often need to downgrade information: declassification
downgrades confidentiality, and endorsement downgrades integrity. Down-
grading of DC-labels occurs via operations that require unforgeable ca-
pability-like tokens known as privileges. Unfortunately, DC-labels offer
no methodology to protect developers from the discretionary (i.e., unre-
stricted) exercise of privileges—even a minor mistake in handling privileges
can compromise the whole system’s security. For example, we found a one-
line vulnerability in an existing DC-label application written by experts
that enabled confidential information to be inappropriately released, thus
violating the application’s intended security properties.

To address this, we introduce restricted privileges: privileges that are
limited in their ability to declassify and endorse information. By declar-
atively restricting the use of privileges, developers can reason about the
security properties of the system, regardless of the code that may possess
or use the restricted privileges. Thus, the developer’s local declaration of
restrictions enables the enforcement of global information security guaran-
tees.

We present two kinds of restricted privileges: bounded privileges and
robust privileges. A bounded privilege imposes upper and lower bounds on
the DC-labels of data that is declassified or endorsed using that privilege.
Robust privileges avoid the accidental or malicious use of privileges to
declassify or endorse more information than intended, achieving a property
known as robustness [Zdancewic and Myers, 2001, Myers et al., 2006].

Bounded Privileges. A bounded privilege wraps an unrestricted privilege
with two immutable labels that indicate upper and lower bounds for down-
grading. DC-labels form a lattice structure (described in Section 7.2), and
thus a bounded privilege restricts where in the lattice downgrading may oc-
cur. A bounded privilege also has a mode, indicating whether the bounded
privilege may be used for declassification, endorsement, or both declassifi-
cation and endorsement.

In terms of confidentiality, the upper bound limits the confidentiality
of information that can be declassified using the privilege, and the lower
bound limits the confidentiality of the information after declassification. For
example, suppose principal fb.com passes a bounded privilege to gogl.com.
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If the lower bound of the bounded privilege is the label “gogl.com” then
the privilege can be used to declassify information only from fb.com to
gogl.com. Even if gogl.com passes the bounded privilege to another do-
main, say evil.com, the bounded privilege cannot be used to declassify
information from fb.com to evil.com.

In terms of integrity, the upper bound of a bounded privilege indicates
the least trustworthy level of information the privilege can be used to en-
dorse, and the lower bound limits the integrity of the information after en-
dorsement. For example, by setting the upper bound appropriately, fb.com
can create a bounded privilege that can be used to endorse data only from
gogl.com, and cannot be used to endorse other data, say from evil.com.

Robust Privileges. The security of a system might be at risk if an attacker
is able to influence the decision to declassify or endorse information, or can
influence what information is declassified. For example, consider a routine
that receives a secret pair (username,password) and uses a privilege to
declassify the first component of the pair. If an attacker (from another
system component) can influence the pair to be (password,username)
and trigger the declassification, the password will be leaked.

Robust declassification [Zdancewic and Myers, 2001] and qualified
robustness [Myers et al., 2006] are end-to-end semantic security guarantees
that ensure that attackers are unable to inappropriately influence what in-
formation is revealed to them. These security conditions can be enforced by
restricting declassification and endorsement operations. A robust privilege
wraps a privilege and ensures that it is used only in declassification and
endorsement operations that satisfy appropriate robustness checks.

This paper makes the following contributions: (i)We introduce bounded
and robust privileges to limit the exercise of privileges for declassifica-
tion and endorsement. (ii) We present a semantic characterization of how
bounded privileges and robust privileges restrict declassification and en-
dorsement operations. (iii) We define run-time security checks for bounded
privileges and robust privileges that soundly and completely enforce the
semantic characterization of restricted downgrading operations. The run-
time checking for robust downgrading is effectively a weakening of the
underlying unrestricted privilege: a surprisingly simple characterization
of robustness. (iv) We illustrate the applicability of bounded and robust
privileges via a case study. Moreover, use of restricted privileges identified
a vulnerability in an existing DC-label-based application.

This paper is organized as follows. Section 7.2 introduces the DC-label
model. Section 7.3 characterizes downgrading operations that use restricted
privileges, and Section 7.4 provides the corresponding enforcement. Sec-
tion 7.5 describes security properties in the presence of multiple restricted
privileges. Case studies are given in Section 7.6. Section 7.7 examines re-
lated work and Section 7.8 concludes.
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7.2 Background

We briefly define three concepts fundamental to our presentation: the DC-
label model, privileges, and floating label systems.

C1 vc C2 ⇐⇒ C2 ⇒ C1

C1 tc C2 ⇐⇒ C1 ∧ C2

C1 uc C2 ⇐⇒ C1 ∨ C2

⊥c ≡ True >c ≡ False

Fig. 1: Confidentiality Lattice

I1 vi I2 ⇐⇒ I1 ⇒ I2
I1 ti I2 ⇐⇒ I1 ∨ I2
I1 ui I2 ⇐⇒ I1 ∧ I2

⊥i ≡ False >i ≡ True

Fig. 2: Integrity Lattice

Label Lattice DC-labels [Stefan et al.,
2011a] are pairs of confidentiality
and integrity policies. Confidential-
ity polices describe who may learn in-
formation. Integrity polices describe
who takes responsibility or vouches
for information. Both confidential-
ity and integrity policies are posi-
tive propositional formulas in con-
junctive normal form, where proposi-
tional constants represent principals.
Let CNF denote the set of all positive
propositional formulas in conjunctive
normal form; we use the term formula
to range over CNF. We assume that
operations on formulas always reduce
their results to conjunctive normal form.

Both confidentiality policies and integrity policies form lattices—see
Figures 1 and 2. We interpret C1 vc C2 as: C2 is at least as confidential
as C1. For instance, Alice ∨ Bob vc Alice, which means that data readable
by either Alice or Bob is less confidential than data readable only by Alice.
Conjunctions of principals represent the multiple interest of principals to
protect the data. Conversely, disjunctions of principals represent groups
wherein any member may learn the information. The integrity lattice is
dually defined [Biba, 1977]; we interpret I1 vi I2 as: I1 is at least as
trustworthy as I2. For example, Alice ∧ Bob vi Alice, which indicates that
data vouched for by Alice∧Bob is more trustworthy than data vouched for
only byAlice. In this case, conjunctions of principals represent groups whose
members are independently responsible for the information. For example,
data with integrity Alice ∧ Bob means that Alice is completely responsible
for the data, and so is Bob. Conversely, disjunctions of principals represent
groups that collectively take responsibility for the information, however,
no principal takes sole responsibility. For example, data with integrity
Alice ∨ Bob means that Alice and Bob collectively are responsible for the
data, i.e., both may have contributed to, or influenced the computation of
the data.

Formally, a DC-label is a pair of a confidentiality policy C and an in-
tegrity policy I, written 〈C, I〉. DC-labels form a product lattice given in
Figure 3. The v relation is called the can-flow-to relation because it de-
scribes information flows that respect confidentiality and integrity policies.
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〈C1, I1〉 v 〈C2, I2〉 ⇐⇒ C1 vc C2 and I1 vi I2
〈C1, I1〉 t 〈C2, I2〉 ≡ 〈C1 tc C2, I1 ti I2〉
〈C1, I1〉 u 〈C2, I2〉 ≡ 〈C1 uc C2, I1 ui I2〉

c(〈C, I〉) ≡ C i(〈C, I〉) ≡ I

Fig. 3: Security lattice for DC-labels

〈C1, I1〉 vp 〈C2, I2〉 ⇐⇒ C1 vc
p C2 and I1 vi

p I2

where C1 vc
p C2 ⇐⇒ C1 vc C2 tc p

I1 vi
p I2 ⇐⇒ I1 ui p vi I2

Fig. 6: Relation can-flow-to-with-privilege-p

We write c(·) and i(·) for the projection of confidentiality and integrity
components, respectively.

Downgrading In the DC-label model, one security policy downgrades
to another security policy if they do not satisfy the can-flow-to relation.

〈Alice,Charlie〉 6v 〈Alice,Charlie ∧ Alice〉

Fig. 4: Downgrading integrity

〈Alice ∧ Bob,Charlie〉 6v 〈Bob,Charlie〉

Fig. 5: Downgrading confidentiality

Consider the pair of security la-
bels in Figure 4. The first se-
curity label enforces the pol-
icy that data is vouched for
by Charlie. The second security
label enforces the policy that
data is vouched for by Charlie
and Alice, therefore a secure sys-
tem cannot permit data to flow
from the sources protected by the first policy to sinks protected by the sec-
ond policy. This downgrade is an endorsement, since it downgrades only
integrity, i.e., it makes a value more trustworthy. Dually, a declassification
downgrades only confidentiality, i.e., it makes a value less confidential.
Consider the pair of security labels in Figure 5: The first security label
enforces the policy that data is confidential to Alice ∧ Bob. The second
security label enforces that data is confidential to Bob. Permitting data to
flow from a source protected by the first policy to a sink protected by the
second policy violates the confidentiality expectations of the source.

Privileges Practical systems must permit some downgrading. The DC-label
model controls downgrading with privileges, where every principal has an
associated privilege, and a principal’s privilege enables downgrading. More
precisely, given principal p, the can-flow-to-with-privilege-p relationship,
written vp, describes the information flows permitted with p’s privilege—
see Figure 6. Observe that both downgrading examples from the previous
section are now permitted by the can-flow-to-with-privilege relationship
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for the principal Alice, i.e., 〈Alice,Charlie〉 vAlice 〈Alice,Charlie∧Alice〉 and
〈Alice ∧ Bob,Charlie〉 vAlice 〈Bob,Charlie〉.
Floating label systems DC-labels are usually part of floating label systems
like LIO [Stefan et al., 2011b], Hails [Giffin et al., 2012], and COWL
[Stefan et al., 2014]. Such systems associate a current label, Lpc, with
every computational task—this label plays a role similar to the program
counter (PC) in more traditional language-based IFC approaches [Sabelfeld
and Myers, 2003]. The current label denotes the fact that a computation
depends only on data with labels bounded above by Lpc . When a task with
current label Lpc observes information with label LA, the current label
after observation, L′

pc , “floats” above both the previous current label and
the observed information’s label, i.e., L′

pc = Lpc t LA. Importantly, and to
respect the security lattice, the current label restricts the subsequent writes
to communication channels. Specifically, a task with current label Lpc is
prevented from writing to channels protected by policy LA if Lpc 6v LA.

Floating-label systems typically use some run-time representation of
principals’ privilege, and downgrading operations require the run-time
representation of a principal p’s privilege to be presented in order to use the
can-flow-to-with-privilege-p relation,vp. Thus, the run-time representation
of a principal’s privilege acts like a capability to downgrade that principal’s
information. We write pQ for the run-time representation of the privilege
of principal p, and refer to this value as a raw privilege (to contrast it with
the restricted privileges that we introduce in this paper).

7.3 Security Definitions

If a system contains pQ, then downgrading of data with policies involv-
ing p depends entirely on how pQ is used in the system. Reasoning about
what downgrading occurs may require reasoning about global properties
of the system. Indeed, we found a vulnerability in a Hails example applica-
tion [Giffin et al., 2012] of a web-based rock-paper-scissors game where
use of a raw privilege was localized to one component, but arbitrary data
could be passed to this component to be downgraded. This motivates our
work to restrict privileges, and enable local reasoning about downgrading
that may occur in a system.

A restricted privilege is a raw privilege “wrapped” with limitations on
its use. These limitations enable sound reasoning about the downgrading
that may be performed using the restricted privilege, even if arbitrary code
uses the restricted privilege. Thus, local reasoning that ensures pQ is always
appropriately restricted provides global guarantees about the downgrading
that can occur with respect to policies involving p.

We present two kinds of restricted privileges, bounded privileges and
robust privileges, which provide simple declarative limitations on the use
of raw privileges.
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Bounded Privileges A bounded privilege wraps a raw privilege with down-
grading bounds and a downgrading mode. A downgrading bound is a
pair of security lattice labels Lhigh and Llow that provide upper and lower
bounds on downgrading, and the mode indicates whether the bounded
privilege can be used to both declassify and endorse, only to declassify, or
only to endorse.

Definition 1 (Downgrading bounds). An operation that downgrades from
security policy Lfrom to security policy Lto in a computational context with
current label Lpc satisfies downgrading bounds Lhigh and Llow if and only
if (Lfrom t Lpc) v Lhigh and Llow v (Lto t Lpc)

Definition 2 (Bounded privileges). A bounded privilege with bounds Lhigh

and Llow and modem on privilege pQ, written m[pQ]
Lhigh

Llow
, can be used only

for downgrading operations with privilege pQ that satisfy downgrading
bounds Lhigh and Llow . Mode m is one of de, d, or e. Declassification
operations are permitted only if the mode is de or d; endorsement operations
are permitted only if the mode is de or e.

⊥ = ⟨True, False⟩

⊤ = ⟨False, True⟩

Lhigh

Llow
integrity

co
nf

ide
nti

ali
ty

⟨A v B, A∧B⟩

⟨A∧B, A v B⟩

⟨A v B, A v B⟩

information
flow
(⊑)

⟨A∧B, A∧B⟩

Fig. 7: Bounded Downgrading

Figure 7 shows a visu-
alization of bounded down-
grading. The security lattice
on the left is overlaid with
a visualization of where
bounded downgrading can
occur (shaded) with respect
to bounds Lhigh and Llow .
The security lattice on the
right shows an example of
what labeled values can be declassified (shaded) with a bounded declassifica-
tion privilege with bounds Lhigh = 〈A∧B,A∨B〉 and Llow = 〈A∨B,A∧B〉.

In essence, the confidentiality lattice has collapsed c(Lhigh) and c(Llow )
and all points in between: information that has confidentiality up to c(Lhigh)
may be declassified to confidentiality c(Llow )—all other points in the confi-
dentiality lattice are not affected. Guarantees for endorsement with respect
to bounded privileges are similar, but for integrity instead of confidentiality.

Example 1 (Policy: Only Bob controls Alice’s privilege). Principal Alice
allows Bob to declassify her data provided that Bob vouches for the data
and the decision to declassify. In other words, information labeled with
Alice can be declassified only after endorsement by Bob. This property can
be captured by a bounded privilege with mode d and bounds: Lhigh =
〈>c,Bob〉, Llow = 〈⊥c,Bob〉. If the privilege is used to declassify infor-
mation that is not endorsed by Bob or in a context where the current
label is not endorsed by Bob, then the declassification fails. In general,
data must be vouched for by Bob (e.g., by using BobQ or another restricted
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privilege) before the bounded privilege for Alice can be used. For example,
if a computational task has a current label Lpc = 〈Alice,Bob ∨ Charlie〉,
the current label must be endorsed by Bob first. By endorsing the current
label, Bob effectively vouches for any influence Charlie may have had on
the computational task.

Example 2 (Policy: “A close source said...”). The bounded privilege given
as d[AliceQ]

〈>c,>i〉
〈⊥c,>i〉 requires that the integrity of data being declassified is

>i, i.e., data that no principal takes responsibility for. Alice may wish to
impose this restriction on declassification involving data confidential to her
to ensure that she has plausible deniability regarding the source of the data
released. That is, the bounded privilege can not be used to declassify data
for which Alice is explicitly responsible.

Robust Privileges Robustness [Zdancewic and Myers, 2001, Myers et al.,
2006] is a semantic security condition that limits downgrading based on
which principals might benefit from the downgrading, and which principals
have influenced the data to downgrade and the decision to downgrade.

Consider a declassification of information from a source protected by
label Lfrom to a sink protected by label Lto . A formula A (representing
a principal or party of principals) will benefit from the declassification if
A cannot read from the source, but can read the sink, i.e., c(Lfrom) 6vc

A and c(Lto) vc A. A robust declassification does not permit any principal
that benefits from it to influence either the decision to declassify or the data
to declassify. A influences the decision to declassify if A vi i(Lpc), and A
influences the data to declassify if A vi i(Lfrom).

Definition 3 (Robust declassification). A robust declassification using priv-
ilege pQ from a source protected by Lfrom to a sink protected by Lto , in
a computational context with current label Lpc is a declassification (i.e.,
c(Lfrom) vc

p c(Lto)) where ∀A ∈ CNF.c(Lto) vc A ∧ c(Lfrom) 6vc A ⇒
A 6vi i(Lpc) ∧A 6vi i(Lfrom).

For endorsement, a principal benifits if it may be held responsible for
information from the source but is not held responsible for information
from the sink. In other words, A benefits from an endorsement if A gets
absolved of responsibility for a value, i.e., A vi i(Lfrom) ∧ A 6vi i(Lto).
Robust endorsement does not permit principals that benefit from it to
influence the decision to endorse.

Definition 4 (Robust endorsement). A robust endorsement using privilege
pQ from a source protected by Lfrom to a sink protected by Lto , in a compu-
tational context with current label Lpc is an endorsement (i.e., i(Lfrom) vi

p

i(Lto)) where ∀A ∈ CNF.A vi i(Lfrom) ∧A 6vi i(Lto) ⇒ A 6vi i(Lpc).
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A robust privilege is a privilege that can only be used for robust down-
grading operations.

Definition 5 (Robust privilege). A robust privilege with mode m on privi-
lege pQ, written rbstm{pQ}, restricts downgrading operations where it is
used to those that are robust for pQ. Mode m is one of de, d, or e. Declas-
sification operations are permitted only if the mode is de or d; endorsement
operations are permitted only if the mode is de or e.

The definitions of robust declassification and endorsements both quan-
tify over all formulas A in the (possibly infinite) set CNF. In Section 7.4,
we consider how to implement efficient checks that do not use universal
quantification.

C(
L lo
w
)

information
flow
(⊑)

Lfrom

Llow

⊤= ⟨False, True⟩

co
nf

ide
nti

ali
ty

integrity
I

⟨A v B, A⟩

⟨A∧B, A⟩

⊥=⟨True, False⟩

AA

Fig. 8: Robust Declassification

Figure 8 shows a visu-
alization of where robust
declassification is allowed
for a given robust privilege.
The security lattice on the
left is overlaid with a visu-
alization of where a value
with label Lfrom can be de-
classified to (shaded line) us-
ing a robust declassification
privilege. (Note that the current label Lpc is not included in the diagram for
brevity.) I represents the boolean formula for the integrity of the labeled
value. Llow is one of the lowest points where Lfrom can be declassified to
while still being a robust declassification, i.e., Llow v Lto . That is, the
integrity of the label of the value for declassification (together with the
integrity of the current label of the process) is used as a lower bound for de-
classification. Intuitively, those who influence a declassification should not
learn from it. In the right hand side of Figure 8, the shaded line indicates to
where a robust privilege may declassify the labeled value 〈A ∧ B,A〉. The
declassification is robust if A is not able to learn from the declassification.
As a result, the value could not be declassified to 〈A ∨ B,A〉 as A would
learn from a declassification that it influenced. In contrast, it is robust to
declassify it to 〈B,A〉.

7.4 Enforcement for robust privileges

In this section we describe enforcement mechanisms for restricted privileges
that satisfy their semantic characterizations described in Section 7.3. We
have implemented these mechanisms in LIO and use them in our case study
(see Section 7.6).

When a bounded privilege (Definition 2) is used at run time, it is simple
to check that the downgrading operation satisfies the appropriate bounds,
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since the labels relevant to the downgrading (Lfrom , Lto , and Lpc) are all
available at run time, and the label ordering relation can be easily checked
dynamically.

Robust privileges (Definition 5) impose restrictions on downgrading
operations which quantify over formulas A. However, attempting to ex-
plicitly check each possible formula A at run time is not feasible. We can
however, derive simple and efficient run-time checks that are sound and
complete with respect to their semantic characterizations. These checks are
inspired by Chong and Meyers [Chong and Myers, 2006], who provide
run-time checks for robustness that are sound but not complete.

The following theorem shows that the semantic characterization of
robust declassification (Definition 3) is equivalent to two confidentiality-
policy comparisons involving only Lfrom , Lto , and Lpc .

Theorem 1 (Robust declassification check). A declassification using priv-
ilege pQ from a source protected by Lfrom to a sink protected by Lto

in a computational context with current label Lpc is robust if and only
if c(Lfrom) vc

p c(Lto), c(Lfrom) vc c(Lto) tc i(Lpc), and c(Lfrom) vc

c(Lto) tc i(Lfrom).

The run-time check ensures that if there is any formula A that benefits
from the declassification (c(Lfrom) 6vc A and c(Lto) vc A) then A 6vi

i(Lpc) (or, equivalently, i(Lpc) 6vc A), and similarly that A 6vi i(Lfrom).
Thus, the run-time check converts a comparison of integrity policies to a
comparison of integrity policies that does not involve A.

The next theorem describes a simple run-time check for robust endorse-
ment.

Theorem 2 (Robust endorsement check). An endorsement using privilege
pQ from a source protected by Lfrom to a sink protected by Lto in a com-
putational context with current label Lpc is robust (Definition 4) if and
only if i(Lfrom) vi

p i(Lto), and i(Lpc) ui i(Lfrom) vi i(Lto).

The run-time check that all formulas A that may be responsible for either
the current label (A vi i(Lpc)) or the data itself (A vi i(Lfrom)) should
also be responsible for the data after endorsement (A vi i(Lto)). Proofs of
Theorems 1 and 2 are in Appendix A.

Alternative formulation In DC-labels, privileges can be arbitrary formulas,
which can be stronger or weaker than privileges for individual principals.
For example, a privilege for A ∧ B can downgrade more information than
a privilege for A or B alone, whereas a privilege for A ∨ B can downgrade
less information than a privilege for A or B alone. Leveraging this feature,
we show how robust downgrading can be seen (and enforced) as normal
downgrading operations that use a weakened privilege. That is, the privilege
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used in a downgrading operation is weakened so as to permit all and only
robust downgrading operations.

The next corollaries follow from Theorems 1 and 2 and the definition
for the can-flow-to-with-privilege-p relation.

Corollary 1. A declassification using raw privilege pQ from a source pro-
tected by Lfrom to a sink protected by Lto in a computational context with
current label Lpc is robust (Definition 3) if and only if

c(Lfrom) vc
p ∨ i(Lfrom) ∨ i(Lpc)

c(Lto).

This indicates that robust declassification can be achieved by simply weak-
ening privilege pQ with the integrity labels of the current label and the data
to be released, i.e., p∨ i(Lfrom)∨ i(Lpc). Robust endorsement has a similar
corollary.

Corollary 2. An endorsement using raw privilege pQ from a source pro-
tected by Lfrom to a sink protected by Lto in a computational context with
current label Lpc is robust (Definition 3) if and only if i(Lfrom) vi

p ∨ i(Lpc)

i(Lto).

The proof of Corollary 1 is in Appendix A; the proof of Corollary 2 is
similar.

The current implementation of DC-labels [Stefan et al., 2011a] provides
the ability to infer appropriate Lto labels of downgrading operations given
a privilege p. By expressing the runtime checks for robust downgrading
operations as a standard downgrading operation with a weakened privilege,
we can take advantage of this feature and automatically infer a suitable
Lto label if one exists. This reduces the burden on the programmer.

7.5 Interaction among restricted privileges

We can extend restricted privileges to allow them to be composed, i.e., by
allowing bounded privileges and robust privileges to wrap around other
restricted privileges, as well as raw privileges. The guarantee provided by
the composition of restricted privileges is the intersection of their individual
guarantees. For example, a bounded privilege composed with another
bounded privilege will require that downgrading operations satisfy the
bounds of both privileges. A bounded privilege composed with a robust
privilege (and vice-versa) requires the downgrading both to be robust
and satisfy the downgrading bounds. Robust privileges are idempotent: a
robust privilege composed with a robust privilege will simply require all
downgrade operations to be robust.

Privileges might also interact because a system has multiple privileges
available. Unlike composed privileges (which further restrict possible in-
formation flows), multiple privileges enable additional information flows.
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Fig. 9: Multiple bounds.

In the remainder of the section, we discuss
the guarantees that result from the use of
multiple restricted privileges. In the accom-
panying figures, bounded privileges are de-
picted as a shaded rectangle correspond-
ing to their bounds. Robust declassification
privileges are depicted as a pair of dashed
lines: one line represents the integrity of
the source and the other line represents the
lower bound to which data may be declas-
sified. Labels are depicted as points along with their names.

Bounded declassification and bounded endorsement Figure 9 depicts two
bounded privileges, one for declassification and one for endorsement, as
well as a label, Lfrom that is outside the bounds of the declassification
privilege. Because the bounds of the privileges overlap, data can transitively
flow from Lfrom to Lto . The endorsement privilege enables data from
Lfrom to be endorsed to L′. The bounded declassification privilege can then
declassify data from L′ to Lto .
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Fig. 10: Bounded and robust
declassification.

Bounded declassification and robust de-
classification Figure 10 depicts two de-
classification privileges, one robust and
one bounded, and a label that is outside
the bounds of the bounded declassification
privilege. Neither privilege alone permits
a flow from Lfrom to Lto . However, when
used together, the robust declassification
privilege permits declassification of data
from Lfrom to L′ and the bounded declas-
sification permits a flow from L′ to Lto ,
completing a flow from Lfrom to Lto .

Endorsement and robust declassification
In a system with unrestricted endorsement, robust declassification provides
almost no protection against attackers influencing what they learn. Intu-
itively, the endorsement of data by p can make the data trustworthy enough
to make a subsequent declassification robust. Consider a declassification
of a value from label Lfrom = 〈A ∧ B,A〉 to L = 〈A,A〉 using the robust
privilege rbstd{BQ}. This declassification is not robust: principal A, who
benefits from this declassification, may be held responsible for the value,
i.e., A may have decided what gets declassified. However, an unrestricted
endorsement privilege BQ could be used to endorse the value—effectively
endorsing any possible influence by A. In other words, 〈A ∧ B,A〉 can be
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endorsed to 〈A ∧ B,B〉, and a subsequent declassification from 〈A ∧ B,B〉
to 〈A,B〉 is robust.

Llow

L1

L2

I1

I2

C 1

C 2

L''

L'

Fig. 11: Bounded endorse-
ment and robust declassifica-
tion.

Bounded endorsement effectively lim-
its the aforementioned deletrious effects of
unrestricted endorsement to the bounded
area of the lattice, Figure 11 depicts this sit-
uation. Besides mitigating the effects of un-
restricted endorsement, bounded endorse-
ment is useful to relax robust declassifica-
tion so that it succeeds for principals col-
laborating in achieving a common goal—
see, for example, Section 7.6.

Bounded and robust declassification Fig-
ure 10 shows the guarantees when a robust declassification-only privi-
lege (i.e., rbstd{pQ}) and a bounded declassification-only privilege (i.e.,
d[pQ]

Lhigh

Llow
) for the same principal are both available in the system. Intu-

itively, p’s information can be declassified from Lfrom to L′ using the robust
privilege. The information can then be declassified again to Lto using the
bounded privilege, even though Lfrom is below the threshold imposed by
robust declassification (i.e., the lowest possible label that robust declas-
sification could declassify label Lfrom ). Thus, the presence of a bounded
declassification-only privilege can bypass the guarantees provided by ro-
bust declassification.

Several bounded privileges Multiple robust privileges for the same principal
do not add any additional complexity, as all robust privileges are equivalent
(up to their modes). Bounded privileges, however, may differ on the bounds
they impose. The presence of multiple bounded privileges in a system for
principal p collapses the label lattice for principal p in complex ways. For
instance, the left diagram of Figure 9 illustrates an example where there is
a bounded endorsement-only privilege and a bounded declassification-only
privilege with different bounds. It may be possible for a value labeled Lfrom

to be relabeled to Lto via an endorsement to L′ followed by a declassi-
fication. Thus, labels between Lfrom and L′ and between L′ and Lto are
effectively collapsed, since the bounded privileges allow a value with any
of these labels to be relabeled to any other of these labels. More generally,
as more overlapping bounded privileges exist for a given principal, data
can be downgraded in more possible ways.

7.6 Case studies

7.6.1 Calendar Case Study

We have extended LIO [Stefan et al., 2011b] with support for bounded
privileges and robust privileges, and used them to develop a Calendar ap-
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plication to explore and illustrate the utility of restricted privileges. The
application allows users to view their appointments, and schedule appoint-
ments with each other. DC-label principals are the calendar users. A user’s
appointments are confidential to that user.

We consider a setting where principals belong to groups and a principal
is willing to disclose her availability to all and only members of her groups.
For example, if Bob wants to schedule an appointment with Alice at time t,
the application will check Alice’s calendar and inform Bob whether Alice is
available at that time. This operation, which declassifies Alice’s availability
at time t to Bob, should succeed only if Alice and Bob are in the same group.

Each user A has a robust declassification privilege rbstd{AQ}, and,
for each group G that A belongs to, a bounded endorsement privilege
e[AQ]

〈>c,G〉
〈⊥c,⊥i〉 , where G is the disjunction of all users in the group. These

are the only privileges available in the system for user A, and thus all
endorsements must be bounded appropriately, and all declassifications
must be robust.

Joint scheduling between A and B works as follows:
1. User B sends a scheduling request for time t labeled 〈B,B〉 to user A.
2. User A computes her availability for time t. Because the context that

computes the availability reads data labeled 〈A,A〉 and 〈B,A〉, the label
of the availability result is 〈A ∧ B,A ∨ B〉.

3. If A and B are both in some group G, then A uses her bounded privilege
to endorse the availability result to 〈A ∧ B,A〉, since she is prepared
to take sole responsibility for the availability result. Since both A and
B are in the same group, the endorsement satisfies the bounds (i.e.,
A ∨ B vi G). If there is no group for which both A and B are members,
then A has no bounded endorsement privilege for which the bounds
will be satisfied.

4. User A uses her robust privilege to declassify the availability result to
〈B,A〉. The declassification is robust.

5. User A sends the declassified value to B.
Because all downgrading in the system relevant to user A must use A’s

restricted privileges, we obtain strong system-wide guarantees, even if A’s
restricted privileges manage to escape from the scheduling component, and
even if if B sends malicious scheduling requests. Section 7.5 (Figure 11)
discusses in more detail the system-wide guarantees that hold when both a
bounded endorsement privilege and a robust declassification privilege are
available.

7.6.2 Restricted Privileges in Existing Applications

Using our restricted privileges, we found a security vulnerability in an ap-
plication written using Haskell Automatic Information Labeling System
(Hails) [Giffin et al., 2012]. Hails is a web framework built on LIO that



194 Related Work

extends the traditional Model-View-Controller paradigm to Model-Policy-
View-Controller. The policy module specifies all models and describes
the labels for data fetched from the database. When data is stored in the
database, Hails checks labels against the policy module to ensure appro-
priate data integrity. The policy module has access to a privilege that can
declassify all models. As a design pattern, policy modules export functions
that perform declassification for untrusted applications using the privilege;
untrusted applications never have direct access to the privilege.

Rock-Paper-Scissors1 is a Hails application that contains a security
vulnerability due to misuse of the policy privilege, despite being written by
security experts who developed Hails.

The policy module includes a function to get the outcome of a match
given a particular move by a player. This function can be exploited to reveal
the opponent’s move before the player has actually committed to a move by
submitting it to the database. As a result, a player can always win a match
by exploiting this function to determine which move will win, and then
committing to that winning move. When we replaced the policy module’s
raw privilege with a robust privilege, the robust declassification check
signalled a potential security vulnerability. To fix the vulnerability, we added
code that checks whether a player had committed to a move (i.e., the move is
in the database), and, if so, endorses the submitted move. This endorsement
allows the robust declassification check to succeed. Endorsing only when
the player has committed to his move fixes the security vulnerability.

7.7 Related Work

Declassification can be characterized into different dimensions: who, what,
where, and when [Sabelfeld and Sands, 2005]. Our work can be consid-
ering as restricting where in the security lattice downgrading may occur
(bounded downgrading) and who may influence downgrading (robustness).
Almeida Matos and Boudol [Almeida Matos and Boudol, 2005] introduce
a construct flow p ≺ q in c to indicate where additional information flows
are allowed within a lexical scope. Intransitive noninterference [Roscoe and
Goldsmith, 1999, Mantel and Sands, 2004, van der Meyden, 2007] posits a
non-transitive information flow ordering which describes what downgrad-
ing operations are permitted. Mantel and Sands [Mantel and Sands, 2004]
combine intransitive noninterference with language techniques that use de-
classification annotations to explicitly identify non-transitive information
flows. In our bounded declassification mechanism, violating the normal or-
dering of security levels is tied to a runtime value, and not lexically scoped
or marked by annotations.

In Jif [Myers et al., 2001–], declassifications may explicitly state where
in the security lattice the declassification occurs. By contrast, our bounded

1 https://github.com/scslab/hails/tree/master/examples/hails-rock
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mechanisms declare this restriction on the run-time value that authorizes
downgrading. Jif uses a form of access control to restrict which code may
downgrade information, coined selective declassification by Pottier and
Conchon [Pottier and Conchon, 2000]. Specifically, a downgrading oper-
ation that may compromise the security of principal p may only occur in
code that has been (statically or dynamically) authorized by p. Similarly, the
authority to declassify or endorse information in Asbestos [Efstathopoulos
et al., 2005], HiStar [Zeldovich et al., 2006], Flume [Krohn et al., 2007],
and COWL [Stefan et al., 2014] must come from the creator of the exer-
cised privileges. By contrast, LIO associates the authority to declassify or
endorse a principal’s information with a run-time value. This capability-
like approach to authorizing downgrading enables our local declarative
approach to restrict downgrading. Birgisson et al. [Birgisson et al., 2011]
use capabilities to restrict the ability to read and write memory locations,
but do not consider the use of capabilities to restrict downgrading.

Zdancewic and Myers [Zdancewic and Myers, 2001] introduce the se-
mantic security condition of robust declassification, andMyers et al. [Myers
et al., 2006] enforce robust declassification with a security type system [Vol-
pano et al., 1996, Sabelfeld and Myers, 2003], and introduce qualified ro-
bustness, which extends the concept to reason about endorsement. Askarov
and Myers [Askarov and Myers, 2010] subsequently present a semantic
framework for downgrading, and present a crisper version of qualified ro-
bustness. Chong and Myers [Chong and Myers, 2006] extend the notion
of robust declassification to the Decentralized Label Model [Myers and
Liskov, 1998, 1997]. The run-time checks used in this work to enforce ro-
bustness are analogous to the run-time checks Chong and Myers introduce
for the DLM. In other work, Chong and Myers [Chong and Myers, 2005]
note that the semantic security condition for robust declassification applies
to information flow of confidential information generally, including, for ex-
ample, information erasure, and is more general than just declassification.
If the only privilege for p available in the system is a robust privilege with
mode mode d then the system will be robust for p. If the privilege for that
mode is de (i.e., robust declassification operations and robust endorsement
operations are possible), then the end-to-end security guarantee is qualified
robustness [Myers et al., 2006, Askarov and Myers, 2010]. A system sat-
isfies qualified robustness if the only way an attacker can influence what
information is released to it is via robust endorsement operations.

Foley et al. incorporate bounds constraints on a system with relabeling
operations on objects [Foley et al., 1996]. Our model performs relabeling
based on the use of capability-like tokens rather than with respect to a
particular subject. Bound restrictions can be placed per privilege rather
than on all relabeling operations, so the guarantees of this work are more
dependent on what sorts of privileges are available for use, but do not
require changes to the trusted computing base.
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The system HiStar [Zeldovich et al., 2006] provides the notion of
gates: entities designed to encapsulate privileges so that processes can safely
switch their current label by exercising them through the gate. Gates have
a clearance component which imposes an upper bound on the label that
results from using it. Gates can be leveraged to restrict the use of privileges
similar to upper bounds in bounded privileges. Similar to our approach,
Flume[Krohn et al., 2007] distinguishes privileges used for declassification
(symbol −) and endorsement (symbol +).

7.8 Conclusion

Restricted privileges are a new mechanism to control declassification and
endorsement in DC-labels that is simple and intuitive yet expresses a rich set
of desirable policies. Bounded privileges impose upper and lower bounds
on data that is declassified or endorsed. Robust privileges help prevent the
accidental or malicious exercise of privileges to downgrade more informa-
tion than intended, and can provide the end-to-end security guarantees of
robustness and qualified robustness. We provide sound and complete effi-
cient security checks for downgrading using restricted privileges. We note
that robust downgrading operations can be viewed as privileged down-
grading with a weakened privilege. We explore the guarantees provided
by combining the use of bounded and robust privileges as well as their
composition in a case study. This work establishes a basis for better design
of IFC systems that use privileges for downgrading information.
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A Proofs

The integrity and confidentiality lattices are dual lattices, as described below.
This fact is used in subsequent proofs.

I1 vi I2 = I1 ⇒ I2 = I2 vc I1
I1 ti I2 = I1 ∨ I2 = I1 uc I2
I1 ui I2 = I1 ∨ I2 = I1 tc I2

Recall the robust declassification check from Theorem 1:

c(Lfrom) vc c(Lto) tc i(Lpc) (1)

and

c(Lfrom) vc c(Lto) tc i(Lfrom) (2)

Proof (Proof of Theorem 1).As a first step, we adapt the goal in Definition 3
to vc instead of vi by way of the lattice duality.
Soundness: We prove that (1) and (2) implies Definition 3. For that, we
assume (1), (2), and

∀A ∈ CNF ,c(Lto) vc A and c(Lfrom) 6vc A (3)

having to prove that

i(Lpc) 6vc A (4)

and

i(Lfrom) 6vc A (5)

We only prove (4) by contradiction (the proof for (5) follows analogously).
We have that,

i(Lpc) vc A contradiction supposition

i(Lpc) vc A and c(Lto) vc A obtained from (3) =⇒
c(Lto) tc i(Lpc) vc A least upper bound

c(Lfrom) vc A from (1) and transitivity

Completeness: We show that Definition 3 implies (1) and (2). Again, we
prove only the left side of the conjunct, the right side follows analogously.
Consider the contrapositive of the robust declassification condition (see
Definition 3) with A = c(Lto) t i(Lpc), where we disregard the i(Lfrom)
half of the antecedent:

if i(Lpc) vc i(Lpc) tc c(Lto)

then c(Lto) 6vc i(Lpc) tc c(Lto)

or c(Lfrom) vc i(Lpc) tc c(Lto)

The left side of the disjunction is false by the definition of least upper bound.
We conclude that c(Lfrom) vc i(Lpc) tc c(Lto) which proves the left side
of the conjunct of the robust declassification check.
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Proof (Proof of Theorem 2). Soundness: We show that the robust endorse-
ment condition (see Definition 4) implies the robust endorsement check.
Consider the contrapositive of the robust endorsement condition:

∀A ∈ CNF. if q vi i(Lpc)

then q vi i(Lto) or q 6vi i(Lfrom)

Setting A = i(Lpc) ui i(Lfrom) allows us to conclude that the robustness
condition,

i(Lpc) ui i(Lfrom) vi i(Lto)

is true because the right side of the disjunction must be false by the greatest
upper bound property.
Completeness: Now we show that the robust endorsement check implies
the robust endorsement condition. We take as suppositions the robust
endorsement check and the antecedent of the robust endorsement condition:

i(Lpc) ui i(Lfrom) vi i(Lto)

∀A ∈ CNF , A 6vi i(Lto) and A vi i(Lfrom)

The proof is by contradiction.

A vi i(Lpc) contradiction supposition

A vi i(Lpc) and A vi i(Lfrom) =⇒
A vi i(Lpc) ui i(Lfrom) greatest lower bound

A vi i(Lto) transitivity

Which contradicts the antecedent of the robustness condition.

Proof (Proof of Corollary 1). The robust declassification checks

c(Lfrom) vc
p c(Lto)

and c(Lfrom) vc c(Lto) tc i(Lpc)

and c(Lfrom) vc c(Lto) tc i(Lfrom)

are equivalent to

c(Lfrom) vc
p∨i(Lpc)∨i(Lfrom) c(Lto)

which can be derived by unfolding the definitions ofvc andvc
p and applying

the logical tautology

(φ ∧ (ψ1 ∨ ψ2) =⇒ χ) ⇐⇒ (φ ∧ ψ1 =⇒ χ) ∧ (φ ∧ ψ2 =⇒ χ).
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EIGHT

ON DYNAMIC FLOW-SENSITIVE
FLOATING-LABEL SYSTEMS

Pablo Buiras, Deian Stefan, Alejandro Russo

Abstract. Flow-sensitive analysis for information-flow control (IFC)
allows data structures to have mutable security labels, i.e., labels
that can change over the course of the computation. This feature
is often used to boost the permissiveness of the IFC monitor, by
rejecting fewer runs of programs, and to reduce the burden of explicit
label annotations. However, adding flow-sensitive constructs (e.g.,
references or files) to a dynamic IFC system is subtle and may also
introduce high-bandwidth covert channels. In this work, we extend
LIO—a language-based floating-label system—with flow-sensitive
references. The key insight to safely manipulating the label of a
reference is to not only consider the label on the data stored in the
reference, i.e., the reference label, but also the label on the reference
label itself. Taking this into consideration, we provide primitives
upgrade and downgrade that can be used to change the label of a
reference in a safe manner. We additionally provide a mechanism for
automatic upgrades to eliminate the burden of determining when
a reference should be upgraded. This approach naturally extends
to a concurrent setting, which has not been previously considered
by dynamic flow-sensitive systems. For both our sequential and
concurrent calculi we prove non-interference by embedding the flow-
sensitive system into the original, flow-insensitive LIO calculus—a
surprising result on its own.
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8.1 Introduction

Modern software systems are composed of many complex components that
handle sensitive data. In many cases (e.g., mobile and web applications)
these disparate components are provided by different authors, of varying
trustworthiness. Unfortunately, because today’s software development tools
do not provide a means for protecting sensitive data from untrusted code,
data theft and corruption is prevalent.

Information-flow control (IFC) is a promising approach to security that
provides data confidentiality and integrity in the presence of untrusted code.
At a high level, IFC tracks and controls the flow of information through
a system according to a security policy, usually non-interference [Goguen
and Meseguer, 1982]. Non-interference states that public events should not
depend on sensitive data and dually, trusted data should not be affected by
untrusted events. Hence, with IFC, the program is guaranteed to preserve
data confidentiality and integrity, even when composed of untrusted com-
ponents. Indeed, this appealing guarantee has recently led to significant
research and development efforts that use IFC to secure web applications
(e.g., [De Groef et al., 2012, Giffin et al., 2012, Yang et al., 2013, Hedin
et al., 2014]) and mobile platforms (e.g., [Enck et al., 2010, Jia et al., 2013]).

To ensure data confidentiality and integrity, these dynamic IFC sys-
tems associate security labels with data and monitor where such data can
flow [Myers and Liskov, 1997, Stefan et al., 2012b]. In this paper, we use
the labels H and L, to respectively denote secret and public data, and en-
sure that information cannot flow from a secret entity into a public one,
i.e., the labels are ordered such that L v H and H 6v L. In general,
the partial order v (label check) is used to govern the allowed flows. We
remark that our results apply to arbitrary lattices that may also express
integrity concerns [Myers and Liskov, 1997, Stefan et al., 2012b], we only
use the two-point lattice for simplicity of exposition.

One of the facets of IFC analysis lies in how such labels, when associated
with objects, are treated [Hunt and Sands, 2006]. Specifically, some IFC
systems (e.g., [Hritcu et al., 2013, Cheng et al., 2012, Stefan et al., 2011,
2012a, Zeldovich et al., 2006, Efstathopoulos et al., 2005, Krohn et al.,
2007]) treat labels on objects as immutable and do not allow for changes
over the lifetime of the program, i.e., labels of objects are flow-insensitive.
In contrast, other systems (e.g., [Zdancewic, 2002, Austin and Flanagan,
2009, 2010]) are flow-sensitive, i.e., they allow object labels to change, in
certain conditions, according to the sensitivity of the data that is stored in
the object. In general, these flow-sensitive systems are more permissive, i.e.,
they allow programs that flow-insensitive monitors would reject.

Consider, for instance, a web application that writes to a labeled log
while servicing user requests. If the label of the log is L, a flow-insensitive
IFC monitor would disallow writing any sensitive data (e.g., error messages
containing user-supplied data) to the log, since this would constitute a leak.
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However, in a flow-sensitive system, the label of the log can change (to H),
as to accommodate the kinds of data being written to the log. For many
applications, allowing labels to change in such a way is very desirable—it
alleviates the burden of having to a-priori determine the precise labels of
objects (e.g., the log).

l := True
tmp := False
if h then tmp := True
if ¬ tmp then l := False

Fig. 1: Flow-sensitive attack

Unfortunately, naively introducing flow-
sensitive objects to a dynamic IFC system
can turn label changes into a covert chan-
nel [Russo and Sabelfeld, 2010]. Consider
the code fragment of Figure 1 where ref-
erences l and h are respectively labeled L
and H. By naively allowing arbitrary la-
bel changes—even if the new label is more
restricting—we can leak the contents of h
into l . In particular, suppose that the tem-
porary variable tmp is initially labeled L.
If the value stored in h is True, then in the first conditional we assign True
into tmp and raise its label to H, reflecting the fact that the branch condi-
tion depends on sensitive data. Since the tmp is True, the branch condition
for the second conditional is False and thus the value and label of l are
left intact, i.e., True at L. However, if h is False, then the value and label
of tmp do not change—the first assignment is not executed. Instead, the
second assignment, which sets l to False, is performed; since the label of
the branch condition is L, the label of l remains L. Note that in both cases
the label of l stays L, but the value of l becomes the same as the secret h.
(Hence label change is considered a covert channel.) In systems such as LIO
and Breeze, which allow labels to be inspected, this attack can be further
simplified by simply checking the label of tmp after the first assignment—if
the secret is true then the label will be H, otherwise it will be L.

This attack is not new, and, to ensure that the covert channel is not
introduced when adding flow-sensitive references in such a way, several
solutions have already been proposed. These solutions fall into roughly
three categories. First, the IFCmonitor can incorporate static information to
ensure that such leaks are disallowed [Russo and Sabelfeld, 2010]. Second,
the IFC monitor can forbid certain label changes, depending on the context
(e.g., the program counter (pc) label [Sabelfeld and Myers, 2003]). For
instance, the no-sensitive upgrades policy disallows raising the label of a
public reference in a sensitive context (e.g., when a branch condition is
H) [Zdancewic, 2002, Austin and Flanagan, 2009]. And, third, the monitor
can disallow branches that depend on certain variables, for which the
label was mutated, as done by the permissive upgrades policy [Austin and
Flanagan, 2010].

In this paper, we take a fresh perspective on flow-sensitivity in the con-
text of coarse-grained floating-label systems, in particular, the LIO IFC
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system [Stefan et al., 2011, 2012a]. LIO brings ideas from IFC Operating
Systems—notably, HiStar [Zeldovich et al., 2006]—into a language-based
setting. In particular, LIO takes an OS-like coarse-grained approach by asso-
ciating a single “current” floating-label with a computation (and everything
in scope), instead of heterogeneously labeling every variable, as typically
done by language-based systems (e.g., [Myers et al., 2001, Simonet, 2003]).
This floating-label is raised (e.g., from L to H) to accommodate reading
sensitive data and thus serves as a form of “taint” reflecting the sensitive
of data in context, i.e., LIO is flow-sensitive in the current label. (This can
be seen as raising the pc in more traditional language-based systems.) In
turn, the LIO monitor uses the “current” label to restrict where the com-
putation can write (e.g., once the current label is raised to H, it can no
longer write to references labeled L). However, like other IFC systems, LIO
is flow-insensitive in object labels.

This work extends the LIO IFC system, both the sequential and concur-
rent versions, to incorporate flow-sensitive references. A key insight of this
work is to consider labels of references as being composed of two elements:
the reference label describing the confidentiality (integrity) of the stored
value, and another label, called the label on the label, which describes the
confidentiality (integrity) of the reference label itself. Our monitor, then,
only forbids changing a label of a reference if the label on the label is be-
low the current floating-label. Inspired by [Hedin et al., 2014], we add a
primitive for safely and explicitly upgrading labels. This boosts the permis-
siveness of LIO, and, for instance, allows programs, such as the logging
web application described above, which would otherwise be rejected by
the IFC monitor.

To reduce the burden of introducing upgrade annotations, our calculus
provides a means for automatically upgrading references for which the
computation is about to “lose” write access, i.e., before tainting the com-
putation by raising the current label, we first upgrade all the references
whose labels are below the (new) current label. While secure, this feature
facilitates a form of label creep, wherein all flow-sensitive references might
end up with labels that are “too high.” To further address this, we propose
a block-structured primitive which only upgrades the labels of declared
flow-sensitive references, while disallowing writes to undeclared ones.

By taking a fresh perspective on flow-sensitivity, we also show that
our flow-sensitive extension can be entirely encoded using existing flow-
insensitive constructs—the key insight is to explicitly model flow-sensitive
values as nested flow-insensitive labeled references. In the context of LIO,
this encoding has the added benefit of allowing us to prove non-interference
by simply invoking previous results. Equally important, the sequential
semantics for LIO with flow-sensitive references directly extend to the
concurrent setting.

The contributions of this paper are as follows:
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– We extend LIO to incorporate flow-sensitive objects, with a focus on
references. Specifically, we introduce two explicit primitives to safely
raise (upgrade) or lower (downgrade) the security label of references.
This extension not only increases LIO’s permissiveness, but also pro-
vides a means for safely combining flow-insensitive and flow-sensitive
references.

– We present a uniform treatment for flow-insensitive and flow-sensitive
references in both sequential and concurrent settings. To the best of our
knowledge, we are the first to analyze the challenges of purely dynamic
monitors with flow-sensitive references in the presence of concurrency.

– A non-interference proof for the different calculi that leverages the
encoding of flow-sensitive references using flow-insensitive constructs.

The novel aspect of this article, with respect to its conference ver-
sion [Buiras et al., 2014], is the extension of our formal results to consider
a downgrade primitive that further boosts permissiveness. Additionally, we
compare our approach with no-sensitive-upgrade [Zdancewic, 2002] and
permissive-upgrade [Austin and Flanagan, 2009]—two known policies for
label changes.

We remark that while our development focuses on LIO, we believe
that our results generalize to other sequential and concurrent floating-label
systems (e.g., [Hritcu et al., 2013, Efstathopoulos et al., 2005, Zeldovich
et al., 2006, Krohn et al., 2007]).

The rest of the paper is organized as follows. Section 8.2 provides an
introduction to LIO and its formalization. Section 8.3 presents our flow-
sensitivity extensions and enforcement mechanism. Section 8.4 extends this
approach to the concurrent setting. Section 8.5 presents the embedding of
our enforcement using flow-insensitive constructs, from which our formal
security guarantees follow. We compare our approach with other policies
for label change in Section 8.6. We discuss related work in Section 8.7 and
conclude in Section 8.8.

8.2 Introduction to LIO

LIO is a language-level IFC system, implemented as a library in Haskell. The
library provides a new monad, LIO , atop which programmers implement
computations, which may use the LIO API to perform side effects (e.g.,
mutate a reference or write to a file).

The LIO monad implements a purely dynamic execution monitor.
Specifically, LIO encapsulates the state necessary to enforce IFC for the
computation under evaluation. Part of this state is the current (floating)
label. Intuitively, the current label serves a role similar to the program
counter (pc) of more-traditional IFC systems (e.g., [Simonet, 2003]): it is
used to restrict the current computation from performing side-effects that
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Values v ::= True | False | () | λx .t | ` | LIOTCB t
Terms t ::= v | x | t t | fix t | if t then t else t

| t ⊗ t | return t | t >>= t | getLabel
Types τ ::= Bool | () | τ → τ | ` | LIO τ
Ops` ⊗ ::= t | u |v

Fig. 2: Syntactic categories for base λLIO
` .

may compromise the confidentiality or integrity of data (e.g., by restricting
where the current computation may write).

To soundly reason about IFC, every piece of data must be labeled,
including literals, terms, and labels themselves. However and different from
most language-based systems (e.g., [Myers and Liskov, 2000, Simonet,
2003, Hritcu et al., 2013]) where every value is explicitly labeled, LIO
takes a coarse-grained approach and uses the current label to protect all
values in scope. As in IFC operating systems [Efstathopoulos et al., 2005,
Zeldovich et al., 2006], in LIO, the current label lcur is the label on all the
non-explicitly labeled values in the context of a computation.

To allow for computations on sensitive data, LIO raises the current label
to protect newly read data. That is, the current label is raised to “float”
above the labels of all the objects read by the current computation. Raising
the current label allows computations to flexibly read data, at the cost of
being more limited in where they can subsequently write. Concretely, a
computation with current label lcur can read data labeled ld by raising its
current label to l′cur = lcur t ld , but can thereafter only write to entities
labeled le if l′cur v le . Hence, for example, a public LIO computation can
read secret data by first raising lcur from L to H. Importantly, however, the
new current label prevents the computation from subsequently writing to
public entities.

8.2.1 λLIO
` : A coarse-grained IFC calculus

We give the precise semantics for LIO by extending the simply-typed, call-
by-name λ-calculus; we call this extended IFC calculus λLIO

` . The formal
syntax of the core λLIO

` calculus, parametric in the label type `, is given in
Figure 2. Syntactic categories v , t , and τ represent values, terms, and types,
respectively. Values include standard primitives (Booleans, unit, and λ-
abstractions) and terminals corresponding to labels (`) and monadic values
(LIOTCB t).1 We note that values of the form LIOTCB t denote computations
subject to security checks. (In fact, security checks are only applied to such

1 We restrict our formalization to computations implemented in the LIO monad
and only consider Haskell features relevant to IFC, similar to the presentation of
LIO in [Stefan et al., 2012c].
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values.) Terms are composed of standard constructs (values, variables x ,
function application, the fix operator, and conditionals), terminals corre-
sponding to label operations (t ⊗ t , where t is the join, u is the meet, and
v is the partial-order on labels), standard monadic operators (return t
and t >>= t), and getLabel, a term for inspecting the current label, as fur-
ther explained below. We do not consider terms annotated with · TCB as part
of the surface syntax, i.e., such syntax nodes are not made available to pro-
grammers and are solely used internally in our semantic description. Types
consist of Booleans, unit, function types, labels, and LIO computations;
since the λLIO

` type system is standard, we do not discuss it further.

We include monadic terms in our calculus since (in Haskell) monads
dictate the evaluation order of a program and encapsulate all side-effects,
including I/O [Moggi, 1991, Wadler, 1992]; LIO leverages monads to pre-
cisely control what (side-effecting) operations the programmer is allowed to
perform at any given time.

do x ← t
return (x + 1)

Fig. 3: do-notation

In particular, an LIO program is simply a com-
putation in the LIO monad, composed from sim-
pler monadic terms using return and bind. Term
return t produces a computation which simply re-
turns the value denoted by t . Term>>=, called bind,
is used to sequence LIO computations. Specifically,
term t >>= (λx .t ′) takes the result produced by
term t and applies function λx .t ′ to it. (This oper-
ator allows computation t ′ to depend on the value
produced by t .) We sometimes use Haskell’s do-notation to write such
monadic computations. For example, the term t >>= λx .return (x + 1),
which simply adds 1 to the value produced by the term t , can be written
using do-notation as shown in Figure 3.

A top-level λLIO
` computation is a configuration of the form 〈Σ|t〉, where

t is the monadic term and Σ is the state associated with the term. As
in [Stefan et al., 2011, 2012a], we take an imperative approach to modeling
the LIO state as a separate component of the configuration (as opposed
to being part of the term). We partially define the state of λLIO

` to (at least)
contain the current label lcur, i.e., Σ = (lcur, ...); here, ... denotes other parts
of the state not relevant at this point. Under this definition, a top-level
well-typed λLIO

` term has the form ∆,Γ ` t : LIO τ , where ∆ is the store
typing, and Γ is the usual type environment.

We use evaluation contexts in the style of Felleisen and Hieb to specify
the reduction rules for λLIO

` [Felleisen and Hieb, 1992]. Figure 4 defines the
evaluation contexts for pure terms (E) and monadic terms (E) for the base
λLIO
` . The definitions are standard; we solely highlight that monadic terms

are evaluated only at the outermost use of bind (E >>= t), as in Haskell.
For the base λLIO

` , we also give the reduction rule for the monadic term
getLabel, which simply retrieves the current label. As shown later, it is
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E ::= E t | fix E | if E then t else t | E ⊗ t | v ⊗ E
E ::= [ ] | E | E>>= t

getLabel
Σ = (lcur, ...)

〈Σ|E [getLabel ]〉 −→ 〈Σ|E [return lcur ]〉

Fig. 4: Evaluation contexts and getLabel reduction rule.

v ::= · · · | LbTCB l t
t ::= · · · | label t t | unlabel t | labelOf t
τ ::= · · · | Labeled τ
E ::= · · · | label E t | unlabel E | labelOf E

label
Σ = (lcur, ...) lcur v l

〈Σ|E [ label l t ]〉 −→ 〈Σ|E [return (LbTCB l t)]〉

unlabel
Σ = (lcur, ...) l′cur = lcur t l Σ′ = (l′cur, ...)

〈Σ|E [unlabel (LbTCB l t)]〉 −→ 〈Σ′|E [return t ]〉

labelOf

E [ labelOf (LbTCB l t)] −→ E [ l ]

Fig. 5: Extending base λLIO
` with labeled values.

precisely this label that is used to restrict the reads/writes performed by the
current computation. The rest of the reduction rules for the base calculus
are straightforward and given Appendix A.

8.2.2 Labeled values

Using lcur as the label on all terms in scope makes it trivial to deal with
implicit flows. Branch conditions, which are simply values of type Bool ,
are already implicitly labeled with lcur. Consequently, all the subsequent
writes cannot leak this bit—the current label restricts all the possible writes.
However, this coarse-grained labeling approach suffers from a severe re-
striction: a piece of code cannot, for example, write a public value (e.g., 42)
to a public channel labeled L after observing secret data, even if the value
is independent from the secret—once secret data is read, the current label
is raised to H thereby “over tainting” the public data in scope.
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To address this limitation, LIO provides Labeled values. A Labeled value
is a term that is explicitly protected by a label, other than the current label.
Figure 5 shows the extension of the base λLIO

` with Labeled values.
The label terminal is used to explicitly label a term. As rule (label)

shows, label l t associates the supplied label l with term t by wrapping the
term with the LbTCB constructor. Importantly, it first asserts that the new
label (l ), which will be used to protect t , is at least as restricting as the
current label, i.e., lcur v l .

Dually, terminal unlabel unwraps explicitly labeled values. As defined
in rule (unlabel), given a labeled value LbTCB l t , unlabel returns the
wrapped term t . Since the returned term is no longer explicitly labeled
by l , and is instead protected by the current label, lcur must be at least
as restricting as l . To ensure this, the current label is raised from lcur to
lcur t l , capturing the fact that the remaining computation might depend
on t . This rule highlights the fact that the current label always “floats”
above the labels of the values observed by the current computation.

The labelOf function provides a means for inspecting the label of a
labeled value. As detailed by reduction rule (labelOf), given a labeled
value LbTCB l t , the function returns the label l protecting term t . This allows
code to check the label of a labeled value before deciding to unlabel it,
and thereby raising the current label. It it worth noting that regardless of
the current label in the configuration, the label of a labeled value can be
inspected—hence labels are effectively “public.”2

A common problem with dynamic IFC systems is label creep [Sabelfeld
and Myers, 2003]—the raising of the current label to a point where the
computation can no longer do anything useful. To avoid label creep, LIO
provides toLabeled as a way to allow the current label to be temporar-
ily raised during the execution of a given computation. We extend the
terms and the pure evaluation context as t ::= · · · | toLabeled t t and
E ::= · · · | toLabeled E t , respectively, and give the precise semantics for
toLabeled as follows:

toLabeled
Σ = (lcur, ...) lcur v l 〈Σ|t〉 −→∗ 〈Σ′|LIOTCB t ′〉

Σ′ = (l′cur, ...) l′cur v l Σ′′ = Σ n Σ′

〈Σ|E [toLabeled l t ]〉 −→ 〈Σ′′|E [label l t ′ ]〉

If the current label at the point of executing toLabeled l t is lcur, toLabeled
evaluates t to completion (〈Σ|t〉 −→∗ 〈Σ′|LIOTCB t ′〉) and restores the cur-
rent label to lcur, i.e., toLabeled provides a separate context in which t is
evaluated. (Here, the state merge functionn is defined as: Σ n Σ′ , Σ, in

2 Since labeled values can be nested, this only applies to the labels of top-level
labeled values. Indeed, even these labels are not public—they are protected by
the current label. However, since code can always observe objects labeled at the
current label, this is akin to being public.
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the next section we present an alternative definition.) We note that return-
ing the result of evaluating t directly (e.g., as 〈Σ|E [toLabeled l t ]〉 −→
〈Σ′′|E [t ′ ]〉) would allow for trivial leaks; thus, toLabeled labels t ′ with l
(〈Σ′′|E [label l t ′ ]〉). This effectively states that the result of t is protected
by label l , as opposed to the current label (l′cur) at the point t completed.
Importantly, this requires that the result not be more sensitive than l , i.e.,
l′cur v l .

8.2.3 Labeled references

To complete the description of LIO, we extend the λLIO
` calculus with mutable,

flow-insensitive references. Conceptually, flow-insensitive references are
simply mutable Labeled values. Like labeled values, the label of a reference
is immutable and serves to protect the underlying term. The immutable
label makes the semantics straightforward: writing a term to a reference
amounts to ensuring that the reference label is as restrictive as the current
label, i.e., the reference label must be above the current label; reading from
a reference taints the current label with the reference label.

The syntactic extensions to our calculus are shown in Figure 6. We
use meta-variable s to distinguish flow-insensitive (FI) and flow-sensitive
(FS) productions—the latter are described in Section 8.3. We also extend
configurations to contain a reference (memory) store µfi: Σ = (lcur, µfi, ...);
µfi maps memory addresses—spanned over by metavariable a—to Labeled
values.

When creating a flow-insensitive reference, newReffi l t creates a labeled
value that guards t with label l (LbTCB l t) and stores it in the memory store
at a fresh address a (µfi [a 7→ LbTCB l t ]). Subsequently, the function
returns a value of the form Ref TCB

fi l a which simply encapsulates the
reference label and address where the term is stored. We remark that since
any references created within a toLabeled block may outlive the toLabeled
block computation, the merge function used in rule (toLabeled) must also
account for this, i.e., (lcur, µfi, ...) n (l′cur, µ

′
fi, ...) = (lcur, µ

′
fi, ...).

Rule (readRef-fi) gives the semantics for reading a labeled reference;
reading the term stored at address a simply amounts to unlabeling the value
µ (a) stored at the underlying address (unlabel µfi (a)).

TerminalwriteReffi is used to update the memory store with a new term.
Note that writeReffi leaves the label of the reference intact, i.e., the label
of a flow-insensitive reference is never changed, but, as rule (writeRef-fi)
shows in turn, requires the current label to be below the reference label
when performing the write (lcur v l ).

Terminal labelOffi has the benefit of allowing code to always inspect
the label of a reference.

The purpose of terminal copyRef is to copy the contents of one reference
to another, without inspecting the contents of either reference. As given by
rule (copyRef), the function copies the contents of a labeled reference into
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v ::= · · · | Ref TCB
fi l a

t ::= · · · | newRefs t t | writeRefs t t | readRefs t
| labelOfs t | copyRef t t

τ ::= · · · | Refs τ
E ::= · · · | newRefs E t | writeRefs E t | readRefs E

| labelOfs E | copyRef E t | copyRef v E

newRef-fi
Σ = (lcur, µfi, ...) lcur v l

µ′
fi = µfi [a 7→ LbTCB l t ] Σ′ = (lcur, µ

′
fi, ...)

〈Σ|E [newReffi l t ]〉 −→ 〈Σ′|E [return (Ref TCB
fi l a)]〉

fresh(a)

readRef-fi
Σ = (lcur, µfi, ...)

〈Σ|E [readReffi (Ref TCB
fi l a)]〉 −→ 〈Σ|E [unlabel µfi (a)]〉

writeRef-fi
Σ = (lcur, µfi, ...) lcur v l

µ′
fi = µfi [a 7→ LbTCB l t ] Σ′ = (lcur, µ

′
fi, ...)

〈Σ|E [writeReffi (Ref TCB
fi l a) t ]〉 −→ 〈Σ′|E [return ()]〉

labelOf-fi

E [ labelOffi (Ref TCB
fi l a)]) −→ E [ l ]

copyRef
Σ = (lcur, µfi, ...) l1 v l2 lcur v l2

LbTCB l1 v1 = µfi (a1) µ′
fi = µfi [a2 7→ LbTCB l2 v1 ] Σ′ = (lcur, µ

′
fi, ...)

〈Σ|E [copyRef (Ref TCB
fi l1 a1) (Ref TCB

fi l2 a2)]〉 −→ 〈Σ′|E [return ()]〉

Fig. 6: Extending λLIO
` with references.
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another one, as long as the source-reference label (l1) flows to the target-
reference label (l2) and the usual condition for writing to an entity with
label l2 also holds (lcur v l2). Since the computation does not read the
source reference, the current label remains unchanged. We remark that
while copyRef can be encoded using toLabeled, we introduce copyRef
explicitly since the use of toLabeled is prohibited in concurrent settings
and our results rely on such a feature in both contexts (see Section 8.5).

8.3 Flow-sensitivity extensions

The flow-insensitive references described in the previous section are inflex-
ible. Consider, for example, an application that uses a reference as a log.
Since the log may contain sensitive information, it is important that the
reference be labeled. Equally important is to be able to read the log at any
point in the program to, for instance, save it to a file. Although labeling
the reference with the top element in the security lattice (>) would always
allow writes to the log, and toLabeled can be used to read the log and then
write it to a file, this is unsatisfactory: it assumes the existence of a top
element, which in some practical IFC systems, including HiStar [Zeldovich
et al., 2006] and Hails [Giffin et al., 2012], does not exist. Moreover, it
almost always over-approximates the sensitivity of the log. Hence, for ex-
ample, a computation that never reads sensitive data, yet wishes to read
the log content as to send error message to a user over the network (e.g., as
done in a web application) cannot do so—LIO prevents the computation
from reading the log, which results in the computation getting tainted by
>, and subsequently writing to the network.3 It is clear that even for such
a simple use case, having references with labels that vary according to the
sensitivity of what is stored in the reference is useful.

However, naively implementing flow-sensitive references can effectively
introduce label changes as a covert channel. Suppose that we allow for
the label of a reference to be raised to the current label at the time of
the writeRef. So, for example, if the label of our log reference is L and
the computation has read sensitive data (such that the current label is H),
subsequently writing to the log will raise the label of the reference to H.
Unfortunately, while this may appear safe, as previously shown in [Austin
and Flanagan, 2009, Russo and Sabelfeld, 2010, Austin and Flanagan,
2010], the approach is unsound.

The code fragment in Figure 7 defines a function, leakRef , that can be
used to leak the contents of a reference by leveraging the newly introduced
covert channel: the label of references. (In this and future examples we use
function when to denote an if statement without the else branch and ($)
as lightweight notation for function application, i.e., f $ x is the same as
f (x ).) To illustrate an attack, suppose that the current label is public (L)

3 Here, as in most IFC systems, we assume the network is public.
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leakRef ::RefFS Bool → LIO Bool
leakRef href = do
tmp ← newRef L ()
toLabeled H $ do h ← readRef href

when h $writeRef tmp ()
return $ labelOf tmp ≡ H

Fig. 7: Attack on LIO with naive treatment of flow-sensitive references. We
omit subscripts for clarity.

and leakRef is called with a secret (H) reference (href ). leakRef first creates
a public reference tmp and, then, within the toLabeled block—which is
used to ensure that the current label remains L—the label of this reference
is changed to H if the secret stored in href is True, and left intact (L) if the
secret is False. The value stored in href is revealed by simply inspecting the
label of the tmp reference.4

Fundamentally, the label protecting the label of an object, such as a
reference or labeled value, is the current label lcur at the time of creation.
Hence, to modify the label of the object within some context (e.g., toLabeled
block) wherein the current label is l′cur, it must be the case that l

′
cur v lcur,

i.e., we must be able to write data at sensitivity level l′cur into an entity—the
label of the object—labeled lcur. This restriction is especially important if
lcur @ l′cur and we can restore the current label from l′cur to lcur, since a leak
would then be observable within the program itself. In the case where the
label of the object is immutable, as is the case for flow-insensitive references
(and labeled values), this is not a concern: even if the current label is
raised to l′cur and then restored to lcur, we do not learn any information
more sensitive than lcur—the label of the label at the time of creation—by
inspecting the label of the reference (or value): the label has not changed!

Thus, to extend LIO with flow-sensitive references, we must account for
the label on the label of the reference at the time of creation, lcur. (This label
is, however, immutable.) In turn, when changing the label of the reference,
we must ensure that no data from the context at the time of the change,
whose label is l′cur, is leaked into the label of the reference by ensuring that
l′cur v lcur, i.e., we can write data labeled l′cur into the label that is labeled
lcur.

Formally, we extend the λLIO
` syntax and reduction rules as shown in

Figure 8; we call this calculus λLIO
`,fs. To create a flow-sensitive reference

newReffs l t creates a labeled value that guards t with label l (LbTCB l t).
Since we wish to allow programmers to modify the label l of the reference,
we additionally store the label on l , i.e., the current label lcur, by simply

4 The use of labelOf is not fundamental to this attack and in Appendix B we show
an alternative attack that does not rely on such label inspection.
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v ::= · · · | Ref TCB
fs t

t ::= · · · | upgradefs t t | ⇑ | downgradefs t t
E ::= · · · | upgradefs E t | upgradefs v E

| downgradefs E t | downgradefs v E

newRef-fs
Σ = (lcur, µfi, µfs) lcur v l

fresh(a) µ′
fs = µfs [a 7→ LbTCB lcur (Lb

TCB l t)] Σ′ = (lcur, µfi, µ
′
fs)

〈Σ|E [newReffs l t ]〉 −→ 〈Σ′|E [return (Ref TCB
fs a)]〉

readRef-fs
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′ t) l ′′ = l t l ′

〈Σ|E [readReffs (Ref TCB
fs a)]〉 −→ 〈Σ|E [unlabel (LbTCB l ′′ t)]〉

writeRef-fs
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′ t ′)

lcur v (l t l ′) µ′
fs = µfs [a 7→ LbTCB l (LbTCB l ′ t)] Σ′ = (lcur, µfi, µ

′
fs)

〈Σ|E [writeReffs (Ref TCB
fs a) t ]〉 −→ 〈Σ′|E [return ()]〉

writeRef-fs-fail
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′ t ′) lcur 6v (l t l ′)

〈Σ|E [writeReffs (Ref TCB
fs a) t ]〉 −→ 〈Σ′|E [unlabel (LbTCB l ⇑)]〉

labelOf-fs
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′ t)

〈Σ|E [ labelOffs (Ref TCB
fs a)]〉 −→ 〈Σ|E [unlabel (LbTCB l l ′)]〉

upgradeRef
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′′ v)

lcur v l µ′
fs = µfs [a 7→ LbTCB l (LbTCB (l ′′ t l ′) v)] Σ′ = (lcur, µfi, µ

′
fs)

〈Σ|E [upgradefs (Ref TCB
fs a) l ′ ]〉 −→ 〈Σ′|E [return ()]〉

downgradeRef
Σ = (lcur, µfi, µfs) µfs (a) = LbTCB l (LbTCB l ′′ v) lcur v l

µ′
fs = µfs [a 7→ LbTCB l (LbTCB (l t (l ′′ u l ′)) ⇑)] Σ′ = (lcur, µfi, µ

′
fs)

〈Σ|E [downgradefs (Ref TCB
fs a) l ′ ]〉 −→ 〈Σ′|E [return ()]〉

Fig. 8: λLIO
`,fs: extension of λLIO

` with flow-sensitive references.
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labeling the already-guarded term (µ′
fs = µfs [a 7→ LbTCB lcur (Lb

TCB l t)]),
as shown in rule (newRef-fs). Primitive newReffs returns a Ref TCB

fs a which
simply encapsulates the fresh reference address where the doubly-labeled
term is stored. Different from the constructor Ref TCB

fi , the constructor Ref TCB
fs

does not encapsulate the label of the reference. This is precisely because
the label of a flow-sensitive reference is mutable and must be looked up in
the store. As given by rule (labelOf-fs), labelOffs returns the label of the
reference after raising the current label (with unlabel) to account for the
fact that the label of the reference l ′ is a value at sensitivity level l , i.e., we
raise the current label to the join of the current label and the label on the
label.

The rule for reading flow-sensitive references is standard. As given by
rule (readREf-fs), readReffs simply raises the current label to the join of
the reference label and label on the reference label (l t l ′) and returns the
protected value. This reflects the fact that the computation is observing
both data at level l (the label on the reference) and l ′ (the actual term).

The rule for writing flow-sensitive references deserves more attention.
First, writeReffs as given by rule (writeRef-fs), ensures that the current
computation can write to the reference by checking that lcur v (l t l ′).
We impose this condition instead of the two conditions lcur v l and
lcur v l ′—which respectively check that the current computation can
modify both, the label of the reference, and the reference itself—since it
is more permissive, yet still safe. When imposing the two conditions inde-
pendently, certain programs, such as the one given in Figure 9, would fail.

do r ← newReffs H ()
readReffs r
writeReffs r ()

Fig. 9: Permissiveness test.

In this program, we first create a flow-
sensitive reference labeled H when the cur-
rent label is L (and thus the label on H
is L). Then, we raise the label by reading
from the reference. Finally, we attempt to
write to the reference. Under our semantics,
this program behaves as expected; how-
ever, when imposing the two conditions
independently, the write fails—the current
label does not flow to the label on the label
of the reference.

Another case forwriteReffs which we must handle is when current label
does not flow to the join of the reference label, i.e., lcur 6v l t l ′, and
the write is disallowed. If the semantics simply got stuck, the current label
(at the point of the stuck term) would not reflect the fact that the success
of applying such rule depends on the label l ′, which is itself protected by
l . Indeed, this might lead to information leaks and we thus provide an
explicit rule, (writeref-fs-fail), for this failure case that first raises the
current label (via unlabel) to l and then diverges; in the rule, ⇑ represents a
divergent term for which we do not provide a reduction rule.
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upgradeStore
Σ = (lcur, µfi, µfs)

µfs = {a1 7→ v1, ..., an 7→ vn} ti = upgradefs (Ref TCB
fs ai) l , i = 1, ...,n

〈Σ|E [upgradeStorefs l ]〉 −→ 〈Σ|E [t1 >> ... >> tn ]〉

unlabel-au
Σ = (lcur, µfi, µfs) l′cur = lcur t l

〈Σ|upgradeStorefs l
′
cur〉 −→∗ 〈lcur, µfi, µ

′
fs|LIOTCB ()〉 Σ′ = (l′cur, µfi, µ

′
fs)

〈Σ|E [unlabel (LbTCB l t)]〉 −→ 〈Σ′|E [return t ]〉

Fig. 10: λLIO
`,fs+au: Extending λLIO

`,fs with auto-upgrades.

Note that writeReffs does not modify the label of the reference. This is,
in part, because we wish to keep the difference between flow-insensitive
and flow-sensitive references as small as possible. Instead, we provide
upgradefs precisely for this purpose; this primitive is used to raise the
label of a reference. Rule (upgradeRef) is straight forward—it simply
ensures that the current computation can modify the label of the reference
by checking that the current label flows to the label on the label (lcur v l ).
Similarly, downgradefs is used to lower the label of the reference, destroying
its contents, i.e., replacing its value with ⇑. Rules (upgradeRef) and
(downgradeRef) are analogous; the main difference is that the former
uses the join operation to combine the old and new labels (l ′′ t l ′), whereas
the latter uses the meet operation (l ′′ u l ′). The downgradefs primitive
is useful when one wishes to store information that is less sensitive into a
reference. Both upgradefs and downgradefs highlight that it is safe to raise
or lower the label of a flow-sensitive reference, if the label on the label still
flows to the final label in the nested LbTCB structure.

8.3.1 Automatic upgrades

We can use λLIO
`,fs to implement various applications that rely on flow-

sensitive references, even those that rely on policies such as the popular
no-sensitive upgrades [Austin and Flanagan, 2009]. Using λLIO

`,fs, we can
also safely implement our logging application using a flow-sensitive refer-
ence. Unfortunately, our system (and others like it) requires that we insert
upgrades before we raise the current label so that it is possible to write
references in a more-sensitive context, e.g., to modify a public reference
after reading a secret. In the case of the logging example, we would need
to upgrade the label before reading any sensitive data, if we later wish to
write to the log.

We provide an extension to λLIO
`,fs that can be used to automatically

upgrade references. This extension, called λLIO
`,fs+au, is given in Figure 10.

Intuitively, whenever the current label is about to be raised, we first upgrade



222 Flow-sensitivity extensions

v ::= · · · | v , ... | ε τ,...

t ::= · · · | t , ... | withRefsfs v t
τ ::= · · · | τ, ...
E ::= · · · | E, t , ... | v , E, t , ...

addrs(ε τ,...) , ∅
addrs(Ref TCB

fs a1, Ref TCB
fs a2, ...) , {a1, a2, ...}

addrs+µ (ε τ,...) , ∅
addrs+µ (v1, v2, ...) ,

⋃
{addrs+µ (v1), addrs+µ (v2), ...}

addrs+µ (Ref TCB
fs a) , {a } ∪ addrs+µ (µ (a))

addrs+µ (v) , ∅

withRefs-Ctx
Σ = (lcur, µfi, µfs) µ′

fs = {a 7→ µfs (a) | a ∈ dom µfs ∩ (addrs+µfs(v))}
〈lcur, µfi, µ

′
fs|E [t ]〉 −→ 〈l′cur, µ′

fi, µ
′′
fs|E [t ′ ]〉

Σ′′ = (l′cur, µ
′
fi, µ

′′
fs n µfs) v ′ = addrs−1(dom µ′′

fs)

〈Σ|E [withRefsfs v t ]〉 −→ 〈Σ′′|E [withRefsfs v ′ t ′ ]〉

withRefs-Done

〈Σ|E [withRefsfs v v ′ ]〉 −→ 〈Σ|E [v ′ ]〉

Type-withRef
∆′ = {a 7→ ∆ (a) | a ∈ dom ∆ ∩ (addrs(v))}

∆′, Γ ` v :Reffs τ1, ... ∆′, Γ ` t : LIO τ

∆, Γ ` withRefsfs v t : LIO τ

Fig. 11: Extending λLIO
`,fs and λLIO

`,fs+au with withRefsfs.

all the references in the µfs store and then raise the current label. Rule
(upgradeStore) upgrades every reference in the flow-sensitive store µfs

by executing t1 >> t2 >> · · ·>> tn , where ti = upgradefs (Ref TCB
fs ai) l . Term

t>>t ′ is similar to bind except that it discards the result produced by t . Since
unlabel is the only function that raises the current label, we augment the
(unlabel) rule with (unlabel-au), given in Figure 10. This ensures that as
the computation progresses it does not “lose” write access to its references.
Returning to our logging example, with auto-upgrades the reference used
as the log never needs to be explicitly upgraded and can always be written
to—an interface expected of a log.

Recall that toLabeled is used to avoid label creep by allowing code to
only temporarily raise the current label. Unfortunately, with auto-upgrades,
when the current label gets raised within a toLabeled block, the upgrades
of the flow-sensitive references remain even after the current label is re-
stored. Thus, reading from any flow-sensitive reference after the toLabeled
block will raise the current label to (at least) the current label at the end
of the toLabeled block (since all references are upgraded every time the
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current label gets raised). This can be used to carry out a poison pill-like
attack [Hritcu et al., 2013], wherein the (usually untrusted) computation
executing within the toLabeled block will render the outer computation
useless via label creep. (We note that this attack is possible in λLIO

`,fs with-
out the auto-upgrade, but requires the attacker to manually insert all the
upgrades.)

To address this issue, we extend λLIO
`,fs (and λLIO

`,fs+au) with withRefsfs v t ,
which takes a bag (strict heterogeneous list) v of references and a computa-
tion t , and executes t in a configuration where the flow-sensitive reference
store only contains the subset of references v (and any nested references).
This extension and type rule (Type-withRef), which ensures that a term
cannot access a reference outside its store, are shown in Figure 11.

A bag is either empty ε τ,..., or it may contain a set of references of (po-
tentially) distinct types v , . .. Rules (withRefs-Ctx) and (withRefs-Done)
precisely define the semantics of this new primitive, where the meta-level
function addrs(·) converts a bag of references to a set of their correspond-
ing addresses, addrs−1(·) performs the inverse conversion, and n is used
to merge the stores, giving preferences to the left-hand-side store, i.e., when
there is a discrepancy on a stored value between both stores, it chooses the
one appearing on the left-hand-side. The function addrs+µ (·) computes the
closure of addrs(·) under store µ, so as to include the addresses of arbitrarily-
nested references. Note that if we did not include these addresses in the
restricted store µ′

fs, evaluation might get stuck if the program attempted a
readReffs operation on a nested reference. We note that (withRefs-Ctx)
is triggered until the term under evaluation is reduced to a value, at which
point (withRefs-Done) is triggered, returning said value; we specify this
big-step rule in terms of small-steps to facilitate the formalization of our
concurrent calculus (see Section 8.4). Aside from the modeling of bags, the
withRefsfs primitive is straightforward and mostly standard; indeed, the
programming paradigm is similar to that already present in some main-
stream languages (e.g., C++’s lambda closures require the programmer to
specify the captured references). Lastly, we note that the poison pill at-
tack can now be addressed by simply wrapping toLabeled with withRefsfs,
which prevents (untrusted) code within the toLabeled block from upgrad-
ing arbitrary references.

8.4 Concurrency

In this section, we consider flow-sensitive references in the presence of con-
currency (e.g., a web application in which request-handling threads share
a common log). Concretely, we extend our sequential λLIO

`,fs and λLIO
`,fs+au cal-

culi with threads and a new terminal, forkLIO, for dynamically creating
new threads, as in the concurrent version of LIO [Stefan et al., 2012a].
Intuitively, this concurrent calculus λ‖-LIO

` simply defines a scheduler over se-
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t ::= · · · | forkLIO t | toLabeled t t

forkLIO

〈Σ|E [forkLIO t ]〉 fork(t)−→ 〈Σ|E [return ()]〉

withRefs-Opt
v = addrs−1((addrs(v1)) ∩ (addrs(v2)))
〈Σ|E [withRefsfs v t ] −→ 〈Σ′|E [t ′ ]〉〉

〈Σ|E [withRefsfs v1 (withRefsfs v2 t)]〉 −→ 〈Σ′|E [t ′ ]〉

T-step
Σ = (lcur, µfi, µfs) 〈Σ|withRefsfs v t〉 −→ 〈Σ′|t ′〉

Σ′ = (l′cur, µ
′
fi, µ

′
fs) v ′ = addrs−1(dom µ′

fs)

{µfi, µfs|〈lcur, v , t〉, k2, ...} −→ {µ′
fi, µ

′
fs|k2, ..., 〈l′cur, v ′, t ′〉}

T-stuck

{µfi, µfs|〈lcur, v ,⇑〉, k2, ...} −→ {µfi, µfs|k2, ...}

T-done

{µfi, µfs|〈lcur, v , v ′〉, k2, ...} −→ {µfi, µfs|k2, ...}

T-fork

Σ = (lcur, µfi, µfs) 〈Σ|withRefsfs v t〉 fork(t′)−→ 〈Σ′|t ′′〉
Σ′ = (l′cur, µ

′
fi, µ

′
fs) v ′ = addrs−1(dom µ′

fs) knew = 〈l′cur, v ′, t ′〉
{µfi, µfs|〈lcur, v , t〉, k2, ...} −→ {µ′

fi, µ
′
fs|k2, ..., 〈l′cur, v ′, t ′′〉, knew}

Fig. 12: Semantics for λ‖-LIO
` , parametric in the flow-sensitivity policy, i.e.,

with and without auto-upgrade.

quential threads, such that taking a step in the concurrent calculus amounts
to taking a step in a sequential thread and context switching to a different
one. For brevity, we restrict our discussion in this section to the case where
the underlying sequential calculus is λLIO

`,fs+au, since this calculus extends
λLIO
`,fs.
Figure 12 shows our extended concurrent calculus, λ‖-LIO

` . A concurrent
program configuration has the form {µfi, µfs|k1, k2, ...}, where µfi and µfs

are respectively the flow-insensitive and flow-sensitive stores shared by all
the threads k1, k2, ... in the program. Since the memory stores are global,
a thread k is simply a tuple encapsulating the current label of the thread
lcur, the term under evaluation t , and a bag of references v the thread may
access, i.e., k = 〈lcur, v , t〉.

The reduction rules for concurrent programs are mostly standard. Rule
(T-step) specifies that if the first thread in the thread pool takes a step in
λLIO
`,fs+au, the whole concurrent program takes a step, moving the thread
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to the end of the pool. We note that the thread term t executed with its
stored current label lcur, and a subset of the flow-sensitive memory store, by
wrapping it in withRefsfs. While the use of withRefsfs makes the extension
straightforward, one peculiarity arises: since (T-step) always wraps the
thread term t with withRefsfs, if t does not reduce in one step to a value,
and instead reduces to a term t ′, the next time the thread is scheduled, we
will superfluously wrap withRefsfs t ′ with yet another withRefsfs—thus
preventing the thread from making progress! To address this problem,
we extend the calculus with rule (withRefs-Opt) that collapses nested
withRefsfs blocks.5

Rules (T-done) and (T-stuck) specify that once a thread term has
reduced to a value or got stuck, which is represented by ⇑, the scheduler
removes it from the thread pool and schedules the next thread.

As shown in Figure 12, to allow for dynamic thread creation, we extend
λLIO
`,fs+au’s terms with forkLIO, and add a new reduction rule that sends an

event to the scheduler, specifying the term to execute in a new thread.6

Rule (T-fork) describes the corresponding scheduler rule, triggered when a
fork (t ′) event is received. Here, we create a new thread knew whose current
label l′cur and partition of the store, i.e., bag of references v ′, is the same as
that of the parent thread; the term evaluated in the newly created thread
is provided in the event: t ′. Subsequently, we add the new thread to the
thread pool.

The final modification in extending λLIO
`,fs+au to λ‖-LIO

` is the removal of
toLabeled from the underlying calculus. As described in [Stefan et al.,
2012a], we must remove toLabeled to guarantee termination-sensitive
non-interference. Importantly, however, forkLIO with synchronization
primitives (e.g., flow-insensitive labeled MVars, as discussed in [Stefan
et al., 2012a]) can be used to provide functionality equivalent to that of
toLabeled. We omit synchronization primitives from λ‖-LIO

` ; we only remark
that extending λ‖-LIO

` to provide flow-sensitive labeled MVars follows in a
straightforward way.

Since the flow-sensitive attack in Figure 7 relied on toLabeled to re-
store the current label, a natural question, given that we remove toLabeled,
is whether we can use the naive flow-sensitive reference semantics of Sec-
tion 8.3 for concurrent LIO. As shown by the attack code in Figure 13,
in which we use forkLIO instead of toLabeled to address a potential label
creep, the fundamental problem remains: the label on the reference label
is not protected! This precisely motivated our principled approach of ex-

5 This change also requires modifying (withRefs-Ctx) to not be triggered when
the term being evaluated is a withRefsfs term.

6 In fact, the reduction rule for λLIO
`,fs+au must be changed to account for events.

However, since fork is the only event in our system, we treat −→ as implicitly
carrying an empty event.
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leakRef ::Ref TCB Bool → LIO Bool
leakRef href = do
tmp ← newRef L ()
forkLIO $ do h ← readRef href

when h $writeRef tmp ()
delay
return $ labelOf tmp ≡ H

Fig. 13: Attack on concurrent LIO with naive flow-sensitive reference ex-
tension.

tending λLIO
`,fs+au to a concurrent setting as opposed to extending concurrent

LIO with flow-sensitive references.

8.5 Formal results

In this section, we show that our flow-sensitive enforcement can be em-
bedded into the flow-insensitive version of LIO. Additionally, we provide
security guarantees in terms of non-interference definitions by reusing pre-
vious results on LIO.

8.5.1 Embedding into λLIO
`

Every flow-sensitive reference with label ld created in a context where the
current label is lo (and thus stored in µfs as LbTCB lo (LbTCB ld t)), can be
represented by a flow-insensitive reference with label lo , whose contents
are another flow-insensitive reference containing t and labeled ld .

Figure 14 gives our encoding of the flow-sensitive reference operations
in terms of flow-insensitive references. For a given store Σ, we define the
J−KΣfi function, which given a term t in λLIO

`,fs, produces a term JtKΣfi in
λLIO
` , expanding the definitions of flow-sensitive operations in terms of flow-

insensitive ones. This function is applied homomorphically in all other cases.
We use the WrapRef constructor to mark the flow-insensitive references
that are being used to represent flow-sensitive ones, so as to distinguish them
from other flow-insensitive references. The functions wrap and unwrap
are used to add and remove this boundary encoding. In the embedding
of writeReffs, we use toLabeled to make any changes to the current label
(possibly caused by reading the outer reference) local to this operation.
Inside toLabeled, the code fetches the inner reference (readReffi), and then
performs the actual write of the new value. If this fails, the computation
diverges, but, importantly, the current label was raised (with readReffi) to
reflect the fact that the label on the label of the reference was observed. The
embedding of upgradefs relies on flow-insensitive primitives to implement
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the upgrade operation. As inwriteReffs, a toLabeled block is used to delimit
the taint on the current label. Inside the block, the code fetches the inner
reference (readReffi), which taints the current label with l ′, and makes a
new reference n (newReffi) with the upgraded label (lcur t (l t labelOf i))
and an undefined value (⊥). Observe that the operation for creating the
reference always succeeds since its label is above the current label, i.e., lcur.
Then, copyRef is used to copy the value of the original inner reference
into the new one, n. As before, this action always succeeds because the
label of the reference bound to i (labelOf i ) is below the label of the new
reference n. Finally, the reference n is stored in place of the original inner
reference using writeRef·. Importantly, this instruction only succeeds when
the current label at the time of writing, i.e., lc t l ′ in Figure 14, is below
or equal to l ′ (the label of the outer reference), i.e., lc t l ′ v l ′. This
restrictions holds when the current label at the time of upgrade, i.e., lc, is
below or equal to l ′—effectively encoding the non-sensitive upgrade policy
for label changes. The embedding of downgradefs follows similarly, except
that the label of the new reference is computed using u instead of t (to
achieve the downgrade), and the copyRef step is omitted, since the original
value must be destroyed. We remark that the mapping mimics the behavior
described by the rules in Figure 8.

We extend this definition naturally to convert λLIO
`,fs environments into λLIO

`

environments, by having J(lcur, µfi, µfs)Kfi , (lcur, µ
′
fi)where µ′

fi is obtained
by extending µfi with the pair of bindings ai 7→ LbTCB lo (Ref TCB

fi ld bi), bi
7→ (LbTCB ld v) (with bi being a fresh name) for each binding of the form
ai 7→ LbTCB lo (LbTCB ld vi) in µfs. Note that the domains of µfi and µfs

are disjoint because the fresh(·) predicate that we use in the semantics is
assumed to produce globally unique addresses.

In order to prove that our implementation is correct with respect to
the semantics, we show that, if we take a program with flow-sensitive
operations, and expand those operations, replacing them by the code in
Figure 14, then its behavior corresponds with the flow-sensitive semantics.

Theorem 1 (Embedding λLIO
`,fs in λLIO

` ). Let t be a well-typed term in λLIO
`,fs.

Then if 〈Σ|t〉 −→∗ 〈Σ′|v〉, we have 〈JΣKfi|JtKΣfi 〉 −→∗ 〈JΣ′Kfi|JvKΣfi 〉, and
if 〈Σ|t〉 −→∗ 〈Σ′|⇑〉, then 〈JΣKfi|JtKΣfi 〉 −→∗ 〈JΣ′Kfi|⇑〉.

Proof. See Appendix C.

While straightforward, this theorem highlights an important result: in
floating label systems, flow-sensitive references can be encoded in a calculus
with flow-insensitive references and explicitly labeled values.

8.5.2 Security guarantees

From previous results [Stefan et al., 2011], we know that LIO satisfies
termination-insensitive non-interference (TINI) in the sequential setting,
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wrap r , WrapRef r

unwrap (WrapRef r) , r

JRef TCB
fs rK(lcur,µfi,µfs)

fi , wrap (Ref TCB
fi (labelOffi µfs (r)) r)

JnewReffsKΣfi , λl t .do
i ← newReffi l t
lcur ← getLabel
o ← newReffi lcur i
return (wrap o)

JreadReffsKΣfi , λr .readReffi (unwrap r)>>= readReffi

JwriteReffsKΣfi , λr t .let o = unwrap r in do
lcur ← getLabel
toLabeled (lcur t (labelOf o)) $ do

i ← readReffi o
writeReffi i t

return ()

JlabelOffsKΣfi , λr .
readReffi (unwrap r)>>= return.labelOffi

JupgradefsK
Σ
fi , λr l .let o = unwrap r

l ′ = labelOf o in do
lc ← getLabel
toLabeled (lc t l ′) $ do
i ← readReffi o
lcur ← getLabel
n ← newReffi (lcur t (l t labelOf i)) ⊥
copyRef i n
writeReffi o n

return ()

JdowngradefsK
Σ
fi , λr l .let o = unwrap r

l ′ = labelOf o in do
lc ← getLabel
toLabeled (lc t l ′) $ do
i ← readReffi o
lcur ← getLabel
n ← newReffi (lcur t (l u labelOf i)) ⊥
writeReffi o n

return ()

JwithRefsfs v tK(lcur,µfi,µfs)
fi , JtK(lcur,µfi,µ

′
fs)

fi

where
µ′
fs = {a 7→ µfs (a) | a ∈ dom µfs ∩ (addrs+µfs(v))}

Fig. 14: Implementation mapping for flow-sensitive references. For all other
terms, the function is applied homomorphically.
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and termination-sensitive non-interference (TSNI) in the concurrent setting.
By using the embedding theorem we can extend these results for LIO with
flow-sensitive references.

For completeness, we now present our non-interference theorems, as
straightforward applications of the theorems in previous work. Our security
results rely on the notion of l -equivalence for terms and configurations,
which captures the idea of terms that cannot be distinguished by an attacker
which can observe data at level l . A pair of terms t1, t2 is said to be l -
equivalent (written t1 ≈l t2) if, after erasing all the information more
sensitive than l from t1 and t2, we obtain syntactically equivalent terms.
This definition extends naturally to configurations.

Intuitively, non-interference means that an attacker at level l cannot
distinguish among different runs of a program with l -equivalent initial
configurations.

Theorem 2 (TINI for λLIO
`,fs). Consider two well-typed terms t1 and t2 in

λLIO
`,fs which do not contain any · TCB syntax nodes, such that t1 ≈l t2, where

l is the attacker observation level. Let Σ be an initial environment, and let

〈Σ|t1〉 −→∗ 〈Σ1|v1〉 and 〈Σ|t2〉 −→∗ 〈Σ2|v2〉

Then, we have that 〈Σ1|v1〉 ≈l 〈Σ2|v2〉.

Proof. By expanding all the flow-sensitive operations in t1 and t2 using
their definition given in Figure 14, we get terms in λLIO

` , which by Theorem 1
has equivalent semantics. Therefore, the result follows from the λLIO

` TINI
result of [Stefan et al., 2011].

Corollary 1 (TINI for λLIO
`,fs+au). The previous non-interference result can

be easily extended to λLIO
`,fs+au. In λLIO

`,fs+au, the unlabel operation triggers the
automatic upgrades mechanism, which performs the upgrade operation for
every flow-sensitive reference in scope before actually raising the current
label. Regardless of how unlabel is used, we note that the resulting term
(after inserting the necessary upgrades), is just an λLIO

`,fs term. Therefore, the
main TINI result for λLIO

`,fs applies.

For the concurrent result, we need a supporting lemma which states
that the current label is always at least as sensitive as the label on the label
of every reference in scope. Formally,

Lemma 1. Consider the predicate

P (ks, µfs) = ∀〈l , v , t〉 ∈ ks.∀a ∈ (addrs(v)∩dom µfs).labelOf (µfs a) v l ,

where ks is a well-typed thread pool in λ‖-LIO
` and µfs is a flow-sensitive store.

Then, P is invariant under −→, that is

P (ks, µfs) ∨ {µfi, µfs|ks} −→ {µ′
fi, µ

′
fs|ks ′} ⇒ P (ks ′, µ′

fs)
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Proof. We consider cases on the rule used to derive {µfi, µfs|ks} −→
{µ′

fi, µ
′
fs|ks ′}.

– Cases (T-done) and (T-stuck). Trivial.
– Case (T-fork). We conclude that t must be a forkLIO operation, there-

fore l′cur = lcur, v = v ′ and µ′
fs = µfs. Hence P must hold for the thread

pool ks, 〈l′cur, v ′, t ′′〉, knew.
– Case (T-step). By inspection of all reduction rules, we see that no
operation changes the label on the label of a reference after it’s been
created, which means that labelOf (µfs a) = labelOf (µ′

fs a) for all
a ∈ dom µfs ∩ dom µ′

fs. Therefore P (ks, µ′
fs) still holds from the

hypothesis that P (ks, µfs) holds.
We only need to prove that ∀a ∈ v ′.labelOf (µ′

fs a) v l′cur. We
consider two cases:
• Case l′cur 6= lcur. The only reduction rules that modify lcur at all are

the read/unlabel rules, so t must be a readRef or unlabel operation.
This means that lcur v l′cur and v ′ = v , so the invariant holds.
• Case l′cur = lcur but v ′ 6= v . The only operation that can affect the

domain of µfs is newRef·, so this means there is a new address a ′ in
dom µ′

fs for which we need to check that labelOf (µ′
fs a) v l′cur.

The newRef· operation will set labelOf (µ′
fs a ′) to lcur and since

this is exactly l′cur we have that the invariant holds for a ′, and it
trivially holds for all other addresses in addrs(v) by hypothesis.

We now prove our non-interference theorem for λ‖-LIO
` . This result is

stronger than TINI, since it implies that there can be no termination or
internal timing leaks.

Theorem 3 (TSNI for λ‖-LIO
` ). Consider two well-typed terms t1 and t2 in

λ‖-LIO
` which do not contain any · TCB syntax nodes, such that t1 ≈l t2, where

l is the attacker observation level. Let Σ = (lcur, µfi, µfs) be an initial
environment, and let

{µfi, µfs|〈lcur, addrs−1(dom µfs), t1〉} −→∗ M1

Then, there exists some configuration M2 such that

{µfi, µfs|〈lcur, addrs−1(dom µfs), t2〉} −→∗ M2

and M1 ≈l M2.

Proof. We note that the initial stores are empty, so the predicate in Lemma 1
trivially holds and therefore it holds for all subsequent configurations by
induction. From Lemma 1 and looking at the embeddings of writeReffs
and upgradefs, we note that the first readReffi operation in each toLabeled
block will be trying to raise the current label to l . However, since l v lcur,
these operations will never effectively raise the current label. This means
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that using toLabeled is not necessary to preserve the semantics, because
there is no need to restore the current label afterwards. As a result, and
after removing toLabeled in these two cases, we note that the embedding
produces valid concurrent λLIO

` terms (which does not have toLabeled).
Finally, by expanding all the flow-sensitive operations in t1 and t2

using their definition given in Figure 14, we get terms in concurrent λLIO
` .

Therefore, the result follows from the termination-sensitive non-interference
of concurrent λLIO

` [Stefan et al., 2012a].

We lastly remark a limitation: while we preserve non-interference when
embedding the flow-sensitive calculus in the original LIO, our embedding
includes no synchronization to ensure atomicity of the flow-sensitive oper-
ations, so certain interleaving that break semantic equivalence are possible.

8.5.3 Permissiveness

In Section 8.7 we compare the permissiveness of our system with previous
flow-sensitive IFC systems. Here, we solely remark that the above results im-
ply that our flow-sensitive calculus is as permissive as flow-insensitive LIO.
In particular, any flow-insensitive LIO program can be trivially converted
to a flow-sensitive LIO program (without auto-upgrades) by using flow-
sensitive references instead of flow-insensitive ones. Since these references
would never be upgraded, they will behave just like their flow-insensitive
counterparts. This means that all existing LIO programs can be run in
our flow-sensitive monitor. This includes Hails [Giffin et al., 2012], a web
framework using LIO, on top of which a number of applications have been
built (e.g., GitStar7, a code-hosting web platform, LearnByHacking8, a
blog/tutorial platform similar to School of Haskell, and LambdaChair [Ste-
fan et al., 2012c], an EasyChair-like conference review system).

8.6 Comparison with other policies for label change

In this section, we compare our enforcement mechanism with two policies
for label change: no-sensitive-upgrade (which was originally proposed by
Zdancewic [Zdancewic, 2002]) and permissive-upgrade, a more permis-
sive version of the former by Austin and Flanagan [Austin and Flanagan,
2009, 2010]. We introduce a simple imperative language to simplify our
comparison with the languages implementing the aforementioned policies.
This simple language has variables, if -statements, a skip command that
does nothing, and an output command that is used to produce public
outputs. This language is easily implemented in λLIO

`,fs as syntactic sugar.
For example, a conditional statement if C ;A else B is desugared to

7 www.gitstar.com
8 www.learnbyhacking.org
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toLabeled H (do b ← unlabel C ; if b then A else B). (Here, toLabeled
is used to ensure that the current label is restored after leaving the if -
statement.)

8.6.1 No-sensitive-upgrade

The no-sensitive-upgrade discipline stops execution on any attempt to
change the label of a public variable inside a secret context. Our λLIO

`,fs
calculus essentially implements this discipline as well—see (upgradeRef)
in Figure 8. The original presentation of no-sensitive-upgrade allows for
variables with a secret label to be downgraded, as long as the original
contents are discarded. Our λLIO

`,fs calculus similarly allows for this with
the downgrade operation. Our approach differs in also allowing code to
explicitly upgrade a variable before entering a secret context, permissively
allowing writes to originally-public variables in secret contexts.

8.6.2 Permissive-upgrade

upgrade x H
if h
x := True

if x
skip

Fig. 15: A secure program
that λLIO

`,fs accepts.

The permissive-upgrade policy differs from
no-sensitive-upgrade in allowing code to
change the label of a public variables in se-
cret contexts, but subsequently disallowing
branches on such permissively-upgraded, or
“marked,” variables. When upgrading a pub-
lic variable in a secret context, the security
label of the variable is changed to P where
L v H v P. In general, the permissiveness
of our approach is incomparable with that
of permissive-upgrade. For example, without
the upgrade operation, λLIO

`,fs is as expressive
as no-sensitive-upgrade, and thus less permissive than permissive-upgrade.
But, with upgrade we can write programs in λLIO

`,fs that would be rejected
by a permissive-upgrade monitor. Figure 15 shows an example of one such
case. In the example, the upgrade operation is used to ensure that reference
x , which would be marked P by permissive-upgrade, ends up as H in all
runs; without the upgrade, a permissive-upgrade monitor would reject the
branch on x . By inserting upgrade operations in the “right” places, our
approach can become more flexible than permissive-upgrade.

Of course, the challenge lies in upgrading references in a permissive
fashion. And automatically upgrading references whenever the current
label is raised is not necessarily more permissive than a permissive-upgrade
monitor. Indeed, the permissiveness of permissive-upgrade and λLIO

`,fs+au are
also incomparable.

Figure 16 shows a program that is rejected by permissive-upgrade
but accepted by λLIO

`,fs+au. With permissive-upgrade, the first branch on
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h upgrades x to P, which leads to a failure when subsequently trying to
branch x . With λLIO

`,fs+au, on the other hand, reference x would be upgraded
to H, permissively allowing the second branch.

if h
x := True

if x
skip

Fig. 16: A secure program
that permissive-upgrade re-
jects and λLIO

`,fs+au accepts.

Conversely, Figure 17 shows a secure pro-
gram that is accepted by permissive-upgrade
but rejected by λLIO

`,fs+au. In this program, there
are two variables in scope: x and y , both ini-
tially public. In the first secret conditional
block we assign to y , which with permissive-
upgrade only upgrades variable y to P; x
remains L and thus the second branch is
executed, producing a public output. With
λLIO
`,fs+au, however, unlabeling h (an operation

implicit in the first conditional, which inspects
h) auto-upgrades both x and y to H. As a

result, the current label at the point of the output is H, causing a failure.
One way to address the permissiveness issues of λLIO

`,fs+au is by using
withRefsfs to delimit the scope of the upgrades. Figure 18 shows a modified
version of the previous example, where y is explicitly marked as the only
variable that should be upgraded in the first branch. As a consequence, x
does not get upgraded and the program does not fail—the output operation
is allowed. More generally, if there is enough static information to guide
the use of withRefsfs, we believe that λLIO

`,fs+au could match (or exceed) the
permissiveness of permissive-upgrade.

8.7 Related work

The label on the label could be seen as a fixed label that dictates which
principals can read or modify the policy (inner label) of a flow-sensitive
entity. In a different setting, trust management frameworks have explored
this idea [Bandhakavi et al., 2008], where role-based rules are labeled to
restrict the view on policies—the mere presence of certain policies could
become inappropriate conduits of information.

x , y := True
if h
y := False

if x
output (1)

Fig. 17: A secure program that
permissive-upgrade accepts and
λLIO
`,fs+au rejects.

x , y := False
withRefsfs (y) {
if h
y := True

}
if x
output (1)

Fig. 18: A secure program that
permissive-upgrade and λLIO

`,fs+au
with withRefsfs accept.
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Several authors propose an existence security label to remove leaks
due to the termination covert channel [Rafnsson et al., 2012, Rafnsson
and Sabelfeld, 2013] or certain behaviors in dynamic nested data struc-
tures [Russo et al., 2009, Hedin and Sabelfeld, 2012]. While the existence
security label and the label on the label are structurally isomorphic, they
are used for different purposes and in different scenarios, e.g., inspecting
labels is not allowed in [Russo et al., 2009, Hedin and Sabelfeld, 2012,
Rafnsson et al., 2012, Rafnsson and Sabelfeld, 2013].

Hunt and Sands [Hunt and Sands, 2006] show the equivalence (mod-
ulo code transformation) between flow-sensitive and flow-insensitive type-
systems. Russo and Sabelfeld [Russo and Sabelfeld, 2010] formally pin
down the challenge of mutable labels when using purely dynamic monitors.
They prove that monitors require static analysis in order to be more per-
missive than traditional flow-sensitive type-systems. Austin and Flanagan
propose a privatization operation to boost the permissiveness of permissive-
upgrade. This technique has been recently generalized to arbitrary lat-
tices [Bichhawat et al., 2014]. Moreover, the privatization operation can
only enforce non-interference when outputs are suppressed after branch-
ing on a marked flow-sensitive reference. Unfortunately, none of the men-
tioned work consider flow-sensitive in the presence of concurrency. In fact,
the notion of permissive-upgrade does not easily generalize to the concur-
rent setting, as this would require tracking occurrences of branches across
threads.

Recently, Hritcu et al. [Hritcu et al., 2013] propose a floating-label
system called Breeze. Like LIO, Breeze allows changes in the current context
label (i.e., pc) and only considered values with flow-insensitive labels. Given
the design similarities with LIO [Stefan et al., 2011], we believe that our
results could be easily adapted to Breeze.

Hedin et al. [Hedin et al., 2014] recently developed JSFlow, an IFC flow-
sensitive monitor for JavaScript. The monitor uses the no-sensitive-upgrade
label changing policy. To overcome some of the restrictions imposed by this
discipline, the primitive upgrade is introduced to explicitly change labels.
Our upgrade operation resembles that proposed by Hedin et al. Moreover,
the extension to unlabel as described Section 8.3 can be seen as an automatic
application of upgrade every time that the current label gets raised. Using
testing, Birgisson et al. [Birgisson et al., 2012] automatically insert upgrade
instructions to boost the permissiveness of no-sensitive-upgrade. We further
extend this concept of (automatic) upgrades to a concurrent setting.

The Operating System IFC community has also treated the mutable
label problem in the presence of purely dynamic monitors. Specifically, IFC
OSes such as Asbestos [Efstathopoulos et al., 2005], HiStar [Zeldovich
et al., 2006], and Flume [Krohn et al., 2007] distinguish between subjects
(processes), and objects (files, sockets, etc.) such that the security labels
for objects are immutable, while subject labels change according to the
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sensitivity of data being read. As in language-based IFC systems, changing
the label of subjects and object can become a covert channel, if not handled
appropriated. Hence, HiStar and Flume require that the label of a subject
be done explicitly by the subject code. Asbestos, on the other hand, allowed
(unsafe) changes to labels as the result of receiving messages under specific
and safe conditions. Our work extends these concepts with a level of
indirection to allow for changes in object labels.

Coarse-grained IFC enforcements, similar to the ones found in IFC OS
work, have been applied to web browsers. e.g, BFlow [Yip et al., 2009] and
COWL [Stefan et al., 2014] track the flow of information at the granularity
of protection zones and context, respectively. Both can be understood as
tracking IFC at the iframe-level granularity. As in LIO, an iframe’s label, i.e.,
a subject’s label, must be explicitly updated. While our techniques can be
applied to COWL, BFlow does not have fine-grained labeled objects; hence
the flow-sensitivity result is only applicable at the protection zone level. By
taking a more fine grained approach, the DOM-tree could be thought of
as being composed of flow-sensitive objects, whose security labels change
according to the dynamic behavior of the web page, as done in [Russo
et al., 2009].

Hoare-like logics for IFC are often flow-sensitive [e.g. Amtoft et al.,
2006, Nanevski et al., 2011]. Different from dynamic approaches, these
logics have the ability to observe all the execution paths and safely approx-
imate label changes. As a result, no leaks due to label changes are present
in provably secure programs. Le Guernic et al. [Le Guernic et al., 2006,
Le Guernic, 2007] combine dynamic and static checks in a flow-sensitive
execution monitor. For a flow-sensitive type-system, Foster et al. [Foster
et al., 2002] propose a restrict primitive that limits the use of variables’
aliases in a block of code. Our withRefsfs is similar to restrict in being used
to increase the permissiveness of the analysis.

8.8 Conclusions

We presented an extension of LIO with flow-sensitive references. As in pre-
vious flow-sensitive work, our approach allows secure label changes using
upgrade and downgrade operations, as a way to boost the permissiveness
of the IFC system, i.e., upgrade can be used to allow for the encoding of
programs that would otherwise be rejected by the IFC monitor. Since man-
ually inserting upgrade operations can be cumbersome, we extend the
calculus to automatically insert upgrades whenever the current label is
raised, while still giving programmers fine-grained control over which refer-
ences untrusted code can upgrade. Importantly, our approach extends to a
concurrent setting. To the best of our knowledge, this is the first work to ad-
dress the problem of flow-sensitive label changes for a concurrent, dynamic
IFC language. A further insight of this work was to show that, by lever-
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aging nested labeled objects, both the sequential and concurrent calculi
with flow-sensitive references can be encoded using only flow-insensitive
constructs. As a consequence, our soundness proof can be reduced to an
invocation of previous results for LIO.
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app

E [(λx .t1) t2 ] −→ E [{t2 / x } t1 ]

fix

E [fix (λx .t)] −→ E [{fix (λx .t) / x } t ]

ifTrue

E [if True then t2 else t3 ] −→ E [t2 ]

ifFalse

E [if False then t2 else t3 ] −→ E [t3 ]

labelOp
v = Jl1 ⊗ l2K`

E [ l1 ⊗ l2 ] −→ E [v ]

return

〈Σ|E [return t ]〉 −→ 〈Σ|E [LIOTCB t ]〉

bind

〈Σ|E [(LIOTCB t1)>>= t2 ]〉 −→ 〈Σ|E [t2 t1 ]〉

Fig. 19: Reduction rules for standard λLIO
` terms.

A Semantics for the base calculus

The reduction rules for pure and monadic terms are given in Figure 19.
We define substitution {t2 / x } t1 in the usual way: homomorphic on
all operators and renaming bound names to avoid captures. Our label
operations t, u, and v rely on the label-specific implementation of these
lattice operators, as used in the premise of rule (labelOp); we use the meta-
level partial function J·K`, which maps terms to values, to precisely capture
this implementation detail.

The reduction rules for pure terms are standard. For instance, in rule
(ifTrue), when the branch has a true condition, i.e.,
E [if True then t2 else t3 ], it reduces to the then branch (E [t2 ]). The
rest are self-explanatory and we do not discuss them any further.

Since all the IFC checks are performed by individual LIO terms, the
definition for return and (>>=) are trivial. The former simply reduces to a
monadic value by wrapping the term with the LIOTCB constructor, while the
latter evaluates the left-hand term and supplies the result to the right-hand
term, as usual.

B Attack on naive flow-sensitive references

As in the attack of Figure 7, the leakRef of Figure 20 can be used to leak
the value stored in a H reference href , while keeping the current label L,
without using labelOf. Internally, the value is leaked into public reference
lref by leveraging the fact that, based on a secret value, the label of a public
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leakRef ::RefFS Bool → LIO Bool
leakRef href = do
lref ← newRef L True
tmp ← newRef L False
toLabeled H $ do h ← readRef href

when h $writeRef tmp True
toLabeled H $ do t ← readRef tmp

when (¬ t) $writeRef lref False
readRef lref

Fig. 20: An attack in LIO with naive flow-sensitive reference extension
without labelOf.

reference (tmp) can be changed (or not). In the first toLabeled block, if
h ≡ True, then the label of tmp is raised to H and its value is set to True.
In the second toLabeled block, we read tmp, which may raise the current
label to H if the secret is True (and thus tmp was upgraded). Indeed, if
the secret is True (and thus t ≡ True) we leave the public reference intact:
True. However, if the secret is False, the tmp reference is not modified in
the first toLabeled block and thus when reading it in the second toLabeled
block, the current label remains L, and since t ≡ False, we write False into
the public reference. In both cases the value stored in lref corresponds to
that of href , yet leaving the current label and the label of lref intact (L).

C Embedding Theorem

In this section we prove that the embedding from λLIO
`,fs into λLIO

` preserves
semantics. We define the notation µ >> n as a shorthand for µ >>= λx → n,
which is typically used when n ignores the result of µ.

We will use the following lemma for single λLIO
`,fs steps:

Lemma 2 (Single-step embedding). Let t be a well-typed term in λLIO
`,fs.

Then if 〈Σ|t〉 −→ 〈Σ′|t ′〉, then there is a configuration Y such that
〈JΣKfi|JtKΣfi 〉 −→∗ Y and 〈JΣ′Kfi|Jt ′KΣfi 〉 −→∗ Y , i.e. 〈JΣKfi|JtKΣfi 〉 and
〈JΣ′Kfi|Jt ′KΣfi 〉 are β-equivalent.

Proof. Case analysis on the next redex in t . Most cases show a stronger
version of the lemma, i.e. that 〈Σ|t〉 −→ 〈Σ′|t ′〉 implies 〈JΣKfi|JtKΣfi 〉 −→∗

〈JΣ′Kfi|Jt ′KΣfi 〉.
Case E [newReffs l t ].
We have 〈Σ|E [newReffs l t ]〉 −→ 〈Σ′|E [return (Ref TCB

fs a)]〉, where
Σ′ = Σ [µfs 7→ Σ.µfs [a 7→ LbTCB Σ.lcur (Lb

TCB l t)]], and we know that
Σ.lcur v l .

Let Σ1 = JΣKfi. We argue
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〈Σ1|JE [newReffs l t ]KΣfi 〉
−→ 〈Σ′

1|(JEKΣfi ) [do lcur ← getLabel; o ← newReffi lcur i ; ...]〉
(Σ′

1 = Σ1 [µfi 7→ Σ1.µfi [i 7→ LbTCB Σ1.lbl t ]])

−→ 〈Σ′
1|(JEKΣfi ) [do o ← newReffi Σ1.lbl i ; return (wrap o)]〉

(Σ′
1 = Σ1 [µfi 7→ Σ1.µfi [i 7→ LbTCB Σ1.lbl t ]])

−→ 〈Σ′′
1 |(JEKΣfi ) [return (wrap (Ref TCB

fi Σ′
1.lbl o))]〉

(Σ′′
1 = Σ1 [µfi 7→ Σ1.µfi [i 7→ LbTCB Σ1.lbl t ;

o 7→ LbTCB Σ′
1.lbl (Ref TCB

fi Σ1.lbl i)]])

We now have to check that Jreturn (Ref TCB
fs a)KΣ

′

fi
= return (wrap (Ref TCB

fi Σ′
1.lbl o)) and JΣ′Kfi = Σ′′

1 , which follow directly
from the definition of J·Kfi for references and states.

Case E [readReffs (Ref TCB
fs a)].

We have 〈Σ|E [readReffs (Ref TCB
fs a)]〉 −→ 〈Σ|E [unlabel (LbTCB (l t

l ′) t)]〉, where Σ.µfs (a) = LbTCB l (LbTCB l ′ t).
Let Σ1 = JΣKfi. We argue

〈Σ1|JE [readReffs (Ref TCB
fs a)]KΣfi 〉

−→ 〈Σ1|(JEKΣfi ) [readReffi (JRef TCB
fs aK·fi)>>= readReffi ]〉

−→ 〈Σ1|(JEKΣfi ) [unlabel (Σ1.µfi (a))>>= readReffi ]〉
−→ 〈Σ′

1|(JEKΣfi ) [return (Ref TCB
fi l ′ i)>>= readReffi ]〉

(Σ′
1 = Σ1 [lcur 7→ Σ1.lcur t l ])

−→ 〈Σ′
1|(JEKΣfi ) [readReffi (Ref TCB

fi l ′ i)]〉
−→ 〈Σ′

1|(JEKΣfi ) [unlabel (Σ′
1.µfi (i))]〉

−→ 〈Σ′′
1 |(JEKΣfi ) [return t ]〉

(Σ′′
1 = Σ′

1 [lcur 7→ Σ′
1.lcur t l ′ ])

Now if we consider 〈JΣKfi|JE [unlabel (LbTCB (l t l ′) t)]K·fi〉, we have

〈JΣKfi|JE [unlabel (LbTCB (l t l ′) t)]K·fi〉
−→ 〈Σ2|(JEKΣfi ) [return t ]

(Σ2 = Σ2 [lcur 7→ (JΣKfi).lcur t l t l ′ ])〉

Note that Σ′′
1 .lcur = (JΣKfi).lcur t l t l ′ = Σ2.lcur.

Case E [writeReffs (Ref TCB
fs a) t ].

We have 〈Σ|E [writeReffs (Ref TCB
fs a) t ]〉 −→ 〈Σ′|E [return ()]〉,

where Σ.µfs (a) = LbTCB l (LbTCB l ′ v), Σ′ = Σ [µfs 7→ Σ.µfs [a 7→
LbTCB l (LbTCB l ′ v)]], and we know that Σ.lcur v l t l ′.

Let Σ1 = JΣKfi. Then there exists a function µ such that:

〈Σ1|JE [upgradefs (Ref TCB
fs a) l ′ ]KΣfi 〉

−→ 〈Σ1|(JEKΣfi ) [toLabeled (Σ1.lcur t l) (µ Σ1.lcur)>> return ()]〉

We now step through the evaluation of 〈Σ1|µ Σ1.lcur〉, as follows:
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〈Σ1|µ Σ1.lcur〉
−→ 〈Σ1| do i ← readReffi (JRef TCB

fs aK·fi);writeReffi i t〉
−→ 〈Σ′

1|writeReffi i t〉
(Σ′

1 = Σ1 [lcur 7→ Σ1.lcur t l ])
−→ 〈Σ′′

1 |return ()〉
(Σ′′

1 = Σ′
1 [µfi 7→ Σ′

1.µfi [i 7→ LbTCB l ′ t ]])

Finally, this allows us to conclude (from the rule for toLabeled and the
definition of (>>)), that

〈Σ1|(JEKΣfi ) [toLabeled (Σ1.lcur t l) (µ Σ1.lcur)>> return ()]〉
−→∗ 〈Σ2|(JEKΣfi ) [return ()]〉

where Σ2 = (Σ1.lcur, Σ
′′
1 .µfi). Now we can check that JΣ′Kfi = Σ2

from the definition of J·Kfi for states.
Case E [upgradefs (Ref TCB

fs a) l ′ ].
We have 〈Σ|E [upgradefs (Ref TCB

fs a) l ′ ]〉 −→ 〈Σ′|E [return ()]〉,
where Σ.µfs (a) = LbTCB l (LbTCB l ′′ v), Σ′ = Σ [µfs 7→ Σ.µfs [a 7→
LbTCB l (LbTCB (l t l ′′ t l ′) v)]], and we know that Σ.lcur v l .

Let Σ1 = JΣKfi. Then there exists a function µ such that:

〈Σ1|JE [upgradefs (Ref TCB
fs a) l ′ ]KΣfi 〉

−→ 〈Σ1|(JEKΣfi ) [toLabeled (Σ1.lcur t l) (µ Σ1.lcur)>> return ()]〉

We now step through the evaluation of 〈Σ1|µ Σ1.lcur〉, as follows:

〈Σ1|µ Σ1.lcur〉
−→ 〈Σ1| do i ← readRefJRef TCB

fs aK·fi ; lc ← getLabel; ...〉
−→ 〈Σ′

1| do lc ← getLabel;n ← newReffi (lc t (l ′ t l)) ⊥; ...〉
(Σ′

1 = Σ1 [lcur 7→ Σ1.lcur t l ])
−→ 〈Σ′

1| do n ← newReffi (lc t (l ′ t l)) ⊥; copyRef i n; ...〉
−→ 〈Σ′′

1 | do copyRef i n;writeReffi (JRef TCB
fs aK·fi) n〉

(Σ′′
1 = Σ′

1 [µfi 7→ Σ′
1.µfi [n 7→ LbTCB (lc t (l ′ t l)) ⊥]])

−→ 〈Σ′′′
1 |writeReffi (JRef TCB

fs aK·fi) n〉
(Σ′′′

1 = Σ′′
1 [µfi 7→ Σ′′

1 .µfi [n 7→ LbTCB (lc t (l ′ t l)) v ]])
−→ 〈Σ′′′

1 |return ()〉
(Σ′′′′

1 = Σ′′′
1 [µfi 7→ Σ′′′

1 .µfi [a 7→ LbTCB l (Ref TCB
fi (lc t l ′ t l) n)]])

Finally, this allows us to conclude (from the rule for toLabeled and the
definition of (>>)), that

〈Σ1|(JEKΣfi ) [toLabeled l ′ (µ Σ1.lcur)>> return ()]〉
−→∗ 〈Σ2|(JEKΣfi ) [return ()]〉

where Σ2 = (Σ1.lcur, Σ
′′′′
1 .µfi). Now we can check that JΣ′Kfi = Σ2

from the definition of J·Kfi for states.
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Case E [downgradefs (Ref TCB
fs a) l ′ ].

We have 〈Σ|E [downgradefs (Ref TCB
fs a) l ′ ]〉 −→ 〈Σ′|E [return ()]〉,

where Σ.µfs (a) = LbTCB l (LbTCB l ′′ v), Σ′ = Σ [µfs 7→ Σ.µfs [a 7→
LbTCB l (LbTCB (l t l ′′ u l ′) ⊥)]], and we know that Σ.lcur v l .

Let Σ1 = JΣKfi. Then there exists a function µ such that:

〈Σ1|JE [downgradefs (Ref TCB
fs a) l ′ ]KΣfi 〉

−→ 〈Σ1|(JEKΣfi ) [toLabeled (Σ1.lcur t l) (µ Σ1.lcur)>> return ()]〉

We now step through the evaluation of 〈Σ1|µ Σ1.lcur〉, as follows:

〈Σ1|µ Σ1.lcur〉
−→ 〈Σ1| do i ← readRefJRef TCB

fs aK·fi ; lc ← getlabel ; ...〉
−→ 〈Σ′

1| do lc ← getLabel;n ← newReffi (lc t (l ′ u l)) ⊥; ...〉
(Σ′

1 = Σ1 [lcur 7→ Σ1.lcur t l ])
−→ 〈Σ′

1| do n ← newReffi (lc t (l ′ u l)) ⊥;writeReffi (JRef TCB
fs aK·fi) n〉

−→ 〈Σ′′
1 |writeReffi (JRef TCB

fs aK·fi) n〉
(Σ′′

1 = Σ′
1 [µfi 7→ Σ′

1.µfi [n 7→ LbTCB (lc t (l ′ u l)) ⊥]])
−→ 〈Σ′′′

1 |return ()〉

Finally, this allows us to conclude (from the rule for toLabeled and the
definition of (>>)), that

〈Σ1|(JEKΣfi ) [toLabeled l ′ (µ Σ1.lcur)>> return ()]〉
−→∗ 〈Σ2|(JEKΣfi ) [return ()]〉

where Σ2 = (Σ1.lcur, Σ
′′′
1 .µfi). Now we can check that JΣ′Kfi = Σ2

from the definition of J·Kfi for states.

Now we can state the main theorem of this section.
Theorem. [Embedding λLIO

`,fs in λLIO
` ] Let t be a well-typed term in λLIO

`,fs.
Then if 〈Σ|t〉 −→∗ 〈Σ′|v〉, we have 〈JΣKfi|JtKΣfi 〉 −→∗ 〈JΣ′Kfi|JvKΣfi 〉, and
if 〈Σ|t〉 −→∗ 〈Σ′|⇑〉, then 〈JΣKfi|JtKΣfi 〉 −→∗ 〈JΣ′Kfi|⇑〉.

Proof. By induction on the number of steps in 〈Σ|t〉 −→∗ 〈Σ′|v〉, using
Lemma 2 and uniqueness of normal forms in λLIO

` .
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HLIO: MIXING STATIC AND DYNAMIC
TYPING FOR INFORMATION-FLOW

CONTROL IN HASKELL

Pablo Buiras, Dimitrios Vytiniotis, Alejandro Russo

Abstract. Information-Flow Control (IFC) is a well-established ap-
proach for allowing untrusted code to manipulate sensitive data with-
out disclosing it. IFC is typically enforced via type systems and static
analyses or via dynamic execution monitors. The LIO Haskell li-
brary, originating in operating systems research, implements a purely
dynamic monitor of the sensitivity level of a computation, particu-
larly suitable when data sensitivity levels are only known at runtime.
In this paper, we show how to give programmers the flexibility of de-
ferring IFC checks to runtime (as in LIO), while also providing static
guarantees—and the absence of runtime checks—for parts of their
programs that can be statically verified (unlike LIO). We present the
design and implementation of our approach, HLIO (Hybrid LIO),
as an embedding in Haskell that uses a novel technique for deferring
IFC checks based on singleton types and constraint polymorphism.
We formalize HLIO, prove non-interference, and show how interest-
ing IFC examples can be programmed. Although our motivation is
IFC, our technique for deferring constraints goes well beyond and of-
fers a methodology for programmer-controlled hybrid type checking
in Haskell.
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9.1 Introduction

Preserving confidentiality of data has become of extreme importance, par-
ticularly in complex systems where untrusted components require access
to sensitive information (e.g. text messages, contact lists, pictures, etc.) in
order to provide their functionality. Information-Flow Control (IFC) is a
well-established approach for allowing untrusted code to manipulate sensi-
tive data without disclosing it [Sabelfeld and Myers, 2003]. IFC essentially
scrutinizes source code to track how data of different sensitivity levels flows
within a program, where security alarms are raised when confidentiality
might be at stake. IFC research has produced three mature compilers for
secure programs: Jif [Myers and Liskov, 2000] (based on Java), FlowCaml
[Simonet, 2003] (based on Caml and not developed any more), and Paragon
[Broberg et al., 2013] (based on Java). Alternatively, IFC can be provided
via simple libraries in Haskell where concepts like arrows and monads are
repurposed to protect confidentiality [Li and Zdancewic, 2006, Russo et al.,
2008].

There exists a broad spectrum of enforcement mechanisms for IFC,
ranging from fully dynamic ones, e.g., in the form of execution monitors
[Austin and Flanagan, 2009, Askarov and Sabelfeld, 2009], to static ones,
e.g., in the form of type systems [Volpano et al., 1996]. Although dynamic
and static techniques provide similar security guarantees [Sabelfeld and
Russo, 2009], there are many arguments for choosing dynamic over static
approaches and vice versa. Several of these arguments have their roots in
the long-term dispute between dynamic and static analyses, e.g., overhead
vs. performance, enforcing properties for a program once and for all vs.
monitoring properties in every run of a program, etc.

From the security point of view, specifically, there are good reasons to
prefer dynamic over static approaches. Code statically verified to preserve
confidentiality clearly adheres to data sensitivity levels and policies valid
at compile time. However, data sensitivity levels may be entirely dynamic
(e.g. we may read data from a trusted or a non-trusted domain at runtime)
and even policies may change at runtime (e.g. principals (users) can change
the set of principals they share data with by—for instance—altering their
list of friends). In situations like this, the statically verified code has to be
restructured to perform runtime checks in ways that the static analysis or
the type system can understand and exploit to verify the program (we will
see an example of that in Section 9.3). Alternatively, programs have to be
written in a way that can statically deal with all possible sensitivity levels
or policies that they could potentially encounter at runtime; this in turn
may limit the set of useful side-effects programs can perform.

The LIO library [Stefan et al., 2011b] for Haskell offers a way of tack-
ling this problem by providing a monad that dynamically enforces IFC. Bor-
rowing ideas from operating systems research [VanDeBogart et al., 2007,
Zeldovich et al., 2006], the LIO monad implements an execution monitor
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that keeps track of a current label to indicate the sensitivity level of the
computation. The current label may get raised, or tainted, when the compu-
tation depends on sensitive data. Furthermore, sensitive computations are
prevented from writing into public channels. In practice, LIO has proven
suitable for building production secure web systems [Giffin et al., 2012].

There are plenty of opportunities to optimize away LIO runtime security
checks. For example, it is enough to perform a single check for computations
that, within a long loop, attempt to write to the same channel without
affecting the current label. Ideally, runtime checks should only be applied to
those parts of the program where sensitive labels are unknown at compile
time or susceptible to changes at runtime. Although a state-of-the-art tool,
LIO does not support mixing static and dynamic IFC. In this work, we
address this shortcoming.

We present HLIO, a Hybrid IFC library which combines the best of
both approaches. HLIO statically protects confidentiality while allowing
the programmers to defer selected checks to be done at runtime. In that
manner, security checks involving statically-unknown or prone-to-change
labels can be performed at runtime, while providing static guarantees for
the rest of the code. Existing LIO code can easily be embedded in HLIO.
Furthermore, HLIO provides a very similar interface to LIO. As a result,
existing LIO code can also be incrementally refactored to work in HLIO
so that programmers can obtain static guarantees where possible. The
main purpose of HLIO is making a LIO-like IFC analysis hybrid rather
than making LIO better in the kind of leaks it prevents. Specifically, our
contributions with this paper are:

– We design and implement HLIO, a hybrid approach to IFC that allows
programmers to defer IFC constraints to runtime. (Section 9.4)

– We present a novel technique for embedding HLIO as a library in
Haskell. Our technique makes essential use of advanced features of the
GHC type system and type inference, namely (a) singleton types [Eisen-
berg and Weirich, 2012], (b) data promotion [Yorgey et al., 2012], and
(c) constraint polymorphism1, i.e., data types that can be parameterized
over type class constraints, to enable deferring IFC checks to runtime.
We remark that it is not necessary to understand these advanced type
system features in order to use our library. (Sections 9.5 and 9.6)

– We formalize the core features of HLIO in a calculus that allows us to
establish a simulation with LIO, thereby showing that HLIO cannot
leak secrets, i.e., that it satisfies termination-insensitive noninterference.
(Section 9.7)

– As an overall contribution, we describe a general-purpose mechanism
for deferring static constraints without any compiler or language mod-
ifications. Those constraints can go well beyond IFC, and can even

1 GHC 7.8.1 manual, Section 7.12
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include ordinary type equalities emitted by GHC’s type inference en-
gine (see Section 9.8). We thus make it easier for programmers to
move across the static/dynamic boundary, following the mantra of Mei-
jer and Drayton “Static typing where possible, dynamic typing when
needed!” [Meijer and Drayton, 2005].

9.2 LIO: Flexible Dynamic IFC for Haskell

In this section, we briefly review LIO and its mechanism for dynamically
protecting confidentiality of data.

class Lattice α where
t :: α→ α→ α
v :: α→ α→ Bool

Fig. 1. Security lattice

Security Lattices In an IFC system, data
gets classified according to its sensitivity de-
gree, which is often denoted by a security
label (from now on, just labels). Formally,
labels form a lattice Label to indicate the
allowed flows of information within a pro-
gram. Data associated with label `1 can
flow into entities labeled as `2 provided
that they respect the order relationship of
the lattice, i.e., `1 v `2. The encoding of
security lattices can be given as a type class, providing join (t), and the
order relationship (v)—see Figure 1. In LIO, this type class also includes
a meet (u) operation, but we exclude it from our definition since it is not
important for our purposes.2 Our running example is the classical two-
point security lattice, Label, that introduces labels L (low) and H (high) to
classify data as public and secret, respectively.

data Label = L | H
instance Lattice Label

The Label lattice implementation is what one expects; public data can flow
into secret entities, i.e., L v H , but not vice versa, i.e., H 6v L.

data LIO a
instance Monad LIO

getLabel :: LIO Label
runLIO :: Label → LIO a → IO a

Fig. 2. LIO interface

The LIO Monad LIO provides
the LIO monad to guarantee
that computations manipulate
data according to the security
lattice—see Figure 2. In [Stefan
et al., 2012b], this monad is
parametric on the security lat-
tice being considered, but we
consider this lattice to be fixed to type Label to simplify exposition.

2 Meet is normally used for tracking integrity, e.g. for checking that data has not
been corrupted by untrusted parties.
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It is expected that untrusted code is written using this monad (and
not directly in the IO monad) in order to have some guarantees about
its behavior—this can be enforced using other mechanisms [Terei et al.,
2012]. LIO encapsulates IO actions so that they are only executed when
confidentiality is not compromised. To achieve that, the monad keeps track
of a label `cur :: Label , called the current floating label (or current label for
short), which can be retrieved at any time by the function getLabel . The
role of the current label is two-fold. Firstly, it implicitly labels all the data in
scope. Secondly, it only allows computations to write to channels that are
labeled with ` ::Label such that `cur v `; otherwise, LIO aborts execution.
For instance, a computation m :: LIO a with `cur = H indicates that a
secret has already been observed by m—thus, m cannot subsequently write
to public channels.

LIO computations have the flexibility to read sensitive data above
the current label, but at the cost of raising the current label and thus
being more restrictive in subsequent computations. More specifically, when
reading data with sensitivity ` :: Label , the current label `cur is raised to
`′cur = `cur t `—in the LIO terminology, the new current label floats above
the observed data. Consequently, the current label protects all the data that
have been observed.

data Labeled a

labelOf :: Labeled a → Label
label :: Label → a
→ LIO (Labeled a)

unlabel :: Labeled a → LIO a
toLabeled :: Label → LIO a
→ LIO (Labeled a)

Fig. 3. Labeled expressions

Labeled Expressions As in many
other IFC systems, LIO provides
abstractions to label data with
different sensitivity degrees in a
fine-grained manner—see Figure
3. Data type Labeled a associates
an expression of type a with a la-
bel in Label . The pure function
labelOf can retrieve the label as-
sociated with a labeled expression.
The functions label and unlabel
are used to respectively create and
destroy elements of this data type.
Term label ` x creates a labeled expression which associates label ` with
expression x , only if `cur v `. This constraint ensures that LIO computa-
tions do not allocate data below the current label, which could potentially
be returned and read by lower-labeled computations.

Term unlabel x never fails; it extracts the data inside a labeled expres-
sion x but taints (as a side-effect) the current label by joining it (t) with
the label of the expression. From a security point of view, creating a la-
beled expression with label ` can be regarded as writing into a channel at
security level `. Similarly, observing (i.e., unlabeling) a labeled expression
is analogous to reading from a channel with the same security label. For
simplicity, we only consider labeled expressions in this paper—they are
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the simplest examples of labeled entities. Nevertheless, LIO does support
labeled mutable references [Stefan et al., 2011b], exceptions [Stefan et al.,
2012b], and synchronization variables [Stefan et al., 2012a], which could
be orthogonally added.

Example 1 (Tainting `cur) An LIO computation only raises its current la-
bel when observing (unlabeling) labeled expressions, as the secure string
concatenation example below shows:

lconcat :: Labeled String → Labeled String → LIO String
lconcat lstr1 lstr2 = do – Initial current label `cur

str1 ← unlabel lstr1 – `′cur = `cur t (labelOf lstr1)
str2 ← unlabel lstr2 – `′′cur = `′cur t (labelOf lstr2)
return (str1 ++ str2) – Final current label `′′cur

Label Creep Label creep is the problem of raising the current label to such
a point where computations are no longer capable of performing useful
side-effects [Sabelfeld and Myers, 2003], i.e., the current label becomes
“too high, too soon.” To address this problem, LIO provides the primitive
toLabeled (Figure 3) to allow computations to only temporarily raise their
current label. Specifically, toLabeled ` m executes m with the current label
`cur at the time of executing this action. It first ensures that `cur v ` since
it would attach ` to the result of m—after all, it is creating a labeled value.
Computation m can in turn raise the current label during its execution,
to a new `′cur. After m terminates, toLabeled checks that `′cur v `, and if
that is the case, label ` is used to protect the sensitivity of the result (in the
return value of type Labeled a).

In toLabeled ` m, ` is an upper bound on the final current label of m.
The reason for that is to avoid leaks by manipulating the current label
inside m [Stefan et al., 2011b]. Imagine that the labeled value is instead
wrapped with the final current label of m, and that the current label before
executing toLabeled is set to L. It could happen that in one run, the current
label in m is `1, where L @ `1, and depending on information at that
level, it decides to unlabel a piece of data which takes the current label
to `2 (`2 6≡ `1). After toLabeled gets executed, the next instruction simply
reads the label of the returned value (labelOf ), which returns either `1 or `2
without raising the current label. In that manner, code with current label L
can learn from data at level `1—an information leak!

Example 2 (Avoiding label creep) With toLabeled in place, we can provide
a more flexible version of lconcat as follows.

lconcat ′ :: Labeled String → Labeled String
→ LIO (Labeled String)

lconcat ′ lstr1 lstr2 = do – Initial current label `cur
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let lab = labelOf lstr1 t labelOf lstr2
lresult ← toLabeled lab (lconcat lstr1 lstr2)
return lresult – Final current label `cur

Observe that lconcat ′, in contrast with lconcat , can concatenate secret
strings without raising the current label.

Running LIO Actions without Leaking Secrets Function runLIO uses its
first argument to initialize the current label and executes the LIO action
given as its second argument. It returns an IO action which is IFC-compliant,
i.e., where side-effects do not leak sensitive information with respect to
that label.

Example 3 (Preventing secret leaking)We describe below a function which
runs untrusted code and publishes a returned string value in a public web
site.

publish :: LIO String → IO String
publish m = do {r ← runLIO L action; report r }

where
action = do
x ← m
lx ← label L x – succeeds if `cur v L
unlabel lx – `cur is not modified

report s = wget ("http://reports/str="++ s) [ ] [ ]

Function wget sends an HTTP request to the URL given as argument. The
action computation runs the untrusted code m but guards the result x with
L by calling label L. This call only succeeds when the final label of m is less
than or equal to L.

Dynamically Labeled Values As mentioned in the introduction, runtime
IFC enforcement is particularly useful in systems where values get classified
based on runtime information. For instance one can assume (or implement)
a primitive that reads a remote labeled value from the network:

readRemote ::URI → LIO (Labeled String)

The primitive does not necessarily increase the current label as sensitive
data can be encapsulated in the labeled value we return. A more realistic
example of such a primitive can be found in Appendix A.

Untrusted scripts can freely call readRemote without compromising
confidentiality since, in order to observe the returned value, they would
have to have their current label tainted and thus would be restricted from
performing unsafe side-effects. While not a problem for dynamic LIO, we
will see in the next section how dynamically labeled data complicates the
programming model in a statically-typed IFC discipline.
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9.3 SLIO: Static IFC for Haskell

LIO performs information-flow checks at runtime, and hence the ability to
discharge those statically is certainly appealing.

Security Labels at the Type Level The first step towards a statically typed
version of LIO in Haskell is to transport labels and lattice operations over
labels to the type level. We illustrate how this can be done in Haskell for
the familiar 2-point lattice:

data Label = L | H
class Flows (`1 :: Label) (`2 :: Label)
instance Flows L L
instance Flows L H
instance Flows H H

type family Join (`1 :: Label) (`2 :: Label) :: Label where
Join L L = L
Join L H = H
Join H L = H
Join H H = H

The Label datatype constructors will be used at the type-level. In Haskell
terminology, Label will be a promoted datatype [Yorgey et al., 2012]. More-
over, we can represent v-constraints at the type level using the type class
Flows (`1 :: Label) (`2 :: Label) over labels. The instances of the type class
encode specific cases of the v-relationship. 3 We also use a closed type
family [Eisenberg et al., 2014] Join to express the t computation at the
type level.

data SLabel (` :: Label) where
L :: SLabel L
H :: SLabel H

Fig. 4. Singleton labels

Ordinary term-level labels can
now be indexed by type-level la-
bels, i.e., they can be defined as
singleton types in the dependent
type theory jargon—see Figure 4.
In a proper dependently typed lan-
guage, such as Agda or F*, there
would be no need for duplication
of labels and lattice functional-
ity at the type level and, in fact,
our formal treatment (Section 9.7)
does away with the duplication.

Although our running example is the 2-point lattice, we have success-
fully applied similar techniques to implement a more complicated type-level

3 Although type classes in Haskell are open, we can prevent malicious users from
introducing bogus instances by employing superclasses and Haskell’s export
mechanism.
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lattice, namely DC-labels [Stefan et al., 2011a], a decentralized security
label model for IFC that can express security concerns from different ac-
tors in a mutual distrust environment. As far as we know, this is the first
implementation of DC-labels at the type level.

An LIO Hoare State Monad Once the type-level machinery is in place,
we replace our dynamic LIO monad with a Hoare state monad [Nanevski
et al., 2006], indexed by the initial label of a computation (analogous to a
pre-condition) and the final label of a computation (analogous to a post-
condition):

data SLIO (`i :: Label) (`o :: Label) a
runSLIO :: SLabel `i → SLIO `i `o a → IO a

SLIO is just an intermediate step towards our final solution, but readers
can assume a very similar implementation as that of LIO : a state monad
over the current label.

type SLIO `i `o a = SLabel `i → IO (a,SLabel `o)

Due to its more expressive type, SLIO is not a Haskell monad. Never-
theless, it is a parameterized monad [Atkey, 2006] and more generally a
polymonad [Hicks et al., 2014]. As a consequence, it is possible to define
meaningful (>>=) and return operators that satisfy the usual monad laws:

(>>=) :: SLIO `1 `2 a → (a → SLIO `2 `3 b)→ SLIO `1 `3 b
return :: a → SLIO ` ` a

It is easy to see how these functions are implemented.

A Statically Typed API for IFC SLIO so far seems like a more precise
typing of LIO . However, the ability to express labels and their operations
at the type level immediately opens up the possibility for converting the
dynamic checks of LIO to static proof requirements. We do this below by
simply rewriting the dynamic API to use static constraints instead:

data SLabeled (` :: Label) a = SLabeled (SLabel `) a
getLabel :: SLIO `i `i (SLabel `i)

labelOf :: SLabeled (` :: Label) a → SLabel `
label :: Flows `i `⇒ SLabel `→ a
→ SLIO `i `i (SLabeled ` a)

unlabel :: SLabeled ` a → SLIO `i (Join `i `) a

toLabeled :: SLIO `i `o a → SLIO `i `i (SLabeled `o a)

Function getLabel returns the current label without affecting it. Function
labelOf returns the singleton type corresponding to the initial label of the
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computation. Function label creates a labeled value with label ` without
modifying the current label `i , provided that `i v `, expressed this time
as a static proof obligation Flows `i `. Function unlabel , on the other
hand, taints the current label with the value of the labeled expression.
Function toLabeled has a very simple type: just encapsulate the output label
in the labeled value that we return. The careful reader may observe a small
disconnect between the static and dynamic versions of toLabeled—this is
due to a significant simplification that the static world enables, a point we
discuss in detail in Section 9.8.

Finally, in order to give a valid type to primitives such as readRemote,
it is often convenient to hide the label of a labeled value with an existential
type, so that it no longer appears in the type. Haskell does not support
first-class existential types, so we encode this with a datatype definition:

data LabeledX a where
LabeledX :: (SLabeled (` :: Label) a)→ LabeledX a

Problems When Programming in SLIO Let us consider how one can
program using the SLIO primitives. Suppose that we have a function
report with type

report :: Flows `i L⇒ String → SLIO `i `i ()

that sends a given String to a public server and publishes it on the Internet.
This function has a Flows type class constraint which specifies that the
current label at the time when report is run should not exceed L, i.e., the
public label. For the simple lattice that we consider in this paper, report can
effectively be called only when `i is L. One could imagine more complex
situations with a richer label hierarchy, where more than one label is allowed
to report or when the label associated with the public server is not fixed
to L in advance but is rather dynamically obtained. Such situations would
amplify our arguments in the rest of this section, but the simpler report
above is sufficient for our presentation.

lReport2 lstr1 lstr2 =
do v1 ← unlabel lstr1

v2 ← unlabel lstr2
let result = v1 ++ v2
report result
return result

Fig. 5. Static lReport2

Figure 5 considers the secure
string concatenation example lconcat
(from the previous section), except
that we instead use the statically
typed counterparts to the LIO oper-
ations, and we incorporate a call to
report in order to publish the result
of the concatenation. This function,
called lReport2 , is a perfectly well-
typed program with type

lReport2 ::
Flows (Join (Join `i `1) `2) L
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⇒ SLabeled `1 String → SLabeled `2 String
→ SLIO `i (Join (Join `i `1) `2) String

Client scripts can call lReport2 provided that they can satisfy the con-
straint, which enforces that both strings should be public, i.e., labeled
with L. For instance, let us assume that we have lv1 :: SLabeled L String ,
lv2 :: SLabeled L String , and code

foo :: SLIO L L String
foo = lReport2 lv1 lv2

All labels are statically resolved, and foo can typecheck as all constraints
can be discharged by the type class and type family instances.

Consider now the case where some of the labeled values are dynamically
loaded from the network with readRemote from the previous section, and
we furthermore address the label creep issue by packing the result in a
labeled value:

readRemote ::URI → SLIO `i `i (LabeledX String)

foo = do
LabeledX (lv1 :: SLabeled `1 String)← readRemote host1
LabeledX (lv2 :: SLabeled `2 String)← readRemote host2
toLabeled (lReport2 lv1 lv2)

foo = do
...
r ← toLabeled (lReport2 lv1 lv2)

– pack result in existential
return (LabeledX r)

Fig. 6. Hiding existential types

The program is ill-typed
for two reasons. First, the
existential label variables `1
and `2, arising from unpacking
the existentials that we read
with readRemote, escape in
the return type, i.e., SLabeled
(Join (Join `i `1) `2) String .
To address this problem we
could pack the return type in
an existential (using LabeledX )
to prevent the existential label from escaping. The modification is shown
in Figure 6. However, even if we prevent the escape of existential variables
in the return type of foo, there is another problem: the existential variables
also escape in the constraint, i.e., Flows (Join (Join `i `1) `2) L, which
makes foo ill-typed.

Since we do not statically know the remote labels, one may wonder
if there is a way to rewrite the program to “assume the worst” (that
they are both H ) and that the current label after unlabelling them is
always—conservatively—H . This option is a non-starter: first, lReport2
would always be returning high-labeled values, but much more worryingly,
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we would not be in a position to call report any more, even in the case
where the actually read remote labels were both L.

A more appealing way to implement foo is to restructure the code to
incorporate a runtime test that inspects the remote labels:

foo = do
LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
case (labelOf lv1, labelOf lv2) of
(L,L)→ do

lv ← toLabeled (lReport2 lv1 lv2) :: SLIO L L String
return (LabeledX lv)
→ error "Both strings should be public!"

The GADT branch on the labels tests for a specific combination of
remote labels, which allows the type checker to refine the corresponding
type-level labels and discharge all generated constraints. We have also
introduced annotations in each branch to fix the SLIO pre- and post-
conditions and guide the type inference engine. In the case of the 2-point
lattice, the above restructuring is not terrible (only one combination of 4 is
a non-error), but more complicated lattices can quickly introduce lots of
GADT pattern matches in potentially multiple places inside the user code.

The example illustrates one awkward aspect of the static approach:
every time we have to move dynamic data into a statically typed piece of
code, programs have to be restructured to introduce runtime tests. While
the runtime tests in this situation are unavoidable, in this paper we show
how to do this without restructuring the implementation.

9.4 HLIO: Mixing Static and Dynamic Typing

In HLIO, users can instead take the “natural” way to write foo and make
the program typeable by using our primitive defer (underlined below):4

foo host1 host2 = do
LabeledX lv1 ← readRemote host1
LabeledX lv2 ← readRemote host2
lv ← defer (toLabeled (lReport2 lv1 lv2))

return (LabeledX lv)

The role of defer is to defer static constraints to runtime; in this case, the
one which arises from toLabeled (lReport2 lv1 lv2). This constraint will be
`i t `1 t `2 v L, where `i is the initial label and `1 and `2 are the labels
of the returned labeled values from the two readRemote calls.
4 We do not yet give type signatures since types slightly differ from the types of
the corresponding primitives in SLIO.
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To demonstrate how this works, assume that readRemote returns a
high-labeled value from host ”secure.org”, but a low-labeled value from
”public.org”. The following sequence of calls (using runHLIO , the HLIO
analogue of runSLIO) shows that indeed our primitive performs the check
at runtime:
ghci> runHLIO L (foo "secure.org" "public.org")
*** Exception: IFC violation!
ghci> runHLIO L (foo "public.org" "public.org")
Success
ghci> runHLIO H (foo "public.org" "public.org")
*** Exception: IFC violation!

In the first case, the first labeled value will contain a high label that taints
the current label and results eventually in an IFC exception. In the second
case, we only readRemote from public domains and hence no exception is
thrown. In the final case, although we read from two public sites, we start
from an already high label.

The defer primitive can be used at every point in the assembly of a
computation to selectively defer to runtime the constraints arising from
a subcomputation, at the programmer’s will. For example, the following
variations are all well-typed:

lvL :: SLabeled L String – a statically known public value

bar x = do
LabeledX lv ← readRemote host
s1 ← defer (toLabeled (lReport2 x lv))
s2 ← lReport2 x lvL
return s2

baz x = do
LabeledX lv ← readRemote host
s1 ← defer (toLabeled (lReport2 x lv))
s2 ← defer (lReport2 x lvL)
return s2

The difference between bar and baz lies in the set of constraints they dy-
namically check; in bar , we have to statically discharge the constraints
that arise from the computation of s2, but we will dynamically check the
constraints arising from lReport2 x lv when computing s1. In baz , we will
convert the constraints from s2 to be runtime checks. In both cases, we
must defer the constraints that arise from the computation of s1 as the label
of lv would otherwise escape in the returned constraint.

The mechanism of defer has also the benefit of addressing the incom-
pleteness of type inference engines or type-level lattice specifications—any
time we are faced with a constraint that we cannot statically discharge,
defer will convert it to a runtime check.
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Having described the functionality we are aiming for, we now present
the HLIO API without yet diving into the internals of its implementation.

Label Expressions Whenever a getLabel operation runs, we must produce
a runtime representation of the current label, i.e., a singleton. Consider
the case where the current label is of the form Join `1 `2. When `1 and `2
are known statically, we can just apply the type family and compute the
resulting label. However, if `1 and `2 are existentially quantified, we need a
way of computing a singleton for the Join by combining the singletons for
`1 and `2. Therefore, it will be convenient to introduce another promoted
datatype that captures unevaluated label expressions as well as a type family
to reduce them to Label types. As we will see in Section 9.6, this additional
level of indirection allows us to compute singletons for Join and also to
defer constraints involving existentials.

data LExpr a = LVal a | LJoin (LExpr a) (LExpr a)

type family E (` :: LExpr Label) :: Label where
E (LVal x ) = x
E (LJoin `1 `2) = Join (E `1) (E `2)

class Flows (E `1) (E `2)⇒
FlowsE (`1 :: LExpr Label) (`2 :: LExpr Label)

instance Flows (E `1) (E `2)⇒ FlowsE `1 `2

data SLabeled (` :: LExpr Label) a =
SLabeled (SLabel (E `)) a

Data type LExpr Label captures unevaluated label expressions at the type
level, and E reduces them to Label values. The type class FlowsE is isomor-
phic to Flows, with the exception that it ranges over LExpr Label instead
of Label . Note that we also redefine the SLabeled data type to include ar-
bitrary labeled expressions. Type family LJoin encodes t at the level of
types.

HLIO Monad GHC introduces a kind Constraint to classify constraints
and allows constraint polymorphism [Orchard and Schrijvers, 2010]. This
means that ADTs can be parameterized over constraints. HLIO exploits
this feature to provide a monad HLIO below:

data HLIO (c :: Constraint)
(`i :: LExpr Label) (`o :: LExpr Label) a

The HLIO datatype is very similar to SLIO except that it also records a
constraint c::Constraint (we motivate this design choice in Section 9.6). The
rest of the HLIO API provides mechanisms to discharge these constraints
statically or dynamically. A computation HLIO c `i `o a should be read as
a computation that, under constraint c and from initial label `i produces



262 HLIO: Mixing Static and Dynamic Typing

a value a and raises the current label to `o . The types of (>>=) and return
show how constraints are collected:

(>>=) ::HLIO c1 `1 `2 a
→ (a → HLIO c2 `2 `3 b)→ HLIO (c1, c2) `1 `3 b

return :: a → HLIO () `i `i a

Note that the type of (>>=) creates a tuple of constraints (c1, c2) by collecting
constraints c1 and c2 from the sub-computations. The type of return collects
a trivial constraint ().

IFC Functionality HLIO provides the same API as SLIO :

labelOf :: SLabeled ` a → SLabel (E `)
getLabel ::HLIO () `i `i (SLabel (E `i))
unlabel :: SLabeled ` a → HLIO () `i (LJoin `i `) a
label :: SLabel `→ a

→ HLIO (FlowsE `i (LVal `))
`i `i (SLabeled (LVal `) a)

toLabeled ::HLIO c `i `o a
→ HLIO c `i `i (SLabeled `o a)

Unlike in SLIO, label just records constraint FlowsE `i (LVal `) in its result
type—instead of actually constraining the whole type of the function. This
is the only HLIO primitive that generates a constraint.

Deferring and Simplifying Constraints In addition to the core IFC func-
tionality, HLIO adds the ability to defer collected constraints, or explicitly
simplify them in one go:

defer ::Deferrable c ⇒ HLIO c `i `o a → HLIO () `i `o a
simplify :: c ⇒ HLIO c `i `o a → HLIO () `i `o a

The function defer accepts an HLIO computation that would be ty-
peable under constraint c, and returns a computation that is typeable under
no constraint! Indeed, the purpose of this combinator is to discharge the
constraint by a runtime test. The puzzled reader may wonder how it is
even possible to have a sound implementation of defer . The magic is in the
Deferrable type class, which we describe in Section 9.5.

Dually to deferring constraints to runtime, we may require them to be
statically discharged—function simplify allows us to do that. Like defer ,
simplify accepts an HLIO computation that is typeable under constraint
c, and returns a computation that is typeable under the empty constraint
provided that we can discharge c statically (hence the quantification c ⇒
...).
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Running HLIO Computations Finally, the function that runs HLIO com-
putations is analogous to runSLIO , except that we require the collected
constraints to be provable.5

runHLIO :: c ⇒ SLabel `→ HLIO c (LVal `) `o a → IO a

The Rest of the Paper In the rest of the paper, we describe the Deferrable
class which enables us to implement the defer combinator (Section 9.5), and
we present the design decisions and the implementation of the HLIO API
(Section 9.6). We formalize the core features of HLIO as a calculus and
prove non-interference by elaboration to (ordinary) LIO (Section 9.7). We
discuss other applications of Deferrable beyond IFC (Section 9.8).

9.5 Deferrable Constraints

To understand the implementation of HLIO, we first dive into the internals
of Deferrable. For a given constraint c, an instance of Deferrable c defines
a single function deferC :

class Deferrable (c :: Constraint) where
deferC :: forall a.Proxy c → (c ⇒ a)→ a

The Proxy c argument is a commonly used technique to get around the
lack of explicit type applications in the Haskell source language—instead,
we provide a never-evaluated Proxy c argument that we can provide an
annotation for, e.g., deferC (⊥ :: Proxy (C Int)) m.

The second argument, c ⇒ a, represents a computation that can only
be executed if we can statically satisfy the constraint c. The return type of
defer is plainly the result of that computation.

It should (rightly so) seem impossible to implement an instance of class
Deferrable for every possible constraint c. However, we can provide in-
stances for specific constraints, provided we have enough runtime infor-
mation around. In what follows, we show how to provide an instance for
FlowsE . We start by creating a type-class capturing a singleton label:

class ToSLabel (` :: LExpr Label) where
slabel :: LProxy `→ SLabel (E `)

instance ToSLabel (LVal H ) where slabel = H
instance ToSLabel (LVal L) where slabel = L

instance (ToSLabel `1,ToSLabel `2)

5 Alternatively, we could equally require that c be simply Deferrable, or that c
be () and make use of the appropriate defer or simplify combinators when
constructing an HLIO computation.
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⇒ ToSLabel (LJoin `1 `2) where
slabel = case (slabel p1, slabel p2) of

(H ,H )→ H
(H ,L)→ H
(L,L)→ L
(L,H )→ H
where p1 = ⊥ :: LProxy `1; p2 = ⊥ :: LProxy `2

Note that we have given instances for the full range of label expressions
LExpr Label .

If we have instances for ToSLabel `1 and ToSLabel `2 around, then we
effectively have runtime witnesses for the corresponding singleton labels,
and, in that case, it is very simple to provide an instance for Deferrable
(FlowsE `1 `2)

6:

instance (ToSLabel `1,ToSLabel `2)⇒
Deferrable (FlowsE `1 `2) where
deferC p m = case (slabel p1, slabel p2) of

(L,L) → m
(L,H ) → m
(H ,H )→ m
(H ,L) → error "IFC violation!"
where p1 = ⊥ :: LProxy `1; p2 = ⊥ :: LProxy `2

The implementation of deferC pattern matches against the runtime
representations of the labels `1 and `2. In each corresponding case, the
GADT pattern match (e.g. (L,L) in the first case) allows the type system
to refine `1 and `2 (e.g. `1 := LVal L and `2 := LVal L in the first case).
Thus, every constraint FlowsE `1 `2 required by m can be refined (e.g. to
FlowsE (LVal L) (LVal L) in the first case) and can be readily discharged
by top-level instances for FlowsE . It is still possible to forget to include
some of the cases, but this will only make the test more conservative.

Note that in the fourth case above (for which no instance exists!),
we have no way of calling m, i.e., deferC would be ill-typed if we tried.
This case corresponds to a genuine runtime error, and we return an error
indicating a violation of the IFC policy.

Constraints will be collected together in tuples through uses of (>>=) and
hence we also provide an instance for pairs of constraints, i.e., Deferrable
(c1, c2), which can be found in Appendix C.

Finally, we also revisit our definition of LabeledX to include a dictionary
for ToSLabel to produce a singleton for the existentially-quantified label.

data LabeledX a where
LabeledX :: ToSLabel `⇒ SLabeled (` :: Label) a

→ LabeledX a

6 Readers can ignore the proxy arguments p, p1 and p2.
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This is necessary for applying defer to computations involving labeled
expressions that have been unpacked from a LabeledX .

The Deferrable class is an extremely powerful abstraction for trans-
forming static errors to dynamic checks, and we later show that even type
checker equalities generated by the compiler inference mechanism can be
defered (Section 9.8). We proceed to show how Deferrable can be used to
implement the defer primitive.

9.6 HLIO Design and Implementation

In Haskell, we embed HLIO as a GADT where the constructors correspond
to the primitives described in Section 9.4. More specifically, data type
HLIO has constructorsReturn, Bind ,Unlabel , Label , ToLabeled ,GetLabel ,
Defer , and Simplify , which represent uninterpreted commands return, bind ,
unlabel , label , toLabeled , getLabel , defer , and simplify , respectively. The
types for these constructors match the types given for the commands they
represent. In order to give semantics to HLIO terms, we provide an inter-
pretation function go with the type

go :: forall c `i `o a.HLIO c `i `o a
→ (c ⇒ SLabel (E `i)→ IO (a,SLabel (E `o)))

The interpretation of HLIO is in an IO monad combined with a state
to represent the current label (in the style of LIO). Although it might be
tempting to get rid of the runtime representation of the current label, this
is not possible since code is allowed to inspect it at any time (as a runtime
value) using getLabel .

go (Return x ) `i = return (x , `i)
go (Bind m f ) `i = do (a, `′i)← go m `i ; go (f a) `′i
go (GetLabel `i) = return (`i , `i)
go (Unlabel (SLabeled ` v)) `i = return (v , `i ‘ljoin‘ `)
go (Label ` a) `i = return (SLabeled ` a, `i)

go (ToLabeled (m ::HLIO c `i `
′
o a ′)) `i = do

(x , `o)← go m `i ; return (SLabeled `o x , `i)

go (Defer slio) `i = deferC (setProxy slio) (go slio `i)
where setProxy ::HLIO c `i `o a → Proxy c
setProxy = error "Proxy!"

go (Simplify m) `i = go m `i

The interesting cases are the definitions for Unlabel , Defer , and Simplify .
For Unlabel , go performs an ordinary term-level ljoin:

ljoin :: SLabel `1 → SLabel `2 → SLabel (Join `1 `2)
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but we never get to inspect the return label unless we explicitly perform
a getLabel and subsequently strictly use the label, or unless we perform
some form of runtime check. For Defer , go applies the technique from
Section 9.5 with the appropriate proxy. Simplify executes m, but exposing
its constraints to GHC in order to statically discharge them.

We briefly motivate some of the design choices made in HLIO.

(Singleton Classes) We have seen in the previous section that the motivation
for a type-class ToSLabel ` containing a singleton SLabel (E `) comes from
the need for deferring FlowsE constraints.

(LExpr Label and Deferrable) When describing SLIO, we used the Label
datatype and the Flows type class. However, HLIO shifted to the datatype
LExpr Label and the FlowE type class to be able to defer constraints. To
illustrate the reason behind that, consider an alternativeDeferrable instance,
without all the LExpr complications, and where ToSLabel was indexed by
Label :

instance (ToSLabel (`1 :: Label),ToSLabel (`2 :: Label))⇒
Deferrable (Flows `1 `2) where

With this definition, we may find ourselves in need of deferring con-
straints of the form Flows (Join `1 L) L, where Join is the t-operation
type family implementation directly on Labels. But type class axioms do
not match on type families! (They only match on rigid type constructors.)
Consequently, it is impossible to discharge that constraint either statically
or dynamically. In contrast, by exposing a rigid constructor LJoin, we were
able to give instances for the join of two labels; with our approach, it is
true that the constraint ToSLabel (LJoin `1 L) is automatically discharged
from ToSLabel `1.

(Use of a GADT) We chose to represent HLIO computations using a
GADT and then interpreting them using the go function. This is a somewhat
arbitrary choice. A shallow embedding where HLIO c `i `o a is isomorphic
to c ⇒ IO a seems to be possible, though we found the deep embedding
more straightforward, allowing potential optimisations to be performed
by the go function. We remark that the programmer is neither expected
to construct these computations nor to invoke the go function explicitly;
these can be hidden behind the interface.

(Embedding Constraints in HLIO) The introduction of constraint c as
part of the HLIO definition achieves a purely syntactic manipulation of
constraints, and excludes any possible simplification by GHC—except
when the programmer explicitly requires so with simplify . This aspect is
beneficial for two reasons: Firstly, this allows us to prevent eager simplifi-
cation of certain constraints into a form that cannot be deferred or even
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discharged. For instance, imagine that a constraint FlowsE `1 `2 floats out-
side of the HLIO type. In this case, GHC tries to discharge it by proving
Flows (E `1) (E `2). However, as we discussed before, type class axioms do
not match on type families. Moreover, even if that were possible, deferring
such a constraint would require instances of ToSLabel (LVal (E `1)) and
ToSLabel (LVal (E `2)), which cannot be constructed from instances of
ToSLabel `1 or ToSLabel `2. Secondly, when evaluating a defer expression,
the constraint c in HLIO makes it possible for the go function to auto-
matically supply a proxy to instantiate c (by unification) for a particular
constraint in the type of deferC , thus allowing the type checker to select the
right instance of Deferrable without any help from the programmer. If we
were not collecting the constraint c in HLIO , the programmer would have
to supply these proxies explicitly, making HLIO much more cumbersome
to use.

In summary, we have chosen to keep the constraints in their unsimpli-
fied form as much as possible, and give the programmer the freedom to
decide whether they are to be checked statically or dynamically via explicit
annotations (simplify and defer ).

9.7 Formal Semantics and Non-interference

In this section, we formalize HLIO and provide security guarantees for our
approach by interpreting HLIO in LIO and showing an equivalence in the
security checks performed by both systems.

Figure 7 presents the security-relevant rules for a type system for HLIO.
The remaining rules can be found in Figure 11 in Appendix C. The terms
of HLIO are the same as in LIO, with the addition of the defer construct.
A lattice expression ` is either a primitive label Label , a join operation (t),
or a meet operation (u). A constraint c is either the empty constraint
(), a pair of two constraints ((c, c)), or a flow constraint among label
expressions (` v `). The type HLIO is a Hoare state monad in the
style of statically-typed LIO, as presented in Section 9.3, except that it also
includes a constraint c. A computation with type HLIO c `i `o τ is subject
to constraints c, and takes the current label from `i to `o , and produces a
value of type τ . The type SLabeled ` τ represents expressions with label `
and type τ , and the type Label ` is a singleton type for label `, i.e., a type
with a single total inhabitant, which can be identified with `.

The typing rule for return simply states that the current label is not
changed and no constraints need to be checked. Rule (bind) looks like the
usual typing rule for (>>=), but it additionally combines the constraints
generated by m and f (c and c′) into one and also expresses that the final
label of computation m should match the initial label of the computation
produced by f . Rule (label) generates a security check as a constraint
(`i v `), and also expresses that the current label does not change. Note
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that in this rule we also check the connection between term-level s and
type-level `, by using the singleton type. Rule (unlabel) reflects the fact
that unlabeling an expression labeled ` raises the current label `i to the
join `i t `. Rule (toLabeled) checks that the subcomputation m has a
valid HLIO type, and expresses that the toLabeled computation will not
change the current label (or rather, that it will be restored after m finishes),
and also that the resulting value of type a is protected by label `o , i.e., the
maximum (and final) label attained by m. Rule (defer) checks that the
subcomputation m has a valid type and hides the constraints produced by
m, so that the expression defer m is subject to no static checks.

9.7.1 Semantics for LIO

Figure 8 shows the semantics of LIO, which we will use to interpret HLIO.
The semantics closely follows previous work on LIO [Stefan et al., 2011b],
given as a small-step operational semantics based on a transition relation
−→ between configurations of the form 〈`cur | t〉, where `cur is the current
label and t is the term being evaluated. As before, we only show the rules
for computations with security-relevant effects. The full presentation also
includes a relation for pure computation ( ), which is used in the rule
for labelOf , but we elide the details since they are not relevant for our
purposes. The semantics uses Felleisen-style evaluation contexts to specify
evaluation order, where Ep stands for contexts for pure computations and
E stands for contexts for effectful ones. As usual, we define −→∗ to be
the reflexive and transitive closure of −→. Additionally, our transitions
are labeled by the information-flow constraints that are being checked at
runtime, as can be seen in rule (label). We write A c−→

∗
B if A −→∗ B

while performing the set of security checks c. For technical reasons, we
also include a nonstandard primitive eval which is used to force pure
computations. Despite not being a part of LIO, we remark that it acts on
pure values and its evaluation involves no security-relevant effects, so it
is easy to prove that the calculus is still sound after adding it. Essentially,
LIO already includes a way to force evaluation for booleans (if statements),
so eval is merely a generalization of this construct.

9.7.2 Semantics for HLIO

Figure 9 introduces the functions interp and toLIO , which we use to inter-
pret HLIO and relate this interpretation with the corresponding standard
LIO semantics. These two functions are defined as term-to-term transforma-
tions. The returned term, however, only utilizes LIO primitives. (Function
interp closely follows the definition of function go described in Section
9.6.)

The function interp provides an interpretation of HLIO in dynamic
LIO [Stefan et al., 2012b]. Given a well-typed HLIO computation m,
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Values v ::= True | False | () | λx .t | Label
| LIOTCB t | SLabeledTCB ` t

Terms t ::= v | x | t t | fix t | if t then t else t
| t ⊗ t | return t | t >>= t | getLabel
| label t t | unlabel t | labelOf t
| toLabeled t t | defer t

LOps ⊗ ::= t | u |v
Lattice ` ::= Label | ` t ` | ` u `
Constraints c ::= () | (c, c) | ` v `
Types τ ::= Bool | () | τ → τ | HLIO c `i `o τ

| SLabeled ` τ | Label `

return
Γ ` x : τ

Γ ` return x :HLIO () `i `i τ

bind
Γ ` m :HLIO c `i ` a Γ ` f : a → HLIO c′ ` `o b

Γ ` m >>= f :HLIO (c, c′) `i `o b

label
Γ ` t : a Γ ` s : Label `

Γ ` label s t :HLIO (`i v `) `i `i (SLabeled ` a)

unlabel
Γ ` v : SLabeled ` a

Γ ` unlabel v :HLIO () `i (`i t `) a

toLabeled
Γ ` m :HLIO c `i `o a

Γ ` toLabeled m :HLIO c `i `i (SLabeled `o a)

defer
Γ ` m :HLIO c `i `o a

Γ ` defer m :HLIO () `i `o a

Fig. 7. Type system for HLIO (main rules).
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Ep ::= Ep t | fix Ep | if Ep then t else t | Ep ⊗ t | v ⊗ Ep
| label Ep t | unlabel Ep | labelOf Ep | toLabeled Ep t

E ::= [ ] | Ep | E >>= t

getLabel

〈`cur | E [getLabel ]〉 −→ 〈`cur | E [return `cur ]〉

toLabeled
`cur v ` 〈`cur | t〉

c−→
∗
〈`′cur | LIOTCB t ′〉 `′cur v `

〈`cur | E [toLabeled ` t ]〉 c−→ 〈`cur | E [ label ` t ′ ]〉

label
`cur v `

〈`cur | E [ label ` t ]〉 `curv`−−−−→ 〈`cur | E [return (SLabeledTCB ` t)]〉

unlabel
`′cur = `cur t `

〈`cur | E [unlabel (SLabeledTCB ` t)]〉 −→ 〈`′cur | E [return t ]〉

Eval
t  ∗ v

Ep [eval t ] Ep [v ]

labelOf

Ep [ labelOf (SLabeledTCB ` t)] Ep [`]

Fig. 8. Evaluation contexts and reduction rules.

interp m runs m without performing any security checks, except for those
in defer . This fact can be seen in the definition for label—the case where
security side-effects are triggered. This case simply synthesizes a labeled term
(SLabeledTCB ` t), thus skipping any security check. The unlabel operation
performs no security checks, so its interpretation is exactly the same as
in LIO. The interpretation of labeled terms are simply cast into dynamic
labeled terms in LIO , where the dynamic label is determined by static
information (i.e., SLabeledTCB t :SLabeled ` a). In the interpretation of defer ,
we use the guards command, which takes a set of constraints and checks
all of them at runtime, aborting the program if any of them fails. These
constraints are checked in one go, before running the subcomputation itself.
The static version of toLabeled is translated into its dynamic counterpart,
where the final current label (after executing m) is predicted to be `o . The
interpretation of (>>=) simply applies interp to its arguments.

Different from interp, the function toLIO directly translates an HLIO
computation into a dynamic LIO computation where all the security checks
occur dynamically. The translation for labeled terms, toLabeled , and (>>=)
are defined similarly as in interp. Label and unlabel, however, simply refor-
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interp (label t t ′) = SLabeledTCB (eval t) (interp t ′)
interp (unlabel t) = unlabel (interp t)
interp (SLabeledTCB t : SLabeled ` τ) = SLabeledTCB ` (interp t)
interp (defer (m :HLIO c `i `o τ)) = guards c >> interp m
interp (toLabeled (m :HLIO c `i `o τ)) =
toLabeled `o (interp m)

interp (m >>= f ) = interp m >>= interp.f

· · ·
toLIO (label t t ′) = label t (toLIO t ′)
toLIO (unlabel t) = unlabel (toLIO t)
toLIO (SLabeledTCB t : SLabeled ` a) = SLabeledTCB ` (toLIO t)
toLIO (defer m) = toLIO m
toLIO (toLabeled (m :HLIO c `i `o a)) =
toLabeled `o (toLIO m)

toLIO (m >>= f ) = toLIO m >>= toLIO .f
· · ·

Fig. 9. The functions interp and toLIO . The missing equations just behave
homomorphically.

mulate the command in LIO , where the corresponding security side-effects
might be triggered.

9.7.3 Non-interference

We define the simulation relation ∼, which expresses that two terminating
programs perform the same information flow checks and compute the same
values.

Definition 1 (Simulation between LIO terms) Let A and B be LIO config-
urations, then A ∼ B iff A c−→

∗
X and B

c−→
∗
X , where X is A’s weak

head normal form. Note that we only consider terminating programs due
to the fact that LIO only provides security guarantees for terminating runs.

We define a big-step evaluation relation ⇓ for HLIO terms.

Definition 2 (Big-step semantics for HLIO) Given an HLIO term, (t :

HLIO c `i `o τ) ⇓ v if and only if 〈`i | interp t〉 c′→
∗
〈`o | toLIO v〉.

The definition leverages the LIO semantics. It applies interp to the term
being reduced as well as toLIO to the result. Observe that toLIO is needed
for cases where v still contains HLIO terms, e.g., when v is composed of
nested labeled terms.

The next lemma (see details in Appendix B) introduces a relationship
between the security checks done by HLIO and LIO.
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Lemma 1 (Simulation between HLIO and LIO terms)
Given that (t : HLIO c `i `o τ) ⇓ v , then 〈`i | guards c >> interp t〉 ∼
〈`i | toLIO t〉.

The lemma states that if we take the statically-determined constraints c for a
well-typed term t into account, we can prove that the programs guards c>>
interp t and toLIO t are in simulation with respect to their security checks
and final values. The former performs all statically-determined security
checks in the beginning, and then runs the programwith the deferred checks.
The latter is obtained by viewing the original program as an LIO program,
where all defer operations are removed.

The semantic correspondence from Lemma 1 guarantees that if an HLIO
program is well-typed and terminates successfully, then the equivalent LIO
program would also terminate successfully. Conversely, if the LIO program
fails with a security error, the HLIO program will either not have a type
or fail during a defer computation. Since the HLIO and LIO enforcement
mechanisms are equivalent in this sense, and LIO enforces noninterference
[Stefan et al., 2011b], we can show that HLIO enforces the same property.

For our security guarantees, we consider an attacker at sensitivity level
l, who can only observe values at a security level at most l. LIO defines two
terms t1 and t2 to be l-equivalent (written t1 ≈l t2) if the attacker is unable
to distinguish between them, e.g. SLabeledTCB L 3 ≈l SLabeled

TCB L 3 and
SLabeledTCB H 1 ≈l SLabeled

TCB H 5, but SLabeledTCB L 2 6≈l SLabeled
TCB

L 1—LIO also extends this notion to configurations. We leverage LIO
definitions to express our non-interference theorem—after all, HLIO gets
interpreted in LIO!

Noninterference expresses the notion that a program cannot leak secrets.
Intuitively, a program is noninterfering if, considering two independent
runs with l-equivalent inputs, their final values are also l-equivalent. In
other words, attackers cannot distinguish the values of secret inputs by
observing the outputs.

Theorem 1 (Termination-insensitive noninterference)
Given HLIO terms t1 and t2 with no constructors ·TCB such that constraints
c1 and c2 hold, (t1 : HLIO c1 `1 `2 τ) ⇓ v1, (t2 : HLIO c2 `i `o τ ′) ⇓ v2,
and 〈`i | toLIO t1〉 ≈l 〈`i | toLIO t2〉, then it holds that 〈`o | toLIO v1〉 ≈l

〈`o | toLIO v2〉.

Proof sketch 1 The proof uses Lemma 1 to relate the reductions of interp t1
and interp t2 with toLIO t1 and toLIO t2, respectively. Once that is done,
the result follows by applying the LIO non-interference theorem in [Stefan
et al., 2012b]. This theorem requires that t1 and t2 do not include con-
structors of the form ·TCB. Consequently, observe that it is not possible to
directly consider l-equivalence between interpreted terms, i.e., interp t1
and interp t2—they introduce constructors SLabeledTCB to avoid security
checks. The proof is given in Appendix B.
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The theorem indicates that l-equivalent (fully) dynamic interpretations of
HLIO terms (i.e., 〈`i | toLIO t1〉 ≈l 〈`i | toLIO t2〉), where the static
checks hold, produce l-equivalent results (in LIO) (i.e., 〈`o | toLIO v1〉
≈l 〈`o | toLIO v2〉). Observe that if any HLIO terms leaked secrets, l-
equivalence involving v1 and v2 would not hold.

9.8 Discussion

This section explains some design choices, while exploring others.

The toLabeled Function The HLIO type for toLabeled deserves some atten-
tion. From Section 9.2, we know that toLabeled ` m in LIO performs two
security checks: `cur v ` at the begining of toLabeled , and `′cur v ` where
`′cur is the current label obtained by evaluating m. A directly corresponding
static version of toLabeled (and its dynamic checks) might be:

toLabeled :: Label `→ HLIO c `i `o a
→ HLIO (c,FlowsE `i `,FlowsE `o `) `i `i (SLabeled ` a)

Recall that, for security reasons, the role of the first argument (of type
Label `) is to statically predict an upper bound of the current label obtained
by running m. The constraints in the return type of toLabeled express this
fact. In HLIO, however, that prediction is already given! Observe that type
m :: HLIO c `i `o a says “after running m, the final current label is `o .”
We can use `o as the upper bound, i.e., ` ≡ `o , and remove the static check
FlowsE `o `. Moreover, we know that `i v `o by construction, which
allows the removal of FlowE `i `. By taking all these facts together, we can
dismiss all the extra constraints.

toLabeled ::HLIO c `i `o a → HLIO c `i `i (SLabeled `o) a

In Section 9.7, we have formally proved that this primitive is secure by
establishing a simple relationship with its counterpart in LIO.

Conditionals The monad HLIO is embedded in Haskell as a GADT, so it
is possible to use Haskell’s if statements to express conditional branching.
However, the Haskell type system requires that the types of both branches
be the same. In particular, if the branches are HLIO computations, their
types must also completely agree, including constraints and initial and final
labels. Unfortunately, this means that it is not possible to have if statements
where one branch produces a constraint and the other one does not or,
more generally, where the branches produce different sets of constraints.
For example, the following expression, where x :: Int , is ill-typed:

if x > 0 then (label H x >> return x ) else return (x + 1)
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The reason for the type error is that one branch has typeHLIO (Flows `i
H ) `i `i Int , while the other one has type HLIO () `i `i Int . When it comes
to disparities in the constraints, it is possible to work around this restriction
by means of defer operations. The programmer can use defer to check one
or both of the branches dynamically, which causes the constraints in the
HLIO type to be (), thus keeping the Haskell type checker happy. However,
if the current label is not updated in exactly the same way in both branches,
the if statement will also be ill-typed. Note that this cannot be solved with
defer .

An alternative solution that addresses the problem with both constraints
and the current label involves adding another primitive for if statements,
i.e., a constructor If for the HLIO GADT. The type of this constructor
would accurately express the connection between constraints and current
labels in both branches, as follows:

If :: Bool → HLIO c1 `i `o a → HLIO c2 `i `
′
o a

→ HLIO (c1, c2) `i (LJoin `o `′o) a

Essentially, the primitive would over-approximate the constraints and
the final label, as can be expected from a static analysis. This solution would
not only introduce notational overhead but also complicate the formal
treatment of HLIO significantly, as we would no longer have a one-to-
one correspondence between static and dynamic checks. Instead, we could
prove that the dynamic checks are a subset of the statically-determined
constraints. In order to simplify our exposition, we chose to avoid this
solution, but we believe it would be a reasonably straightforward extension.

Deferring Constraints beyond Non-interference The Deferrable type class
enables programmers to give instances for deferring the check for a con-
straint to runtime. In this section, we show how to push this idea to the
extreme, by deferring the check for type equalities that are generated by
GHC’s type inference. We iterate that the code in this section (and every-
where in this paper) requires no modifications to GHC.

We wish to defer a type equality between two types ta and tb, which
in GHC type system would be expressed as ta∼tb of kind Constraint . Of
course, in order to perform such a test at runtime, we need to have runtime
type information around about the shape of types ta and tb. GHC provides
the Typeable type class that captures runtime type representations. This
enables the following instance definition:

instance (Typeable a,Typeable b)⇒
Deferrable (a∼b) where
defer _p m = case eqT ::Maybe (a :∼: b) of

Nothing → error "type error!"
Just Refl→ m
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Function eqT is a standard library function, providing a runtime witness
of the equality of two types that are instances of Typeable:

eqT :: (Typeable b,Typeable a)⇒ Maybe (a :∼: b)

and a :∼: b is a GADT expressing with its only constructor Refl the fact
that a and b are in fact equal:

data (a :∼: b) where Refl :: (a∼b)⇒ (a :∼: b)

If programmers write a program that contains a type error:

foo :: forall a.a → a → a
foo x y = if x then False else y

GHC will report: Couldn't match expected type `Bool' with actu-
al type `a'. As we may, in fact, apply foo to two boolean values at run-
time, programmers may want to make this program typeable by deferring
the constraint:

foo :: forall a.Typeable a ⇒ a → a → a
foo x y = defer p (if x then False else y)

where p :: Proxy (a∼Bool) = ⊥

In this case, foo True False returns False, while foo 3 4 produces ***
Exception: type error. Note that this behavior is different from related
work [Vytiniotis et al., 2012], which defers unsatisfiable constraints as
errors to runtime. Instead, we do genuinely defer the check at the (unavoid-
able) cost of having the type representation around.

9.9 Related work

Hybrid IFC There is considerable literature on static analyses aiding IFC
execution monitors for different purposes. To boost permissiveness, Le
Guernic et al. provide monitors which statically analyze non-taken branches
of secret conditionals [Le Guernic et al., 2007, Le Guernic, 2007]. Simi-
larly, Shroff et al. design a monitor which leverages variable dependencies
(provided by a type system) when programs branch on secrets [Shroff et al.,
2007]. Besides permissiveness, hybrid analyses are used to avoid leaks in
dynamic flow-sensitive IFC monitors, where variables change their security
levels at runtime based on what data they store [Russo and Sabelfeld, 2010].
Moore and Chong utilizes static analysis to avoid tracking variables which
do not impose security violations, thus improving performance on dynamic
monitors [Moore and Chong, 2011]. Jif, an IFC-aware compiler for Java
programs, supports dynamic labels to classify data based on runtime ob-
servations [Zheng and Myers, 2007]. Similar to our work, operations on
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labels are modeled at the level of types. In the dynamic part, however, they
only allow for runtime checks based on the v relationship. As in this work,
there is some literature which connects dynamic and static analysis at the
programming-language level. Disney and Flanagan describe an IFC type-
system for a pure λ-calculus which defers cast checks to runtime when they
cannot be determined statically [Disney and Flanagan, 2011]. Fennel and
Thiemann extend that work to consider references [Fennell and Thiemann,
2013].

Security Libraries Li and Zdancewic’s seminal work [Li and Zdancewic,
2006] shows how arrows [Hughes, 2000] can provide IFC without runtime
checks as a library in Haskell. Tsai et al. [Tsai et al., 2007] extend Li and
Zdancewic’s work to support concurrency and data with multiple security
labels. Rather than using arrows, Russo et al. [Russo et al., 2008] shows
that monads are capable of providing a library which statically enforces IFC.
Devriese and Piessens provide a monad transformer to extend imperative-
like APIs with support for IFC. Their technique is applied to dynamic, static,
and hybrid IFC techniques. Devriese and Piessens’ work requires a deep
embedding of the target language in order to perform static analysis. In
contrast, our approach leverages the type-system features found in Haskell.
Jaskelioff and Russo implements a library which dynamically enforces
IFC using secure multi-execution (SME) [Jaskelioff and Russo, 2011]—a
technique that runs programs multiple times (once per security level) and
varies the semantics of inputs and outputs to protect confidentiality. The
series of work on LIO can be referred to as the state-of-the-art in dynamic
IFC in Haskell [Stefan et al., 2011b, 2012b,a, Buiras et al., 2013, Buiras
and Russo, 2013, Buiras et al., 2014].

Programming Languages Combining dynamic and static analysis is not ex-
clusive to IFC research. It has been extensively studied by the programming
languages community. We briefly mention some highlights and their relation
to this work. Flanagan [Flanagan, 2006] develops the concept of hybrid type
checking for type systems capable of delaying subtyping checks until run-
time. Siek and Taha [Siek and Taha, 2006] coined the term gradual typing,
which applies when programmers can control the combination of static and
dynamic approaches at the programming language level—simultaneously,
Hochstadt and Felleisen [Hochstadt and Felleisen, 2006] introduce similar
ideas. Due to the defer primitive, HLIO can be considered as a simple grad-
ual typing system. Wadler and Findler [Wadler and Findler, 2009] leverage
the notion of blame from Findler and Felleisen’s contracts [Findler and
Felleisen, 2002] to explain failure of dynamic type casts (specially for lan-
guages with higher-order functions). HLIO is a system which only produces
positive blame. Recently, the idea of gradual typing has gained popularity
among several programming languages. Typed Scheme [Hochstadt and
Felleisen, 2006] and Racket [Takikawa et al., 2012] allow Scheme pro-
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grammers to decorate their code with type annotations. Reticulated Python
[Vitousek et al., 2014] implements gradual typing, where a type checker is
provided in combination with a code-to-code transformation into Python
3. JavaScript has been also a recent target of this kind of systems [Swamy
et al., 2014, Rastogi et al., 2015]. Different from these approaches, HLIO
does not provide a fully-fledged gradual typing system. On the other hand,
it avoids any compiler modification by leveraging Haskell’s powerful type
system.

9.10 Conclusions and Future Work

We have presented HLIO, a new hybrid IFC enforcement in Haskell that
allows programmers to defer static constraints to runtime. This feature is
particularly useful, for instance, in production systems—where it is often
the case that security labels are not available (or even known) at compile
time. Different from other programming languages, GHC’s powerful type-
system and features allowed us to build HLIO as a simple library, where
no runtime or compiler modifications were needed. On formal aspects, we
showed that the library satisfies termination-insensitive non-interference
for an arbitrary security lattice.

As part of developing HLIO, we have identified an independently useful
technique for deferring other forms of static constraints, including ordinary
type equalities. In future work, we aim to explore the use of these tech-
niques in languages with similarly expressive type systems, such as depen-
dently typed languages. In addition, we plan to further explore the design
and application space of these techniques, and explore their usability in
embedded domain-specific languages and code generators.

Acknowledgments

This work was funded by DARPA CRASH under contract #N66001-
10-2-4088, and the Swedish research agencies VR and the Barbro Osher
Pro Suecia foundation. We thank the anonymous reviewers and Bart van
Delft for useful comments and suggestions.



BIBLIOGRAPHY

Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-
release policies for dynamic languages. In Proceedings of the 22nd IEEE
Computer Security Foundations Symposium. IEEE Computer Society,
2009.

Robert Atkey. Parameterised notions of computation. In Proceedings
of the 2006 International Conference on Mathematically Structured
Functional Programming, MSFP’06, pages 5–5, Swinton, UK, UK, 2006.
British Computer Society. URL http://dl.acm.org/citation.cfm?
id=2228095.2228100.

T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow
analysis. In Proc. ACM Workshop on Programming Languages and
Analysis for Security (PLAS), June 2009.

Niklas Broberg, Bart van Delft, and David Sands. Paragon for practical
programming with information-flow control. In APLAS, volume 8301
of Lecture Notes in Computer Science, pages 217–232. Springer, 2013.

P. Buiras, D. Stefan, and A. Russo. On flow-sensitive floating-label systems.
In Proc. of 27th IEEE Computer Security Foundations Symp., July 2014.

Pablo Buiras and Alejandro Russo. Lazy programs leak secrets. In Secure IT
Systems - 18th Nordic Conference, NordSec 2013, Ilulissat, Greenland,
October 18-21, 2013, Proceedings. Springer Verlag, 2013.

Pablo Buiras, Amit Levy, Deian Stefan, Alejandro Russo, and David Maz-
ières. A library for removing cache-based attacks in concurrent informa-
tion flow systems. In Trustworthy Global Computing - 8th International
Symposium, TGC 2013, 2013.

Tim Disney and Cormac Flanagan. Gradual information flow typing. In
Workshop on Script-to-Program Evolution (STOP), 2011.

Richard A. Eisenberg and Stephanie Weirich. Dependently typed pro-
gramming with singletons. In Proceedings of the 2012 Haskell Sympo-
sium, Haskell ’12, pages 117–130, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1574-6. doi: 10.1145/2364506.2364522. URL
http://doi.acm.org/10.1145/2364506.2364522.



Mixing static and dynamic typing 279

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations.
In Proc. of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14. ACM, 2014.

Luminous Fennell and Peter Thiemann. Gradual security typing with refer-
ences. In Proceedings of the IEEE 26th Computer Security Foundations
Symposium, CSF ’13. IEEE Computer Society, 2013.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, ICFP ’02, pages 48–59, New
York, NY, USA, 2002. ACM. ISBN 1-58113-487-8. URL http://doi.
acm.org/10.1145/581478.581484.

Cormac Flanagan. Hybrid type checking. In Proc. of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’06. ACM, 2006.

Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John Mitchell, and Alejandro Russo. Hails: Protecting data privacy in
untrusted web applications. In 10th Symposium on Operating Systems
Design and Implementation (OSDI), pages 47–60. USENIX, 2012.

Michael Hicks, Gavin Bierman, Nataliya Guts, Daan Leijen, and Nikhil
Swamy. Polymonadic programming. In In Proceedings of the Mathemat-
ically Structured Functional Programming (MSFP) 2014, 2014.

Sam T. Hochstadt and Matthias Felleisen. Interlanguage migration: from
scripts to programs. InOOPSLA ’06: Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages,
and applications. ACM, 2006.

J. Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37(1–3):67–111, 2000.

Mauro Jaskelioff and Alejandro Russo. Secure multi-execution in Haskell.
In Perspectives of Systems Informatics - 8th International Andrei Ershov
Memorial Conference, PSI, 2011.

Gurvan Le Guernic. Automaton-based confidentiality monitoring of con-
current programs. In Computer Security Foundations Symposium, 2007.
CSF ’07. 20th IEEE. IEEE Computer Society, 2007.

Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A.
Schmidt. Automata-based confidentiality monitoring. In Proc. of the
11th Asian Computing Science Conference on Advances in Computer
Science: Secure Software and Related Issues, ASIAN’06. Springer-Verlag,
2007.

P. Li and S. Zdancewic. Encoding Information Flow inHaskell. InCSFW’06:
Proc. of the 19th IEEE Workshop on Computer Security Foundations.
IEEE Computer Society, 2006.

Erik Meijer and Peter Drayton. Static Typing Where Possible, Dynamic
Typing When Needed. Revival of Dynamic Languages, 2005. URL http:
//research.microsoft.com/~emeijer/Papers/RDL04Meijer.pdf.



280 BIBLIOGRAPHY

Scott Moore and Stephen Chong. Static analysis for efficient hybrid
information-flow control. In Proc. of the 24th IEEE Computer Security
Foundations Symposium. IEEE Press, June 2011.

Andrew C. Myers and Barbara Liskov. A decentralized model for infor-
mation flow control. In Proc. of the 16th ACM Symp. on Operating
Systems Principles, pages 129–142, 1997.

Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Trans. on Computer Systems, 9(4):410–442,
October 2000.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism
and Separation in Hoare Type Theory. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’06, pages 62–73, New York, NY, USA, 2006. ACM. ISBN 1-
59593-309-3. doi: 10.1145/1159803.1159812. URL http://doi.acm.
org/10.1145/1159803.1159812.

Dominic Orchard and Tom Schrijvers. Haskell type constraints unleashed.
In Lecture Notes in Computer Science,, pages 56–71. Springer, 2010. doi:
10.1007/978-3-642-12251-4\_{}6. URL https://lirias.kuleuven.
be/handle/123456789/259608.

Aseem Rastogi, Nikhil Swamy, Cedric Fournet, Gavin Bierman, and Panagi-
otis Vekris. Safe and efficient gradual typing for typescript. In In Proc. of
the ACM Conference on Principles of Programming Languages (POPL)
2015, January 2015.

Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proc. of the 2010 23rd IEEE Computer Security
Foundations Symp., CSF ’10, pages 186–199. IEEE Computer Society,
2010.

Alejandro Russo, Koen Claessen, and John Hughes. A library for light-
weight information-flow security in Haskell. In Haskell ’08: Proc. of the
first ACM SIGPLAN symposium on Haskell, pages 13–24, 2008.

A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the
roller coaster of information-flow control research. In Proc. Andrei
Ershov International Conference on Perspectives of System Informatics,
Lecture Notes in Computer Science (LNCS). Springer Verlag, June 2009.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
January 2003.

Paritosh Shroff, Scott Smith, and Mark Thober. Dynamic Dependency
Monitoring to Secure Information Flow. In Proceedings of the 20th IEEE
Computer Security Foundations Symposium, CSF ’07. IEEE Computer
Society, 2007.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages.
In Proc. of Scheme and functional programming workshop. Technical
Report. University of Chicago, 2006.



Mixing static and dynamic typing 281

V. Simonet. The Flow Caml system. Software release. Located at http:
//cristal.inria.fr/~simonet/soft/flowcaml/, July 2003.

Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell.
Disjunction category labels. In NordSec 2011, LNCS. Springer, October
2011a.

Deian Stefan, Alejandro Russo, John C.Mitchell, and DavidMazières. Flex-
ible dynamic information flow control in Haskell. InHaskell Symposium,
pages 95–106. ACM SIGPLAN, September 2011b.

Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell,
and David Mazières. Addressing covert termination and timing channels
in concurrent information flow systems. In Proc. of 17th ACM SIGPLAN
International Conference on Functional Programming, Sep. 2012a.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières.
Flexible dynamic information flow control in the presence of exceptions.
Arxiv preprint arXiv:1207.1457, 2012b.

Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan,
Juan Chen, Pierre-Yves Strub, and Gavin Bierman. Gradual Typing
Embedded Securely in JavaScript. In Proc. of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14. ACM, 2014.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-
Hochstadt, and Matthias Felleisen. Gradual typing for first-class classes.
In Proc. of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’12. ACM,
2012.

David Terei, Simon Marlow, Simon Peyton Jones, , and David Mazières.
Safe Haskell. In Proceedings of the 5th Symposium onHaskell, September
2012.

Ta-chung Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded
information flow in Haskell. In Computer Security Foundations Symp.,
2007. CSF ’07. 20th IEEE, pages 187–202, July 2007.

Steve VanDeBogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn,
Cliff Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David
Mazières. Labels and event processes in the Asbestos operating system.
ACM Trans. on Computer Systems, 25(4):11:1–43, December 2007. A
version appeared in Proc. of the 20th ACM Symp. on Operating System
Principles, 2005.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker.
Design and Evaluation of Gradual Typing for Python. In Proc. of the
10th ACM Symposium on Dynamic Languages, DLS ’14. ACM, 2014.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2-3):167–187,
January 1996.

Dimitrios Vytiniotis, Simon Peyton Jones, and José PedroMagalhães. Equal-
ity proofs and deferred type errors: A compiler pearl. In Proceedings



282 BIBLIOGRAPHY

of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12, pages 341–352, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364554. URL
http://doi.acm.org/10.1145/2364527.2364554.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be
blamed. In Proc. of the 18th European Symposium on Programming
Languages and Systems: Held As Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, ESOP ’09. Springer-
Verlag, 2009.

Brent A. Yorgey, StephanieWeirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a Promotion.
In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Lan-
guage Design and Implementation, TLDI ’12, pages 53–66, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1120-5. doi: 10.1145/2103786.
2103795. URL http://doi.acm.org/10.1145/2103786.2103795.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and DavidMazières.
Making information flow explicit in HiStar. In Proc. of the 7th Symp. on
Operating Systems Design and Implementation, pages 263–278, Seattle,
WA, November 2006.

Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow. International Journal of Information Security, 6(2–3),
2007.



Mixing static and dynamic typing 283

A Secure wgetLIO

In the web application security model, scripts from one page cannot access
data from a different web page unless the two pages have the same origin—a
policy known as the same origin policy7 (SOP). To illustrate how this policy
can be enforced we introduce a more complex security lattice [Myers and
Liskov, 1997, Stefan et al., 2011a, Broberg et al., 2013], that also includes
URIAuth values, representing origins. (we omit u for brevity below)

data Label = L | H | Orig URIAuth

instance Lattice Label where
t H = H
t H = H
t L (Orig x ) = Orig x
t (Orig x ) L = Orig x
t (Orig ) (Orig ) = H
t L L = L

v H L = False
v H (Orig ) = False
v (Orig o) (Orig o′) = eqAuth o o′

v (Orig ) L = False
v = True

eqAuth o o′ = ... – equality on URIAuth

Using this lattice it is possible to implement a secure version of wget that
accepts a string representing an HTTP URL, and returns the content labeled
with the URIAuth origin of that URL:

wgetLIO :: String → LIO (Labeled String)
wgetLIO http = case parseURIAuth http of

Just auth → toLabeled (Orig auth)
(liftIO (wget http [ ] [ ]))

Nothing → lerr "Invalid origin"
where
lerr msg = label L (error msg)

Function parseURIAuth parses an URL and returns possibly an URI au-
thority8. From the security point of view, function wget produces both a
read and a write effect. The read effect is on the LIO computation, which
can observed the content of the requested URL—consequently, the result is
wrapped into a labeled value to protect its confidentiality, which is returned
by toLabeled . The write effect, on the other hand, is done on the reached
host, which knows when a request is performed by LIO computations. We

7 https://www.w3.org/Security/wiki/Same_Origin_Policy
8 This function is provided by the Hackage package network-uri
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should then avoid information from an origin to influence URL requests
performed to another one—this could effectively encode data leaks. This is
also captured in toLabeled , which checks `cur v auth, before creating the
labeled term and executing wget . In that manner, for instance, requests can
fetch URLs from every origin provided that they are not unlabel , i.e., the
current label being to L. Once information is read from a single origin, the
current label gets tainted and wgetLIO subsequently allows to only fetch
URLs from that same origin—effectively enforcing SOP.

B Formal Results

Lemma 1 (Simulation between HLIO and LIO terms)
Given that (t : HLIO c `i `o τ) ⇓ v , then 〈`i | guards c >> interp t〉 ∼
〈`i | toLIO t〉.

Proof sketch 2 Induction on the derivation of
Γ ` t : HLIO c `i `o a. We briefly sketch how the security-relevant cases
are handled.

Case t = unlabel t ′. Then we know Γ ` t ′ :SLabeled ` a. This command
has no constraints (c = ()) and the dynamic version makes no checks, so
〈`i | interp t〉 ∼ 〈`i | toLIO t〉 trivially.

Case t = label t1 t2. Then it must emit a constraint c, which trivially
matches the constraint in the type. The computation toLIO (label t1 t2) re-
duces to label t1 (toLIO t2), which further reduces to return (SLabeledTCB `
(toLIO t2)), where t1  ∗ `. This matches interp (label t1 t2).

Case t = m>>=f . Then we know Γ ` m :HLIO c `i ` a and Γ ` f :a →
HLIO c′ ` `o b. By induction hypothesis, we have that 〈`i | guards c >>
interp m〉 ∼ 〈`i | toLIO m〉 and if 〈`i | m〉 −→ ∗〈` | LIOTCB a〉, then
〈`i | guards c′ >> interp (f a)〉 ∼ 〈`i | toLIO (f a)〉. We have to prove that
〈`i | guards (c, c′)>> interp m >>= interp.f 〉 ∼
〈`i | toLIO (m >>= f )〉.

We can rewrite guards (c, c′) >> interp m >>= interp.f as guards c >>
interp m >>= λa → guards c′ >> interp (f a) without changing the trace
of checks performed or the normal form. Therefore, we can combine this
with the previous facts to show that 〈`i | guards (c, c′) >> interp m >>=
interp.f 〉 ∼ 〈`i | toLIO m>>=λa → toLIO (f a)〉 = 〈`i | toLIO (m>>= f )〉.

Case t = defer m, with c = (). Then we know Γ ` m :HLIO c′ `i `o a
for some c′, and by induction hypothesis, 〈`i | guards c′ >> interp m〉 ∼
〈`i | toLIO m〉. We have to prove that 〈`i | guards ()>>interp (defer m)〉 ∼
〈`i | toLIO (defer m)〉, but applying the definitions of interp and toLIO
we have 〈`i | guards ()>> guards c′ >> interp m〉 ∼ 〈`i | toLIO m〉, which
follows from the induction hypothesis.

Case t = toLabeled m. Then we know

Γ ` m :HLIO c `i `o a



Mixing static and dynamic typing 285

and we have to prove that
〈`i | guard c >> toLabeled `o (interp m)〉 ∼

〈`i | toLabeled `o (toLIO m)〉.
This boils down to proving that

〈`i | guard c >> interp m〉 ∼ 〈`i | toLIO m〉,

which follows by induction hypothesis.

Theorem 1 (Termination-insensitive noninterference)
Given HLIO terms t1 and t2 with no constructors ·TCB such that

– Constrains c1 and c2 hold
– (t1 :HLIO c1 `1 `2 τ) ⇓ v1,
– (t2 :HLIO c2 `i `o τ ′) ⇓ v2, and
– 〈`i | toLIO t1〉 ≈l 〈`i | toLIO t2〉

it holds that 〈`o | toLIO v1〉 ≈l 〈`o | toLIO v2〉.

By applying Definition 2, we have that

1. 〈`i | interp t1〉
ct1−→

∗
〈`o | toLIO v1〉

2. 〈`i | interp t2〉
ct2−→

∗
〈`o | toLIO v2〉

By applying Lemma 1 to the hypothesis on t1 and t2, we obtain that

1. guard c1 >> interp t1 ∼ toLIO t1
2. guard c2 >> interp t2 ∼ toLIO t2

This implies that there exists a c, c′, X , and Y such that

5. 〈`i | guard c1 >> interp t1〉
c−→

∗
X

6. 〈`i | toLIO t1〉
c−→

∗
X

7. 〈`i | guard c2 >> interp t2〉
c′−→

∗
Y

8. 〈`i | toLIO t2〉
c′−→

∗
Y

By simple reduction rules, and the hypothesis that c1 and c2 hold, we know
that

9. 〈`i | guard c1 >> interp t1〉
c1−→

∗
〈`i | interp t1〉

10. 〈`i | guard c2 >> interp t2〉
c2−→

∗
〈`i | interp t2〉

Confining these (9) and (10) with (1) and (2), and since we are in a deter-
ministic system, we obtain that there

11. X ≡ 〈`o | toLIO v1〉
12. Y ≡ 〈`o | toLIO v2〉
13. c = c1 ∪ ct1
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14. c′ = c2 ∪ ct2

So, by using (11)–(14), we rewrite (5)–(8) as follows.

15. 〈`i | guard c1 >> interp t1〉
c1∪ct1−→

∗
〈`o | toLIO v1〉

16. 〈`i | toLIO t1〉
c1∪ct1−→

∗
〈`o | toLIO v1〉

17. 〈`i | guard c2 >> interp t2〉
c2∪ct2−→

∗
〈`o | toLIO v2〉

18. 〈`i | toLIO t2〉
c2∪ct2−→

∗
〈`o | toLIO v2〉

19. We have that 〈`i | toLIO t1〉 ≈l 〈`i | toLIO t2〉 by hypothesis, and by
definition of toLIO and hypothesis, we know toLIO t1 and toLIO t2
do not include constructors ·TCB.

At this point, we can apply the non-interference theorem in [Stefan
et al., 2012b] to 〈`i | toLIO t1〉 ≈l 〈`i | toLIO t2〉, (16), and (18), thus
obtaining that 〈`o | toLIO v1〉 ≈l 〈`o | toLIO v2〉.

C Additional figures

instance (Deferrable c1,Deferrable c2) ⇒ Deferrable (c1, c2) where
defer p f = deferPair p f

deferPair :: forall a c1 c2.(Deferrable c1,Deferrable c2) ⇒
Proxy (c1, c2) → ((c1, c2) ⇒ a) → a

deferPair ( :: Proxy (c1, c2)) f =
let f1 :: c1 ⇒ (c2 ⇒ a)

f1 = f – Cast from (c1, c2) => a to c1 => (c2 => a)
– Not possible to do it inside the type-class

f2 :: c2 ⇒ a
f2 = defer (⊥ :: Proxy c1) f1

in defer (⊥ :: Proxy c2) f2

Fig. 10. Instance of Deferrable for pairs of constraints.
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unit
Γ ` () : ()

var
(x , τ) in Γ

Γ ` x : τ

abs
Γ, x : τ1 ` t : τ2

Γ ` λx .t : τ1 → τ2

app
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

fix
Γ ` t : τ → τ

Γ ` fix t : τ

true
Γ ` True : Bool

false
Γ ` False : Bool

if
Γ ` c : Bool Γ ` t1 : τ Γ ` t2 : τ

Γ ` if c then t1 else t2 : τ

op
Γ ` (⊗) : Label `1 → Label `2 → Label (`1 ⊗ `2)

getLabel
Γ ` getLabel :HLIO () `i `i (Label `i)

labelOf
Γ ` labelOf : Label ` → `

Fig. 11. Type system for HLIO (missing rules).




