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Abstract

This paper presents SLIO, an information-flow control

mechanism enforcing dynamic policies: security policies

which change the relation between security levels while

the system is running. SLIO builds on LIO, a floating-label

information-flow control system embedded in Haskell that

uses a runtime monitor to enforce security. We identify an

implicit flow arising from the decision to change the policy

based on sensitive information and introduce a correspond-

ing check in the enforcement mechanism. We provide a for-

mal security guarantee for SLIO, presented as a knowledge-

based property, which specifies that observers can only learn

information in accordance with the level ordering. Like LIO,

SLIO is a generic enforcement mechanism, parametrised on

the concrete instantiation of security labels and their policy

change mechanism. To illustrate the applicability of our re-

sults, we implement well-known label models such as DLM,

the Flowlocks framework, and DC labels in SLIO.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features; D.4.6

[Operating Systems]: Security and Protection – Information

flow controls

Keywords Information Flow Control, Dynamic Policies,

LIO

1. Introduction

Many computing systems, such as personal computers, mo-

bile phones and web pages, allow for the installation or

inclusion of third-party code. This introduces the risk that

untrusted code, either by intention or programming errors,

leaks confidential information or violates the integrity of

data. Information-flow control (IFC) mechanisms aim to en-
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Figure 1: Company’s hierarchy before and after Alice leaves.

sure that the information flows in a system abide by the de-

sired security policy.

As a running example we consider an application respon-

sible for combining and sharing employee files, where each

file is labeled with the employee’s name as security level.

The application requires read and write access to all files,

but the security policy dictates that information may only

flow in accordance to the company’s hierarchy. That is, an

employee’s file can only contain information from that em-

ployee, whereas information from files of all employees in a

division may be written to the files of the divison manager. 1

Many IFC mechanisms assume a static partial ordering

(⊑) between security levels (e.g. [20, 28, 30]). Figure 1a

shows such an ordering for a company where Alice is the

chief executive, Bob and Carl are managers of two differ-

ent divisions, and Dave is an employee in both divisions. A

commonly enforced security poperty is the notion of nonin-

terference [15]: sensitive inputs may not influence outputs

to less-sensitive locations. However, some mechanisms al-

low for occasional exceptions to this ordering in the form of

declassification [29]. For example, a file of Alice’s security

level may be sent to the division managers in redacted form.

In this paper, we argue that the ordering between secu-

rity levels can be much more dynamic, as others have argued

before [1, 7, 21]. That is, rather than an occasional excep-

tion to the static ordering, the ordering might change much

more drastically and permanently. As an example, we con-

sider that Alice has accepted a position in a different com-

pany and leaves. Consequently, Bob and Dave are promoted

1 One could argue that this particular situation could instead be modelled

using roles for manager, employee etc. rather than employee names. We

use this model for the sake of simplicity in our examples.



and Alice’s documents have become isolated from the rest

of the company, as show in Figure 1b. To enforce such dy-

namic policies, we need mechanisms that can account for

the addition, as well as the removal of allowed information

flows during program execution.

Similar changes in the information flow policy might oc-

cur in subscription-based services (such as music streaming)

where information is only available for the time that the user

paid for. Other examples are applications where users can

change the policy themselves (e.g. in a smart phone sys-

tem), and situations where the inherent value of informa-

tion changes over time (e.g. revealing cards at the end of

a poker game [3]). These examples show that it is natural for

the value of information to change over time, motivating the

need to support dynamic information-flow policies.

Enforcing dynamic policies brings new challenges when

compared to IFC for static policies.

• Under the assumption of the static nature of a partial or-

dering it possible to approximate the security level of in-

formation. For example, a file containing information of

both Bob and Carl could, in Figure 1a, be approximated

with the security level Alice. Such approximations are in-

correct when we need to account for the possibility that

the ordering might change.

• With static orderings, IFC typically enforces noninterfer-

ence [11, 15]. In the dynamic setting, the ordering be-

tween levels might be different at the moment of (each)

output, so a different security condition is necessary.

• As the decision to modify the label ordering might be

affected by sensitive inputs to the system, this creates

a new potential flow of information that needs to be

controlled.

This paper investigates the field of dynamic policies on

both a theoretical and practical level in the context of dy-

namic enforcement, i.e. enforcement that checks informa-

tion flows at runtime. As a starting point we use LIO [33], a

dynamic information-flow control library for Haskell imple-

mented as an embedded language augmented with runtime

security checks. In its most general form, LIO is paramet-

ric on the policy specification language and label ordering

to be used in the program; this ordering must be defined

in advance and cannot change at runtime. The library pro-

vides a noninterference guarantee with respect to this order-

ing. LIO’s genericity makes it a suitable framework for our

exploration of dynamic policies and for implementing our

results.

Contributions Concretely, our contributions are:

• We present a new enforcement mechanism for dynamic

policies, called SLIO. SLIO is a strict generalisation of

LIO which, by providing a modifiable state component,

allows for the generic enforcement of dynamic policies.

We preserve LIO’s genericity and abstract away from a

concrete choice for both policy specification language

and ordering change mechanism. (§ 3)

• We identify a clear constraint that needs to be checked for

each ordering change to prevent information flow leaks

via sensitive modifications to the label ordering. (§ 4)

• The original noninterference guarantee from LIO does

not generalise to a setting with dynamic policies. For this

purpose we introduce a new knowledge-based security

condition. Though based on existing work ([1]), we in-

troduce a novel extension to allow for the persistent rela-

beling (or: declassification) of information. (§ 5, § 6)

• To demonstrate the practicality of SLIO, we implement

multiple instances for various policy specification lan-

guages, including the Decentralized Label Model (DLM)

[27], Disjunction Category Labels [32] and Paralocks [7].

(§ 7)

Before turning to the details of these contributions, we sum-

marise the essentials of LIO.

2. LIO

Labeled IO, or LIO [33], is a Haskell library that dynamically

enforces information flow control, providing termination-

insensitive non-interference [2] for sequential programs2.

LIO leverages Haskell’s monadic encapsulation of side-

effects to provide security. A monad [23] is an abstract data

type that can be used to structure effectful computations in

purely functional languages. Monads specify how to build

and bind computations together in sequence, and typically

provide distinguished operations that model specific side-

effects. Different monads are often used to model different

kinds of effectful computations. In Haskell, monads are used

to express all effects, including exception handling, nonde-

terminism, and input/output.

LIO leverages monads to precisely control what (side-

effecting) operations the programmer is allowed to perform

at any given time. An LIO program is a computation in the

LIO monad, composed from simpler monadic terms using

the fundamental monadic combinators return and (>>=)
(read as “bind”).

The operation return x produces a computation which

returns the value denoted by x . Function (>>=) is used to

sequence LIO computations. Specifically, t>>=(λx .t ′) takes

the result produced by t and applies function λx .t ′ to it.

(This operator allows computation t ′ to depend on the value

produced by t .) We sometimes use Haskell’s do-notation to

write such monadic computations. For example, the program

t>>=λx .return (x+1), which adds 1 to the value produced

by t , can be written as shown below.

do x ← t

return (x + 1)

2 A concurrent version of LIO exists [31], but this work is largely orthogonal

to the work presented here.



In Haskell, input/output operations are provided by the IO

monad. That is, all computations that want to perform I/O

operations have to be of the type IO a, where a is the type

of the returned value of the computation. The LIO monad

provided by the LIO library is intended to be used as a re-

placement for this type. It provides a collection of operations

similar to IO , but enriched with security checks that pre-

vent unwanted information flows. The noninterference guar-

antees provided by LIO only hold within this monad: an at-

tacker is a piece of untrusted, potentially malicious LIO code

that is run in the same context as the trusted code.

The LIO library employs the floating-label approach

to dynamic information-flow control, which borrows ideas

from the operating systems security research community [36]

and brings them into the field of language-based security.

Assuming a security lattice of labels (with operations ⊔, ⊓
and ⊑ defined on them), the LIO monad uses its state to

keep track of a current label, lcur. This label represents the

least upper bound over the labels on which the current com-

putation depends. All the (I/O) operations provided by LIO

take care to appropriately validate and adjust this label.

For example, when an LIO computation with current

label lcur observes an entity with label lA, its current label

must change (possibly rise) to the least upper bound of the

two labels, written lcur ⊔ lA. As it were, the current label

floats up in the security lattice, to maintain its position as an

upper bound on the security levels of the information that is

currently in scope. Similarly, before performing a side-effect

visible to label l, LIO first checks that the current label flows

to l (lcur ⊑ l) before allowing the operation to take place.

LIO is parameterised by a label format, i.e. the type of

the labels is not fixed. Instead, actions work on a generic la-

bel type. The library leverages Haskell type classes, an over-

loading mechanism, to implement this: LIO actions have the

context (Label α) ⇒ in their type signature, which restricts

α to types that are instances of the Label type class. This

class requires the label type to implement security lattice op-

erations such as ⊑, ⊔, and ⊓, making the behaviour of these

operators depend on the particular label type of the labels to

which they are applied.

Labeled values Since LIO protects all values in scope

with lcur, the library also provides a way to manipulate

differently-labeled data without monotonically increasing

the current label, lcur. For this purpose, there is a data type

called Labeled , which represents explicit references to la-

beled, immutable data. It is still possible to bind a variable

of, say, type Labeled L Int , which contains an Int protected

by a label (of type L) different from lcur.

The two most important functions that work on labeled

values are label and unlabel. The action label l v creates

a Labeled value with label l and contents v , provided that

lcur ⊑ l . That is, the label l has to reflect that the value v

can depend on data of label lcur. Dually, the action unlabel lv

raises lcur to lcur ⊔ l , where l is the label on lv , and returns v.

Labeled references LIO also provides mutable state in

the form of references. In Haskell, references are of type

IORef a, where a is the type of the contents of the refer-

ence. LIO introduces labeled references, typedLIORef L a,

where L is the type of the labels and a is the type of the con-

tents of the reference. The primitive operations on LIORef s

are newLIORef, readLIORef and writeLIORef.

The action newLIORef l v creates an LIORef with label

l and contents v , provided that lcur ⊑ l . Given an LIORef

r with label lr , the action readLIORef r returns the value

of r , and raises lcur to lcur ⊔ lr . The action writeLIORef r v

replaces the contents of r with v , provided that lcur ⊑ lr .

Note that the operations on LIORef s and Labeled values

interact with the current label in analogous ways.

In floating-label systems, any computation on sensitive

data raises the current label, even though the result of the

computation may never be observable on a lower security

level. As a result, it is possible for programs to inadvertently

raise their current label to a point where they can no longer

perform any useful side-effects, a situation known as label

creep. For example, after a program reads from a file of a

high security level, it is no longer allowed to write to a file

of a lower security level, even when the information written

does not depend in any way on the information read.

In order to mitigate this label creep, LIO provides the

toLabeled operation. Given a computation m that would

raise lcur to l′cur, toLabeled l m executes m without raising

lcur, and instead encapsulates m’s result in a Labeled value

protected by label l – provided that l′cur ⊑ l . This allows

for sub-computations that work on data above lcur without

causing the main computation to raise its current label.

Example Figure 2 shows an LIO program working with

the lattice given in Figure 1a, of type User . The code de-

fines a function report , which takes three labeled values

as arguments. Information from these values is written into

the files of certain principals, the LIORef s aliceReport and

bobReport . These files are assumed to be in scope, with la-

bels Alice and Bob respectively. Firstly, Bob’s data is unla-

beled with unlabel, which raises the current label to Bob

and binds b to the contents of the labeled value. Then, a

toLabeled computation is started, which unlabels data from

Alice (raising the current label to Alice), binding it to a. De-

pending on the value of b, the block returns either a + b

or just a, which is bound to the main code block as a la-

beled value with label Alice. Note the use of toLabeled to

delimit the scope of Alice’s data and demarcate the block of

code where her data might influence control flow: after the

toLabeled block is finished, the current label is restored to

Bob and the binding a is no longer accessible.

Afterwards, the function unlabels data from Dave, com-

bines it with Bob’s data, and writes it to the reference

bobReport . These operations would be potentially forbidden

if we had not used toLabeled, since unlabeling aliceData

would have permanently raised the current label to Alice. Fi-



report :: Labeled User Int → Labeled User Int

→ Labeled User Int → LIO User ()

report bobData daveData aliceData =

do b ← unlabel bobData

lv ← (toLabeled Alice

(do a ← unlabel aliceData

if b > 10

then return (a + b)

else return a))

d ← unlabel daveData

writeLIORef bobReport (combine d b)

v ← unlabel lv

writeLIORef aliceReport v

Figure 2: LIO code example

nally, the code unlabels the value returned from toLabeled,

which raises the current label to Alice, and writes its con-

tents to the reference aliceReport . Using toLabeled made

it possible to perform side-effects at the level of Bob be-

fore the final write to aliceReport . As an illustration of the

coarse-grainedness of the approach, note that in the label

checks that are performed upon execution of writeLIORef,

the particular values written to the references are irrelevant;

when we write to aliceReport , the current label must flow

to Alice, even if what we are attempting to write did not

originate from an entity with label Alice.

3. Stateful LIO

In this section we introduce Stateful LIO, or SLIO for short:

an extension of LIO with support for dynamic policies.

The key aspect of dynamic policies is that the order-

ing between labels can vary during execution. We therefore

parametrise SLIO not only on the label format, but also on

a data type representing the policy-relevant state of the ap-

plication necessary to derive the relationship between labels.

That is, the label type class now takes the form Label α β,

where α is the label format as before and β is the type of the

structure representing the policy-relevant state.

As exemplified in Figure 1b, the ordering between labels

does not have to form a lattice per se in a dynamic set-

ting, and the Label type class therefore no longer requires

instances to implement lattice operations such as ⊔ and ⊓.

The only operation that a Label instance is required to pro-

vide is the (reflexive and transitive) relation between labels

in a given state, which we denote by ⊑. That is, ⊑ is of the

type S → L→ L→ Bool and⊑ s l1 l2, denoted l1 ⊑s l2,

returns True iff l1 is less restrictive than l2 in state s .

The LIO library only allows its own operations to inter-

act with the current label. That is, only operations such as

readFile and unlabel are allowed to read and modify lcur.

Similarly, SLIO’s state contains both the current label and

the current policy state st. The SLIO library exports opera-

tions that allow computations to read and modify st. Further

encapsulations of the SLIO library may decide to only pro-

vide a limited interface to these operations, so as to better

control the policy changes.

The floating label SLIO only requires label formats to pro-

vide the⊑ relation, but this clashes with the original floating

label approach of LIO. LIO tracks l -labeled information en-

tering the computation by computing lcur ⊔ l . With varying

policy states, the join-operator ⊔ gives a different result in a

different state – at times an upper bound may not even exist,

as is the case for Alice ⊔ Bob in Figure 1b. We address this

in a manner inspired by the theoretical enforcement mecha-

nisms suggested in [1]. We define lset to be a set of labels,

to be used instead of the current label lcur, and representing

all labeled information that is present in the computation.

Recording that l -labeled information has become accessible

is then done by letting lset ‘float up’ to lset ∪{l}. Thus, lset

behaves as the floating label in the powerset lattice of labels.

The original checks of the form lcur ⊑ lr that occurred

e.g. when writing to a reference are replaced with a series

of checks ∀l ∈ lset .l ⊑s lr – where all checks need to

hold in order for the flow to be allowed. That is, if all

information that has entered the computation is allowed to

flow to the label lr (according to the current policy), we

allow the program to write to a file with that label. We

abbreviate this check as lset ⊑s lr.

The toLabeled operation requires the programmer to ex-

plicitly specify the label to be placed on the result of the pro-

vided computation. Its operation becomes stateful as well,

now checking that lset ′ ⊑st′ l where lset ′ and st′ are the

current label resp. current policy state after executing the

computation and l is the provided label.

3.1 Exploring SLIO

The principal function of SLIO is to provide off-the-shelf en-

forcement for encodings of dynamic policy languages such

as Paralocks [7] and DCLabels [32]. Before discussing this

use of SLIO in more detail in § 7, we introduce the basic

behaviour of SLIO programs using simple instantiations.

Static Policies SLIO is a strict generalisation of LIO. More

concretely, if an instance of Label does not use the policy

state component in ⊑s , SLIO behaves exactly like LIO. We

demonstrate this for the static lattice shown in Figure 1a by

using the unit type () for policy state.

data User = Alice | Bob | Carl | Dave

instance Label User () where

l1 ⊑s Alice = True

Dave ⊑s l2 = True

l1 ⊑s l2 = False

Instantiating SLIO with this Label format effectively en-

forces noninterference. To demonstrate this and later flows,



relabel l lv = toLabeled l (unlabel lv)

declassify l lv = do

setState True

result ← relabel l lv

setState False

return result

Figure 3: Declassification.

we introduce a function copy which copies information from

one reference into another. As is common in LIO we perform

this operation in a toLabeled computation, to avoid tainting

the current label unnecessarily.

copy :: LIORef User String → LIORef User String

→ SLIO () User ()

copy from to = toLabeled (labelOf from) (do
info ← readLIORef from

writeLIORef to info)

SLIO detects a violation of noninterference when data from

Carl is copied to Bob.

nonInterfering :: SLIO () User ()
nonInterfering = do

dataAlice ← newLIORef Alice "Alice’s data"

dataBob ← newLIORef Bob "Bob’s data"

dataCarl ← newLIORef Carl "Carl’s data"

copy dataCarl dataAlice -- Allowed flow.

copy dataCarl dataBob -- Violation detected.

Dynamic Policies The last information flow to Bob would

have been allowed if Bob had been promoted according to

the policy depicted in Figure 1b. To enforce this dynamic

policy using SLIO we need to incorporate the state compo-

nent. The most direct way to encode the dynamic nature of

the policy is to store the set of allowed flows in the state. In

Haskell notation, this is a list of User pairs: [(User ,User)].

instance Label User [(User ,User)] where

l1 ⊑s l2 = l1 ≡ l2 ∨ (l1, l2) ∈ transClosure s

type LIOCompany = SLIO [(User ,User)] User

We define ⊑s such that we can minimise the set of flow

relations in the state, using transClosure to ensure that

the relation is transitive. For brevity we introduce the type

synonymLIOCompany for this kind of SLIO computations.

The following function initialises the policy state to the

situation shown in Figure 1a:

setInitState :: LIOCompany ()

setInitState = putState [ (Dave,Bob), (Dave,Carl)

, (Bob,Alice), (Carl,Alice)]

The function aliceLeaves implements the event where Alice

leaves the company, changing the label ordering from Fig-

ure 1a to Figure 1b.

aliceLeaves :: LIOCompany ()

aliceLeaves = do

s ← getState

putState (s ++ [(Carl,Bob)]) \\
[(Bob,Alice), (Carl,Alice), (Dave,Carl)]

Assuming the references from the previous example, the dy-

namic nature of the information-flow policy can be mani-

fested as follows:

dynamic :: LIOCompany ()

dynamic = do

setInitState

copyFile dataCarl dataAlice -- Allowed flow.

aliceLeaves

copyFile dataCarl dataBob -- Allowed flow.

copyFile dataCarl dataAlice -- Violation detected.

Relabeling Figure 3 shows the function relabel which re-

labels a labeled value lv with the label l . This function can

be used to perform declassification [29] using the following

technique, described in [8]. Assume two security levels Low

and High . The policy state is of type Bool and information

can only flow from High to Low when the state is True.

All other flows are allowed in either state. Figure 3 displays

how this allows us to write declassify by temporarily chang-

ing the state and calling relabel . We revisit this pattern in

§ 6 where we construct a security condition which explicitly

allows for persistent relabelings of information.

4. Conditional Change in Label Ordering

Allowing programs to freely change the policy state results

in uncontrolled information flows, previously not present in

LIO. This section establishes a condition on state change

which ensures the absence of such flows. We identify this

condition as a separate contribution of this paper, since it

can also be applied on other enforcement mechanisms with

dynamic policies (e.g. Paragon [8]).

We demonstrate the type of flow via a minimal example,

assuming levels Low and High and a boolean state as in

the relabeling example discussed above. Figure 4 displays

a program which creates a Low reference r . When the High

information provided equals 0 the computation changes the

state to allow this information to flow to r . The result of the

toLabeled computation gets labeled High but is ignored by

the rest of the computation.

We assume the computation starts with lset = ∅ and

policy state False . If the value of highData is 0, r is updated

while lcur = {High}, which is allowed since lcur ⊑True

Low . lset is set back to ∅ after the toLabeled computation,



leak highData = do

r ← newLIORef Low 1

← toLabeled High (do

h ← unlabel highData

when (h ≡ 0) (do

setState True

writeLIORef r 0))

v ← readLIORef r

return v

Figure 4: Information leaks via conditional state change.

and the policy state is again False. Thus after reading r and

returning its value, lset = {Low}.
Although it might appear as if information only flows

from High to Low when the policy state is True, this is

not the case. In particular, when highData 6= 0, we learn

this by observing that the value in r did not change. Thus

information flows from High to Low even though the policy

state is never set to True in the entire computation. Clearly

the program should not be considered secure.

The computation’s decision to allow the flow to Low is

based on information which, at the moment of decision, is

not allowed to flow to Low . We identify this as the root of

the problem. If instead the policy state changes to True just

before the when condition, the program would semantically

be secure as it would allow the conditional flow, rather than

to conditionally allow the flow.3 This could be interpreted

as the need to preserve the monotonicity property of the

original LIO: information in scope can only become more

confidential. That is, if at some point during the computation

information can no longer flow to some label l , nothing can

flow to l in the rest of this (toLabeled) computation either.

In general, whenever the policy state changes from s1
to s2, we need to ensure that s2 does not allow flows from

labels in lset which were previously disallowed in s1. In

other words, the upper closure of lset should not increase

by changing the ordering from ⊑s1 to ⊑s2 . To enforce

this we require each instance of Label to define an op-

eration incUpperSet :: S → S → L → Bool , where

incUpperSet s1 s2 l returns True if the upper set for label l

increases; that is, if there exists an l ′ such that l 6⊑s1 l ′

and l ⊑s2 l ′. The SLIO library then checks whether

∀l ∈ lset . ¬ (incUpperSet s1 s2 l).
In the example displayed in Figure 4, the call setState

causes the SLIO library to check incUpperSet False True

{High}. This should under a correct implementation return

True, since the change in ordering increases the upper clo-

sure of lset = {High} from {High} to {Low ,High}.

3 Since the floating label approach does not distinguish explicit from im-

plicit flows, the setState operation should, in practice, be placed before the

unlabeling of highData .

Values v ::= True | False | () | λx .e | ℓ | SLIO e | Lb l e

Expr . e ::= v | x | e e | fix e | if t then e else e

| return e | e >>= e | getLabel

| toLabeled l e | toLabeledRet ls s l e

| label e e | unlabel e

| labelOf e | ⊑| newLIORef e e

| writeLIORef e e | readLIORef e

| setState e | getState

Figure 5: λSLIO syntax.

The requirement that ⊑s is a transitive relation is es-

pecially relevant here, since this check aims to control the

yet unknown remainder of the execution, where flows might

happen in a transitive manner. That this check enforces the

monotone property of SLIO and prevents the information

flows arising from policy state change is an essential step

in the proof for our security condition (§ 6).

5. Semantics

In this section we formalise SLIO as a simply-typed, call-

by-name λ-calculus, which we call λSLIO. Figure 5 gives the

formal syntax of λSLIO, parametric in the label type ℓ. Syn-

tactic categories v and e represent values and expressions,

respectively. Expressions of the form SLIO e, Lb l e and

toLabeledRet ls s l e are not part of the surface syn-

tax, i.e., they are not made available to programmers and

are solely used internally to provide semantics to the other

expressions. Values include standard primitives (Booleans,

unit, and λ-abstractions) and terminals corresponding to la-

bels (ℓ) and monadic values (SLIO e). The latter denote ef-

fectful computations subject to security checks. Expressions

consist of standard constructs (values, variables x , function

application, the fix operator, and conditionals), a terminal

corresponding to ⊑ (the partial order on labels), standard

monadic operators (return e and e >>= e), getLabel,

toLabeled, operations on labeled values and references, and

operations for setting and getting the policy state (setState

and getState). Even though the full LIO library can handle

several other kinds of entities, such as files, we focus on la-

beled values and references since they accurately represent

the security mechanisms of LIO; the security checks and ef-

fects on other kinds of labeled entities are analogous. For

brevity, we do not describe the λSLIO type system since it

is standard and is not relevant for security checks. In what

follows, we assume that all expressions involved are well-

typed.

A top-level λSLIO computation is a configuration of the

form 〈Σ|e〉, where e is the monadic expression and Σ is the

state associated with the expression. The state Σ contains

the current label set lset , the current policy state st , and the

store φ (for references). We give a small-step operational se-

mantics for λSLIO in the form of a reduction relation−→. Fig-



GETLABEL
Σ = (lset , st, φ)

〈Σ|E [getLabel ]〉 −→ 〈Σ|E [return lset ]〉

LABEL
Σ = (lset , st, φ) lset ⊑st l

〈Σ|E [label l e ]〉 −→ 〈Σ|E [return (Lb l e)]〉

UNLABEL

Σ = (lset , st, φ)
lset

′ = lset ∪ {l } Σ′ = (lset ′, st, φ)

〈Σ|E [unlabel (Lb l e)]〉 −→ 〈Σ′|E [return e ]〉

LABELOF
E [labelOf (Lb l e)] −→ E [l ]

NEWLIOREF

Σ = (lset , st, φ)
lset ⊑st l Σ′ = (lset , st, φ [x → Lb l e ]) fresh(x)

〈Σ|E [newLIORef l e ]〉 −→ 〈Σ′|E [return x ]〉

WRITELIOREF

Σ = (lset , st, φ) Lb l v = φ (x)
lset ⊑st l Σ′ = (lset , st, φ [x → Lb l e ])

〈Σ|E [writeLIORef x e ]〉 −→ 〈Σ′|E [return ()]〉

READLIOREF

Σ = (lset , st, φ) Lb l e = φ (x)
lset

′ = lset ∪ {l } Σ′ = (lset ′, st, φ)

〈Σ|E [readLIORef x ]〉 −→ 〈Σ′|E [return e ]〉

SET

Σ = (lset , st, φ)
∀l ∈ lset . ¬ incUpperSet (st, v , l) Σ′ = (lset , v , φ)

〈Σ|E [setState v ]〉 −→ 〈Σ′|E [return ()]〉

GET
Σ = (lset , st, φ)

〈Σ|E [getState ]〉 −→ 〈Σ|E [return st]〉

TOLABELED
Σ = (lset , st, φ)

〈Σ|E [toLabeled l m ]〉 −→
〈Σ|E [m >>= toLabeledRet lset st l ]〉

TOLABELEDRET
Σ = (lset , st, φ) lset ⊑st l

〈Σ|E [toLabeledRet ls s l v ]〉 −→
〈(ls, s, φ)|E [return (Lb l v)]〉

Figure 6: SLIO semantics (standard λ-calculus rules elided).

ure 6 shows the relevant reduction rules for −→. Intuitively,

〈Σ|e〉 −→ 〈Σ′|e ′〉 means that, starting from a configuration

〈Σ|e〉, it is possible to take a step to 〈Σ′|e ′〉. We write −→∗

for the reflexive and transitive closure of −→.

The reduction rules for λSLIO are specified using evaluation

contexts in the style of Felleisen and Hieb [14]. Figure 7

defines the evaluation contexts for pure expressions (E) and

monadic (E) expressions for λSLIO. The definitions are mostly

standard. Note that monadic expressions are evaluated only

at the outermost use of bind (E >>= e), as in Haskell.

E ::= [ ] | E e | fix E | if E then e else e

| label E e | unlabel E | labelOf E | toLabeled E e

| newLIORef E e | writeLIORef E e | readLIORef E

| setState E

E ::= E | E >>= e

Figure 7: Evaluation contexts for SLIO.

Rule (WRITELIOREF) is used to assign a value to a

mutable reference. The rule looks up the reference in the

memory store φ, where it is represented as a labeled value

Lb l v . Then, a security check is performed to ensure that

the current label set flows to l (lset ⊑st l ) (note that this

is actually the conjunction of several checks, one per label

in the label set). If the check passes, the memory store is

updated with the new value.

Rule (READLIOREF) reads a value from a mutable ref-

erence. The current label set is updated to include the label

of the reference, to reflect the fact that the contents of the

reference are now in scope and could potentially influence

side-effects in the future. The rules for labeled values inter-

act with the current label set in an analogous manner.

Rules (SET) and (GET) define the semantics for the new

operations in λSLIO, namely setState and getState. As ex-

pected, they work by writing and reading the policy state in

the λSLIO state, except that setState additionally checks that

the upper closure is not increased. This check is performed

by a user-supplied function, as explained in Section 4.

Finally, the rule (TOLABELED) binds the monadic com-

putation m to the internal-only expression toLabeledRet.

The rule (TOLABELEDRET) resets the policy-relevant com-

ponents to their value before m, returning the result of m as

a labeled value only if the current configuration allows in-

formation to flow to the label l specified by the programmer.

6. Semantic Soundness

In this section we define a security condition for dynamic

policies and show that it is guaranteed by λSLIO. We first

present the attacker model, which is similar to the one used

for static policies in LIO [33].

6.1 Attacker model

SLIO aims to provide security guarantees even in the pres-

ence of untrusted code. Following this assumption, we make

configurations the observations of our model.

Definition 1 (Trace). A configuration produces a trace of

configurations, written 〈Σ0|e0〉 ⇓ t with t a sequence of con-

figurations 〈Σ0|e0〉 . . . 〈Σn |en〉, if there exists an evaluation

〈Σ0|e0〉 −→ . . . −→ 〈Σn |en〉.

As in [33] we use a technique called term erasure. Attack-

ers are represented by a security level A. The function εA(t)



εA(〈Σ|e〉 · t) =











〈εs
A
(Σ)|εs

A
(e)〉 · εA(t) if obsA(〈Σ|e〉),

with s = Σ.st

εA(t) otherwise

εsA(Σ) = Σ[φ 7→ εsA(Σ.φ)]

εsA(Σ.φ) = {(x, ε
s

A(Σ.φ (x ))) | x ∈ dom(Σ.φ)}

εsA(Lb l e) =

{

Lb l εs
A
(e) if l ⊑s A

Lb l • otherwise

Figure 8: Erasure function for non-trivial cases.

erases from the trace of configurations t all the information

which is not observable on level A.

Since the current label set protects all available informa-

tion, A can only observe configurations where the current

label set can flow to A (according to the current policy state).

Definition 2 (A-observable configuration). A configura-

tion 〈Σ|e〉 is observable to an attacker on level A, written

obsA(〈Σ|e〉), iff Σ.lset ⊑Σ.st A.

Configurations which are not observable to A are re-

moved from the trace entirely, as shown in Figure 8. From

the configurations that are not removed, the erasure func-

tion erases only the information that cannot flow to A, so the

erased configuration is 〈εs
A
(Σ)|εs

A
(e)〉. Here we fix s as the

current policy state in that configuration, i.e, s = Σ.st.
For most cases, the erasure function is simply applied

homomorphically (e.g., εs
A
( if e then e1 else e2) =

if εs
A
(e) then εs

A
(e1) else εs

A
(e2)). The interesting cases

for this function are displayed in Figure 8. The syntax node

• represents an erased expression: information that is not

observable to an attacker at level A. In particular, εs
A
(Lb l e)

erases to Lb l • when l 6⊑s A.

6.2 Security Condition

The two-run noninterference condition associated with LIO

does not translate well to a setting with dynamic policies.

Instead, we find that epistemic properties [4, 5, 7] form a

more natural basis for defining information flow conditions,

in particular in the context of dynamic policies.

As a starting point we adapt the security condition from

Askarov and Chong [1]. This condition extends from the no-

tion of gradual release [4], which builds around the concept

of a knowledge set: the set of initial inputs that could have

resulted in the observations made by an attacker. Following

Delft et al. [12] we instead talk about the exclusion knowl-

edge set: the set of initial inputs that could not have resulted

in these observations. This matches the intuition that a larger

(exclusion) knowledge set implies more knowledge.

Since λSLIO values can be SLIO computations, we let the

initial expression take the role of initial (secret) input. Let e

be such a secret input which is evaluated in Σ0, the initial

state with lset = ∅ and φ = ∅ – the initial value of

st varies between instantiations. Given 〈Σ0|e〉 ⇓ t, i.e.

this configuration produces a sequence of configurations t,

let o = εA(t) the observations made by attacker A. The

exclusion knowledge of A is then defined as the set of inputs

that could not have produced the same observations:

ekA(o) = {e
′ | ¬∃t′.〈Σ0|e

′〉 ⇓ t′ with εA(t
′) = o}

Now let 〈Σ0|e〉 ⇓ t · α, with obsA(α). What an attacker

learns from this new configuration α can then be expressed

as ekA(εA(t · α)) \ ekA(εA(t)): the set of inputs addition-

ally excluded. To specify that the attacker does not learn any-

thing new from this observation, we can simply require that

ekA(εA(t · α)) \ ekA(εA(t)) = ∅.
This definition would also not allow the attacker to learn

anything from the fact that the computation produced an-

other output after producing trace t. SLIO, and LIO, how-

ever do not check for leaks via progress and allow com-

putations to diverge based on sensitive information. This

means that information might e.g. be leaked by the fact that

a toLabeled computation terminated. Askarov and Chong

present a termination-insensitive condition by introducing

the attacker’s progress knowledge. That is, we allow the at-

tacker to exclude also those initial commands e ′ that cannot

produce another observation:

ek+

A(o) = {e
′ | ¬∃t′, α′.〈Σ0|e

′〉 ⇓ t′ · α′

with εA(t
′) = o and obsA(α

′)}

Finally, we do allow the attacker to exclude some initial

inputs using observation α, as long as this is in accordance

with the ordering determined by the state s in which α

was produced. Following Askarov and Chong, we allow the

attacker to exclude those inputs that are not equal to e when

observed under state s.

Definition 3 (Input release). Given input e, the state s allows

an attacker A to exclude the set of inputs IA(e, s), where

IA(e, s) = {e
′ | εsA(e) 6= εsA(e

′)}

The security condition is then that for every 〈Σ0|e〉 ⇓ t ·α
with obsA(α), α = 〈Σn |en〉 and Σn .st = s , the attacker’s

increase in knowledge is bounded by IA(e, s):

ekA(εA(t · α)) \ ek
+

A(εA(t)) ⊆ IA(e, s)

Relabeling support The examples from § 3.1 show that

SLIO allows for persistent relabelings of data. By this we

mean that we want to have the possibility to place a value

of label l1 in a container with label l2, after which the value

from this container is treated as if it has label l2. We used this

in a simple encoding of declassification, shown in Figure 3.



add (TopSecret ⊑ Secret)

sec ← relabel Secret top

remove (TopSecret ⊑ Secret)

add (Secret ⊑ Public)

pub ← relabel Public sec

Figure 9: Relabeling example.

Such relabelings are a desirable feature of an IFC lan-

guage. The fact that persistent relabelings are part of various

policy languages that we would like SLIO to encode, no-

tably including the DLM described in § 7, further motivates

the need for a security condition that supports them.

It turns out that our direct adaptation of Askarov and

Chong’s security condition does not allow for persistent

relabelings, as the example in Figure 9 shows. An attacker

of level Public observes the value of pub (and therefore

learns the value of top) when the current ordering does

not allow flows from TopSecret to Public. The security

condition requires that a run started in a state with a different

value for top should yield the same value for pub as in

the observed run. Since this is not the case, the program

violates the security condition. In the terminology of facets

of dynamic policies [6], the condition does not allow for the

time-transitive flows that we desire.

We conclude that we need to allow the attacker to exclude

inputs based on relabeled information, in addition to the

inputs described by IA(e, s).
Given the flow relation determined by policy state s, let

L be the set of levels from which A is allowed to learn. That

is, L = {l | l ⊑s A}. To define the information that is

collectively known by L, we introduce the erasure function

on traces for multiple levels εL(t), shown in Figure 10. This

function only erases labeled data or configurations if none of

the levels in L can observe it.

Given 〈Σ0|e〉 ⇓ t ·α, with obsA(α), and s the policy state

in α. We can specify the information that is released to A by

relabelings in t as follows.

Definition 4 (Relabeling release). Given a trace t, the policy

state s allows an attacker A to exclude the set of inputs

RA(t, s), where L = {l | l ⊑s A} in

RA(t, s) = {e
′ | ¬∃t′, α′.〈Σ0|e

′〉 ⇓ t′ · α′ with obsA(α
′)

and εL(t) = εL(t
′)}

We straightforwardly extend the security condition to ad-

ditionally allow an attacker to learn information that has

been released by relabelings.

Definition 5 (Termination-insensitive security). Command

e is secure against an attacker A if for all traces t and

configurations α such that 〈Σ0|e〉 ⇓ t · α with obsA(α),
α = 〈Σn |en〉 and Σn .st = s , the attacker’s increase in

εL(〈Σ|e〉 · t) =











〈εsL(Σ)|ε
s
L(e)〉 · εL(t)

if ∃l ∈ L . obs l(〈Σ|e〉), s = Σ.st

εL(t) otherwise

εsL(Lb l e) =

{

Lb l εsL(e) if ∃l′ ∈ L . l ⊑s l ′

Lb l • otherwise

Figure 10: Multi-level erasure function for cases different

from single-level erasure.

knowledge is bounded by IA(e, s) and RA(t, s):

ekA(εA(t · α)) \ ek
+

A(εA(t)) ⊆ IA(e, s) ∪RA(t, s)

Remark 1. Our choice in defining the set RA(t, s) is not

an arbitrary one. In Appendix B we list a collection of other

possible definitions that also appear reasonable, but either do

not support relabelings to the extent that we find natural, or

allow for flows that we consider insecure, such as the release

of information via conditional state change.

Remark 2. Askarov and Chong identify that a perfect re-

call attacker might learn less from an observation than an

attacker who has forgotten part of the earlier knowledge (i.e.

an attacker with some knowledge wk ⊂ ek+

A(εA(t)). Al-

though our definitions assume a perfect recall attacker, we

observe that ek+

A(εA(t)) ⊆ RA(t, s) since L always in-

cludes A itself. Therefore the security condition could be

specified as ekA(εA(t ·α)) ⊆ IA(e, s)∪RA(t, s). Hence by

allowing for relabeling release by Definition 4, a program

that is secure by Definition 5 is also secure against even the

most forgetful attacker with wk = ∅.

Theorem 1. All λSLIO computations are termination-insensi-

tive secure.

Proof. See Appendix A.

7. Encodings

To demonstrate the genericity of SLIO we provide encodings

for various policy specification frameworks. For each policy

language, SLIO provides an enforcement mechanism in ex-

change for the relatively minor effort of encoding that lan-

guage. This allows for easy exploration of policy languages,

as well as the effects of modifying and extending them. We

expect user applications to be typically written against such

an encoding, rather than creating an ad hoc policy language

using ‘bare’ SLIO (as we did in § 3.1). Using an existing pol-

icy language one can write natural policy labels with well-

established semantics.

The following policy languages have been encoded in

SLIO and are available from [9]: Two-Point Lattice, Flow-

policies for non-disclosure [21], the Decentralized Label



Model (DLM) [27], Disjunction Category Labels [32] and

Paralocks [7].

Rather than the dynamic policy-oriented Disjunction Cat-

egory labels or Paralocks, we use this section to present the

DLM encoding in more detail, for the following reasons.

• The DLM is well-known and widely used in research.

• All information relabelings need to pass a dedicated de-

classify function. We show how this common pattern can

be enforced with dynamic policies using the right encod-

ing in SLIO (following an encapsulation technique simi-

lar to [8]).

• Although typically not supported by implementations,

the DLM does contain dynamic features. More specif-

ically, the DLM includes a hierarchy among principals

which is subject to change, but these changes are ‘as-

sumed to occur infrequently’ [25]. Jif, an extension to

Java with support for the DLM, relies on this assumption

when verifying that applications are information-flow se-

cure. By encoding the DLM in SLIO we can guarantee

security even in the presence of hierarchy change.

Remark 3. Since its introduction by Myers and Liskov [26],

various information-flow concepts have been added to the

DLM, such as robust declassification [35] and information

erasure [10]. We consider the DLM as used in the first

iteration of the Jif compiler [25], matching most closely the

model described in [27].

The DLM Language In DLM, the security label l1 =
{o1 : r2, r3; o2 : r3, r4} specifies that data is owned by

the principals o1 and o2. Each owner specifies a different

set of principals they allow to read this data. Effectively, the

only principal that they both allow to read the data is r3.

The DLM includes an ordering among principals, the acts-

for hierarchy�. In a setting where principal r2 � r4, label l1
is equivalent to the label l2 = {o1 : r2, r3; o2 : r2, r3, r4}.
That is, since o2 allows r4 to read the data, o2 implictly

allows r2 as well. Labels l1 and l2 are also equivalent in a

setting where o1 � o2. That is, each principal that is allowed

to read data by o1 is implicitly also allowed to read that data

by o2. This hierarchy may be modified at run time.

The DLM assumes the existence of a declassify statement

which makes the label of the provided data more permissive,

either by extending an owner’s reader-set or by removing an

owner’s concern entirely. Declassification is only permitted

if the owners for whom information is declassified allowed

for this by giving the computation their authority.

Representing the DLM in SLIO The state component of

the SLIO encoding of the DLM contains i) a boolean indi-

cating whether or not declassification is allowed; ii) a set of

principals who have given authority to the current computa-

tion; and iii) the set of principal pairs indicating the current

hierarchy �, similar to the hierarchy among Users in Sec-

tion 3.1. The DLM encoding does not expose the setState

operation from SLIO directly to user code. Helper functions

are provided to change the hierarchy, and information can

be declassified using the exposed declassify function. The

declassify function uses the boolean element of the state as

in Figure 3 to relabel the information, but only if such de-

classification is allowed at that moment. By means of this

encapsulation, we can provide the necessary guarantees on

declassifications, even in the presence of a changing acts-for

hierarchy. A more detailed discussion of the DLM encoding

can be found in the technical report [9].

8. Related work

Supporting dynamic policies is the next step in the nat-

ural evolution of security conditions from noninterference

and declassification [15, 22, 29]. Balliu [5], Broberg and

Sands [7] and Askarov and Chong [1] construct conditions

for dynamic policies on top of the epistemic gradual release

property, originally created to support declassification [4].

Delft et al. [12] show that epistemic properties can be un-

folded into two-run properties, a technique we also use in

the proof the soundness of our enforcement system.

A different approach to defining dynamic security poli-

cies can be traced back to the early work of Goguen and

Meseguer on conditional noninterference [16], where non-

interference relations on machine models only need to hold

provided that some condition on the execution history holds.

Zhang [37] expands on this, presenting a set of unwinding

relations that can be verified by existing proof assistants.

The dynamic policies considered by SLIO are of a syn-

chronous nature. That is, the policy changes deterministi-

cally with program execution. Other work considers asyn-

chronous policies, such as Hicks et al. [17] and Swamy et

al. [34]. Both approaches do require some synchronisation

mechanism between the policy and the program execution.

Concerning IFC libraries for Haskell, the seminal work

by Li and Zdancewic [20] consists in a library for enforcing

information-flow security using arrows [19], a generalisation

of monads. Russo et al. [28] show a monadic IFC security

library, which statically enforces noninterference by lever-

aging Haskell’s type system. Stefan et al. [33] propose LIO,

which uses monads to track information-flow dynamically.

Morgenstern et al. [24] encode an IF-aware programming

language in Agda, without considering computations with

side-effects. Devriese and Piessens [13] use monad trans-

formers and parametrised monads to enforce noninterfer-

ence. Unlike SLIO, none of the approaches mentioned above

support dynamic policies or declassification in their seman-

tic conditions, although for practical reasons some of them

provide special constructs for declassification in their imple-

mentation.

Breeze is a programming language with IFC proposed by

Hritcu et al. [18] which, like LIO, is based on the floating-

label approach. In this system, lowering labels on values or

the program counter (c.f. current label in LIO) is a privileged



operation that requires special authority. Given the design

similarities with LIO [33], we believe that our results could

be easily adapted to Breeze.

9. Conclusions and Future Work

We have explored dynamic policies in a dynamic IFC set-

ting by presenting SLIO, a strict generalisation of LIO with

support for generic enforcement of dynamic policies. We

have shown SLIO sound with respect to an epistemic se-

curity condition for dynamic policies with relabelings. We

also demonstrated its practical use by encoding multiple pol-

icy frameworks which are available on [9] together with the

SLIO library and the technical report version of this paper.

As future work, we intend to generalise the singular labels

on labeled values and references to become sets of labels,

thereby making them more homogenous with the rest of the

enforcement. That is, like the current label set, these labels

become elements in the power set lattice of security labels.

We also propose to examine extensions of SLIO with

more advanced language-level features, such as concurreny

and exceptions. Supporting concurreny appears to be partic-

ularly challenging, since it is not clear whether the policy

changes performed in one thread can be made available to

other threads while preserving soundness.

Finally, we remark that the library presented here could

serve as a convenient testbed for future encodings of policy

frameworks and comparing their relative expressive power.
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A. Proof for Theorem 1

For brevity, we only present an outline of the proof. For more

details we refer to the technical report [9].

Notation As additional notation for this appendix, we in-

troduce εA(〈Σ|e〉) as a shorthand for 〈εs
A
(Σ)|εs

A
(e)〉 where

s = Σ.st .
The theorem states that for all commands e, for all traces

t and configurationsα such that 〈Σ0|e〉 ⇓ t·α with obsA(α),
α = 〈Σn |en〉 and Σn .st = s ,

ekA(εA(t · α)) \ ek
+

A(εA(t)) ⊆ IA(e, s) ∪RA(t, s)

Following [12], we rewrite the set containment using logical

connectives. Which, after some simplifications, gives us:

∀e, e′, t, t′.
〈Σ0|e〉 ⇓ t · 〈Σn |en〉

∧ obsA(〈Σn |en〉)

∧ Σn .st = s











Set up

∧ 〈Σ0|e
′〉 ⇓ t′ · 〈Σm |em〉

∧ obsA(〈Σm |em〉)

∧ εA(t) = εA(t
′)











ek+

A(εA(t))

∧ εsA(e) = εsA(e
′)

}

IA(e, s)
∧ εL(t) = εL(t

′)
}

RA(t, s)
⇒ εA(〈Σn |en〉) = εA(〈Σm |em〉)

}

ek(εA(t · α))

We show this by induction on n in

〈Σ0|e〉 −→
∗ 〈Σn−1|en−1〉 −→ 〈Σn |en〉

• Case n = 0: Trivial by IA(e, s).

• Case n > 0: We have:

〈Σ0|e〉 −→
∗ 〈Σn−1|en−1〉 −→ 〈Σn |en〉

〈Σ0|e
′〉 −→∗ 〈Σm−1|em−1〉 −→ 〈Σm |em〉

By cases on the reduced expression in en−1:

Case en−1 = E [setState s ]: By incUpperSet and

ek+

A(εA(t)) we can conclude that obsA(〈Σn−1|en−1〉)
and obsA(〈Σm−1|em−1〉). By RA(t, s) we then have

that εL(〈Σn−1|en−1〉) = εL(〈Σm−1|em−1〉), and

hence εA(〈Σn |en〉) = εA(〈Σm |em〉).

Case en−1 = E [toLabeledRet ls s l v ]: By

obsA(〈Σn |en〉) and ek+

A(εA(t)) we can conclude that

both runs entered the toLabeled computation in an A-

equivalent configuration. Hence we only need to show

that the changed references and returned value v are

also A-equal.

For the cases where the label on the reference (or

value) l 6⊑s A both configuration erase the value

to •. When l ⊑s A, we have l ∈ L and equality

follows by RA(t, s).



All other cases: For the reductions in which the pol-

icy state is unchanged, we have by obsA(〈Σn |en〉)
and obsA(〈Σm |em〉) that also obsA(〈Σn−1|en−1〉)
and obsA(〈Σm−1|em−1〉). By ek+

A(εA(t)) we have

that εA(〈Σn−1|en−1〉) = εA(〈Σm−1|em−1〉). By the

Fixed-State Lemma 1 (below), this gives us εA(〈Σn |en〉)
= εA(〈Σm |em〉).

Lemma 1 (Fixed-State Lemma). Given two single-step

evaluations 〈Σ1|e1〉 −→ 〈Σ2|e2〉 and 〈Σ′

1|e
′

1〉 −→ 〈Σ
′

2|e
′

2〉
with Σ1.st = Σ2.st. For all levels A, if εA(〈Σ1|e1〉) =
εA(〈Σ′

1|e
′

1〉) then εA(〈Σ2|e2〉) = εA(〈Σ′

2|e
′

2〉).

Proof. See technical report [9].

B. Other Relabeling Release Definitions

Our definition of Relabeling Release (Definition 4) is not

arbitrary. In this appendix we list a number of different

definitions that, although sounding reasonable at first glance,

do not match our intuition of what is released via relabelings.

B.1 Release knowledge by A and s

Consider an attacker As who also makes observations on

level A, but pretending that the policy state was s for the

duration of the whole execution. To allow the attacker A

to learn information resulting from relabelings to levels

l ⊑s A, we share the knowledge that As has gained so

far:

RA(t, s) = {e
′ | ¬∃t′, α′.〈Σ0|e

′〉 ⇓ t′ · α′ with obsA(α
′)

and εsA(t) = εsA(t
′)}

Here, εs
A
(t) fixes the policy state s to consider already at the

level of the trace, ignoring the actual state in each configura-

tion:

εsA(〈Σ|e〉 · t) =

{

〈εs
A
(Σ)|εs

A
(e)〉 · εs

A
(t) if Σ.lset ⊑s A

εs
A
(t) otherwise

Although this does release the relabeling information from

our example program in Figure 9, it does not allow all rela-

belings that we would intuitively mark secure. As an exam-

ple, consider the following program (in the dynamic policy

User setting from § 3):

setState [(Bob,Carl)]

← toLabeled Bob (do
setState [(Alice,Bob)]

a ← readLIORef aliceRef

writeLIORef bobRef a)

When returning from this toLabeled computation, Carl

learns the information that is in aliceRef since the current

state allows him to see Bob’s data, thus bobRef . We would

argue that this is secure, since Bob learns Alice’s data in a

state where this was allowed, and Carl in turn learns Bob’s

(and thereby Alice’s data via relabeling) in a state where this

is allowed. However, the suggested set RA(t, s) does not

release the value of aliceRef to Carl.

Consider the observer Carls who observes as if the

policy state is always [(Bob,Carl)]. After the instruction

readLIORef aliceRef the current label becomes {Alice},
meaning that this and all configuration to the end of the

toLabeled computation are not visible to Carls. Hence,

Carls does not learn the value of aliceRef and this is there-

fore not released to Carl.

B.2 Release knowledge by A, s and lset

As a possible correction to the As attacker, we could con-

sider the Alset
s attacker who also makes observations on level

A, but pretending that the policy state was s and the current

label set was lset for the duration of the whole execution.

Here lset is the current label set when the new observation α

was produced – i.e. this attacker fixes all the policy-relevant

components. To allow the attacker A to learn information

resulting from relabelings to levels l ⊑s A, we share the

knowledge that Alset
s has gained so far:

RA(t, s) = {e
′ | ¬∃t′, α′.〈Σ0|e

′〉 ⇓ t′ · α′ with obsA(α
′)

and ε
s,lset
A

(t) = ε
s,lset
A

(t ′)}

Here, ε
s,lset
A

(t) fixes the policy state s amd the current label

set, ignoring their actual values in each configuration. Hence

since obsA(α), all previous configurations are observable:

ε
s,lset
A (〈Σ|e〉 · t) = 〈εsA(Σ)|ε

s

A(e)〉 · ε
s,lset
A

(t)

This indeed allows the secure program from § B.1, but also

labels the following program secure, which we argued in § 4

to be clearly insecure due to conditionally allowing the flow

from High to Low :

leak highData = do

r ← newLIORef Low 1

← toLabeled High (do

h ← unlabel highData

when (h ≡ 0) (do

setState True

writeLIORef r 0

v ← readLIORef r))
return v

Although the Low lset

s attacker does not observe the value of

h when it is not 0, still this attacker learns that since the next

expression to reduce after unlabel is toLabeledRet, that the

value of h was not 0. This is exactly the information leaked

to Low , so this release policy allows for that leak.

B.3 Release knowledge by all l ⊑s A

Finally we consider one definition that is close to the one

we selected. Rather than defining the multi-level erasure



function εL(·), we could say that we release the knowledge

for each level l ⊑s A individually:

RA(t, s) = {e
′ | ¬∃t′, α′.〈Σ0|e

′〉 ⇓ t′ · α′ with obsA(α
′)

and εl(t) = εl(t
′) for all l ⊑s A}

This does disallow the leak via policy state change and it

allows for the relabel examples shown in this paper so far.

However, it does not consider the following program secure,

which we would intuitively label as such:

setState [ ]

one ← label Alice 1

two ← label Alice 2

bobData ← toLabeled Bob (do

setState [(Carl,Bob)]
d ← unlabel carlData

return (if d then one else two))

daveData ← toLabeled Dave (do

setState [(Bob,Dave)]
d ← unlabel bobData

return d)

setState [(Alice,Dave)]

Returning from the second toLabeled command, informa-

tion from Alice is not allowed to flow to Dave, so the value of

daveData as observed by Dave is (Lb Dave (Lb Alice •)).
After the last setState command Dave learns that the value

at • was either 1 or 2, and from that gains knowledge about

the value in carlData . The problem with the suggested defi-

nition is that it does allow Dave to learn this information, but

not at the right point in the execution!

When unlabeling bobData , information may flow from

Bob to Dave. Hence, at this point RA(t, s) allows Dave to

learn what Bob has learned, which include the earlier obser-

vation of the value in carlData . However, Dave only sees

(Lb Alice •) and does not learn this information yet. When

Dave does learn the information, the state only allow infor-

mation from Alice to flow to Dave. Alice has not been able

to observe any configuration where carlData was unlabeled,

so sharing Alice’s knowledge with Dave does not allow Dave

to learn anything about carlData .

The final definition for RA(t, s) given in Definition 4

resolves this by combining the observations from all levels

l ⊑s A at each point. With L = {Alice,Dave} the

projection εL(t) contains unlabel bobData which releases

whether the value labeled with Alice is 1 or 2, as we desired.


