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Abstract
When termination of a program is observable by an adversary, con-
fidential information may be leaked by terminating accordingly.
While this termination covert channel has limited bandwidth for
sequential programs, it is a more dangerous source of informa-
tion leakage in concurrent settings. We address concurrent termina-
tion and timing channels by presenting a dynamic information-flow
control system that mitigates and eliminates these channels while
allowing termination and timing to depend on secret values. Intu-
itively, we leverage concurrency by placing such potentially sen-
sitive actions in separate threads. While termination and timing of
these threads may expose secret values, our system requires any
thread observing these properties to raise its information-flow label
accordingly, preventing leaks to lower-labeled contexts. We imple-
ment this approach in a Haskell library and demonstrate its appli-
cability by building a web server that uses information-flow control
to restrict untrusted web applications.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.6.5 [Security and Protec-
tion]: Information flow controls

General Terms Security, Languages, Design

Keywords Monad, Library, Timing channels

1. Introduction
Covert channels arise when programming language features are
misused to leak information [30]. For example, when termination
of a program is observable to an adversary, a program may inten-
tionally or accidentally communicate a confidential bit by terminat-
ing according to the value of that bit. While this termination covert
channel has limited bandwidth for sequential programs, it is a sig-
nificant source of information leakage in concurrent settings. Sim-
ilar issues arise with covert timing channels, which are potentially
widespread because so many programs involve loops or recursive
functions. These channels, based on either internal observation by
portions of the system or external observation, are also effective in
concurrent settings.

We present an information-flow system, in a form of an exe-
cution monitor, that mitigates and eliminates termination and tim-
ing channels in concurrent systems, while allowing timing and ter-
mination of loops and recursion to depend on secret values. Be-
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cause the significance of these covert channels depends on con-
currency, we fight fire with fire by leveraging concurrency to miti-
gate these channels: we place potentially non-terminating actions,
or actions whose timing may depend on secret values, in separate
threads. In our system, each thread has an associated current la-
bel that keeps track of the sensitivity of the data it has observed
and restricts the locations to which the thread can write. Hence,
while termination and timing of these threads may expose secret
values, our system requires any thread observing these properties
to raise its information-flow label accordingly. This prevents lower
security threads from observing confidential information. We im-
plement this approach in a Haskell library and demonstrate its ap-
plicability by building a web server that applies information-flow
control to untrusted web applications. One advantage of Haskell is
that the Haskell type system prevents code from circumventing our
dynamic information-flow tracking. Although we do not address
underlying hardware issues such as cache timing, our language-
level methods can be combined with hardware-level mechanisms
as needed to provide comprehensive defenses against covert chan-
nels.

Termination covert channel Askarov et al. [2] show that, for
sequential programs with outputs, leakage using the termination
covert channel requires exponential time in the size of the secret.
Moreover, if secrets are uniformly distributed, the attacker’s ad-
vantage (after observing a polynomial amount of output) is neg-
ligible in comparison with the size of the secret. Because of this
relatively low risk, accepted sequential information-flow tools,
such as Jif [38] and FlowCaml [48], are only designed to address
termination-insensitive noninterference. In a concurrent setting,
however, the termination covert channel may be exploited more
significantly [18]. We therefore focus on termination covert chan-
nels in concurrent programs and present an extension to our Haskell
LIO library [52], which provides dynamic tracking of labeled val-
ues. By providing labeled explicit futures with lFork and lWait,
our extension removes the termination covert channel from sequen-
tial and concurrent programs while allowing loops whose termina-
tion conditions depend on secret information.

Internal timing channel Multi-threaded programs can leak in-
formation through an internal timing covert channel [56] when the
order of public events depends on secret data. Generally, an internal
timing attack can be carried out whenever a race to acquire a shared
public resource may be affected by secrets. We close this covert
channel by decoupling the execution of computations that produce
public events from computations that manipulate secret data. Us-
ing lFork and lWait, a computation depending on secret data pro-
ceeds in a new thread; LIO asserts that the number of instructions
executed by threads producing public events does not depend on
secrets. Therefore, a possible race to a shared public resource does
not depend on the secret, eliminating internal timing leaks.



External timing channel External timing covert channels, which
involve externally measuring the time used to complete operations
that may depend on secret information, have been used in practice
to leak information [6, 15] and break cryptosystems [17, 28, 57].
While several existing mechanisms mitigate external timing chan-
nels [1, 4, 19], these covert channels are not addressed by conven-
tional information-flow tools and, in fact, most of the previous tech-
niques for language-based information-flow control appear to have
limited application. Our contribution to external timing channels is
to bring the mitigation techniques from the OS community into the
language-based security setting. Generalizing previous work [3],
Zhang et al. [60] propose a black-box mitigation technique that we
adapt to a language-based security setting. In this approach, the
source of observable events is wrapped by a timing mitigator that
delays output events so that they contain only a bounded amount
of information. We take advantage of Haskell’s ability to identify
computations that produce outputs, and implement the mitigator
as part of our information flow control library. Leveraging monad
transformers [33], we show how to modularly extend LIO and other
Haskell libraries that perform side-effects, to provide a suitable
form of Zhang et al.’s mitigator.

In summary, the main contributions of this paper are:
▸ We present a dynamic information flow control (IFC) system

that eliminates the termination and internal timing covert chan-
nels, while mitigating external timing. While these covert chan-
nels have been addressed differently in static IFC approaches,
this is the first implementation of a language-based dynamic
IFC system for concurrency that does not rely on cooperative-
scheduling. Our system provides support for threads, light-
weight synchronization primitives, and allows loops and branches
to depend on sensitive values.

▸ We eliminate termination and internal-timing covert channels
using concurrency, with potentially sensitive actions run in sep-
arate threads. This is implemented in a Haskell library that uses
labeled concurrency primitives1.

▸ We provide language-based support for resource-usage miti-
gation using monad transformers. We use this method to im-
plement the black-box external timing mitigation approach of
Zhang et al.; the method is also applicable to other covert chan-
nels, such as storage.

▸ We evaluate the language implementation by building a simple
server-side web application framework. In this framework, un-
trusted applications have access to a persistent key-value store.
Moreover, requests to apps may be from malicious clients col-
luding with the application in order to learn sensitive informa-
tion. We show several potential leaks through timing and termi-
nation and show how our library is used to address them.
Section 2 provides background on information flow, Haskell,

and the LIO monad. We describe how to address the termination
covert channel in Section 3, the internal timing covert channel in
Section 4, and the external timing channel in Section 5. Labeled
communication primitives are detailed in Section 6. A formaliza-
tion of the library is given in Section 7, with security guarantees
detailed in Section 8. The implementation and experimental evalu-
ation are presented in Section 9. Related work is described in Sec-
tion 10. We conclude in Section 11.

2. Background
We build on the Haskell dynamic information flow control library
called LIO [52]. This section describes LIO and some of its relevant
background.

1 The library implementations discussed in this paper can be found at http://www.
scs.stanford.edu/~deian/concurrent_lio

2.1 Information flow control
The goal of IFC is to track and control the propagation of infor-
mation. In an IFC system, every bit has an associated label. Labels
form a lattice [9] governed by a partial order ⊑ pronounced “can
flow to.” The value of a bit labeled Lout can depend on a bit la-
beled Lin only if Lin ⊑ Lout.

In a floating-label system, such as LIO, every execution context
has a label that can rise to accommodate reading more sensitive
data. For a computation P labeled LP to observe an object labeled
LO , P ’s label must rise to the least upper bound or join of the two
labels, written LP ⊔ LO . P ’s label effectively “floats above” the
labels of all objects it observes. Furthermore, systems frequently
associate a clearance with each execution context that bounds its
label.

Specific label formats depend on the application and are not
the focus of this work. Instead, we will focus on a very simple
two-point lattice with labels Low and High, where Low ⊑ High
and High /⊑ Low. We, however, note that our implementation is
polymorphic in the label type and any label format that implements
a few basic relations (e.g., ⊑, join ⊔, and meet ⊓) can be used
when building applications. Additionally, the LIO library supports
privileges which are used to implement decentralized information
flow control as originally presented in [37]; though we do not
discuss privileges in this paper, our implementation also provides
privileged-aware versions of the combinators described in later
sections.

2.2 Haskell
We chose Haskell because its abstractions allow IFC to be provided
by a library [31]. Building a library is far simpler than developing
a programming language from scratch (or heavily modifying a
compiler). Moreover, a library offers backwards compatibility with
a large body of existing Haskell code.

From a security point of view, Haskell’s most distinctive feature
is a clear separation of pure computations from those with side-
effects. Any computation with side-effects must have a type encap-
sulated by the monad IO. The main idea behind the LIO library is
that untrusted actions must be specified with a new Labeled I/O
monad, LIO, instead of IO. Using LIO ensures that all computations
obey information control flow.

2.3 The LIO monad
LIO dynamically enforces IFC, but without the features described
in this paper, provides only termination-insensitive IFC [2] for
sequential programs. At a high level, LIO provides the LIO monad
intended to be used in place of IO. The library furthermore contains
a collection of LIO actions, many of them similar to IO actions from
standard Haskell libraries, except that the LIO versions contain label
checks that enforce IFC. For instance, LIO provides file operations
that look like those of the standard library, except that they confine
the application to a dedicated portion of the file system where they
store a label along with each file.

The LIO monad keeps a current label, Lcur, that is effectively
a ceiling over the labels of all data that the current computation
may depend on. LIO also maintains a current clearance,Ccur, which
specifies an upper bound on permissible values of Lcur.

LIO does not individually label definitions and bindings. Rather,
all symbols in scope are identically labeled with Lcur. The only
way to observe or modify differently labeled data is to execute
actions that internally access privileged symbols. Such actions are
responsible for appropriately validating and adjusting the current
label. As an example, the LIO file-reading function readFile, when
executed on a file labeled LF , first checks that LF ⊑ Ccur, throwing
an exception if not. If the check succeeds, the function raises Lcur



to Lcur ⊔LF before returning the file content. The LIO file-writing
function, writeFile, throws an exception if Lcur /⊑ LF .

As previously mentioned, allowing experimentation with differ-
ent label formats, LIO actions are parameterized by the label type.
For instance, simplifying slightly:
readFile ∶∶ (Label l) ⇒ FilePath → LIO l String

To be more precise, it is really (LIO l) that is a replacement for the
IO monad, where l can be any label type. The context (Label l)⇒
in readFile’s type signature restricts l to types that are instances
of the Label typeclass, which abstracts the label specifics behind
the basic methods ⊑, ⊔, and ⊓.

2.4 Labeled values
Since LIO protects all nameable values with Lcur, we need a way
to manipulate differently-labeled data without monotonically in-
creasing Lcur. For this purpose, LIO provides explicit references
to labeled, immutable data through a polymorphic data type called
Labeled. A locally accessible symbol (at Lcur) can name, say, a
Labeled l Int (for some label type l), which contains an Int pro-
tected by a different label.

Several functions allow creating and using Labeled values:
▸ label ∶∶ (Label l)⇒l → a → LIO l (Labeled l a)

Given label l ∶ Lcur ⊑ l ⊑ Ccur and value v, action label l v
returns a Labeled value guarding v with label l.

▸ unlabel ∶∶ (Label l)⇒Labeled l a →LIO l a

If lv is a Labeled value v with label l, unlabel lv raises Lcur to
Lcur ⊔ l (provided Lcur ⊔ l ⊑ Ccur holds, otherwise it throws an
exception) and returns v.

▸ toLabeled ∶∶ (Label l)⇒l → LIO l a → LIO l (Labeled l a)

The dual of unlabel: given a label l, and an action m that would
raise Lcur to L′cur where L′cur ⊑ l ⊑ Ccur, toLabeled l m executes
m without raising Lcur, and instead encapsulates m’s result in a
Labeled value protected by label l.

▸ labelOf ∶∶ (Label l)⇒Labeled l a →l
Returns the label of a Labeled value.

As an example, we show an LIO action that adds two Labeled Ints:

addLIO lA lB = do a ← unlabel lA
b ← unlabel lB
return (a + b)

If the inputs’ labels are LA and LB , this action raises Lcur to
LA ⊔LB ⊔Lcur and returns the sum of the values. To avoid raising
the current label, and instead return a Labeled Int, addLIO can be
wrapped by toLabeled:

add lA lB = toLabeled (labelOf lA ⊔ labelOf lB)
(addLIO lA lB)

Implicit flows in LIO We note that in an imperative language
with labeled variables, dynamic labels can lead to implicit flows [10].
The canonical example is as follows:

public ∶= 0; // public has a Low label
if (secret) // secret has a High label

public ∶= 1; // public depends on secret

To avoid directly leaking the secret bit into public, one should
track the label of the program counter and determine that ex-
ecution of the assignment public ∶= 1 depends on secret, and
raise public’s label when assigning public ∶= 1. However, since
the assignment executes conditionally depending on secret, now
public’s label leaks the secret bit. LIO does not suffer from im-
plicit flows. When branching on a secret, Lcur becomes High and
therefore no public events are possible.

3. The termination covert channel
As mentioned in the introduction, information-flow control results
and techniques for sequential settings do not naturally generalize to

Listing 1 Exploiting the termination channel by brute-force

bruteForce ∶∶ String → Int → Labeled l Int → LIO l ()
bruteForce name n secret = forM_ [0..n] $ λi → do

toLabeled High $ do
s ← unlabel secret
when (s == i) �

outputLow (name ++ " ≠ " ++ show i)

Listing 2 A concurrent termination channel attack

concurrentAttack ∶∶ Int → Labeled l Int → LIO l ()
concurrentAttack k secret = forM_ [0..k] $ λi → do

iBit ← toLabeled High $ do
s ← unlabel secret
return (extractBit i s) )

fork $ bruteForce (show k ++ "-bit") 1 iBit
where extractBit ∶∶ Int → Int → Int

extractBit i n = (shiftR n i) .&. (bit 0)

concurrent settings. In this section we highlight that the sequential
LIO library is, like many IFC systems, susceptible to leaks due to
termination and show that a naive, but typical, extension that adds
concurrency drastically amplifies this leak. We present a modifica-
tion to the LIO library that eliminates the termination covert chan-
nel from both sequential and concurrent programs; our solution al-
lows for flexible programming patterns, even writing loops whose
termination condition depends on secret data.

Sequential setting As described by [2], a brute-force attack, tak-
ing exponential time in the size (# of bits) of the secret, is the most
effective way to exploit the termination channel in a sequential pro-
gram. Listing 1 shows an implementation of such attack. Function
bruteForce takes three arguments: a public string (helper) mes-
sage, a public upper-bound on the secret, and the secret Int of type
Labeled Int. Given the three arguments bruteForce returns an LIO

action which when executed returns unit (), but produces interme-
diate side-effects. Specifically, bruteForce writes to a Low labeled
channel using outputLow while Lcur is Low. We assume that the at-
tack is executed with initial Lcur = Low, and secret Int labeled High.

The attack consists of iterating (variable i) over the domain of
the secret (forM_ [0..n]), producing a publicly-observable output
at every iteration until the secret is guessed. On every iteration Lcur
is raised to the label of the secret within a toLabeled block. As
described in Section 2.4, the current label outside the toLabeled

block remains unaffected, and so the computation can continue pro-
ducing publicly-observable outputs if the computation within the
toLabeled block does not diverge. This is the case unless guess
i is equal to the secret, at which point the computation diverges
(when (s ==i) �) and no additional publicly-observable outputs
are produced. The leak due to termination is obvious: when the
attacker, observing the Low labeled output channel, no longer re-
ceives any data, the value of the secret can be inferred given the
previous outputs. For instance, to leak a 16-bit secret, we execute
bruteForce "secret" 65536 secret. Assuming the value of the
secret is 3, executing the action produces the outputs “secret ≠ 0”,
“secret ≠ 1”, and “secret ≠ 2” before diverging. The assump-
tion here, and the rest of the paper, is that the code is untrusted (e.g.,
provided by the attacker) and therefore an observer that knows the
implementation of bruteForce can directly infer that the value of
the secret is 3. Observe that the code producing public outputs
(outputLow (msg ++" ≠" ++show i)) does not inspect secret data,
which makes it difficult to avoid termination leaks by simply track-
ing the flow of labeled data inside programs.

Concurrent setting Suppose that we (naively) add support for
concurrency to LIO using a hypothetical primitive fork, which sim-



ply executes a given computation in a new thread. Although we
can preserve termination-insensitive non-interference, we can ex-
tend the previous brute force attack to leak a secret value in lin-
ear, as opposed to exponential, time. In general, adding concur-
rency primitives in a straight-forward manner makes attacks that
leverage the termination covert channel very effective [18]. To il-
lustrate this point, consider the attack shown in Listing 2, which
leaks the bit-contents of a secret value in linear time. Given the bit-
length k of the secret and the labeled secret, concurrentAttack
returns an action which, when executed, extracts each bit of the
secret (extractBit i s) and spawns a corresponding thread to re-
cover the bit using the sequential brute-force attack of Listing 1
(bruteForce (show k ++"-bit") 1 iBit). By collecting the pub-
lic outputs generated by the different threads (having the form
“0-bit ≠ 0”, “3-bit ≠ 0”, “1-bit ≠ 0”, etc.), it is directly pos-
sible to recover the secret value. Observe that the divergence of one
thread does not affect the termination of other threads and thus does
not require observations external to the program, as in the sequen-
tial case.

3.1 Removing the termination covert channel in LIO
Since LIO has floating labels, a leak to a Low channel due to ter-
mination cannot occur after the current label is raised to High, un-
less the label raise is within an enclosed toLabeled computation.
Hence, we can deduce that a piece of LIO code can exploit the
termination covert channel only when using toLabeled. The key
insight is that toLabeled is the single LIO combinator that effec-
tively allows a piece of code to temporarily raise its current label,
perform a computation, and then continue with the original current
label. The attack in Listing 1 is a clear example that leverages this
property of toLabeled to leak information.

Consider the necessary conditions for eliminating the termina-
tion channel of Listing 1: the execution of the publicly-observable
outputLow action must not depend on the data or control flow of the
secret computation executed within the toLabeled block. Hence,
one approach to close the termination covert channel is by decou-
pling the execution of computations enclosed by toLabeled. To this
end, we provide an alternative to toLabeled that executes computa-
tions that might raise the current label (as in toLabeled) in a newly-
spawned thread. To observe the result (or non-termination) of such
a spawned computation, the current label is firstly raised to the la-
bel of the (possibly) returned result. In doing so, after observing
a secret result (or non-termination) of a spawned computation, ac-
tions that produce publicly-observable side-effects can no longer
be executed. In this manner, the termination channel is closed.

In Listing 1, the execution of outputLow depends on the termi-
nation of the computation enclosed by toLabeled. However, using
our proposed approach of spawning a new thread when “perform-
ing a toLabeled”, if the code following the sensitive block wishes
to observe whether or not the High computation has terminated, it
would first need to raise the current label to High. Thereafter, an
outputLow action cannot be executed regardless of the result (or
termination) of the toLabeled computation.

Concretely, we close the termination channel by removing the
insecure function toLabeled from LIO and, instead, provide the
following (termination sensitive) primitives.

lFork ∶∶ Label l ⇒ l → LIO l a → LIO l (Result l a)
lWait ∶∶ Label l ⇒ Result l a → LIO l a

Intuitively, lFork can be considered as a concurrent version of
toLabeled. lFork l lio spawns a new thread to perform the com-
putation lio, whose current label may rise, and whose result is a
value labeled with l. Rather than block, immediately after spawn-
ing a new thread, the primitive returns a value of type Result l a,
which is simply a handler to access the labeled result produced by
the spawned computation. Similar to unlabel, we provide lWait,

Listing 3 Internal timing leak

doGuess secret guess cond = do
toLabeled High $ do v ← unlabel secret

when (v ≠ guess) $ loopUntil cond
outputLow (show guess)
broadcastCondition cond

attack ∶∶ Labeled l Bool → LIO l ()
attack secret = do cond ← mkSharedCond
{- thread 1: -} fork $ doGuess secret True cond
{- thread 2: -} fork $ doGuess secret False cond

which inspects values returned by spawned computations, i.e., val-
ues of type Result l a. The labeled wait, lWait, raises the current
label to the label of its argument and then proceeds to inspect it.

In principle, rather than forking threads, it would be enough
to prove that computations involving secrets terminate, e.g., by
writing them in Coq or Agda. However, while this idea works in
theory, it is still possible to crash an Agda or Coq program at
runtime: for example, with a stack overflow. Generally, abnormal
termination due to resource exhaustion exploits the termination
channel just as effectively. Forking threads removes the termination
channel by design. Although it might seem expensive, forking
threads in Haskell is a light-weight operation [25].

We note that adding concurrency to LIO is a major modification
which introduces security implications beyond that of handling
the termination channel. In the following section, we describe the
internal timing covert channel, a channel that is only present in
programming languages that have support for concurrency and
shared-resources.

4. The Internal timing covert channel
Multi-threaded programs, wherein threads share a common (pub-
lic) resource, can leak sensitive information through the internal
timing covert channel [56]. In an internal timing attack, sensitive
data can be leaked by affecting the timing behavior of threads,
which consequently alters the order of events on a shared public
channel.

Listing 3 shows an example of the internal timing attack in
LIO with the added fork primitive. Here, action mkSharedCond cre-
ates a shared resource that is used as a “condition variable”, while
loopUntil waits until the condition is satisfied and broadcastCondition

sets the condition to signal all the waiting threads. The shared re-
source may be defined in terms of language level constructs, such
as mutable references: mkSharedCond can create a public Bool ref-
erence set initially to False, loopUntil loops until the dereferenced
value is True and broadcastCondition assigns True to it. Alterna-
tively, it can be defined in terms of an implicit state, such as the
scheduler: mkSharedCond and broadcastCondition can simply re-
turn (), while loopUntil delays the running thread for a reasonable
amount of time (e.g., by using threadDelay).

Although in isolation both threads are secure (i.e., they satisfy
non-interference), by executing them concurrently it is possible to
leak information about secret. When executing attack secret, if
secret is (labeled) True, thread 2 will output to the public (low)
channel after thread 1 regardless of which thread is executed first.
In other words, the produced output will be “True”, “False”. The
converse holds when secret is False and the program prints out
“False”, “True”. Notice that an attacker can infer the value of
secret by simply observing the outputs on the public channel: the
order of “True” and “False” is influenced by the secret data.

Unlike other timing channel attacks, internal timing attacks do
not require a powerful attacker that must measure the execution
time as to deduce secret information. The interleaving of threads
can directly be used to produce leaks! Additionally, we note that



although the example of Listing 3 only leaks a single bit, it is easy
to construct an attack that uses a loop to leak the bit-contents of
a secret value in linear time of its length. Tsai et al. [54] show
such an amplified attack and demonstrate its effectiveness even in
settings where little information about the run-time system (e.g.,
the scheduler) is available.

4.1 Removing the internal timing channel
As indicated by our example, the internal timing covert channel
can be exploited when the time to produce public events (e.g.,
writing data to a public channel) depends on secrets. In other words,
leaks due to internal timing occur when there is a race to acquire a
public shared resource that may be affected by secret data. To close
this channel, we apply the technique used to close the termination
covert channel: we decouple the execution of computations that
produce public events from computations that manipulate secret
data. By using lFork and lWait, computations dealing with secrets
are executed in a new thread. Consequently, any possible race to
a shared public resource cannot depend on sensitive data, making
leaks due to internal timing infeasible.

5. The external timing covert channel
In a real-world scenario, IFC applications interact with unlabeled,
publicly observable, resources. For example, a server-side IFC web
application interacts with a browser, which may itself be IFC-
unaware, over a public network channel. Consequently, an adver-
sary can take measurements external to the application (e.g., the
application response time) from which they may infer information
about confidential data computed by the web application. Although
our results generalize (e.g., to the storage covert channel), in this
section we address the external timing covert channel: an applica-
tion can leak information over a channel to an observer that pre-
cisely measures message-arrival timings.

Most of the language-based IFC techniques that consider exter-
nal timing channels are limited. Despite the successful use of ex-
ternal timing attacks to leak information in web [6, 15] and crypto-
graphic [17, 28, 57] applications, they remain widely unaddressed
by mainstream, practical IFC tools, including Jif [38]. Furthermore,
most techniques that provide IFC in the presence of the external
timing channel [1, 4, 19] are overly restrictive, e.g., they do not
allow folding over secret data. In this work, we show a modular ap-
proach of mitigating the external timing covert channel for Haskell
libraries, such as LIO.

5.1 Mitigating the external timing channel
Recently, a predictive black-box mitigation technique for external
timing channels has been proposed [3, 60]. The predictive miti-
gation technique assumes that the attacker has control of the ap-
plication ( computing on secret data) and can measure the time a
message is placed on a channel (e.g., when a response is sent to the
browser). Treating the application as a black-box event source, a
mitigator is interposed between the application and system output.

Internally, the mitigator keeps a schedule describing when out-
puts are to be produced. For example, the time mitigator might keep
a schedule “predicting” that the application will produce an out-
put every 1ms. If the application delivers events according to the
schedule, or at a higher rate, the mitigator will be able to produce
an output at every 1ms interval, according to the schedule, and thus
leak no information.

The application may fail to deliver an event to the mitigator on
time, and thus render the mitigator’s schedule prediction false. At
this point, the mitigator must handle the misprediction by select-
ing, or “predicting”, a new schedule for the application. In most
cases, this corresponds to doubling the application’s quantum. For
instance, following a misprediction where the quantum was 1 ms,

the application will subsequently be expected to produce an output
every 2 ms. It is at the point of switching schedules where an at-
tacker learns information: rather than seeing events spaced at 1 ms
intervals, the attacker now observes outputs at 2 ms intervals, indi-
cating that the application violated the predicted behavior (a deci-
sion that can be affected by secret data). Askarov et al. [3] show that
the amount of information leaked by this slow-doubling mitigator
is polylogarithmic in the application runtime.

The aspects of the predictive mitigation technique of [3, 60] that
make it particularly attractive to use in LIO are:
▸ The mitigator can adaptively reduce the quantum, as to increase

the throughput of a well-behaved application in a manner that
bounds the covert channel bandwidth (though with the leakage
factor slightly larger than that of the slow-doubling mitigator);

▸ The mitigator can leverage public factors to decide a schedule.
For example, in a web application setting where responses are
mitigated, the arrival of an HTTP request can be used as a “re-
set” event. This is particularly useful as a quiescent application
would otherwise be penalized for not producing an output ac-
cording to the predicted schedule. Our web application of Sec-
tion 9 implements this mitigation technique.

▸ The amount of information leaked is bounded by a combinato-
rial analysis on the number of attacker observations.

Monadic approach to black-box mitigation The functionality of
different monads, such as I/O and error handling, can be combined
in a modular fashion using monad transformers [33]. A monad
transformer t, when applied to a monad m, generates a new, com-
bined monad, t m, that shares the behavior of monad m as well as
the behavior of the monad encoded in the monad transformer. The
modularity of monad transformers comes from the fact that they
consider the underlying monad m opaque, i.e., the behavior of the
monad transformer t does not depend on the internal structure of
m. In this light, we adopt Zhang et al.’s system-oriented predictive
black-box mitigator to a language-based security setting in the form
of a monad transformer.

5.2 Language-based mitigators
We envision the implementation of mitigators that address covert
channels other than external timing. For example, we prototype a
mitigator for the storage covert channel, which addresses attacks
in which the message length is used to encode secret information.
Hence, our mitigation monad transformer MitM s q is polymorphic
in the mitigator-specific state s and quantum type q :

newtype MitM s q m a = MitM ...

We provide the function evalMitM, which takes an action of type
MitM s q m a and returns an action of type m a, which when exe-
cuted will mitigate the computation outputs. We note that the value
constructor for the mitigation monad must not be exported to un-
trusted code, which can use it to circumvent the mitigation.

The time-mitigation monad transformer is a special case:

type TimeMitM = MitM TStamp TStampDiff

where the internal state TStamp is a time stamp, and the quantum
TStampDiff is a time difference. Superficially, a value of type
TimeMitM m a is a monadic computation that produces a value of
type a. Internally, a time measurement is taken whenever an output
is to be emitted in the underlying monad m, the internal state and
quantum are adjusted to reflect the output event, and the output
is delayed if it was produced ahead of the predicted schedule.
Consider, for instance, a version of hPut executing in the time
mitigated IO monad, where every handle is mitigated:

type MIO = TimeMitM IO
...
hPut ∶∶ Handle → ByteString → MIO ()



If hPut h is invoked according to the specified schedule (e.g., at
least every 1 ms), the actual IO function IO.hPut is used to write the
provided byte-string every 1 ms. Conversely, if the function does
not follow the predicted schedule, the quantum will be increased,
and write-throughput to the file will decrease.

The use of a monad transformer leaves the possibility to use
(almost) any underlying monad m, not just IO or LIO. However, this
generality comes with a trade-off: either every computation m is
mitigated, or trustworthy programmers must define what objects
(e.g., file handles, sockets, references, etc.) they wish to mitigate
and how to mitigate them (e.g., providing a definition for hPut,
above). Given that the former design choice would not allow for
distinguishing between inputs and outputs, we implemented the
latter and more explicit mitigation approach.

To define what is to be mitigated, we provide the data type
data Mitigated s q a, in terms of which a time-mitigated I/O file
handle (as used in hPut) can simply be defined as:

type TimeMitigated = Mitigated TStamp TStampDiff
type Handle = TimeMitigated IO.Handle

Mitigated allows us to do mitigation at very fine granularity.
Specifically, the monad transformer can be used to associate a
mitigator with each Mitigated value (henceforth “handle”). This
allows an application to write to multiple files, all of which are
mitigated independently, and thus may be written to, at different
rates2. It remains for us to address how the mitigators are defined.

Mitigators are implemented as instances of the type class
Mitigator, which provides two functions:

class MonadConcur m ⇒ Mitigator m s q where
-- ∣ Create a Mitigated "handle".
mkMitigated ∶∶ Maybe s -- ^ Internal state

→ q -- ^ Quantum
→ m a -- ^ Handle constructor
→ MitM s q m (Mitigated s q a)

-- ∣ Mitigate an operation
mitigate ∶∶ Mitigated s q a -- ^ Mitigated "handle"

→ (a → m ()) -- ^ Output computation
→ MitM s q m ()

The context MonadConcur m is used to impose the requirement that
the underlying monad be an IO-like monad which allows fork-
ing new IO threads (as to separate the mitigator from the com-
putation being mitigated) and operations on synchronizing vari-
ables, MVars [25] (which are internal to the MitM transformer). The
mkMitigated function is used to create a mitigated handle given an
initial state, quantum, and underlying constructor. The default im-
plementation of mkMitigated creates the mitigator state (internal to
the transformer) corresponding to the handle. A simplified version
of our openFile operation shows how mkMitigated is used:

openFile ∶∶ FilePath → IOMode → MIO Handle
openFile f mode = mkMitigated Nothing q $ do

h ← IO.openFile f mode -- Handle constructor
return h -- Raw handle

where q = mkQuant 1000 -- Initial quantum of 1ms

Here, the constructor IO.openFile creates a file handle to the file
at path f. This constructor is supplied to mkMitigated, in addition
to the “empty” state Nothing, and initial quantum q = 1 ms, which
creates the corresponding mitigator and Mitigated handle (recall
Handle is a type alias of TimeMitigated IO.Handle). We note that
although the default definition of mkMitigated creates a mitigator
per handle, instances may provide a definition that is more coarse-
grained (e.g., associate mitigator with all handles of a thread).

2 In cases where schedule mispredictions are common, it is important to implement
the l-grace period policy of [60]. The policy states that when there are more than l
mispredictions, the new scheduling should affect all mitigators.

Unlike for mkMitigated, each mitigator must define mitigate,
which specifies how a computation should be mitigated. The func-
tion takes two arguments: the mitigated handle and a computation
that produces an output on given the underlying, “raw” handle. Our
time mitigator instance

instance ... ⇒ Mitigator m TStamp TStampDiff where
mitigate mH act = ... -- Actual mitigation code

provides a definition for mitigate. Using mitigate we define our
time mitigated hPut function as: hPut hPut

hPut ∶∶ Handle → ByteString → MIO ()
hPut mH bs = mitigate mH (λh → IO.hPut h bs)

The mitigate function first retrieves the internal state of the mit-
igator corresponding to the mitigated handle mH and forks a new
thread (allowing other mitigated actions to be executed). In the new
thread, a time measurement t1 is taken. Then, if the time difference
between t1 and the internal mitigator time stamp t0 exceeds the
quantum q, the new mitigator quantum is set to 2q; otherwise, the
computation is delayed for t1 − t0 microseconds. Following, the IO

action is executed, and the internal timestamp is replaced with the
current time. We force operations on the same handle to be sequen-
tial and thus follow the latest schedule.

We finally remark that adapting an existing program to have
mitigated outputs comes almost for free: a trustworthy program-
mer needs to define the constructor functions, such as openFile,
and output functions, such as hPut, and simply lift all the re-
maining operations. We provide a definition for the function
lift ∶∶ Monad m ⇒m a → MitM s q m a, which lifts a computa-
tion in the m monad into the mitigation monad, without performing
any actual mitigation. A simple example illustrating this is the def-
inition of hGet which reads a specified number of bytes from a
handle:
hGet ∶∶ Handle → Int → TimeMitigated IO ByteString
hGet = lift ○ IO.hGet ○ mitVal
Here, mitVal simply returns the underlying “raw” handle.

6. Synchronization primitives in concurrent LIO
In the presence of concurrency, synchronization is vital. This sec-
tion introduces an IFC-aware version of MVars, which are well-
established synchronization Haskell primitives [25]. As with MVars,
LMVars can be used in different manners: as synchronized mutable
variables, as channels of depth one, or as building blocks for more
complex communication and synchronization primitives.

A value of type LMVar l a is mutable location that is either
empty or contains a value of type a labeled with l. LMVars are
associated with the following operations:

newEmptyLMVar ∶∶ (Label l) ⇒ l → LIO l (LMVar l a)
putLMVar ∶∶ (Label l) ⇒ LMVar l a → a → LIO l ()
takeLMVar ∶∶ (Label l) ⇒ LMVar l a → LIO l a

Function newEmptyLMVar takes a label l and creates an empty
LMVar l a for any desired type a. The creation succeeds only if
the label l is between the current label and clearance of the LIO

computation that creates it. Function putLMVar fills an LMVar l a

with a value of type a if it is empty and blocks otherwise. Dually,
takeLMVar empties an LMVar l a if it is full and blocks otherwise.

Note that both takeLMVar and putLMVar observe if the LMVar

is empty in order to proceed to modify its content. Precisely,
takeLMVar and putLMVar perform a read and a write of the mutable
location. Consequently, from a security point of view, operations
on a given LMVar l a are executed only when the label l is below
or equal to the clearance (i.e., l ⊑ Ccur due to the read) and above or
equal to the current label (i.e., Lcur ⊑ l due to the write). Moreover,
after either operation, Lcur is raised to l.



Listing 4 Syntax for values, expressions, and types.

Label: l

LMVar: m

Value: v ∶∶= true ∣ false ∣ () ∣ l ∣m ∣ x ∣ λx.e ∣ fix e

∣ Lb l e ∣ (e)LIO ∣ ⊡ ∣ Rm ∣ ●

Expression: e ∶∶= v ∣ e e ∣ if e then e else e ∣ let x = e in e

∣ return e ∣ e >>= e ∣ label e e

∣ unlabel e ∣ lowerClr e ∣ getLabel

∣ getClearance ∣ labelOf e ∣ out e e

∣ lFork e e ∣ lWait e ∣ newLMVar e e

∣ takeLMVar e ∣ putLMVar e e ∣ labelOfLMVar e

Type: τ ∶∶= Bool ∣ () ∣ τ → τ ∣ ` ∣ Labeled ` τ ∣ Result ` τ

∣ LMVar ` τ ∣ LIO ` τ

Many communication channels used in practice are similarly
bi-directional, i.e., a read produces a write (and vice versa). For in-
stance, reading a file may modify the access time in the inode; writ-
ing to a socket may produce an observable error if the connection is
closed, etc. As described above, LMVar are bi-directional channels.
If we treated them as uni-directional, observe that, a termination
leak would be possible: a thread, whose current label is Low can use
a LMVar labeled Low to send information to a computation whose
current label is High; the High thread can then decide to empty the
LMVar according to a secret value and thus leak information to the
Low thread.

7. Formal semantics for LIO
In this section, we model our concurrent LIO implementation en-
compassing the concurrency primitives discussed in Sections 3, 4,
and 6. We do not model the external timing mitigator since our
monad transformer approach effectively treats computations as
black-boxes. Thus, although our approach is more fine grained,
the security guarantees of [3, 60] readily apply to our library.

We formalize our LIO library as a simply typed Curry-style
call-by-name λ-calculus with some extensions. Listing 4 defines
the formal syntax for the language. Syntactic categories v, e, and
τ represent values, expressions, and types, respectively. Values are
side-effect free while expressions denote (possible) side-effecting
computations. Due to lack of space, we only show the reduction
and typing rules for the core part of the library.

Values The syntax category v includes the symbol true and
false representing Boolean values. Symbol () represents the unit
value. Symbol ` denotes security labels. Symbol m represents
LMVars. Values include variables (x), functions (λx.e), and recur-
sive functions (fix e). Special syntax nodes are added to this cat-
egory: Lb v e, (e)LIO, R m, ⊡, and ●. Node Lb v e denotes the
run-time representation of a labeled value. Similarly, node (e)LIO

denotes the run-time result of a monadic LIO computation. Node ⊡
denotes the run-time representation of an empty LMVar. Node R m
is the run-time representation of a handle, implemented as a LMVar,
that is used to access the result produced by spawned computa-
tions. Alternatively, R m can be thought of as an explicit future.
Node ● represents an erased term (explained in Section 8). None of
these special nodes appear in programs written by users and they
are merely introduced for technical reasons.

Expressions Expressions are composed of values (v), function
applications (e e), conditional branches (if e then e else e),
and local definitions (let x = e in e). Additionally, expressions
may involve operations related to monadic computations in the

Listing 5 Typing rules for special syntax nodes.

Γ ⊢ ● ∶ τ Γ ⊢m ∶ LMVar ` τ

Γ ⊢ e ∶ τ

Γ ⊢ Lb l e ∶ Labeled ` τ

Γ ⊢ e ∶ τ

Γ ⊢ (e)LIO ∶ LIO ` τ Γ ⊢ ⊡ ∶ τ

Γ ⊢m ∶ LMVar ` τ

Γ ⊢ Rm ∶ Result ` τ

LIO monad. More precisely, return e and e >>= e represent the
monadic return and bind operations. Monadic operations related
to the manipulation of labeled values inside the LIO monad are
given by label and unlabel. Expression unlabel e acquires the
content of the labeled value e while in an LIO computation. Ex-
pression label e1 e2 creates a labeled value, with label e1, of the
result obtained by evaluating the LIO computation e2. Expression
lowerClr e allows lowering of the current clearance to e. Expres-
sions getLabel and getClearance return the current label and
current clearance of an LIO computation, respectively. Expression
labelOf e obtains the security label of labeled values. Expression
out e1 e2 denotes the output of e2 to the output channel at se-
curity level e1. For simplicity, we assume that there is only one
output channel per security level. Expression lFork e1 e2 spawns
a thread that computes e2 and returns a handle with label e1. Ex-
pression lWait e inspects the value returned by the spawned com-
putation whose result is accessed by the handle e. Non-proper mor-
phisms related to creating, reading, and writing labeled MVars are
respectively captured by expressions newLMVar, takeLMVar, and
putLMVar.

Types We consider standard types for Booleans (Bool), unit
(()), and function (τ → τ) values. Type ` describes security
labels. Type Result ` τ denotes handles used to access labeled
results produced by spawned computations, where the results are of
type τ and labeled with labels of type `. Type LMVar ` τ describes
labeled MVars, with labels of type ` and storing values of type τ .
Type LIO ` τ represents monadic LIO computations, with a result
type τ and the security labels of type `.

The typing judgments have the standard form Γ ⊢ e ∶ τ , such
that expression e has type τ assuming the typing environment Γ;
we use Γ for both variable and store typings. Typing rules for
the special syntax nodes are shown in Listing 5. These rules are
liberal on purpose. Recall that special syntax nodes are run-time
representations of certain values, e.g., labeled MVars. Thus, they are
only considered in a context where it is possible to uniquely deduce
their types. The typing for the remaining terms and expressions are
standard and we therefore do not describe them any further. We do
not require any of the commonly used extensions to Haskell’s type-
system, a direct consequence of the fact that security checks are
performed at run-time. Since typing rules are straightforward, we
assume that the type system is sound with respect to our semantics.

The LIO monad is essentially implemented as a State monad. To
simplify the formalization and description of expressions, without
loss of generality, we make the state of the monad part of the run-
time environment. More precisely, each thread is accompanied by
a local security run-time environment σ, which keeps track of the
current label (σ.lbl) and clearance (σ.clr) of the running LIO
computation. Common to every thread, the symbol Σ holds the
global LMVar store (Σ.φ) and the output channels (Σ.αl, one for
every security label l). A store φ is a mapping from LMVars to
labeled values, while an output channel is a queue of events of the
form out(v) (output) , for some value v. For simplicity, we assume
that every store contains a mapping for every possible LMVar.
The run-time environments Σ, σ, and a LIO computation form a
sequential configuration jΣ, ⟨σ, e⟩o.



Listing 6 Semantics for non-standard expressions.

E ∶∶= . . . ∣ label E e ∣ unlabel E ∣ out E e ∣ out l E

∣ lFork E e ∣ newLMVar E e ∣ takeLMVar E

∣ putLMVar E e ∣ labelOfLMVar E

(LAB)
σ.lbl ⊑ l ⊑ σ.clr

jΣ, ⟨σ,E[label l e]⟩oÐ→ jΣ, ⟨σ,E[return (Lb l e)]⟩o

(UNLAB)
l′ = σ.lbl ⊔ l l′ ⊑ σ.clr σ′ = σ[lbl↦ l′]

jΣ, ⟨σ,E[unlabel (Lb l e)]⟩oÐ→ jΣ, ⟨σ′,E[return e]⟩o

(OUTPUT)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[αl ↦ Σ.αl ⊳ out(v)]

jΣ, ⟨σ,E[out l v]⟩oÐ→ jΣ′, ⟨σ,E[return ()]⟩o

(LFORK)
σ.lbl ⊑ l ⊑ σ.clr Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l ⊡]]

e′ = e >>= λx.putLMVarm x m fresh

jΣ, ⟨σ,E[lFork l e]⟩o
fork(e′)
Ð→ jΣ′, ⟨σ,E[return (Rm)]⟩o

(LWAIT)
jΣ, ⟨σ,E[lWait (Rm)]⟩oÐ→ jΣ, ⟨σ,E[takeLMVarm]⟩o

(NLMVAR)
σ.lbl ⊑ l ⊑ σ.clr

Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]] m fresh

jΣ, ⟨σ,E[newLMVar l e]⟩oÐ→ jΣ′, ⟨σ,E[returnm]⟩o

(TLMVAR)
Σ.φ(m) = Lb l e e ≠ ⊡ σ.lbl ⊑ l ⊑ σ.clr

σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l ⊡]]

jΣ, ⟨σ,E[takeLMVarm]⟩oÐ→ jΣ′, ⟨σ′,E[return e]⟩o

(PLMVAR)
Σ.φ(m) = Lb l ⊡ σ.lbl ⊑ l ⊑ σ.clr

σ′ = σ[lbl↦ σ.lbl ⊔ l] Σ′ = Σ[φ↦ Σ.φ[m↦ Lb l e]]

jΣ, ⟨σ,E[putLMVarm e]⟩oÐ→ jΣ′, ⟨σ′,E[return ()]⟩o

(GLABR)
e = Σ.φ(m)

jΣ, ⟨σ,E[labelOfLMVarm]⟩oÐ→ jΣ, ⟨σ,E[labelOf e]⟩o

The relation jΣ, ⟨σ, e⟩o
γ
Ð→ jΣ′, ⟨σ′, e′⟩o represents a single

evaluation step from expression e, under the run-time environments
Σ and σ, to expression e′ and run-time environments Σ′ and σ′.
We define this relation in terms of a structured operational seman-
tics via evaluation contexts [14]. We say that e reduces to e′ in one
step. We write Ð→∗ for the reflexive and transitive closure of Ð→.
Symbol γ ranges over the internal events triggered by expressions.
We utilize internal events to communicate between the threads and
the scheduler. Listing 6 shows the reduction rules for the core con-
tributions in our library. Rules (LAB) and (UNLAB) impose the
same security constrains as for the sequential version of LIO [52].
Rule (LAB) generates a labeled value if and only if the label is be-
tween the current label and clearance of the LIO computation. Rule
(UNLAB) requires that, when the content of a labeled value is “re-
trieved” and used in a LIO computation, the current label is raised
(σ′ = σ[lbl ↦ l′], where l′ = σ.lbl ⊔ l), thus capturing the fact

Listing 7 Semantics for threadpools.
(STEP)

jΣ, toÐ→ jΣ′, t′o

jΣ, t ⊲ tso↪ jΣ′, ts ⊳ t
′

o

(NO-STEP)
jΣ, to /Ð→ t = ⟨σ, e⟩ e ≠ v

jΣ, t ⊲ tso↪ jΣ, ts ⊳ to

(FORK)

jΣ, to
fork(e)
Ð→ jΣ′, ⟨σ, e′⟩o tnew = ⟨σ, e⟩

jΣ, t ⊲ tso↪ jΣ′, ts ⊳ ⟨σ, e′⟩ ⊳ tnewo

(EXIT)
l = σ.lbl

jΣ, ⟨σ, v⟩ ⊲ tso↪ jΣ′, tso

that the remaining computation might depend on e. Output chan-
nels are treated as deques of events. We use a standard deque-like
interface with operations (⊲) and (⊳) for front and back insertion
(respectively), and we also allow pattern-matching in the rules as a
representation of deconstruction operations. Rule (OUTPUT) adds
the event out(v) to the end of the output channel at security level
l (Σ.αl ⊳ out(v)).

The main contributions of our language are related to the prim-
itives for concurrency and synchronization. Rule (LFORK) al-
lows for the creation of a thread and generates the internal event
fork(e′), where e′ is the computation to spawn. The rule allocates
a new LMVar in order to store the result produced by the spawned
thread (e >>= λx.putLMVar m x). Using that LMVar, the rule pro-
vides a handle to access to the thread’s result (return (Rm)). Rule
(LWAIT) simply uses the LMVar for the handle. Rule (TLMVAR)
describes the creation of a new LMVar with a label bounded by the
current label and clearance (σ.lbl ⊑ l ⊑ σ.clr). As mentioned in
Section 4, operations on LMVar are bi-directional and consequently
the rules (TLMVAR), and (PLMVAR) require not only that the
label of the mentioned LMVar be between the current label and
current clearance of the thread (σ.lbl ⊑ l ⊑ σ.clr), but that the
current label be raised appropriately. As such, considering the se-
curity level l of a LMVar, rule (TLMVAR) raises the current label
(σ′ = σ[lbl ↦ σ.lbl ⊔ l]) when emptying (Σ.φ[m ↦ Lb l ⊡])
its content (Σ.φ(m) = Lb l e). Similarly, considering the secu-
rity level l of a LMVar, rule (PLMVAR) raises the current label
(σ′ = σ[lbl↦ σ.lbl⊔ l]) when filling (Σ.φ[m↦ Lb l e]) its con-
tent (Σ.φ(m) = Lb l ⊡). Finally, rule (GLABR) fetches a labeled
LMVar from the LMVar store (e = Σ.φ(m), i.e., a value of the form
Lb l e′), and returns its label. To simplify the formalism, insecure
programs “get stuck” in their evaluation. In practice, however, an
exception is raised to the most outer trusted code, which handles it
in an application-specific manner, e.g., in the case of a web server,
the trusted code handles such exceptions by not sending a reply to
the client. In some other cases, where the user is trusted, it may be
desirable to display a notification explaining the source of error.

Listing 7 shows the formal semantics for threadpools. The re-
lation ↪ represents a single evaluation step for the threadpool, in
contrast with Ð→ which is only for a single thread. We write ↪∗

for the reflexive and transitive closure of ↪. Configurations are of
the form jΣ, tso, where Σ is the global runtime environment and
ts is a queue of sequential configurations. The front of the queue
is the thread that is currently executing. Threads are scheduled in
a round-robin fashion. The thread at the front of the queue exe-
cutes one step, and it is then moved to the back of the queue (rule

(STEP)). If this step involves a fork (represented by
fork(e)
Ð→ ), a new



Listing 8 Erasure function.

εL(jΣ, tso) = jεL(Σ),filter (λ⟨σ, e⟩.e /≡ ●) (map εL ts)o

εL(⟨σ, e⟩) = {
⟨σ, ●⟩ σ.lbl /⊑ L
⟨σ, εL(e)⟩ otherwise

εL(Σ) = Σ[φ↦ εL(Σ.φ)][αl ↦ εL(αl)]l∈Labels

εL(αl) = {
ε l /⊑ L
map εL αl otherwise

εL(φ) = {(x, εL(φ(x))) ∶ x ∈ dom(φ)}

εL(Lb l e) = {
Lb l ● l /⊑ L
Lb l εL(e) otherwise

In the rest of the cases, εL is homomorphic.

thread is created at the back of the queue (rule (FORK)). The identi-
fier tnew is bound in rule (FORK), and it stands for the configuration
of the newly-forked thread, i.e., tnew = ⟨σ, e⟩ if the parent thread
transition had a label fork(e). Threads are also moved to the back
of the threadpool if they are blocked, e.g., waiting to read a value
from an empty LMVar (rule (NO-STEP) defines /Ð→ as the impossi-
bility to make any progress). When a thread finishes, i.e., it can no
longer reduce, the thread is removed from the queue (rule (EXIT)).

Considering IFC for a general scheduler could lead to refine-
ments attacks (e.g., [21, 22, 39, 50, 51, 56] ) or the need to severely
restrict programs (e.g., [47]). By considering a deterministic sched-
uler, our approach is more permissive — it rejects fewer programs
— and robust against refinement attacks. We remark that it is pos-
sible to generalize our work by considering a range of determinis-
tic schedulers (e.g., those of [40]) without drastically changing our
proof technique.

8. Security guarantees
In this section, we show that LIO computations satisfy termination-
sensitive non-interference. As in [32, 43, 52], we prove this prop-
erty by using the term erasure technique. The erasure function εL
rewrites data at security levels that the attacker cannot observe into
the syntax node ●.

Listing 8 defines the erasure function εL. This function is de-
fined in such a way that εL(e) contains no information above3

level L, i.e., the function εL replaces all the information more
sensitive than L in e with a hole (●). In most of the cases,
the erasure function is simply applied homomorphically (e.g.,
εL(e1 e2) = εL(e1) εL(e2)). For threadpools, the erasure func-
tion is mapped into all sequential configurations; all threads with a
current label above L are removed from the pool (filter (λ⟨σ, e⟩.e /≡

●) (map εL ts), where ≡ denotes syntactic equivalence). The com-
putation performed in a certain sequential configuration is erased if
the current label is above L. For runtime environments and stores,
we map the erasure function into their components. An output
channel is erased into the empty channel (ε) if it is above L, oth-
erwise the individual output events are erased according to εL. A
labeled value is erased if the label assigned to it is above L.

Following the definition of the erasure function, we introduce a
new evaluation relationÐ→L as follows:

jΣ, tsoÐ→ jΣ′, t′so

jΣ, tsoÐ→L εL(jΣ
′, t′so)

The relation Ð→L guarantees that confidential data, i.e., data not
below level L, is erased as soon as it is created. We writeÐ→∗L for
the reflexive and transitive closure ofÐ→L. Similarly, we introduce

3 We loosely use the word “above” to mean /⊑, since labels may not be comparable.

a relation↪L as follows:

jΣ, tso↪ jΣ′, t′so

jΣ, tso↪L εL(jΣ
′, t′so)

As usual, we write ↪∗L for the reflexive and transitive closure
of ↪L. In order to prove non-interference, we will establish a sim-
ulation relation between ↪∗ and ↪∗L through the erasure function:
erasing all secret data and then taking evaluation steps in ↪L is
equivalent to taking steps in↪ first, and then erasing all secret val-
ues in the resulting configuration. Note that this relation would not
hold if information from some level above L was being leaked by
the program. In the rest of this section, we only consider well-typed
terms to ensure there are no stuck configurations.

For simplicity, we assume that the address space of the memory
store is split into different security levels and that allocation is
deterministic. Therefore, the address returned when creating an
LMVar with label l depends only on the LMVars with label l
already in the store.

We start by showing that the evaluation relationsÐ→L and↪L
are deterministic.

Proposition 1 (Determinacy ofÐ→L). If jΣ, to Ð→L jΣ′, t′o and
jΣ, toÐ→L jΣ′′, t′′o, then jΣ′, t′o = jΣ′′, t′′o.

Proof. By induction on expressions and evaluation contexts, show-
ing there is always a unique redex in every step.

Proposition 2 (Determinacy of ↪L). If jΣ, tso ↪L jΣ′, t′so and
jΣ, tso↪L jΣ′′, t′′s o, then jΣ′, t′so = jΣ′′, t′′s o.

Proof. By induction on expressions and evaluation contexts, show-
ing there is a unique redex in every step and using Lemma 1.

The next lemma establishes a simulation between↪∗ and↪∗L.

Lemma 1 (Many-step simulation). If jΣ, tso ↪
∗

jΣ′, t′so, then
εL(jΣ, tso)↪

∗

L εL(jΣ
′, t′so).

Proof. In order to prove this result, we rely on properties of the
erasure function, such as the fact that it is idempotent and homo-
morphic to the application of evaluation contexts and substitution.
We show that the result holds by case analysis on the rule used
to derive jΣ, tso ↪

∗
jΣ′, t′so, and considering different cases for

threads whose current label is below (or not) level L.

The L-equivalence relation ≈L is an equivalence relation be-
tween configurations (and their parts), defined as the equiva-
lence kernel of the erasure function εL: jΣ, tso ≈L jΣ′, rso
iff εL(jΣ, tso) = εL(jΣ

′, rso). If two configurations are L-
equivalent, they agree on all data below or at level L, i.e., they
cannot be distinguished by an attacker at level L. Note that two
queues are L-equivalent iff the threads with current label that flows
to L are pairwise L-equivalent in the order appearing in the queue.

The next theorem shows the non-interference property. It essen-
tially states that if we take two executions of a program with two
L-equivalent inputs, then for every intermediate step of the com-
putation of the first run, there is a corresponding step in the com-
putation of the second run which results in an L-equivalent config-
uration. Note that this also includes the termination channel, since
L-equivalence of configurations requires the same public threads
to be terminated. We formulate the theorem in terms of a function
since we only consider programs that receive input (represented by
the argument to the function) at the beginning of their execution
and then produce outputs (represented by the out primitive).



Theorem 1 (Termination-sensitive non-interference). Given a
function e (with no Lb, m, ()

LIO, ⊡, R, and ●) where Γ ⊢ e ∶

Labeled ` τ → LIO ` (Labeled ` τ ′), an attacker at level L,
an initial security context σ, and runtime environments Σ1 and Σ2

where Σ1.φ = Σ2.φ = ∅ and Σ1.αk = Σ2.αk = ε for all levels k,
then

∀e1e2.(Γ ⊢ ei ∶ Labeled ` τ)i=1,2 ∧ e1 ≈L e2
∧ jΣ1, ⟨σ, e e1⟩o↪

∗
jΣ′1, t

1
so

⇒ ∃Σ′2t
2
s.jΣ2, ⟨σ, e e2⟩o↪

∗
jΣ′2, t

2
so ∧ jΣ′1, t

1
so ≈L jΣ′2, t

2
so

Proof. Since e1 and e2 areL-equivalent and Σ1 and Σ2 are initially
empty, the initial configurations jΣ1, ⟨σ, e e1⟩o and jΣ2, ⟨σ, e e2⟩o
must be L-equivalent. This implies that the erased configura-
tions εL(jΣ1, ⟨σ, e e1⟩o) and εL(jΣ2, ⟨σ, e e2⟩o) must be syn-
tactically equivalent. Also, by Lemma 1 (Simulation) we have
εL(jΣ1, ⟨σ, e e1⟩o) ↪

∗

L εL(jΣ
′

1, t
1
so), and by Proposition 2 (De-

terminacy), we can always find a reduction εL(jΣ2, ⟨σ, e e2⟩o)↪
∗

L

εL(jΣ
′

2, t
2
so) where εL(jΣ′1, t

1
so) = εL(jΣ

′

2, t
2
so). By Lemma 1

again, we have jΣ2, ⟨σ, e e2⟩o ↪
∗
jΣ′2, t

2
so, and therefore jΣ′1, t

1
so

and jΣ′2, t
2
so are L-equivalent.

9. Example Application: Dating Website
We implemented the concurrency primitives discussed in Sec-
tions 3, 4, and 6 using Concurrent Haskell [25]. We rely on forkIO

and MVars to implement the forking primitives, and types Result

and LMVar. Similarly, we implement the time-based mitigator de-
tailed in Section 5, and a small library that mitigates the stan-
dard I/O file handle functions. We refer the interested reader to
the source code, available at http://www.scs.stanford.edu/
~deian/concurrent_lio. In this section we evaluate the feasi-
bility of leaking information through timing-based covert channels
as well as the effectiveness of LIO in addressing these leaks.

To this end, we built a simple dating website that allows third-
party developers to build applications (or apps) that interact with a
common database. Our website exposes a shared key-value store to
third-party apps encoding interested-in relationships. A key corre-
sponds to a user ID and its associated value represent the users that
he/she is interested in. For simplicity, we do not consider the list of
users sensitive, but interested-in relationships should remain con-
fidential. In particular, a user should be able to learn which other
users are interested in them, but should not be able to learn the
interested-in relationships of other users.

The website consists of two main components: 1) a trusted
web server that executes apps written using LIO and 2) untrusted
third-party apps that may interact with users and read and write
to the database. The database is simply a list of tuples map-
ping keys (users) to LMVars storing lists of users. Apps are sep-
arated from each other by URL prefixes. For example, the URL
http://xycombinator.biz/App1 points to App1. Requests with
a particular app’s URL prefix are serviced by invoking the app’s re-
quest handler in an IFC-constrained, and time-mitigated, environ-
ment. We assume a powerful, but realistic adversary. In particular,
malicious app writers may themselves be users of the dating site.
We stress that the considered examples discussed below were de-
liberately chosen to highlight a plausible attack scenario and not
necessarily as a realistic example. (For a production-use system
that relies on LIO, we refer the reader to http://gitstar.com.)
We also remark that programming with the concurrent version of
LIO does not impose major challenges since its interface is very
similar to that of the original library [52].

Termination covert channel As detailed in Section 3, the imple-
mentation of LIO [52], with toLabeled, is susceptible to a termi-
nation channel attack. In the context of our dating-website, a mali-

cious app term, running on behalf of an (authenticated) user a can
be used to leak information on another (target) user t as follows:
▸ Adversary a issues a request that contains a guess that user t has

an interest in g: GET /term?target=t&guess=g
▸ The trusted app container invokes the app term and forwards

the request to it.
▸ The app term then executes the following LIO code:

toLabeled ⊺ $ do v ← lookupDB t
when (g == v) �

return $ mkHtmlResp200 "Bad guess"

Here, lookupDB t is used to perform a database lookup with key
t. If g is present in the database entry, the app will not terminate,
otherwise it will respond, denoting the guess was wrong.

We found the termination attack to be very effective. Specifically,
we measured the time required to reconstruct a database of 10 users
to be 73 seconds4.

If toLabeled is prohibited and lFork is used instead, the ter-
mination attack cannot be mounted. This is because lWait first
raises the label of the app request handler. An attempt to output
a response to the client browser will not succeed since the current
label of the handler cannot flow to the label of the client’s browser.
(The browser label is used to restrict apps from sending responses
that the end-user, in this case a, cannot observe.) It is important to
note that errors of this kind are made indistinguishable from non-
terminating requests. To accomplish this, our dating site catches
label violation errors and converts them to �.

Internal timing covert channel To carry out an internal timing
attack, an app must execute two threads that share a common re-
source. Concretely, an app can use internal timing to leak informa-
tion on a target user t as follows:
▸ Adversary a issues a request containing a guess that t is

interested-in g: GET /internal?target=t&guess=g
▸ The trusted app container invokes the app internal.
▸ App internal then executes the following LIO code:

varHigh ← fork $
toLabeled ⊺ $ do

v ← lookupDB t
when (g == v) (sleep 5000)

appendToAppStorage g
varLow ← fork $ do sleep 3000

appendToAppStore -1
wait varHigh
wait varLow
r ← readFromAppStore
return $ mkHtmlResp200 r

The code spawns two threads. The first reads the high value in
a toLabeled, sleeps for 5 seconds if the guess is correct, and then
write the guess to a Low-labeled persistent store5 The second thread
simply write a placeholder (-1) after waiting for 3 seconds. Here,
the ordering of the data in the store reveals whether the guess is
correct. If the guess is incorrect, the store will read g,-1; if the
guess is correct, the store will read -1,g.

We implemented a magnified version of the attack above by
sending several requests to the server. The adversary repeatedly
sends requests to internal for each user in the system as a guess
g. As with the termination channel attack, we found that internal
timing attack is feasible. For a database of 10 users we managed to
recover all the database entries in 66.92 seconds.

4 All our measurements were conducted on a laptop with a Intel Core i7
2620M (2.7GHz) processor and 8GB of RAM, with GHC 7.4.1.
5 Apps can write to the database on behalf of invoking user, we use the store
notion for simplicity.



Our modifications to LIO can be used to address the internal
timing attacks described above; replacing toLabeled with lFork

eliminates the internal timing leaks. We observe that by using
lFork, the time when the app executes appendToAppStore cannot
be influenced by sensitive data. Hence, replacing fork and wait by
their LIO counterparts renders the attack futile.

External timing covert channel We consider a simple external
timing attack to our dating website in which the adversary a has
access to a high-precision timer. An app external colluding with
a can use external timing to leak a target user t’s interested-in
relationship as follows:
▸ Authenticated adversary a issues requests containing the target

user t: GET /external?target=t&guess=g
▸ The trusted container invokes external with the request.
▸ App external then proceeds to execute the following LIO code:

toLabeled ⊺ $ do
v ← lookupDB t
when (g == v) (sleep 5000)

return $ mkHtmlResp200 "done"

Given a target t and guess g, if the g is correct the thread sleeps;
otherwise it does nothing. In both cases the final response is public.
The attacker thus simply measures the response time – recognizing
a delay as a correct guess. Despite its simplicity, we also found
this attack to be effective. In 33 seconds, we recovered a database
of 10 users. To address the leak, we mitigated the app handler, as
described in Section 5. Concretely, the response time of an app was
mitigated, taking into account the arrival of a request. Although
we manged to recover 3 of the 10 user entries in 64 seconds—we
found that recovering the remaining user entries was infeasible. The
performance of well-behaved apps is unaffected.

10. Related Work
IFC security libraries The seminal work by Li and Zdancewic [31]
presents an implementation of information-flow security as a
Haskell library using arrows. Russo et al. [43] show a similar
IFC security library based solely on monads, that library leverages
Haskell’s type-system to statically enforce non-interference. Tsai
et al. [54] extend [31] by considering side-effects and concurrency.
Different from our approach, they provide termination-insensitive
non-interference under a cooperative scheduler and no synchro-
nization primitives. Jaskelioff and Russo [24] propose a library
that enforces non-interference by executing the program as many
times as security levels, known as secure multi-execution [11].
More recently, we propose the use of the LIO monad to track
information-flow dynamically [52]. Morgenstern et al. [36] en-
coded an authorization- and IFC-aware programming language in
Agda. Their encoding, however, does not consider computations
with side-effects. Devriese and Piessens [12] used monad trans-
formers and parametrized monads to enforce non-interference, both
dynamically and statically. None of the above approaches handle
the termination covert channel. Moreover, except for [54] they do
not consider a concurrent language.

Internal timing covert channel In addressing the internal timing
cover channel, compared to this work, other language-based ap-
proaches sacrifice standard semantics, practical enforcement, per-
missiveness, and language expressiveness. The works [49–51, 56]
rely on an unrealistic primitive protect(c) which hides the timing
behavior of a command c. However, assuming a scenario where it
is possible to modify the scheduler, [5, 40] show how an interac-
tion between threads and the scheduler can be used to implement a
generalized version of protect(c). To close internal timing leaks,
the work in [4] makes the unlikely assumption that rolling back a
transaction takes the same time as committing it. In contrast, our

forkLIO and waitLIO are implemented using standard concurrency
primitives available in Haskell.

Low-determinism [58] states that public outputs must be de-
terministic such that no race on public data is possible. This con-
cept inherently makes enforcement mechanisms non-compositional
(e.g., two parallel threads that only write to a public channel is con-
sidered insecure). A model-checking and type-system approach to
enforcing low-determinism have been presented in [23], and [53],
respectively. Mantel et al. [34] use synchronization barriers after
branching on secret data and before producing public outputs. Dif-
ferent from these enforcement techniques, our library scales to a
large number of threads.

With respect to permissiveness, some works do not allow
publicly-observable events after branching on secrets. Specifi-
cally [7, 8] avoid internal timing leaks by disallowing public events
after branching on secret data. They consider a fixed number of
threads and no synchronization primitives. Conversely, we allow
spawning arbitrary threads that branch (or loop) on secrets while
the program continues producing public events. Several approaches
consider a restrictive language where dynamic thread creation is
not allowed [7, 8, 16, 50, 51, 56, 58].

Russo and Sabelfeld [41] remove internal timing leaks under a
cooperative scheduling by manipulating yield commands. How-
ever, the termination channel is intrinsically present under coop-
erative scheduling. Closer to our approach, Russo et al. [42] trans-
form sequential programs into concurrent programs that spawn new
threads when executing branches and loops on secret values. Al-
though the idea of spawning threads for sensitive computations is
similar, we use the approach in a different context. Firstly, Russo
et al. apply their technique for a simple sequential While-language,
while we consider concurrent programs with synchronization prim-
itives in the context of a practical language. Secondly, and differ-
ent from our work, their approach does not consider leaks due to
termination, i.e., their transformation only guarantees termination-
insensitive non-interference. Finally, their transformation approach
is conservative in preserving security and, as such, the termination
behavior of a transformed program may change. Our proposal, on
the other hand, guarantees that the semantics of the program is that
which the programmer writes.

Termination and external covert channels There are several
language-based mechanisms for addressing the termination and
external timing channels. Smith and Volpano [51, 55] describe a
type-system that removes the termination channel by forbidding
loops whose conditional depend on secrets. This restriction is also
used in [34, 47]. The work by Hedin and Sands [19] avoids the
termination and external timing covert channels for sequential Java
bytecode by disallowing outputs after branching on secrets. This
is similar to our approach; however, we allow the spawning new
threads for such sensitive tasks, while the rest of the program can
still perform public events. Agat [1] describes a code transforma-
tion that removes external timing leaks by padding programs with
dummy computations, and avoids the termination channel by dis-
allowing loops on secrets. One drawback of Agat’s transformation
is that if there is a conditional on secret data, and only one of
the branches is non-terminating the transformed program is non-
terminating. Despite this, the approach has been adapted for lan-
guages with concurrency [44, 45, 47]. Moreover, the transformation
has been rephrased as a unification problem [29] and implemented
with transactions [4]. While targeting sequential programs, secure
multi-execution [11] removes both the termination and external
timing channels. However, the latter is only closed in a special con-
figuration, e.g., if there are as many CPUs (or cores) as security
levels. We refer the reader to the systematization of knowledge pa-
per [26] for a more detailed description of possible enforcements
for timing- and termination-sensitive non-interference.



Recently, Zhang et al. [61] propose a language-based mitigation
approach for a simple While-language extended with a mitigate

primitive. Their work relies on static annotations to provide infor-
mation about the underlying hardware. Compared to their work, our
functional approach is more general and can be extended to address
other covert channels (e.g., storage). However, their attack model
is more powerful in considering the effects of hardware, including
caches. Nevertheless, we find their work to be complimentary: our
system can leverage static annotations and the Xeon “no-fill” mode
to address attacks relying on underlying hardware.

Secure operating systems and the termination channel A num-
ber of operating systems have been developed that intentionally
left termination channels out of a belief that closing them was in-
tractable, e.g., IX [35]. Another is Asbestos, whose limited their
security ambitions to ensuring “that at least two cooperating pro-
cesses are required to communicate information in violation of a
label policy” [13]. In their seminal paper on the decentralized label
model [37], which revived the operating system community’s inter-
est in information flow control, Myers and Liskov expressed skep-
ticism the problem could ever be overcome with purely dynamic
checks. HiStar [59] avoided hard-coding termination channels into
the operating system. In practice, however, privileged software had
to implement them anyway explicitly using privileges through un-
tainting gates, because operating-system-level resource manage-
ment requires knowing when a process has exited. By contrast, we
believe that we have found abstractions that are both practical on
their own, and sound with respect to non-interference.

π-calculus and information-flow Honda et al. [22] present a
sophisticated type-system that addresses internal and termina-
tion covert channels in π-calculus. They classify channels into
two types: truly linear, used exactly once, and non-linear (non-
deterministic), used an arbitrary number of times. The type-system
allows public outputs after reading from linear channels but pre-
vents a process from sending public outputs after receiving secret
values on a non-linear channel. Without this restriction, a termi-
nation leak might occur because data might never arrive on the
(non-linear) channel. The typing judgements guarantee that for ev-
ery sender on a linear channel there is a corresponding receiver.
Since it is not possible to have two processes writing to a com-
mon public linear channel, leaks dues to internal timing are not
possible. Our library relies on essentially the same mechanism
Honda et al. use to prevent leaks associated with non-linear chan-
nels. However, our approach enforces IFC dynamically rather than
statically. The two systems are incomparable: we are more per-
missive in taking the dynamic approach [46], while Honda et al.
are more permissive by allowing, in certain situations, outputs on
public channels after inspecting secret data. Subsequent work [21]
describes a more advanced type-system that utilizes a different
classification for channels (namely, linear instead of truly linear,
and affine instead of non-linear) but imposes restrictions simi-
lar to [22]. Focusing on simplicity, Pottier [39] describes a type-
system that disallows public outputs after reading secrets from a
channel, similar to the restriction imposed by non-linear channels
described above. Our work can be understood as a dynamic analog
to [39] and [20]. Kobayashi [27] improves the precision of the type-
system described in [21] to allow synchronization locks, or binary
semaphores (similar to MVars). Kobayashi eliminates the termi-
nation covert channel. Though conceptually the work addresses
and eliminates the internal timing covert channel, this is a conse-
quence of the formalism in which a conditional and its branches
“reduce” according to a structural relation. For example, the rule
if true then P else Q ⪯ P essentially assumes that evaluation of
guards takes no time and as a consequence no internal timing attack
is possible. We, like the work generalized by Kobayashi, address

the internal timing covert channel by considering what we believe
is a more appropriate model.

11. Summary
Many information flow control systems allow applications to se-
quence code with publicly visible side-effects after code that com-
putes over sensitive data. Unfortunately, such sequencing leaks sen-
sitive data through termination channels (which affect whether the
public side-effects ever happen), internal timing channels (which
affect the order of publicly visible side-effects), and external timing
channels (which affect the response time of visible side-effects).
Such leaks are far worse in the presence of concurrency, particu-
larly when untrusted code can spawn new threads.

We demonstrate that such sequencing can be avoided by intro-
ducing additional concurrency when public values must reference
the results of computations over sensitive data. We implemented
this idea in an existing Haskell information flow library, LIO. In
addition, we show how our library is amenable to mitigating exter-
nal timing attacks by quantizing the appearance of externally vis-
ible side-effects. To evaluate our ideas, we prototyped the core of
a dating web site showing that our interfaces are practical and our
implementation does indeed mitigate these covert channels.
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