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Abstract. Result checking is a general methodology for ensuring that
untrusted computations are valid. Its essence lies in defining efficient
checking procedures to verify that a result satisfies some expected prop-
erty. Result checking often relies on certificates to make the verification
process efficient, and thus involves two strongly connected tasks: the gen-
eration of certificates and the implementation of a checking procedure.
Several ad-hoc solutions exist, but they differ significantly on the kind
of properties involved and thus on the validation procedure. The lack of
common methodologies has been an obstacle to the applicability of result
checking to a more comprehensive set of algorithms. We propose the first
framework for building result checking infrastructures for a large class
of properties, and illustrate its generality through several examples. The
framework has been implemented in Haskell.

1 Introduction

Computer programs are error-prone, making it a challenge to assure the valid-
ity of computations. Errors arise from many sources: programming mistakes,
rounding-off errors in floating-point computations, defects in the underlying
hardware, or simply because part of a computation has been delegated to some
untrusted party. A general methodology for ascertaining the correctness of the
computations performed by a program F is to rely on an independent result
checker V , which guarantees the correctness of the computation performed by
F . A simple example of result checker is a boolean-valued predicate between
inputs and outputs that only returns true on pairs (x, y) such that F (x) = y,
where F is a program with a single input x and single output y. For example, a
result checker for the program F computing the square root y of x is the program
V that returns the boolean expression (y2 � x)&&(x < y2 + 2y + 1). However,
result checkers may in general rely on additional inputs, called certificates, that
guarantee efficient execution. A typical example of result checker which relies
on certificates is the checker for greatest common divisor (gcd), which takes as
arguments, in addition to a and b for which the gcd must be computed, two
additional values u and v (which constitute the certificate), and the candidate
gcd d, and returns the boolean value d = ua+ vb ∧ d | a ∧ d | b.
� Partially funded by the EU project HATS and Spanish project Desafios-10 and

Community of Madrid project Comprometidos.

M. Blume, N. Kobayashi, and G. Vidal (Eds.): FLOPS 2010, LNCS 6009, pp. 72–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Functional Framework for Result Checking 73

While result checking offers a general methodology to guarantee the correct-
ness of computations, and thus is potentially applicable to many domains, its
applications have been circumscribed to a few and rather specific settings; see
Section 2. The main challenge in broadening the scope of result checking is
finding a systematic means of building, for a large class of properties, a result
checking framework that provides (a) for every property P in the class, a type
witP of certificates; (b) a means of generating certificates1; and (c) a checker
checkP : A→ witP → bool (where A is the carrier of P ), such that for all a : A
and w : witP we have

(checkP a w = true) ⇒ P a.

The purpose of this article is to provide a framework for building and verifying
certified results for a large class of algorithms. The framework is implemented
on top of the Haskell [9,10] programming language, and provides:

– certifying combinators, which extend the usual combinators of functional
programming with facilities for turning certificates of the combinators’ inputs
into certificates of the combinators’ outputs. Certifying combinators can be
combined to produce certified results;

– a generic checker function, that takes a representation of a property and
behaves like a checker for it.

The combination of certifying combinators and the generic checker allows us
to obtain a result checking framework for a large class of properties, including
sorting and searching algorithms, or primality testing.

Although our results are developed in the setting of a sequential language, our
primary motivation is to provide a certificate-based infrastructure for guarantee-
ing the correctness of large distributed computations among untrusted hosts [1].
The results of this paper can be embedded in the framework of [16] for this
purpose.

Outline. In Section 3, we define a generic checking function for a large class of
predicates that includes inductively defined ones. In Section 4, we propose two
methods for the generation of certificates. Both are defined as an extension of
the original producer algorithm. The first one is based on the recursion pattern
defining the producer algorithm. The second one is a general approach for the
certification of nondeterministic computations.

2 Related Work

Blum and Kannan [2] were among the first to recognise the importance of result
checking as a general method for discovering bugs in programs, and to advocate
its superiority over testing, which can be unreliable, or program verification,
1 Note that no property of the certificate generation mechanism is needed for checked

results to be correct, i.e., it is not necessary to trust the certificate generators.
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which can be costly. Many of the checkers considered in [2] are probabilistic pro-
grams, whose soundness is expressed in probabilistic terms. Blum subsequently
reflects on the usefulness of result checking for managing hardware errors, as in
the Pentium bug, or round-off errors arising in floating-point computations.

The pioneering ideas of Blum and Kannan were further developed in the con-
text of certification trails for common data structures, and certifying algorithms
for mathematical software:

– a certifying algorithm is one which computes, along with the intended re-
sult, a certificate that allows a checker program to verify independently the
correctness of the result (independent verification means that it should not
be necessary for the checker program to trust the certifying algorithm in
any way: results and certificates should speak for themselves). Certifying
algorithms are implemented notably in the LEDA and CGAL platforms for
computational geometry; the role of the checkers is to increase the reliabil-
ity of the platform, through a checking phase introduced at the end of each
geometric algorithm.

– a certification trail [3,14] is a record of selected intermediate results during a
program computation. A second algorithm executes more efficiently by using
the execution trail of the first program to compute the same result. Then,
the original result and the result of the second algorithm are compared. The
technique is applicable to algorithms that manipulate data structures, e.g.
priority queues.

Result checking is also commonly considered—although not always explicitly
so—in formal verification. For example, result checking is a natural approach to
connecting proof assistants with external tools, e.g. computer algebra systems or
mathematical packages whose results are untrusted. One prominent application
of result checking in proof assistants is Grégoire, Théry and Werner’s work on
primality checking [7], using Pocklington’s criterion, and optimizing the checker
in order to check large prime numbers. Another example is the work of Harri-
son [8], based on a sums of squares representation to certify positive semidefinite
polynomials. The experiments have been developed by combining the HOL Light
machinery with a semidefinite programming package.

Result checking is also used as a proof technique for simplifying the task of
program verification; the basic idea is to cut-off program verification tasks by
isolating subroutines for which appropriate checkers exist, and then verifying
these checkers instead of the aforementioned subroutines. This process is used
e.g. in the CompCert project [12], where a formal proof of compiler correctness
uses result certification for graph colorings.

Applications of result checking to guarantee trust in distributed environments
are relatively recent. One of the most prominent ones is Proof Carrying Code
(PCC) [13], which offers trust in a mobile application (the value to be checked)
through a formal proof (the certificate) that the application respects a given
security or safety policy. However, PCC cannot be used to establish the integrity
of distributed computations among untrusted hosts, because one cannot make
assumptions on the code executed by remote hosts.



A Functional Framework for Result Checking 75

3 Construction of Result Checkers

This section presents a general framework for result checking. Given a predicate
P , and assuming that the certificate types and checkers for the atomic predicates
that compose P are known in advance, we infer the type of certificates of P , and
we can check P using a generic checker. The generic checker, which we present
in Section 3.2, is generator-agnostic, and works regardless of the way in which
certificates are generated.

The main difficulty in this section is handling inductively presented predicates,
i.e. predicates that are defined by inference rules of the form:2

Q a

P a
[Base case]

P r1 . . . P rn R �r x

P x
[Inductive case]

where Q is a predicate describing a base case and R is a predicate for the
induction step, or equivalently by the equation:

P x = Q x ∨ (∃�r. (∀i ∈ bounds(�r). P ri) ∧R �r x)

where bounds(v) = {i | 1 � i � |v|}. Pocklington’s criterion is an instance of
an inductively presented predicate that has been used for checking primality
efficiently.

Example 1. A number N is prime if it satisfies Prime N where

Prime N
.= (N = 2) ∨ (∃�p. (∀i ∈ bounds(�p). Prime pi) ∧ Pock �p N)

Pock �p N
.= ∃�αa. |�α| = |�p| ∧ pα1

1 · · · pαk

k | (N − 1) ∧ √
N < pα1

1 · · · pαk

k ∧
aN−1 modN = 1 ∧ ∀i ∈ bounds(�p). coprime (a

N−1
pi − 1) N

where k = |�p|
Inductively presented predicates arise in many contexts, and it is thus desirable
for a result checking framework to support them.

3.1 Properties and Certificates

The starting point of the framework is the definition of formulae and predicates
in Figure 1. Instead of relying on the usual formalisation of these as vanilla
data types, we take advantage of Haskell’s support for Generalised Algebraic
Data Types (GADTs) [11] and index the type of formulae and predicates with
a type of certificates: thus, Form w is the type of formulae whose correctness is
certificated by terms of type w , and Pred w a is the type of predicates over a
with certificate type w .

The definition of formulae includes constructors for the true and false val-
ues (TT and FF ), logical connectives (∧ and ∨), existential quantification (E ),
2 We stress that inductively presented predicates do not require the ris to be smaller

than x with respect to some well-founded order; in particular every predicate P is
equivalent to an inductively presented one by taking Q to be false and n = 1 and
R r x to be x = r.
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data Form w where
TT :: Form ()
FF :: Form ()
(∧) :: Form w1 → Form w2 → Form (w1,w2)
(∨) :: Form w1 → Form w2 → Form (Either w1 w2)
E :: Pred w a → Form (a,w)
(@) :: Pred w a → a → Form w
Forall :: Pred w a → [a ] → Form [w ]

data Pred w a where
Atom :: (w → a → Bool) → Pred w a
Abs :: (a → Form w) → Pred w a
RecPred :: Pred w1 a → Pred w2 ([a ], a) → Pred (RecWit w1 a w2) a

Fig. 1. Definition of formulae (Form) and predicates (Pred)

universal quantification over lists (Forall), and @ for predicate application to a
value. For TT and FF , the certificate type is the unit type. For conjunction and
disjunction, the certificate types are respectively the product and sum of the
certificate types of the two conjuncts. For existential quantification over a pred-
icate P over the type a, a certificate is a pair consisting of an element of a and
a certificate for P . Finally, universal quantification requires a list of certificates,
and @ expects a certificate for the predicate. We omit treating negation in our
framework, since it would be impossible to derive checkers for the negation of
an existential.

The definition of predicates includes the constructor Abs , which uses higher-
order abstract syntax to turn a formulae into a predicate. Atomic predicates,
for which we assume that a checker is given, are modeled by encapsulating the
corresponding checker with the constructor Atom.

The constructor RecPred models inductively presented predicates. It takes
the predicate Q as first parameter, and R as the second parameter. The data
type constructor RecWit is introduced to define certificate types for recursive
predicates:

data RecWit w1 a w2 = Base w1

| Rec [a ] [RecWit w1 a w2 ] w2

The parameters for this type are:

w1 the type of certificates for the base case, Q
a the input type for the predicate
w2 the type of certificates for predicate R

A certificate of the form Base w corresponds to the certificate of the validity
of the base case Q, as certificated by w . A certificate of the form Rec as ws w
proves the existential part, where as is the list of values for which the predicate
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recursively holds, ws is the list of certificates for the values in as , and w is the
certificate for R.

Example 2. Consider the certification of the primality testing algorithm intro-
duced in Example 1. The predicate Prime derived previously from Pocklington’s
criterion matches the form of inductively presented predicates shown above.
Therefore, we can encode the predicate Prime as an expression of type Pred ,
by using the data type constructor RecPred : predicate Q corresponds simply
to the condition n ≡ 2; predicate R corresponds to Pock. We also include the
definitions of some auxiliary predicates that we need to express the criterion.

divides = Atom (λ() (n,m) → m ‘mod ‘ n ≡ 0)
mult ps as = product (zipWith (ˆ) ps as)
coprimes = Abs (λ(a,n, ps) →

Forall (Abs (λp → coprime@(aˆ((n − 1) ‘div ‘ p) − 1,n))) ps)
coprime = Atom (λ() (n,m) → gcd n m ≡ 1)
pock ps n = E (Abs $ λ(a, αs) →

Atom (λ() (xs, ys) → length xs ≡ length ys)@(ps , αs) ∧
divides@(mult ps αs,n − 1) ∧
Atom (λ() (x , y) → xˆ(y − 1) ‘mod ‘ y ≡ 1)@(a,n) ∧
ordP@(

√
n,mult ps αs) ∧

coprimes@(a,n, ps))
prime = RecPred (Atom (λ() n → n ≡ 2))

(Abs $ λ(ns ,n) → pock ns n)

The type of prime is

prime :: Pred (RecWit () Int ((Int , [Int ]),T )) Int

where T = ((((), ()), ()), [()]) is the (trivial) certificate type for Pock.

3.2 Generic Checker

This section describes a generic checker for formulae and predicates. The checker
is defined by mutual recursion, and consists of functions check and checkPred ,
defined in Figure 2. Most equations are straightforward. Atomic predicates are
represented by their own checkers, so in checkPred we just call the checker func-
tion with the appropriate parameters. Predicate abstractions are also easy to
deal with: we just compute the formula with the encapsulated function, and
then delegate the work of checking this formula to the function check , taking
care to deliver it the right certificate.

Finally, we must deal with the recursive predicate case, where terms are of the
form RecPred q r . Recursive certificates either certify base cases (predicate q
here), or recursive cases (the existential part of the disjunction). If we have a cer-
tificate for the base case, we just check predicate q with the supplied certificate.
The recursive case is the trickiest one. On the one hand, we must recursively
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check :: Form w → w → Bool
check TT = True
check FF = False
check (x ∧ y) (w1 ,w2 ) = check x w1 ∧ check y w2
check (x ∨ y) (Left w1 ) = check x w1
check (x ∨ y) (Right w2 ) = check y w2
check (E p) (x ,w) = checkPred p x w
check (Forall p xs) ws = all id (zipWith (checkPred p) xs ws)
check (p@x ) w = checkPred p x w

checkPred :: Pred w t → t → w → Bool
checkPred (Atom f ) x w = f w x
checkPred (Abs f ) x w = check (f x ) w
checkPred (RecPred q r) x (Base w) = checkPred q x w
checkPred (RecPred q r) x (Rec as rs w2) =

check (Forall (RecPred q r) as) rs ∧
checkPred r (as, x ) w2

Fig. 2. The definition of check and checkPred

check the predicate for the list of existentially quantified values. On the other
hand, we must check that predicate r holds, which we do by calling checkPred
with the appropriate parameters.

Example 3. Consider again the example of Pocklington’s Criterion to verify the
primality of an integer n. An implementation of a checker for this criterion,
requires a partial decomposition of n−1 into prime factors, so we must recursively
invoke the checker to verify the primality of these numbers as well.

An instance of a Pocklington certificate is the term

Rec [2, 3] [Base (),Rec [2] [Base ()] ((2, [1]), t)] ((11, [4, 2]), t)

which proves that the number 1009 is prime, where t = ((((), ()), ()), [()]) is the
trivial certificate for the side conditions in Pock.

Note that there is unnecessary redundancy in this certificate. There are two
instances of the certificate for 2 (i.e. Base ()), which have to be checked sepa-
rately by the checker. This is inefficient not only in terms of space, but also in
terms of execution time.

The solution to this problem consists in the introduction of sharing in the
certificate data structure. The idea is to avoid repeated subcertificates by having
only one instance of each, and allowing it to be shared in several parts of the
structure. Using sharing, the certificate for 1009 is written as

let w2 = Base () in Rec [2, 3] [w2,Rec [2] [w2 ] ((2, [1]), t)] ((11, [4, 2]), t)

Although requiring a more sophisticated certificate generation mechanism, shar-
ing forces memoisation of checker results, thus allowing the proof of the primality
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of 2 to be performed only once for this certificate. We would like to stress that
no changes in the checker are needed for this to work; it is just a consequence of
lazy graph reduction.

Our implementation of Pocklington’s criterion is relatively easy to improve by
combining the use of clever algebraic properties of the modulo and exponenti-
ation operators, and having certificates for gcd in the coprime predicate. Since
these optimisations can be thought of as more sophisticated checkers for atomic
predicates, it is straightforward to incorporate them into our framework. Other
implementations of Pocklington’s criterion [7,5] using these techniques are able
to cope with huge primes, with approximately 10000 digits.

3.3 Generic Checker Properties

Assuming a standard interpretation function [[·]] that maps formulae and pred-
icates to values in some semantic domain suitable for first-order logic, we say
that a checker checkPred φ is sound if checkPred φ x w ≡ True ⇒ [[φ]] (x ). It
is possible to state a soundness property for generic checkers: all checkers of the
form checkPred φ are sound, provided that φ only has atomic predicates with
sound checkers.

We define a certifying variant of a function of type A → B as a function of
type A → (B ,W ), where W is the type of the witness. A specification for such a
certifying function is a pair (φ,ψ) where φ is a precondition with trivial witness,
i.e. of type Pred () A; and ψ is a postcondition of type Pred W (A,B).

The generic checker can be used at runtime to ensure the partial correctness
of certifying functions. One can define a function wrap that lifts a certifying
computation into the Maybe monad:

wrap :: (Pred () a,Pred w (a, b)) → (a → (b,w)) → a → Maybe b
wrap (pre, post) f x

| checkPred pre x () ≡ False = Nothing
| otherwise = let (y,w) = f x

in if checkPred post (x , y) w
then Just y
else Nothing

The function wrap (φ, ψ) f checks that φ holds on the input, then computes f ,
and finally checks that ψ holds on the output, returning Nothing if any check
fails. It has the useful property of turning a certifying (not necessarily correct)
function into a correct one:

Theorem. Let f be a certifying function with specification (φ, ψ). Then,
wrap (φ, ψ) f is partially correct with respect to the specification (φ, ψ′), where
ψ′ (x , y) = y ≡ Nothing ∨ (y ≡ Just z ∧ ψ (x , z )).

4 Certificate Generation

Certificate generation is a much harder problem than certificate checking.
One cannot program a generic certificate generator that automatically builds
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certificates of complex properties, even when having certificate generators for
atomic predicates. The problem arises from existentials: recall that a certificate
for ∃x : T. φ(x) is a pair (t, p) where t is an element of T and p is a certificate
of φ(t). In general, it is unfeasible to find t. The problem also appears in the
case of inductively presented predicates. In the general case, one cannot find the
witnesses that are used to infer that an element verifies the predicates. It should
be pointed however, that if we require that the witnesses �r are smaller than x
w.r.t. a well-founded order, then one can write a generic certificate generator.
Of course, such a generic certificate may be hopelessly inefficient.

In this section, we present two different approaches to certificate generation
for particular classes of problems. They share the underlying notion of certifying
higher-order recursion operators, which abstract away common patterns of cer-
tificate generation. In particular, we focus on structural recursion and generation
patterns, otherwise known as folds and unfolds in the functional programming
literature, because it is possible to express all general recursive functions as com-
positions of these combinators. In both cases, the point is to generate results and
their certificates in tandem, instead of doing it in a separate post-processing step.

4.1 Certificates as Monoids

It is possible to define certifying versions of fold and unfold , namely cfold and
cunfold , which build certificates incrementally: at each node of the structure, a
local certificate is generated; then, all local certificates merge to form a certificate
for the whole computation. For this merging to be well-defined, we require that
certificates form a monoid.

Let us consider the certification of the output of sorting algorithms. In a pure
formulation of the problem, a sorting algorithm is fed with an input list L, and
produces an output list L′ such that

i. The list L′ is in nondecreasing order (according to some total order on the
elements of L);

ii. The list L′ is a permutation of L.

A certifying sorting algorithm would then have to prove that these conditions
are met by its output. A checker would need no hints to prove the first condi-
tion, since it is possible to efficiently check the sortedness of a list. Therefore,
certification in this case boils down to checking the second condition, i.e. that
L′ has the same elements as L. The certificate we require is just a mapping that
describes the sorting performed by the algorithm.

Consider the Quicksort algorithm, which can be visualised as building a tree of
elements such that, when flattened, yields a sorted permutation of the input list.
We can make this intermediate structure explicit, and write the tree-generation
step as an unfold, and the flattening step as a fold.

data Tree a = E | N (Tree a) a (Tree a)
unfoldT :: (s → Maybe (s , a, s)) → s → Tree a
unfoldT f s = case f s of
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Nothing → E
Just (s1 , x , s2) → N (unfoldT f s1 ) x (unfoldT f s2 )

foldT :: (b → a → b → b) → b → Tree a → b
foldT f z E = z
foldT f z (N lt x rt) = f (foldT f z lt) x (foldT f z rt)
qsort = foldT (λls x rs → ls ++ x : rs) [ ] ◦ unfoldT build

where build [ ] = Nothing
build (x : xs) = let (l , r) = partition (<x ) xs

in Just (l , x , r)

By expressing the algorithm in terms of higher-order recursion operators, we
can produce a certificate for the result in a compositional way which is directed
by the structure of the recursion. For Quicksort, since we are building a tree of
elements, we would only be required to show a certificate for every node of the
tree, and the higher-order operator could combine them into a certificate for the
whole tree.

Certificates for Quicksort must be permutations. We shall represent mappings
as lists of pairs, where the mapping (x , y) maps the element in position x to
position y in the list.

newtype Map = Map [(Int , Int)]

We can make our Map data type an instance of Monoid in this way:

instance Monoid Map where
ε = Map [ ]
(Map xs) ⊕ (Map ys) = Map (norm (xs ++ ys))

The identity is defined as the empty mapping (represented by [ ]), and the merg-
ing operator is the concatenation ++ (taking care to normalise the list resulting
from the append operation with the auxiliary function norm). This function
norm removes pairs coinciding on the first element to make sure that the list
still represents a valid function.

We can now write certifying versions of fold and unfold for binary trees.

cunfoldT :: (Monoid w) ⇒ (s → Maybe (s , (a,w), s)) → s → Tree (a,w)
cunfoldT f s = case f s of

Nothing → E
Just (s1 , (x ,w), s2 ) → N (cunfoldT f s1 ) (x ,w) (cunfoldT f s2 )

cfoldT :: (Monoid w) ⇒ (b → a → b → (b,w)) → b → Tree (a,w) → (b,w)
cfoldT f z E = (z , ε)
cfoldT f z (N lt (x ,w) rt) =

let (v1 ,w1 ) = cfoldT f z lt
(v2 ,w2 ) = cfoldT f z rt
(v , fw ) = f v1 x v2

in (v , fw ⊕ w1 ⊕ w ⊕ w2 )
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As can be seen, the modified intermediate tree contains nodes of pairs (τ,w),
where certificates of type w are generated by the coalgebra of the function
cunfoldT . All certificates in the intermediate tree are combined together by the
⊕ operator, when the tree is flattened by the function cfoldT .

We use these combinators to write a certifying version of Quicksort:

qs :: (Ord a) ⇒ [(a, Int)] → ([a ],Map)
qs = cfoldT (λxs (x , ) ys → (xs ++ x : ys , ε)) [ ] ◦ cunfoldT build
build [ ] = Nothing
build (x@( , from) : xs) =

let (l , r) = partition (<x ) xs
in Just (l , (x ,Map (zip (map snd l) [1 . .] ++

[(from , length l + 1)] ++
zip (map snd r) [(length l + 2) . .])), r)

We assume that the input for qs has been preprocessed into a form where every
element is paired with its inital position in the list. We omit this transformation
since it is trivial and can be done in linear time, so it will not dominate the time
complexity of the algorithm.

Note that, essentially, all we have to do is to specify the permutation induced
by each call to partition (in the function build). The certifying combinators
serve to abstract away the combination of small, locally generated certificates
into large, global certificates for the whole computation.

Example 4 (Insertion sort). Another sorting algorithm where certifying fold can
be used is Insertion sort. This algorithm is traditionally written as follows:

isort :: Ord α⇒ [α] → [α]
isort = foldr insert [ ]

where insert x [ ] = [x ]
insert x (y : ys) | x � y = x : y : ys

| otherwise = y : insert x ys

The certifying version is a little bit more involved. The basic idea is the same
as with Quicksort, i.e. to produce an appropriate certificate for each step of the
computation, and have the certifying combinator merge them together. We shall
present the final version of the algorithm, and invite the reader to work out the
details.

isort :: [((Int , Int), [(Int , Int)])] → ([Int ], [(Int , Int)])
isort = cfoldL insert [ ]

where insert (x , from) ys =
let ins x [ ] n = ([x ],n)

ins x (y : ys) n
| x � y = (x : y : ys ,n)
| otherwise =
let (zs ,n ′) = ins x ys n
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in (y : zs ,n ′ + 1)
(zs , to) = ins x ys 1

in (zs , [(to + from − 1, from)])

4.2 Certificates for Nondeterministic Computations

In this section we consider the application of certifying higher-order recursion
operators to derive certificate generators for nondeterministic algorithms. Non-
deterministic programming is a design methodology that consists in searching
for solutions to a constraint satisfaction problem within a given space of poten-
tial solutions, which is generally expressed as a tree. Candidate solutions are
evaluated in some fixed order, typically depth-first. Although usually requiring
some form of backtracking to manage control flow, this type of search is more
efficient in terms of program complexity than brute force enumeration of all the
candidates, and also easier to express in a functional setting than breadth-first
traversal.

In general, there is a notion of position or index for traversable container
types, i.e. they are isomorphic to the type P → A, where P is the type of
positions and A the type of contained elements. Lists, for instance, have integers
as positions, since we can regard them as functions from integers into values (of
the list element type). Nondeterministic algorithms can be extended to record the
path in the tree leading to a valid solution as a certificate, allowing the checker
to reproduce the search strategy. This effect can be captured using monads [15],
with which we assume the reader is familiar.

To support nondeterministic programming, a monad must provide two ad-
ditional operations: mzero and mplus . The former denotes a failing computa-
tion, returning no results. The latter makes a nondeterministic choice between
two computations. The generality and expressiveness of Haskell’s type system
allows us to write nondeterministic computations that are parameterised by
an arbitrary monad, providing it supports these operations. We encode the
fact that a monad supports nondeterminism with instances of the following
classes:

class Monad m ⇒ MonadZero m where
mzero :: m α

class MonadZero m ⇒ MonadPlus m where
mplus :: m α→ m α→ m α

Using these operators, let us write a function that searches a tree for an element
satisfying a given predicate:

find :: MonadPlus m ⇒ (α→ Bool ) → Tree α→ m α
find p = foldT mzero test

where test flt x frt
| p x = return x
| otherwise = flt ‘mplus ‘ frt
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We are using the same Tree type and foldT operator as in the previous section.
Now, let us propose a certifying version of find , namely cfind . The function cfind
behaves exactly like find , but it additionally returns the position of the element
in the structure. For this purpose, we introduce yet another certifying version of
foldT , and only make minor changes in find . Our certifying operator does most
of the work, basically keeping track of the path that we take for each alternative.

First of all, we need a data type for describing positions.

data Choice = L | R
type Position = [Choice ]

At every node in the tree, we can either go left or right (denoted by L and R,
respectively). Any node in the tree can be identified by the sequence of choices
we have to make so as to get there from the root of the tree, so we define the
position to be a list of choices.

To keep a record of the current path in the tree, we need the monad to hold
a trace of type Position . So as to keep the monad type abstract, we will resort
to the standard MonadWriter class. Monads in this class support the following
operation (among others):

tell :: MonadWriter p m ⇒ p → m ()

Type p is the type of positions, which does not have to be fixed in general. Every
time we want to add a position p to the trace, we perform tell p. The type of
positions should be a Monoid , and every tell operation appends its parameter
to the trace using (⊕). In the running example, positions are lists, which are
already defined as monoids in the Haskell module Data.Monoid . We can now
give a definition for our certifying fold :

cfoldT :: (MonadWriter Position m) ⇒
m b → (m b → t → m b → m b) → Tree t → m b

cfoldT z f Empty = z
cfoldT z f (Node lt x rt) = f (tell [L ]>> cfoldT z f lt)

x
(tell [R ]>> cfoldT z f rt)

The function cfoldT is a just like its non-certifying counterpart, but it records
every choice of branching in the trace monad: if we examine the left branch, we
append L to the trace; if we examine the right branch, we append R.

However, we would like cfind to work in an arbitrary nondeterminism monad.
By using a standard monad transformer, called WriterT , we can add tracing ca-
pabilities to any monad. Thus, for every monad m, the monad WriterT Position
m encapsulates the same effects as m, plus a Position trace. This monad provides
an operation

runWriterT :: WriterT w m a → m (a,w)
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which performs all tracing effects, accumulating the resulting trace in the second
component of the result. This operation, along with cfoldT , allows us to define
cfind as follows:

cfind :: MonadPlus m ⇒ (a → Bool) → Tree a → m (a,Position)
cfind p = runWriterT ◦ cfoldT mzero test

where test flt x frt
| p x = return x
| otherwise = flt ‘mplus ‘ frt

The function cfind captures the essence of a nondeterministic depth-first search
in a binary tree. It takes a predicate p and a tree t , and it finds the first element
x in t such that p x . In addition, it outputs the path leading to x in the tree
as certificate, so that a checker can efficiently locate the element. It is interest-
ing to note that cfind works independently of the way in which we implement
nondeterminism: the monad m encapsulates these details.

5 Conclusion

We have provided a general framework for building and checking certificates
for a large class of programs and properties. The framework relies on certifying
combinators, that carry certificates throughout computations and eventually to
results, and checking combinators, that construct checkers for complex properties
from checkers for simpler properties. The usefulness of the framework has been
demonstrated through a set of examples.

It could be argued that the main challenge with result checking is to find ad
hoc certifying algorithms, and is thus more central to algorithmics than program-
ming languages. Yet, providing good support for result checking in programming
languages is essential to promoting its generalisation. In this sense, we hope that
the framework presented in the paper will contribute to increase the number of
applications that make beneficial use of result checking.

Improving the efficiency of the generic checker seems necessary. One goal
would be to check primality using Pocklington’s criterion, achieving perfor-
mances on a par with [7]. A further goal would be to apply our framework
to known certifying algorithms; in particular, considering certifying algorithms
for graphs, based on previous work on functional graph algorithms [6,4].

Finally, it would be appealing to implement a result checking infrastructure
in the context of a distributed functional language; the implementation should
address several interesting issues, including setting up protocols for building
and transmitting certificates (certificates, like results, may be built by several
cooperating parties), guaranteeing the correctness of result checkers (checkers
can be downloaded from untrusted third parties), and providing access to a
database of mathematical theorems that can be used to check result checkers
(so that the proof of the result checker based on Pocklington’s criterion does not
need to contain a proof of the criterion itself).
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7. Grégoire, B., Théry, L., Werner, B.: A computational approach to pocklington
certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

8. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

9. Hudak, P., Peyton Jones, S.L., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.H.,
Guzmán, M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, R.B., Nikhil,
R.S., Partain, W., Peterson, J.: Report on the Programming Language Haskell, A
Non-strict, Purely Functional Language. SIGPLAN Notices 27(5), R1–R164 (1992)

10. Hudak, P., Peterson, J., Fasel, J.: A gentle introduction to Haskell 98 (1999),
http://www.haskell.org/tutorial/

11. Jones, S.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based
type inference for GADTs. In: Proceedings of the eleventh ACM SIGPLAN in-
ternational conference on Functional programming, pp. 50–61. ACM, New York
(2006)

12. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Peyton Jones, S.L. (eds.) POPL, pp.
42–54. ACM, New York (2006)

13. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119 (1997)
14. Sullivan, G.F., Masson, G.M.: Using certification trails to achieve software fault

tolerance. In: 20th International Symposium on Fault-Tolerant Computing, FTCS-
20. Digest of Papers, June 1990, pp. 423–431 (1990)

15. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)
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