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Abstract

Fuzzing is a technique that involves testing programs using invalid
or erroneous inputs. Most fuzzers require a set of valid inputs as a
starting point, in which mutations are then introduced. QuickFuzz
is a fuzzer that leverages QuickCheck-style random test-case gen-
eration to automatically test programs that manipulate common file
formats by fuzzing. We rely on existing Haskell implementations of
file-format-handling libraries found on Hackage, the community-
driven Haskell code repository. We have tried QuickFuzz in the
wild and found that the approach is effective in discovering vul-
nerabilities in real-world implementations of browsers, image pro-
cessing utilities and file compressors among others. In addition, we
introduce a mechanism to automatically derive random generators
for the types representing these formats. QuickFuzz handles most
well-known image and media formats, and can be used to test pro-
grams and libraries written in any language.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools

Keywords Fuzzing, Haskell, QuickCheck, Hackage

1. Introduction

Modern software is able to manipulate complex file formats that
encode richly-structured data such as images, audio, video, HTML
documents, PDF documents or archive files. These entities are
usually represented either as binary files or as text files with a
specific structure that must be correctly interpreted by programs
and libraries that work with such data. Dealing with the low-level
nature of such formats involves complex, error-prone artifacts such
as parsers and decoders that must check invariants and handle a
significant number of corner cases. At the same time, bugs and
vulnerabilities in programs that handle complex file formats often
have serious consequences that pave the way for security exploits
[3].

How can we test this software? As a complement to the usual
testing process, and considering that the space of possible inputs
is quite large, we might want to test how these programs handle
unexpected input. Fuzzing [9, 6, 17] has emerged as a promising
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tool for finding bugs in software with complex inputs, and con-
sists in random testing of programs using potentially invalid or er-
roneous inputs. There are two ways of producing invalid inputs:
mutational fuzzing involves taking valid inputs and altering them
through randomization, producing erroneous or invalid inputs that
are fed into the program; generational fuzzing (sometimes also
known as grammar-based fuzzing) involves generating invalid in-
puts from a specification or model of a file format. A program that
performs fuzzing to test a target program is known as a fuzzer.

While fuzzers are powerful tools with impressive bug-finding
ability [8, 13, 7], they are not without disadvantages. Mutational
fuzzers usually rely on an external set of input files which they use
as a starting point. The fuzzer then takes each file and introduces
small bit-level mutations in them before using them as test cases
for the program in question. The user has to collect/generate and
maintain this set of input files manually for each file format they
might want to test. By contrast, generational fuzzers avoid this
problem, but the user must then develop and maintain models of
the file format types they want to generate. As expected, creating
such models requires a deep domain knowledge of the desired file
format and can be very expensive to formulate.

In this paper, we introduce QuickFuzz, a tool that leverages
Haskell’s QuickCheck [4] (the well-known property-based ran-
dom testing library) and Hackage (the community Haskell soft-
ware repository) in conjunction with off-the-shelf bit-level muta-
tional fuzzers to provide automatic fuzzing for several common file
formats, without the need of an external set of input files and with-
out having to develop models for the file types involved. QuickFuzz
generates invalid inputs using a mix of generational and mutational
fuzzing to try to discover unexpected behavior in a target applica-
tion.

Hackage already contains Haskell libraries that handle well-
known image, document, archive and media formats. These li-
braries have two important features: (a) they provide a data type
T that serves as a lightweight specification and can be used to
represent individual files of these formats, and (b) they provide
a function to serialize elements of T to write into files. In gen-
eral we call this function encode and model it as having type
T → ByteString . Using ready-made Hackage libraries as mod-
els saves the programmers from having to write these by hand.

The key insight behind QuickFuzz is that we can make random
values of T using QuickCheck’s generators, then serialize them us-
ing encode and pass them to an off-the-shelf fuzzer to randomize.
Such mutation is likely to produce a corrupted version of the file.
Then, the target application is executed with the corrupted file as
input.

The missing piece of the puzzle is a mechanism to automati-
cally derive the QuickCheck generators from the definitions of the
data types in the libraries, which we do in Template Haskell and
also provide in the form of a library, which we call MegaDeTH.
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QuickCheck generates random tests cases by means of the Gen
monad. A generator of type Gen T for type T is given as an in-
stance of the Arbitrary type class. MegaDeTH inspects the struc-
ture of a data type and automatically constructs an appropriate in-
stance of Arbitrary for it. Unlike existing tools for deriving such
instances, MegaDeTH can correctly handle mutually recursive data
types as well as types with nested nonprimitive types.

Finally, if an abnormal termination is detected (for instance,
a segmentation fault), the tool will try to minimize the size of
the corrupted file in order to output the smallest test case. Such
information can be very useful for the developers of the faulty
program to fix the issue.

Thanks to Haskell implementations of file-format-handling li-
braries found on Hackage, QuickFuzz currently generates and mu-
tates a large set of different file types out of the box. However, it
is also possible for the user to add file types by providing a data
type T and encode function. Our framework can derive Arbitrary
instances fully automatically, to be used by QuickFuzz to discover
bugs in new applications.

Although QuickFuzz is written in Haskell, we remark that
it treats its target program as a black box, giving it randomly-
generated, invalid files as arguments. Therefore, QuickFuzz can be
used to test programs written in any language.

Our contributions can be summarized as follows:

• We present QuickFuzz, a tool for automatically generating in-
puts and fuzzing programs parsing several common types of
files. QuickFuzz uses QuickCheck behind the scenes to gen-
erate test cases, and is integrated with fuzzers like Radamsa,
Honggfuzz and other bug-finding tools such as Valgrind and Ad-
dress Sanitizer.

• We released QuickFuzz as open-source and free of charge.
As far as we know, QuickFuzz is the first fuzzer to offer the
generation and mutation of more than a dozen complex file
types without requiring the user to develop the models: just
install, select a target program and wait for crashes. The tool
is available at http://quickfuzz.org/.

• We introduce MegaDeTH, a library to derive Arbitrary in-
stances for Haskell data types. MegaDeTH is fully automatic
and capable of handling mutually recursive types and deriving
instances from external modules. This library can be used to
extend QuickFuzz with new data types.

• We evaluate the practical feasibility of QuickFuzz and show
a list of security-related bugs discovered using QuickFuzz in
complex real-world applications like browsers, image-processing
utilities and file archivers among others.

The rest of the paper is organized as follows. Section 2 provides
an overview of how QuickFuzz works using an example. Section 3
discusses how to generate Arbitrary instances and the implemen-
tation of MegaDeTH. In Section 4 we highlight some of the key
principles in the design and implementation of our tool using the
QuickCheck framework. Later, in Section 5, we perform an evalu-
ation of its applicability. Section 6 presents related work and Sec-
tion 7 concludes.

2. A Quick Tour of QuickFuzz

In this section, we show QuickFuzz in action with a simple exam-
ple. More specifically, we will see how to discover bugs in giffix, a
small command line utility from giflib that attempts to fix broken
GIF images. Our tool has built-in support for the generation of GIF
files using the JuicyPixels library [18] and the Arbitrary instances
automatically derived by MegaDeTH . We treat MegaDeTH as a

black box for now, and defer an in-depth look at MegaDeTH to
Section 3.

To launch a fuzzing campaign on giffix, we simply execute:

$ QuickFuzz Gi f ' g i f f i x @' −a radamsa −s 10

With these command-line parameters, our tool generates GIF
files using Radamsa to perform bit-level mutations.

After a few seconds, QuickFuzz stops since it found an execu-
tion that fails with a segmentation fault. At this point we can ex-
amine the output directory (outdir by default) to see the GIF file
produced by our tool that caused giffix to fail.

Figure 1 shows the QuickFuzz pipeline and architecture. An ex-
ecution of QuickFuzz consists of three phases: high-level fuzzing,
low-level fuzzing and execution. The diagram also shows the inter-
action with MegaDeTH, which just provides Arbitrary instances
for the high-level fuzzing phase and can be run offline. Let us take
a look at what happens in each phase in the giffix example.

2.1 High-Level Fuzzing

During this phase, QuickFuzz generates values of the data type T
that represents the file format of the input to the target program. It
relies on the Gen monad defined in QuickCheck, which provides
convenient access to a random-number generator that can be used
to construct randomized structured data compositionally. In our
example this representation type T (borrowed from JuicyPixels) is
called GifFile . A GifFile contains a header (of type GifHeader )
and the raw bitmap data specified as a list, among other things.
Note that randomly generated elements of type GifFile might
not be valid GIF files, since the type system is unable to encode
all invariants that should hold among the parts of the value. For
example, the header might specify a width and height that doesn’t
match the bitmap data. For this reason, we consider that this step
corresponds to generational fuzzing, where the data type definition
serves as a lightweight approximate model of the GIF file format
which generates potentially invalid instances of the file format.
After running QuickFuzz, the output directory contains, for each
test case, a text file that shows the value generated by this step. For
instance, for the running example we get

GifFile {
gifHeader = GifHeader {

gifVersion = GIF87a,

gifScreenDescriptor =
LogicalScreenDescriptor {
screenWidth = 0,
screenHeight = 0,
backgroundIndex = 1,
hasGlobalMap = False,

colorResolution = 0,
isColorTableSorted = False,

colorTableSize = 1
},
...

After generating a value of type GifFile with QuickCheck’s
Gen monad, we use the Hackage library’s encode function for
this file type (in this case GifFile has an instance of Binary) to
serialize the GifFile into a ByteString , which is also written as-is
to the output directory for further inspection by the user.

2.2 Low-Level Fuzzing

Usually the use of high-level fuzzing produced by the values gener-
ated by QuickCheck is not enough to trigger some interesting bugs.
Therefore, this phase relies on an off-the-shelf mutation fuzzer to
introduce errors/mutations at the bit level on the ByteString pro-
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Figure 1: Summary of high-level and low-level fuzzing of QuickFuzz where grey nodes represent inputs provided by a user.

duced by the previous step. In particular, the current version sup-
ports the following fuzzers:

• Zzuf: a transparent application input fuzzer by Caca Labs [2].

• Radamsa: a general purpose fuzzer developed by the Oulu Uni-
versity Secure Programming Group [13].

• Honggfuzz: a general purpose fuzzer developed by Google [7].

One of the key principles of the design of QuickFuzz was to
require no parameter tuning in the use of 3rd party fuzzers and
bug-detection tools. Usually, the use of mutational fuzzers requires
fine tuning of some critical parameters. Instead, we decided to
incorporate sane default values to perform an effective fuzzing
campaign even without fine-tuning values like mutation rates.

Additionally, QuickFuzz can use Valgrind [12] and Address
Sanitizer [15] to detect more subtle bugs like a read out-of-bounds
that would not cause a segmentation fault or the use of uninitialized
memory.

2.3 Execution

The final phase involves running the target program with the mu-
tated file as input. As we have seen, for each test case file producing
runtime failure, we can also find in the output directory the inter-
mediate values for each step of the process:

• A text file with the printed value generated by QuickCheck.

• The original encoded value, before the mutation by the muta-
tional fuzzer.

• The actual mutated file which was passed as input to the target
program and resulted in failure.

Developers can examine how the file was corrupted in order to
understand why their program failed and how it can be fixed.

QuickFuzz found a test case to reproduce a heap-based overflow
in giffix (CVE-2015-7555). This issue is caused by the lack of val-
idation of the size of the logical screen and the size of the actual gif
frames. In fact, if we run the tool during no more than 5 minutes in
a single core, we will obtain dozens of test cases triggering failed
executions (crashes and aborts). Crash de-duplication is currently
outside the scope of our tool, so we manually checked the back-
traces using a debugger and determined that giffix was failing in 3
distinctive ways.

The root cause of such crashes can be the same, for instance
if the program is performing a read out-of-bounds. Nevertheless,
QuickFuzz can still obtain valuable information finding different
crashes associated with the same issue: they can be very useful to
determine if the original issue is exploitable or not.

Test Case Minimization Immediately after a failed execution is
found, QuickFuzz uses QuickCheck’s shrinking feature to start
the test case minimization. This procedure is very important for
the developers looking to fix the issue, since the minimized test
case should only trigger the code that is required to reproduce
the unexpected behavior. It is also called input simplification [20].
QuickFuzz uses a simple strategy to reduce the number of bytes in
the test cases causing the failed execution, defining the following
function:

shrink :: ByteString → [ByteString ]
shrink bs = (tail $ tails bs) ++ (init $ inits bs)

The shrinking procedure will check every reduced input re-
turned by our shrink function in order to detect which are still
causing an execution fail. Since the use of headers, blocks and
trailer sections in files is common practice, we decided to simplify
the shrink function to prune either the beggining or the end of a
file.

Given a shrink function that returns a list of smaller files to
check, the minimization procedure is performed automatically by
QuickCheck. It is important to note that in our implementation
there is no guarantee that a failed execution in the minimization
process will trigger the same bug as the original one. Nevertheless,
in the worst case the test case minimization process discovers a
different issue.

3. Automatically Deriving Type Class Instances

As explained in Section 2, our first step is the generation of complex
data. We obtain this by selecting a type that represents the data we
want to generate, and giving a good Arbitrary instance for that
type. Then it is up to QuickCheck to generate test cases and test
properties about them.

In order to define an instance of Arbitrary for a particular
type, we have to provide a definition of a monadic computation
arbitrary ::Gen a , known as a generator, that generates arbitrary
elements of type a .

In this section we present MegaDeTH, a tool to automatically
derive suitable Arbitrary instances for a given type.

3.1 MegaDeTH

MegaDeTH is a tool implemented in Template Haskell that gives
the user the ability to provide instances to a type and all of its nested
types. Given a type A MegaDeTH generates a list of all types that
are needed in order to instantiate A and instantiates each one until
A can be instantiated.

Let us consider the situation when a Haskell programmer wants
to use a library and needs to print out on the screen certain results
(of a library-specific data type) produced by it. If the library does
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not provide a Show instance for it, writing such an instance can
be tortuous task. The cause of this is that in general the top-level
type refers to a number of other nonprimitive types, which we shall
refer to as nested types. These types, in turn, might refer to further
nested types that the user does not need to know about, and usually
those nested types are not even exported. For example, consider the
following data type definitions for a binary tree and a type for the
contents of a node:

data Bin a = L a | B (Bin a) Node (Bin a)
data Node = Node {name :: String , l :: Int , d :: Int}

In order to define a Show instance for type Bin , our top-level
type in this toy example, we need to provide a Show instance for
type Node , a nested type for Bin .

Mega Derivation TH (MegaDeTH) offers a solution to this
problem: it gives the user a way to thoroughly derive instances for
all the intermediate nested types that are needed to make the top-
level instance work.

MegaDeTH was implemented using Template Haskell [16], a
metaprogramming mechanism built into GHC that is extremely
useful to process the AST of Haskell programs and insert new
declarations at compilation time. We use the power of Template
Haskell to extract all the nested types for a given type and derive
a class instance for each of them, finally instantiating the top-
level type. Since Haskell gives the user the possibility of writing
mutually recursive types, MegaDeTH implements a topological
sort to find a suitable order in which to instantiate each type.

In Template Haskell, type names are reified into type Name ,
and declarations into type Dec. Considering that type class in-
stances are a kind of declaration, we use a Template Haskell func-
tion of type Name → Q [Dec ] to model a compile-time meta-
function that derives an instance of a class for a given type, which
we refer to as a derivation function. The function returns in the Q
monad, which gives us access to Template Haskell’s internal state
and allows us to inspect the structure of types.

The main function exported by MegaDeTH is megaderive:

megaderive :: (Name → Q [Dec ])
→ (Name → Q Bool)
→ Name → Q [Dec ]

We can interpret this type as a way of lifting an existing deriva-
tion function (of type Name → Q [Dec ]) into a new deriva-
tion function that works on all nested types of the argument type.
The first argument of megaderive is a function that takes care of
providing an instance of the wanted class for a single type. As
mentioned before, megaderive’s traversal is deep: it explores all
the dependencies and tries to derive instances for all the nested
types. Hence in order to exclude some types we can indicate those
types by passing a filter function. Given that megaderive does
not know the name of the class, we can use the filter function
to stop MegaDeTH from instantiating types that were already de-
fined. In order to give a clear user interface we provide a function
isinsName (of type Name → Name → Q Bool ) for that very
purpose. This filter is extremely useful, it gives the user the ability
to provide instances to a particular nested type without having to
define all the other ones. However we keep the filter function as
general as we can to give more control to the user.

For example, we can use the makeShow method given by the
package Derive [11] to easily instantiate all the required nested
types with MegaDeTH as follows:

devShow :: Name → Q [Dec ]
devShow = megaderive (derive makeShow)

(isinsName ′′Show)

Now we can use MegaDeTH to derive the Show instance for
Bin . In order to use Template Haskell we need to activate the
extension TemplateHaskell , which provides us with a reification
function to get the corresponding element of type Name for a given
type (′′).

{-# Language TemplateHaskell #-}

devShow ′′Bin

Which will generate the following code and insert it in compi-
lation time:

instance Show Node where

showsPrec (Node x1 x2 x3 )
= ((showString "Node {name = ")
◦ ((showsPrec 0 x1 )
◦ ((showString ", l = ")
◦ ((showsPrec 0 x2 )
◦ ((showString ", d = ") ◦ ((showsPrec 0 x3 )
◦ (showChar ’}’)))))))

instance Show a → Show (Bin a) where

showsPrec p (L x1 )
= ((showParen (p > 10)) $((showString "L ")
◦ (showsPrec 11 x1 )))

showsPrec p (B x1 x2 x3 )
= ((showParen (p > 10))

$((showString "B ")
◦ ((showsPrec 11 x1 )
◦ ((showChar ’ ’)
◦ ((showsPrec 11 x2 ) ◦ ((showChar ’ ’)
◦ (showsPrec 11 x3 )))))))

Given that the implementation of MegaDeTH was driven by
the needs of QuickFuzz, we design a new instantiation method for
the Arbitrary class. While Derive provides a derivation method
for Arbitrary instances, in practice it proved to be not a good
choice in the presence of mutually recursive types. Given a type
A with constructor declarations C1 a11 a21 and C2 a12 a22 ,
Derive’s instantiation for Arbitrary A will select with the same
probability one of the constructors, C1 or C2 , and compute each
of the arguments using arbitrary again, as the following example
code:

instance Arbitrary A where

arbitrary = do

x ← choose (0 :: Int , 2)
case x of

0→ C1 〈$〉 arbitrary 〈⋆〉 arbitrary
1→ C2 〈$〉 arbitrary 〈⋆〉 arbitrary

The main problem with this derivation method is that in the
presence of mutually recursive types, say T and R, it is possi-
ble to always select the constructors of T that contain an R and
vice versa, leading to non-termination. To avoid this problem, the
Gen monad is equipped with a size parameter and a function
sized :: (Int → Gen a) → Gen a that is normally used to
write generators that produce values of finite depth. So MegaDeTH
implements all its arbitrary generators using sized to have more
control over which constructor to choose. These generators sim-
ply decrease the size parameter each time they are called, and upon
reaching the value 0 they limit the constructor selection to only
nonrecursive constructors.

However if Derive’s derivation function for Arbitrary instances
were to be improved, we would gladly integrate it into our library
as we did with Show . Again, thanks to the flexibility of Tem-
plate Haskell we define a function that instantiates just one type,
given its name, called deriveArbitrary and in composition with
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megaderive we can generate a mega tactic devArbitrary to in-
stantiate all the intermediate types:

deriveArbitrary :: Name → Q [Dec ]
devArbitrary :: Name → Q [Dec ]
devArbitrary = megaderive deriveArbitrary

(isinsName ′′Arbitrary)

Example. For the sake of the argument, we are going to simplify
some types. Take for example the following type GifFile found in
JuicyPixels’s Juicy .Pixels.Gif module:

data GifFile = GifFile {
gifHeader ::GifHeader ,

gifImages :: [(Maybe GraphicControlExtension,

GifImage)],
gifLoopingBehaviour ::GifLooping

}

We can simply derive all the required instances with

$(devArbitrary
′′GifF ile), and MegaDeTH will generate the

following instances (among others):

instance Arbitrary GifLooping where

arbitrary = sized go

where go n = oneof

[return LoopingNever

, return LoopingForever

,LoopingRepeat 〈$〉 resize (n − 1) arbitrary ]
instance Arbitrary GifFile where

arbitrary = sized go

where go n =
GifFile 〈$〉 resize (n − 1) arbitrary
〈⋆〉(listOf $(resize (n ‘div ‘ 10) arbitrary))
〈⋆〉 resize (n − 1) arbitrary

Here we can observe that the go functions always decrease their
argument n and call the QuickCheck function resize before calling
arbitrary . Whenever we use a constructor, we reduce the size by
one, and whenever we generate a list we reduce the size by an order
of magnitude. Given that the instances are automatically generated,
they seem very artificial, but it is crucial to reduce the size and
insert the new size in the Gen monad in order to generate a good
mix of elements with relatively low sizes.

In the implementation of deriveArbitrary we make a lot of as-
sumptions, the most important one is how we reduce the size pa-
rameter inside the Gen monad, as we explained before. Implement-
ing a good strategy to reduce the size parameter is crucial in order
to finish execution in some reasonable time, but it is also impor-
tant to decide how values are generated, and what those values are.
Because if the size is reduced too abruptly some values are never
going to be generated or the probability for some elements will be
very high, while for others very low. However, given the expressive
power of Haskell’s data types, we delegate all the responsability to
guide the generation (the how and what) to them and our sole goal
is to terminate in reasonable time.

4. Design and Implementation

This section details how we defined suitable properties in QuickCheck
to perform the different phases of the fuzzing process.

4.1 Detecting Unexpected Termination in Programs

One of the key concepts in fuzzing is the repeated execution of
a target program. In Haskell, a program execution using certain
arguments can be summarized using this type:

type Cmd = (FilePath, [String ])

A program execution fails if we detect an abnormal termina-
tion. In the POSIX.1-1990 standard, a program can be abnormally
terminated after receiving the following signals:

• A SIGILL when it tries to execute an illegal instruction.

• A SIGABRT when it called abort.

• A SIGFPE when it raised a floating point exception.

• A SIGSEGV when it accessed an invalid memory reference.

• A SIGKILL at any time (usually when the operating system
detects it is consuming too many resources).

After a process finished, it is possible to detect signals associ-
ated with failed executions by examining its exit status code. Tra-
ditionally in GNU/Linux systems a process which exits with a zero
exit status has succeeded, while a non-zero exit status indicates fail-
ure. When a process is terminated by a signal with number n, a shell
sets the exit status to a value greater than 128. Most of the shells
will use 128+N . We capture such condition in the Haskell function
has failed , in order to catch when a program finished abnormally:

has failed :: ExitCode → Bool

has failed (ExitFailure n) =
(n < 0 ∨ n > 128) ∧ n 6≡ 143

has failed ExitSuccess = False

We only excluded SIGTERM (with exit status of 143) since we
want to be able to use a timeout in order to catch long executions
without considering them failed.

4.2 High-Level Fuzzing Properties

In order to use QuickCheck to uncover failed executions in pro-
grams, we need to define a property to check. Given an executable
program and some arguments, QuickFuzz tries to verify that there
is no failed execution as we defined above for arbitrary inputs. We
call this property prop NoFail . It serializes inputs to files and ex-
ecutes a given program, so it should be defined using monadicIO .
Its definition is very straightforward:

prop NoFail :: Cmd → (a → ByteString)
→ FilePath → a → Property

prop NoFail pcmd encode filename x = monadicIO $
do

run $write filename (encode x )
ret ← run $ execute pcmd

assert (¬ (has failed ret))

After that, we can quickCheck the property of no failed execu-
tions instantiating prop NoFail with suitable values. For instance,
let us assume we want to test the conversion from gif to png images
using ImageMagick. The usual command to achieve this would be:

$ c o n v e r t i n . g i f o u t . png

In terms of prop NoFail , to test the command above we should
quickCheck the following property:

prop NoFail "/usr/bin/convert in.gif out.png"

encodeGif

"in.gif"

where encodeGif is a function to serialize GifFiles .

4.3 Low-Level Fuzzing Properties

In the next phase of the fuzzing process, we enhanced the value
generation of QuickCheck with the systematic file corruption
produced by off-the-shelf fuzzers. Intuitively, we augmented
prop NoFail with a low-level fuzzing procedure abstracted as a
call to the fuzz function.
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Figure 2: Overhead of QuickFuzz performing the fuzzing process.

fuzz :: Cmd → FilePath → IO ()

After calling fuzz , the content of a file will be changed some-
how. Using this function, we defined a new property,
prop noFailFuzzed to perform a mutation of the serialized file be-
fore the execution takes place:

prop noFailFuzzed :: Cmd → Cmd → (a → ByteString)
→ FilePath → a → Property

prop NoFailFuzzed pcmd fcmd encode filename x =
monadicIO $do

run $write filename (encode x )
run $ fuzz fcmd filename

ret ← run $ execute pcmd

assert (¬ (has failed ret))

5. Evaluation

5.1 Generation, Mutation and Execution Overhead

For the overhead evaluation of QuickFuzz in the different stages of
the fuzzing process, we measured the time required for high-level
fuzzing with and without execution (noted as gen and gen+exec
respectively) as well as high and low-level fuzzing using zzuf and
radamsa (noted as gen+exec+zzuf and gen+exec+rad respec-
tively).

In order to strictly quantify the overhead in execution, we used
/bin/echo which does not read any file. Therefore, it should
always take the same amount of time to execute. Since this simple
program will not crash, the shrinking process was not measured in
this overhead evaluation. Each experiment was repeated 10 times
in a dedicated core of an Intel i7 running at 3.40GHz. It is worth
noting that every fuzzer performs one round of mutations and
the parameters are defined in the tool itself, so these experiments
should be easy to reproduce.

Figure 2 shows a comparison of the time that QuickFuzz took
to perform each step of the fuzzing process for three different file
types: Zip, Png and Svg. We selected these file types because Zip
and Png are binary formats while Svg is a complex human-readable
markup language, and we wanted to observe how overhead varied
among those.

Our experiments suggest that the performance of the code gen-
erated by MegaDeTH for Arbitrary instances is not limiting the

other components of the tool. Additionally, as expected, there is a
noticeable overhead in the execution. It is possible that most of the
extra time executing is used for calling fork and exec primitives:
this why is one the reasons some fuzzers implement a fork server.

Interestingly enough, the overhead introduced by the use of a
fuzzer is not always consistent. On one hand, in the case of zzuf,
which only XORs bits from the input files without reading them, it
should be a constant overhead. But on the other hand, Radamsa is
a fuzzer which looks at the structure of the data and performs some
mutations according to it. In fact, it was specially designed to detect
and fuzz markup languages: this can explain the higher overhead in
the mutation of Svg files using it.

5.2 Real-World Vulnerabilities Detection

Thanks to Haskell implementations of file-format-handling li-
braries found on Hackage, QuickFuzz currently generates and mu-
tates a large set of different file types out of the box. Table 1a
shows a list of supported file types to generate and corrupt using
our tool.

We tested QuickFuzz using complex real-world applications
like browsers, image processing utilities and file archivers among
others. All the security vulnerabilities presented in this work were
previously unknown (also known as zero-days). The results are
summarized in Table 1b. An exhaustive list is available at the
official website of QuickFuzz, including frequent updates on the
latest bugs discovered using the tool.

5.3 Limitations

QuickFuzz shares some of the limitations of QuickCheck. In par-
ticular, we observed that our Arbitrary instances are not always
effective in the generation of source code, since it requires to care-
fully define variable names and functions before trying to use them.
Then the fuzzed generated source code will be very likely rejected
in the first steps of the parsing of interpreters or compilers. This is
a well-known issue that has been studied extensively by Pałka et
al. [14] and Yang et al. [19] in the context of testing a compiler.

The use of third-party modules from Hackage is associated with
some limitations. Some of the modules we used to serialize com-
plex file types do not implement all the features. For instance, the
bmp support in Juicy.Pixels cannot handle or serialize com-
pressed files. Therefore this feature will not be effectively tested
in the bmp parsers. Also, the encode function used in the serial-
ization includes its own bugs. Unsurprisingly some of them can be
triggered by the generation of QuickCheck values. In this case, we
have a simple workaround: if the encode function throws an un-
handled exception, we ignore it and continue the fuzzing process
using the next generated value to serialize.

6. Related Work

Generational fuzzing The idea of a generational fuzzer is not
new at all. One of the most mature and commercially supported
generational fuzzers is Peach. This fuzzer was originally written in
Python in 2007, and later re-written in C# for the latest release. It
provides a wide set of features for generation and mutation of data,
as well as monitoring remote processes. In order to start, it requires
the specification of two main components to generate and mutate
program inputs:

• Data Models: a formal description of how data is composed in
order to be able to generate fuzzed data.

• Target: a formal description of how data can be mutated and
how to detect unexpected behavior in monitored software.

As expected, the main issue with Peach is that the user has
to write these configuration files, which requires very specific do-

18

http://QuickFuzz.org
http://QuickFuzz.org


Images Code Archives Media

Bmp Css Tar Ogg
Gif Javascript Zip Wav
Jpeg Python Gzip ID3
Png Html CPIO MIDI
Pnm Xml
Svg Dot
Tga GLSL
Tiff Json
Ico Regex

(a) List of the file-types supported for fuzzing

Program File-Type Reference

Firefox Gif CVE-2016-1933
Firefox Zip CVE-2015-7194
VLC Wav CVE-2016-3941

GraphicsMagick Svg CVE-2016-2317
GraphicsMagick Svg CVE-2016-2318

GDK-pixbuf Bmp CVE-2015-7552
GDK-pixbuf Gif CVE-2015-7674
GDK-pixbuf Tga CVE-2015-7673

Jasper Jpeg CVE-2015-5203
libTIFF Tiff CVE-2015-7313
libXML Xml CVE-2016-3627

Jq Json CVE-2016-4074
Jasson Json CVE-2016-4425
cpio CPIO CVE-2016-2037

(b) Some of the security issues found by QuickFuzz

Table 1: Implementation and results

main knowledge. Another option is Sulley [1], a fuzzing engine and
framework in Python. It is frequently presented as a simpler alter-
native to Peach since the model specification can be written using
Python code. A more recent alternative open-sourced by Mozilla
in 2015 is Dharma [10], a generation-based, context-free grammar
fuzzer also in Python. It also requires the specification of the data to
generate, but it uses a context-free grammar in a simple plain text
format.

To make a fair comparison between fuzzers is always a chal-
lenge. First, it only makes sense to compare between fuzzers us-
ing similar techniques. Second, in the case of generative ones, the
model to create data in all the compared fuzzers should be similar;
otherwise, generating a complex input will most likely take vary-
ing amounts of time and could result in some fuzzers being unfairly
flagged as inefficient.

Moreover, some fuzzers like Peach are not useful to start dis-
covering bugs immediately after installing them since they include
almost no models to start the input generation process. Usually, if
you want to have a wide support of file-types or protocols to fuzz,
you need to pay to access them, or hire someone to create them.
In other cases like Sulley, fuzzers are developed to be more like
a framework in which you can define models, mutate and monitor
process. As a result, no file-type specifications are provided out of
the box.

At first look, Dharma seems to be a good fuzzer to compare with
QuickFuzz. Unfortunately, it only includes very specific grammars
like Canvas2D used by the Mozilla Security team to stress a very
specific API of Firefox. QuickFuzz currently does not support
generation of these types of files.

Automatic algebraic data type test generation Claessen et al. [5]
propose a technique for automatically deriving test data generators
from a predicate expressed as a Boolean function. The derived
generators are both efficient and guaranteed to produce a uniform
distribution over values of a given size.

While MegaDeTH currently produces generators with ad-hoc
distributions, it would be feasible to integrate this technique to
the existing machinery to achieve more control over the test case
generation process.

7. Conclusions and Future Work

We have presented QuickFuzz, a tool for automatically generat-
ing inputs and fuzzing programs that work on common file for-
mats. Unlike other fuzzers, QuickFuzz does not require the user to
provide a set of valid inputs to mutate, and it does not place the

burden of writing specifications for file formats on the program-
mer. Our tool combines both generational and mutational fuzzing
techniques by bringing together Haskell’s QuickCheck library and
off-the-shelf, robust mutational fuzzers. In addition, we introduce
MegaDeTH, a library that can be used to generate instances of the
Arbitrary type classes. MegaDeTH works in tandem with Quick-
Fuzz, allowing us to crowdsource the specifications for well-known
file formats that are already present in Hackage libraries. We have
tried QuickFuzz in the wild and found that the approach is ef-
fective in discovering interesting bugs in real-world implementa-
tions. Moreover, to the best of our knowledge QuickFuzz is the
only fuzzing tool that provides out-of-the-box generation and muta-
tion of dozens of complex, common file formats, without requiring
users to write models or configuration files.

As future work, we intend to introduce mutations at different
levels of the QuickFuzz pipeline, rather than just at the level of the
serialized ByteString . In particular, we aim to explore code anal-
ysis of the serializations functions to detect and selectively break
invariants, and to perform mutations on such functions to corrupt
files. Finally, we would like to extend our approach to the gener-
ation and fuzzing of network protocols, as well as adding support
for automatic derivation of formats with a monadic structure.
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