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Abstract

The univariate Hodrick-Prescott filter depends on the noise-to-
signal ratio that acts as a smoothing parameter. We first propose
an optimality criterium for choosing the best smoothing parameters,
and show that the noise-to-signal ratio is the unique minimizer of this
criterium. We then propose a multivariate extension of the filter and
show that there is a whole class of positive definite matrices that satisfy
a similar optimality criterium.
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1 Introduction

The univariate Hodrick-Prescott filter (HP in short) was first introduced in actuarial
science to estimate trends from claims data and, since the appearence of the seminal
paper by Hodrick and Prescott (1980) it is now widely used in economics and finance
to estimate and predict business cycles and trends in financial data series. The
filter as described in Hodrick and Prescott (1980) and (1997) defines a trend y =
(y1, . . . , yT ) of a time series x = (x1, . . . , xT ) as the minimizer of

∑T
t=1(xt − yt)2 +

α
∑T−2

t=1 (yt+2−2yt+1+yt)2, for an appropriately chosen positive parameter α, called
the smoothing parameter. Assuming the components of the residual (noise) u =
x− y independent and Gaussian with the same variance as well as the components
of the signal v defined by vt = yt+2 − 2yt+1 + yt, which amounts to considering
a Gaussian random walk model of the trend, Hodrick and Prescott (1980) (see
also Schlicht (2006)) suggested that the best smoothing parameter is the positive
parameter α for which the trend ŷ(α, x) that minimizes the above weighted sum is
numerically equal to the best predictor, i.e. the conditional expectation E[ y|x], of
y given the time series x. As shown in Schlicht (2006), Theorem 1, the so-called
noise-to-signal ratio i.e. the ratio of the variance of the noise u to the variance of
the signal v, is the only parameter that satisfies this criterium.

In the first part of this study, we propose to choose the best smoothing parameters
for the univariate HP filter which minimize the gap (using the Euclidean norm)
between ŷ(α, x) and E[ y|x],

α∗ = arg min
α>0

‖E[ y|x]− ŷ(α, x)‖2, for all realisations of x, (1.1)

and show that the noise-to-signal ratio is the unique optimal solution.

Razzak and Dennis (1995) were first to suggest a multivariate version of the HP
filter for which a trend minimizes the following weighted sum

∑T
t=1(xt − yt)2 +∑T−2

t=1 αt(yt+2−2yt+1 +yt)2, where, the smoothing parameter is instead a diagonal
matrix α = diag{α1, . . . , αT }, with, for each t = 1, . . . , T , αt is assumed to be the
ratio of the variance of the noise ut to the variance of the signal vt. For other
models, we refere to Reeves et al. (2000) and the references therein.

In the second part of this study, we also propose a multivariate extension of the
HP filter, where, for instance, the smoothing parameter is a pair of positive definite
matrices, and show that there is a whole family of positive definte matrices that are
optimal for a similar optimality criterium to (1.1). In fact, this family of optimal
parameters is an equivalence class, since these parameters give the same value of
the trend ŷ. In the particular model of Razzak and Dennis (1995), we show that
the noise-to-signal ratio i.e. the ratio of the variance of the noise ut to the variance
of the signal vt is optimal but far from being unique.

The paper is organized as follows. In Section 2, we establish an optimality crtierium
for the best smoothing parameters of the univariate HP filter. In Section 3, we
propose a multivariate version of the HP filter and an optimality criterium for
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choosing the best smoothing parameters. It turns out to that the optimal solutions
is a whole set of pairs of positive definite matrices that satisfy a balance equation
involving the covariance matrices of both the noise and the signal.

2 Univariate Hodrick-Prescott filter

Let x = (x1, ..., xT ) ∈ RT be a time series of observables. The Hodrick-Prescott
filter (HP in short) decomposes x into a nonstationary trend y ∈ RT and a cyclical
residual component (noise term) u ∈ RT :

x = y + u. (2.1)

Given a smoothing parameter α > 0, this decomposition of x is obtained by mini-
mizing the weighted sum of squares

‖x− y‖2 + α‖D2y‖2 (2.2)

with respect to y, where for a ∈ RT , ‖a‖2 =
∑T

i=1 a2
i . Here, D2y is the trend

disturbance obtained by acting the second order forward shift operator D2 on the
trend y = (y1, y2, . . . , yT ):

D2yt := (yt+2 − yt+1)− (yt+1 − yt), t = 1, 2, . . . , T − 2,

or, equivalently,

D2yt := 2
(

yt+2 + yt

2
− yt+1

)
, t = 1, 2, . . . , T − 2,

measuring the deviation between the value of the trend at t+1, yt+1 and the linear
interpolation between yt and yt+2.
In vector form,

Py(t) = D2yt, t = 1, . . . , T − 2, (2.3)

where, the shift operator P is the following (T − 2)× T -matrix

P :=




1 −2 1 . . . . . . 0
0 1 −2 1 . . . 0

. . . . . . . . . . . .
0 . . . . . . 1 −2 1


 . (2.4)

The first term in (2.2) measures a goodness-of-fit by minimizing the the deviation
between the trend yt and the observation xt and the second term is a measure of
the degree-of-smoothness which penalizes decelerations in growth rate of the trend
component, by minimizing the the deviation between the trend value yt+1 and the
linear interpolation between yt and yt+2.

Since P is of rank T − 2, the signal v := Py does not determine a unique y but
rather the set of solutions (see Schlicht (2006) for further details)

y := {P ′(PP ′)−1v + Zγ; γ ∈ R2}
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where the T × 2-matrix Z satisfies

PZ = 0, Z ′Z = I2, (2.5)

with I2 denoting the 2 × 2 identity matrix. In view of (2.1), the time series x can
be represented in terms of (u, v) as

x = u + P ′(PP ′)−1v + Zγ, (2.6)

for some γ ∈ R2.
Since the matrix (IT +αP ′P ) is positive definite, the unique solution y(α, x) to the
optimal problem (2.2) is

y(α, x) = (IT + αP ′P )−1x, (2.7)

where IT denotes the T × T identity matrix. Eq. (2.7) defines the descriptive
filter that associates a trend y to the time series x, depending on the smoothing
parameter α and the disturbance operator P .

2.1 A criterium for choosing the best smoothing parameter

Following Hodrick and Prescott (1980) and Schlicht (2006), a way to estimate the
smoothing parameter α is to let the optimal solution y(α, x) in (2.7) be the best
predictor of y given the time series x, i.e.

y(α, x) ≈ E[ y|x]. (2.8)

We will give a precise meaning of this relation, and show that the unique solution
α∗ of (2.8) is given by

α∗ = arg min
α>0

‖E[ y|x]− y(α, x)‖2. (2.9)

Both approaches of estimating α assume that we are able to compute explicitly
this conditional expectation, which is not always the case. The Gaussian and more
generally the elliptical probability distributions are among the few models for which
an explicit formula for the conditional expectation is possible. In order to estimate
the trend and the smoothing parameter, given the time series of observations x, we
obviously need a model for the joint distribution of (x, y). Using (2.3) and (2.6),
this can be achieved through imposing a model for the joint distribution of (u, v).

In the literature (cf. e.g. Hodrick and Prescott (1997) and Schlicht (2006)), a widely
used model (and perhaps the only feasible case) for the joint distribution of (u, v),
is to assume that the disturbances u and v independent and normally distributed.
This turns (x, y) into a normally distributed vector, which makes the estimation
issue of the trend y and the smoothing parameter α, using (2.7) and (2.8), feasible.
In particular, as suggested in Hodrick and Prescott (1997), assuming further that
the noise term u and the signal term v have zero means and covariance matrices
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σ2
uIT and σ2

vIT−2, where IT and IT−2 denote the T × T and (T − 2) × (T − 2)
identity matrices, respectively:

(
u
v

)
∼ N (0, Σuv), (2.10)

with covariance matrix

Σuv :=
(

σ2
uIT 0
0 σ2

vIT−2

)
,

makes the increments of the trend y following a Gaussian random walk, since, by
Eq. (2.3), yt+2 − yt+1 = yt+1 − yt + vt. This turns the time series x into a trend
y generated by a Gaussian random walk and a normal disturbance u. That is, in
view of (2.6), (x, y) is normally distributed:

(
x
y

)
∼ N

((
Z
Z

)
γ, Σxy

)
, (2.11)

with covariance matrix

Σxy :=
(

σ2
uIT + σ2

vQ σ2
vQ

σ2
vQ σ2

vQ

)
,

where,
Q := P ′(PP ′)−1(PP ′)−1P

is a symmetric matrix.

Recall the following properties relating P, Z and Q defined above

P ′ (PP ′)−1
P +ZZ ′ = IT , QZ = 0, Z ′Q = 0, Z ′Z = I2, trace(ZZ ′) = 2 (2.12)

and

Q[
σ2

u

σ2
v

IT + Q]−1 = [
σ2

u

σ2
v

IT + Q]−1Q. (2.13)

This yields that

Q[
σ2

u

σ2
v

IT + Q]−1Z = 0, (2.14)

and
y(α, x) = (IT + αP ′P )−1x = ZZ ′x + Q[αIT + Q]−1x. (2.15)

Moreover, the maximum likelihood estimator of γ is explicitly given as follows:

arg min
γ

(x− Zγ)′[σ2
uIT + σ2

vQ]−1(x− Zγ) = Z ′x.

By (2.11), an explicit expression of the conditional expectation of the trend y given
the time series x reads:

E[ y|x] = Zγ + σ2
vQ

[
σ2

uIT + σ2
vQ

]−1
(x− Zγ). (2.16)
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Now, Criteruim (2.8) can be understood in the following sense: The best smoothing
parameter is the positive α for which the following identity holds.

E(y |x)− Zγ = y(α, x)− Zγ̂ for all realizations of x in RT , (2.17)

or, equivalently,

Zγ + σ2
vQ

[
σ2

uIT + σ2
vQ

]−1
(x− Zγ) = (IT + αP ′P )−1x− ZZ ′x (2.18)

Thanks to (2.15), Equation (2.18) holds if and only if α = σ2
u/σ2

v . This gives a
characterization of the parameter α as the noise-to-signal ratio, α = σ2

u/σ2
v .

2.2 Optimality of the noise-to-signal ratio

Using the criterion (2.9), we have the following result.

Proposition 2.1 We have

α∗ = σ2
u/σ2

v = arg min
α>0

‖E[ y|x]− y(α, x)‖2 . (2.19)

Moreover, the error (optimal gap)

E[ y|x]− y(α∗, x) = Z (γ − Z ′x)

is a centered Gaussian vector with covariance matrix

cov (Z (Z ′x− γ)) = σ2
uZZ ′.

In particular,

E[‖E[ y|x]− y(α∗, x)‖2] = E[‖Z (γ − Z ′x) ‖2] = σ2
utrace(ZZ ′) = 2σ2

u.

Proof. Recall Identity (2.15):

y(α, x) = (IT + αP ′P )−1x = ZZ ′x + Q[αIT + Q]−1x.

Therefore, using (2.16), we have

E[ y|x]− y(α, x) = Z (γ − Z ′x) + Q
{[

σ2
u/σ2

vIT + Q
]−1 − [αIT + Q]−1

}
x.

Now, since Z ′Q = 0, we also have

(Z (γ − Z ′x))′Q
{[

σ2
u/σ2

vIT + Q
]−1 − [αIT + Q]−1

}
x = 0.

Hence,

‖E[ y|x]− y(α, x)‖2 = ‖Z (γ − Z ′x) ‖2+
∥∥∥Q

{[
σ2

u/σ2
vIT + Q

]−1 − [αIT + Q]−1
}

x
∥∥∥

2

.
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This yields

‖E[ y|x]− y(α, x)‖2 ≥ ∥∥E[ y|x]− y(σ2
u/σ2

v , x)
∥∥2

= ‖Z (γ − Z ′x) ‖2,
for all α > 0. Thus α∗ = σ2

u/σ2
v is optimal.

The covariance matrix of the centered Gaussian vector Z (Z ′x− γ) is

cov (Z (Z ′x− γ)) = E[Z (Z ′x− γ) (x′Z − γ′) Z ′] = ZZ ′E[(x− Zγ) (x− Zγ)′]ZZ ′.

In particular,
E[‖Z (γ − Z ′x) ‖2] = σ2

utrace(ZZ ′) = 2σ2
u.

2

3 A multivariate Hodrick-Prescott filter

A natural extension of the univariate HP-filter is to be able to perform a similar
trend detection for a multidimensional time series of observables. Let x be a d-
dimensional time series of observations at T instants, that we may represent as a
(column) vector in RdT :

x = ((x1
1, . . . , x

1
T ), . . . , (xd

1, . . . , x
d
T )) ∈ RdT .

We would like to decompose x into a nonstationary trend y ∈ RdT and a cyclical
residual component (noise term) u ∈ RdT :

x = y + u. (3.1)

by minimizing a weighted sum of squares similar to (2.2), with an appropriate
combination of matrices that act as a smoothing parameter similar to α, given a
trend-smoothing operator A similar to the shift operator P in the standard HP-
filter.

Example 3.1 Consider the following two-dimensional HP-filter: Let the same shift
matrix P given in (2.4) act on each of the trends yi = (yi

1, . . . , y
i
T ), i = 1, 2.

We have,
xi = yi + ui, Pyi = vi, i = 1, 2,

where, the noises u1 and u2, respectively v1 and v2, may be correlated.
With, x = (x1, x2), y = (y1, y2), u = (u1, u2), v = (v1, v2) and

A :=
(

P 0
0 P

)
,

we get the following two-dimensional HP-filter:

x = y + u, Ay = v. (3.2)
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We suggest the following multivariate HP-filter.

Definition 3.2 A multivariate HP-filter decomposes x ∈ RdT into a sum of a
nonstationary trend y ∈ RdT and a cyclical residual component (noise term) u ∈
RdT by minimizing the following weighted sum

(x− y)′Σ−1(x− y) + y′A′Ω−1Ay, (3.3)

with respect to y, where (Σ, Ω) is a pair of positive definite matrices with appropriate
dimensions that acts as a smoothing parameter.

Similarly to the shift operator P , we assume that for some fixed 0 < k < T , the
trend-smoothing operator A is a d(T −k)×dT -matrix, with rank d(T −k), making
the matrix AA′ invertible.

Setting d = 1, k = 2, A = P , Σ = IT and Ω−1 = αIT−2, (3.3) reduces to (2.2).
When Ω−1 = diag{α1, . . . , αT−2}, we get the model suggested in Razzak and Dennis
(1995) (see also Reeves et al. (2000)).

The signal v := Ay does not determine a unique y but rather the set of solutions

y := {A′(AA′)−1v + Zγ; γ ∈ Rdk} (3.4)

where, the dT × dk-matrix Z satisfies

Π + ZZ ′ = Idk AZ = 0, Z ′Z = Idk, (3.5)

with Idk denoting the dk × dk identity matrix and

Π = A′(AA′)−1A (3.6)

is an orthogonal projector associated with A i.e. it satisfies Π2 = Π.

In view of Eq. (3.1), the time series x can be represented in terms of (u, v) as

x = u + A′(AA′)−1v + Zγ, (3.7)

for some γ ∈ Rdk.
Since the matrix (IdT +ΣA′Ω−1A) is invertible, the unique solution ŷ to the optimal
problem (3.3) is

ŷ := y ((Σ, Ω), x) =
(
IdT + ΣA′Ω−1A

)−1
x, (3.8)

where IdT denotes the dT × dT identity matrix. Eq. (3.8) defines the descriptive
filter that associates a trend y to the time series x, depending on the smoothing
parameter (Σ, Ω) and the disturbance operator A.

As for the univariate HP filter, assume the noise term u and the signal term v have
zero mean and general covariance matrices Σu and Σv, respectively:
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(
u
v

)
∼ N (0, Σuv). (3.9)

with covariance matrix

Σuv :=
(

Σu 0
0 Σv

)
,

which, by (3.4), makes the trend y following a Gaussian process. This turns the time
series x into a trend y generated by a Gaussian process and a Gaussian disturbance
u. That is, in view of (3.7), (x, y) is normally distributed:

(
x
y

)
∼ N

((
Z
Z

)
γ, Σxy

)
, (3.10)

with covariance matrix

Σxy :=
(

Σu + Qv Qv

Qv Qv

)
,

where,
Qv := A′(AA′)−1Σv(AA′)−1A (3.11)

is a symmetric matrix that, which in view of (3.5), satisfies QvZ = 0.

Now, thanks to (3.10), an explicit expression of the conditional expectation of the
trend y given the time series x reads:

E[ y|x] = Zγ + Qv [Σu + Qv]−1 (x− Zγ). (3.12)

In a similar manner as in Section 3.1, we suggest to find a multivariate version of
the univariate noise-to-signal ’ratio’ i.e. the best smoothing parameters (Σ, Ω) that
minimize the quadratic gap between E[ y|x] and y ((Σ, Ω), x). We will proceed in
two steps. First, we apply Schlichts criterium to find the best smoothing parameters
and then show that this criterium is indeed optimal i.e. these matrices do minimize
the quadratic gap between E[ y|x] and y ((Σ, Ω), x).

3.1 A Criterium for choosing the best smoothing parameter

Adapting Criterium (2.17) to the multivariate case, a best smoothing parameter
for the multivariate HP filter is a pair of positive definite matrices (Σ,Ω) for which

y ((Σ, Ω), x)− Zγ̂ = E[y |x]− Zγ, for all realisations x in RdT , (3.13)

which is equivalent to

ΣA′Ω−1Σv(AA′)−1A = Σu − Z
(
Z ′[Σu + Qv]−1Z

)−1
Z ′, (3.14)

where, γ̂ is the maximum likelihood estimator of γ based on observations from the
time series x:

γ̂ = arg min
γ

(x− Zγ)′ [Σu + Qv]−1 (x− Zγ),
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which is explicitly given by

γ̂ = (Z ′[Σu + Qv]−1Z)−1Z ′[Σu + Qv]−1x; (3.15)

the matrix Z ′[Σu + Qv]−1Z being positive definite.

We note that if (Σ, Ω) are solutions of (3.14), then by mutiplying both sides of the
equation with Z, we necessarily get

(
Z ′ [Σu + Qv]−1

Z
)−1

= Z ′ΣuZ.

In this case (3.14) reduces to

ΣA′Ω−1Σv(AA′)−1A = ΣuΠ + ΠΣu(IdT −Π), (3.16)

where, as above, Π = A′(AA′)−1A.

In Proposition (3.4) below, we will show that the solvability of Eq. (3.14) is equiv-
alent to imposing ΠΣu(IdT − Π) = 0 which means the vectors Πu and (IdT − Π)u
are uncorrelated.

In the next lemma we derive some consequences of imposing this condition that
turns out very useful for the sequel.

Lemma 3.3 We have

(1)
ΠΣu(IdT −Π) = 0 if and only if ΠΣu = ΣuΠ. (3.17)

(2) Under (3.17), we have

(Z ′ΣuZ)−1 = Z ′ (Σu)−1
Z, (3.18)

Z ′ [Σu + Qv]−1
Z = Z ′ (Σu)−1

Z, (3.19)
(
Z ′ [Σu + Qv]−1

Z
)−1

= Z ′ΣuZ. (3.20)

and
Zγ̂ = ZZ ′x. (3.21)

(3) ΠΣu = ΣuΠ holds if and only if

(
IdT + ΣuA′Σ−1

v A
)−1

= ZZ ′ + Qv [Σu + Qv]−1
. (3.22)

Proof. The fact that ΠΣu = ΣuΠ implies ΠΣu(IdT −Π) = 0, is immediate.
Assume ΠΣu(IdT − Π) = 0. Then ΠΣuZ = 0, which in turn yields that ΣuZ ∈
Ker(Π). Since Σu is invertible, we get

Σu(Ker(Π)) = Ker(Π). (3.23)
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On the other hand, we also have (IdT −Π)ΣuΠ = 0. This gives (IdT −Π)Σua = 0
for all a ∈ Im(Π). Hence,

Σu(Im(Π)) = Im(Π). (3.24)

Now, (3.23) and (3.24) yield ΠΣu = ΣuΠ.

We note that (3.20) follows from (3.18) and (3.19). Relation (3.18) follows from
ΠΣu = ΣuΠ. To show (3.19), we apply the following formula (see Rao (1965),
Exercise 2.9, pp. 33)

(C + EDE′)−1 = C−1 − C−1E(E′C−1E + D−1)−1E′C−1

to [Σu + Qv]−1. We get

[Σu + Qv]−1 = Σ−1
u −Σ−1

u A′(AA′)−1
[
(AA′)−1AΣ−1

u A′(AA′)−1 + Σ−1
v

]−1
(AA′)−1AΣ−1

u .

Now, since by (3.23), Σu(Ker(Π)) = Ker(Π), multiplying both sides with Z ′ from
the left and with Z from the right, we get (3.19).

Relations (3.21) and (3.22) are straightforward. 2

The following proposition characterizes the solvability of (3.14) i.e. the set of mul-
tivariate ’noise-to-signal ratio’s’.

Proposition 3.4 Equation (3.14) is solvable if and only if

ΠΣu(IdT −Π) = 0. (3.25)

In this case, Σ, Ω satisfy (3.14) if and only if

ΣA′Ω−1A = ΣuA′Σ−1
v A. (3.26)

In particular,
y ((Σ, Ω) , x) = y ((Σu,Σv) , x) , (3.27)

for all x ∈ RdT . Hence, this family of matrices (Σ, Ω) is an equivalence class, that
gives the same value to the trend.

Moreover,
ŷ(Σ,Ω)− E(y |x) = ZZ ′(x− Zγ),

and its covariance matrix is

cov (E[ y|x]− y ((Σ, Ω), x)) = ΣuZZ ′. (3.28)

In particular,

E
(‖E[ y|x]− y ((Σ,Ω), x) ‖2) = E

(‖ZZ ′(x− Zγ)‖2) = trace(ΣuZZ ′). (3.29)
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Proof. Assume (Σ, Ω) solves (3.14). Then, we get Eq. (3.16):

ΣA′Ω−1Σv(AA′)−1A− ΣuΠ = ΠΣu(IdT −Π).

Multiplying both sides with (IdT−Π)c, for an arbitrary c ∈ RdT , and using AΠ = A,
we get

ΠΣu(IdT −Π)c =
(
ΣA′Ω−1Σv(AA′)−1A− ΣuΠ

)
(IdT −Π)c = 0,

arriving at ΠΣu(IdT −Π) = 0.

Conversely, assuming (3.25), Eq. (3.14) (or (3.16)) reduces to

ΣA′Ω−1Σv(AA′)−1A = ΣuΠ,

for which (Σu,Σv) and (Σu + ZZ ′, Σv) are solutions.

The rest of the proof is straightforward. 2

Remark 3.5

(a) Since Z ′A′ = 0, if (Σ,Ω) solves (3.26), then (ΣZZ ′, Ω) is also a solution.

(b) Using the fact that ΠA′ = A′, in view of (3.27) we also get that

y ((Σ, Ω) , x) = y ((ΠΣuΠ,Σv) , x) = y ((Σu, Σv) , x) , (3.30)

for all x ∈ RdT , which involves only the variance of Πu which is ΠΣuΠ and
Σv, instead of the whole covarinace matrix Σu.

We end this section with several examples of positive definite matrices that
satisfy (3.26) i.e. being a ’noise-to-signal ratio’.

Example 3.6

(a) (Σu, Σv), (Σu + ZZ ′, Σv) and (ΠΣuΠ + (I −Π)L(I −Π), Σv), where, ΠΣuΠ
is the covariance matrix of Πu, and L is any positive matrix.

(b) The pair of matrices (Σ, Σv) satisfies (3.26), for any positive definite matrix
Σ that satisfies

ΣΠ = ΠΣ,

which is equivalent to choosing Σ of the form

Σ =
[

var(Πu) 0
0 L

]
, (3.31)

written in the basis

(bi) := A′g1/
√

λ1, . . . , A
′gd(T−k)/

√
λd(T−k), Z1, . . . , Zkd, (3.32)

where λi are the eigenvalues of AA′ and {g1, . . . , gd(T−k)} an orthonormal
set of eigenvectors corresponding to λi, i = 1, . . . , λd(T−k). The matrix L is
any arbitrary dk × dk-matrix. When L = var((I −Π)u), Σ = Σu.
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(c) In the particular case where Ω = Σv = σ2
vId(T−k), we have

ŷ =
(

IdT +
Σu

σ2
v

A′A
)−1

x, (3.33)

suggesting the noise-to-signal ratio α = Σu/σ2
v, which is a matrix.

Let

ŷ =
d(T−k)∑

i=1

ŷi
A′gi√

λi

+
kd∑

i=d(T−k)+1

ŷiZi−d(T−k)

be the decomposition of ŷ in the basis (bi)i given by (3.32), where,
ŷi =< ŷ, bi >.

From (3.33) we derive

d(T−k)∑

i=1

(ŷi + ŷiλi
Σu

σ2
v

)
A′gi√

λi

+
dT∑

i=d(T−k)+1

ŷiZi−d(T−k) = x.

In particular, if ΣuA′gi = σ2
i A′gi for all i = 1, . . . , d(T − k), then

xi = ŷi, for all i > d(T − k)

and

xi = ŷi(1 + λi
σ2

i

σ2
v

), i = 1, . . . , d(T − k) (3.34)

where, xi =< x, bi >.

(d) The multivariate HP filter suggested in Razzak and Dennis (1995) corre-
sponds to the case where d = 1, k = 2, A = P , Σu = σ2

uIT , Σ = IT ,
Σv = diag{σ2

v(1), . . . , σ2
v(T − 2)} and Ω−1 = diag{α1, . . . , αT−2}. Plugging

in these matrices in Eq. (3.26), we get that

Ω−1 = diag{α1, . . . , αT−2} = σ2
uΣ−1

v ,

or, equivalently,
αt = σ2

u/σ2
v(t), t = 1, · · · , T − 2.

3.2 Optimality of the best smoothing parameters

In this section we will show that the matrices (Σ, Ω) that satisfy Eq. (3.26) (or
Eq. (3.14)) minimize the gap between y ((Σ,Ω), x) and E[ y|x], over an appropriate
class A of admissible matrices in the sense that

arg min
(Σ,Ω)∈A

||ŷ(Σ,Ω)− E(y |x)|| = {(Σ∗, Ω∗) ∈ A : Σ∗A′Ω−1
∗ A = ΣuA′Σ−1

v A}.
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By Proposition 3.4, in this class A of such admissible matrices we expect that

‖y ((Σ, Ω), x)− E[ y|x]‖ ≥ ‖y ((Σ∗,Ω∗), x)− E[ y|x]‖ = ‖ZZ ′(x− Zγ)‖. (3.35)

We have, with ŷ := y ((Σ, Ω), x),

ŷ − E[ y|x] = Z(γ̂ − γ) + ŷ − Zγ̂ −Qv[Σu + Qv]−1(x− Zγ),

where, by Lemma 3.3, Zγ̂ = ZZ ′x.

Let < , > denote the scalar product in RdT and set

Φ(Σ, Ω, x, γ) = ‖ŷ − Zγ̂ −Qv[Σu + Qv]−1(x− Zγ)‖2 + 2 < Z(γ̂ − γ), ŷ − Zγ̂ >,

which is of the form

Φ(Σ, Ω, x, γ) =< B1x, x > + < B2x, Γ >,

where,
B2 = ZZ ′(IdT + ΣA′Ω−1A)−1 − ZZ ′

and B1 and Γ can be given explicitly, but omit them for simplicity.

Obviously, (3.35) holds if and only if

Φ(Σ,Ω, x, γ) ≥ 0

for all x ∈ RdT . But, this is true if and only if B1 ≥ 0 and B2 = 0.

Now, B2 = 0 is equivalent to ZZ ′ΣA′Ω−1A = 0, which holds if and only if ZZ ′Σ =
ΣZZ ′, due to the fact that Im(A′Ω−1A) = Im(Π), or, using (3.5), if and only if

ΣΠ = ΠΣ. (3.36)

But, it is easy to check that (3.36) holds if and only if

ŷ = ZZ ′x + (IdT − ZZ ′)(IdT + ΣA′Ω−1A)−1x. (3.37)

This yields that

ŷ−E[ y|x] = ZZ ′(x−Zγ)+(IdT−ZZ ′)
(
(IdT + ΣA′Ω−1A)−1x−Qv[Σu + Qv]−1(x− Zγ)

)
.

Thus, since ZZ ′ and IdT − ZZ ′ are orthogonal, we get

‖ŷ−E[ y|x]‖2 = ‖ZZ ′(x−Zγ)‖2+‖(IdT−ZZ ′)
(
(IdT + ΣA′Ω−1A)−1x−Qv[Σu + Qv]−1(x− Zγ)

) ‖2,
arriving at (3.35).

Now, if
ΣΠ 6= ΠΣ, (3.38)

then, there exists x ∈ RdT such that Φ(Σ, Ω, x, γ) < 0. In this case

‖y ((Σ, Ω), x)− E[ y|x]‖ < ‖ZZ ′(x− Zγ)‖. (3.39)

We have proved the following

14



Proposition 3.7

(a) Φ(Σ,Ω, x, γ) ≥ 0 for all x if and only if ΣΠ = ΠΣ.
In this case

‖y ((Σ,Ω), x)− E[ y|x]‖ ≥ ‖ZZ ′(x− Zγ)‖. (3.40)

(b) If ΣΠ 6= ΠΣ, there exists x ∈ RdT such that Φ(Σ,Ω, x, γ) < 0, in which case

‖y ((Σ,Ω), x)− E[ y|x]‖ < ‖ZZ ′(x− Zγ)‖. (3.41)

To sum up, an appropriate class A of admissible matrices is

A = {(Σ,Ω), positive definite s.t. ΣΠ = ΠΣ}

and the optimal smoothing parameters are those matrices (Σ, Ω) ∈ A that solve
Eq. (3.26).

We have the following multivariate version of Proposition (2.19), that constitutes
the main result of the paper.

Theorem 3.8 Assume ΣuΠ = ΠΣu. Then,

arg min
(Σ,Ω)∈A

||ŷ(Σ,Ω)− E(y |x)|| = {(Σ, Ω) ∈ A : ΣA′Ω−1A = ΣuA′Σ−1
v A}.

Moreover, for (Σ, Ω) ∈ A, the optimal gap is

ŷ(Σ,Ω)− E(y |x) = ZZ ′(x− Zγ),

and its covariance matrix is

cov (E[ y|x]− y ((Σ, Ω), x)) = ΣuZZ ′. (3.42)

In particular,

E
(‖E[ y|x]− y ((Σ,Ω), x) ‖2) = E

(‖ZZ ′(x− Zγ)‖2) = trace(ΣuZZ ′). (3.43)
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