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A CORRECTION OF THE PROOF OF THEOREM 3.3

We provide a correction of proof of Theorem 3.3 in [DM23]. This result plays a key role in the
proof of the main result of [DM23], Theorem 3.4. In the proof of Theorem 3.3, we used a well
known law of large numbers whose statement in Eq. (3.24) is unfortunately wrong.

First, we recall that the family of interacting Snell envelopes {Yi,n}n
i=1 and the family of finite

horizon stopping problems {Yi}i≥1 are defined by (2.4) and (2.5) in [DM23]. The function h and se-
quence {ξ i}i≥1 satisfy Assumption 2.1 in [DM23] (in what follows we will simply say that Assump-
tion 2.1 holds). For the new proof, we need to introduce a (fixed) sequence of random variables
{αj}j≥1 which are all independent of {Fi}i≥1 and for which

E[αj] = 1 − 2−j, Var(αj) ≤ aj, j ≥ 1, |E[αjαk]| ≤ a|j−k|, j, k ≥ 1,(1.1)

for a given a ∈ (0, 1). We note that
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The next lemma is the main ingredient in the new proof of Theorem 3.3.

Lemma 1.1. Let Assumption 2.1 hold. Then the following law of large numbers (LLN) holds
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Moreover,
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Proof. Due to (1.1), the limit (1.4) is straightforward. To show (1.3), we note that since
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by Dominated Convergence it suffices to show
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By the properties of the essential supremum, for each n ≥ 2, there exists a sequence {τn
m}m≥1 from

T i
0 such that
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and by Dominated Convergence, we have
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Now, by direct calculations it holds that, for every τ ∈ T i
0 and every ℓ, j ̸= i,
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s ]
∣∣
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This bound, being uniform in τ and in i, 1 ≤ i ≤ n, yields (1.3) due to (1.2). □

We will now state a new and correct version of [DM23, Theorem 3.3] and sketch its proof. To
this end we need to substitute the smallness condition γ2

1 + γ2
2 < 1

16 with a new one.

Theorem 1.2. Let Assumptions 2.1 hold and let us assume that γ1 and γ2 satisfy the new condition
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.

Then, it holds that
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Proof. As in the proof of [DM23, Theorem 3.3], we have that for any t ≤ T,
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Since E[α2
i ] ≤ 1, in view of the exchangeability of {Y j,n, Y j}n

j=1, the Cauchy-Schwarz inequality

and Doob’s inequality, if we set C := (1 − 28(γ2
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2))
−1, by (1.1) and Lemma 1.1 we have
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where the limit follows from (1.9). Now, from (1.8), we get
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Finally, since (1.6) entails 28γ2
1 < 1 and in view of (1.3), (1.9) and (1.10), we obtain
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□
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