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Purpose: To develop a method for inverse volumetric-modulated arc therapy (VMAT) planning that
combines multicriteria optimization (MCO) with direct machine parameter optimization. The ulti-
mate goal is to provide an efficient and intuitive method for generating high quality VMAT plans.
Methods: Multicriteria radiation therapy treatment planning amounts to approximating the relevant
treatment options by a discrete set of plans, and selecting the combination thereof that strikes the
best possible balance between conflicting objectives. This approach is applied to two decompositions
of the inverse VMAT planning problem: a fluence-based relaxation considered at a coarsened gantry
angle spacing and under a regularizing penalty on fluence modulation, and a segment weight-based
restriction in a neighborhood of the solution to the relaxed problem. The two considered variable
domains are interconnected by direct machine parameter optimization toward reproducing the dose-
volume histogram of the fluence-based solution.
Results: The dose distribution quality of plans generated by the proposed MCO method was assessed
by direct comparison with benchmark plans generated by a conventional VMAT planning method.
The results for four patient cases (prostate, pancreas, lung, and head and neck) are highly compara-
ble between the MCO plans and the benchmark plans: Discrepancies between studied dose-volume
statistics for organs at risk were—with the exception of the kidneys of the pancreas case—within 1 Gy
or 1 percentage point. Target coverage of the MCO plans was comparable with that of the benchmark
plans, but with a small tendency toward a shift from conformity to homogeneity.
Conclusions: MCO allows tradeoffs between conflicting objectives encountered in VMAT planning
to be explored in an interactive manner through search over a continuous representation of the relevant
treatment options. Treatment plans selected from such a representation are of comparable dose distri-
bution quality to conventionally optimized VMAT plans. © 2012 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4754652]

Key words: direct aperture optimization, direct machine parameter optimization, multicriteria opti-
mization, Pareto optimality, total variation regularization, treatment planning, volumetric-modulated
arc therapy

I. INTRODUCTION

Recent years have seen a surge in interest for rotational radia-
tion therapy delivered using a conventional multileaf collima-
tor (MLC) equipped linear accelerator. This interest has been
sparked by the advance of rotational delivery with varying an-
gular monitor unit (MU) level, which allows for delivery in a
single—or very few—rotation(s) of the treatment gantry, see,
e.g., the review.1 This capability, referred to as volumetric-
modulated arc therapy (VMAT), was first demonstrated on
Varian2 and Elekta3 accelerators using control systems that
allow variable dose rate, gantry speed, and MLC leaf posi-
tions during irradiation. VMAT delivery has more recently
also been demonstrated on Siemens accelerators using stat-
ically collimated bursts over short arc intervals.4 Numerous
comparative studies report that VMAT is largely equivalent to
fixed field intensity-modulated radiation therapy (IMRT) in
terms of dose distribution quality, while it provides a substan-
tial reduction in the number of MUs and total delivery time,

see, e.g., Yu and Tang1 and Teoh et al.5 and references therein.
Dynamic delivery, however, imposes additional machine con-
straints that make inverse planning for VMAT a more chal-
lenging problem than inverse planning for fixed field IMRT.
This property is reflected in a marked comparative increase in
manual planning time.6, 7

Time-efficiency and transparency of IMRT planning have
been addressed by a number of research groups from the
viewpoint of a multicriteria decision problem, see, e.g.,
Refs. 8–13. The unifying theme of the cited papers is to first
precompute a collection of treatment plans that give different
emphasis to the considered planning objectives, and subse-
quently select the most preferred plan from this representa-
tion. A specific selection technique is in this paper considered
that utilizes real-time navigation between discrete solutions
by continuous interpolation, see Monz et al.14 Recent compar-
ative studies between multicriteria optimization (MCO) and
standard inverse planning have for fixed field IMRT shown
that MCO significantly reduces average planning time while
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simultaneously providing plans that are ranked as superior
by physicians.15, 16 It is plausible to hypothesize that VMAT
planning due to its involved process would equally—if not
more so—benefit from MCO. This paper therefore extends
and evaluates the use of multicriteria planning to the VMAT
modality.

Multicriteria planning for rotational therapy was first stud-
ied by Pardo-Montero and Fenwick.17, 18 These authors pro-
pose using linear combinations of a basis of anatomy-based
arcs with MLC shapes defined by Boolean operations on the
beam’s eye view contours of the delineated regions of in-
terests (ROIs). Craft et al.19 have more recently proposed a
method where navigation over a basis of fluence-based arcs
is followed by unidirectional leaf-sequencing into dynamic
MLC trajectories, and the tradeoff between delivery time and
treatment quality examined using a mechanism for downsam-
pling fluence maps.

The method for multicriteria VMAT optimization devel-
oped in this paper makes sequential use of a basis of fluence-
based arcs and a basis of segment weight-based arcs with
shared MLC shapes. The rationale of this approach is to
first perform a global tradeoff between objectives in the flu-
ence domain, and second fine-tune this tradeoff with re-
spect to deliverable machine settings and final dose com-
puted by a high-accuracy algorithm. The presented method
is an extension of a previous technique for multicriteria plan-
ning with respect to fixed field step-and-shoot IMRT delivery,
see Craft et al.20

A notable difference to previous work on multicriteria
planning for rotational therapy is that MLC shapes are gen-
erated using direct machine parameter optimization (DMPO)
(or direct aperture optimization as it is often synonymously
called), thereby eliminating the need for postprocessing steps
that may degrade treatment quality. There is for fixed field
IMRT extensive empirical evidence that DMPO leads to a re-
duction in plan complexity without sacrificing dose distribu-
tion quality, see, e.g., Broderick et al.21 for a review and ref-
erences to the original literature. Rao et al.22 report a similar
result for VMAT in a comparative study of an anatomy-based,
a fluence-based, and a machine parameter-based approach
to treatment planning. In this study, the machine parameter-
based approach produced plans that were slightly better than
those generated by the fluence-based approach in terms of
dose uniformity and conformity, most notably so for com-
plex target geometries. The anatomy-based approach led to
plans that required the least number of MUs, but at a cost
of the least conformal dose distributions in general, and clin-
ically unacceptable dose distributions for challenging target
geometries.

The dosimetric quality of plans generated by the suggested
MCO method is evaluated by comparison with benchmark
plans generated by the conventional method of minimizing
a weighted sum of objective functions. The purpose of the
evaluation is to examine if MCO plans are of comparative
dose distribution quality with plans generated by a standard
method, disregarding the difficulty of finding an appropriate
tradeoff between conflicting planning objectives with the con-
ventional method. The MCO plans were for the purpose of a

fair comparison generated toward showing a similar tradeoff
between objectives as the benchmark plans. The evaluation
can thereby be thought of as simulating a treatment planner
that strives toward finding the best possible tradeoff between
objectives, with the assumption being that the tradeoff of each
benchmark plan is the correct one. The MCO plans should
due to the design of this evaluation strategy not be expected to
improve on the benchmark plans. The reported results should
also be put in perspective of the referenced studies that point
to the cognitive and time-efficiency benefits of multicriteria
treatment planning, i.e., Refs. 15 and 16.

II. MATERIALS AND METHODS

II.A. Notation

For a given ROI, the minimum dose such that the associ-
ated isodose volume contains x% of the volume is denoted by
Dx , the volume contained by the x Gy isodose volume by Vx ,
and the mean dose level by D̄. Volumes are to be understood
in relative sense unless otherwise indicated. Planning target
volumes (PTVs) are designated by their prescription level
in subscript. The notation PTV−x mm

low = PTVlow − (PTVhigh

+ x mm) is used to denote the setwise difference between
a low dose PTV and a high dose PTV, with magnitude
of the expansion of the high dose PTV suppressed when
zero.

II.B. Problem formulation

The method developed in this paper takes as input spec-
ification of a set of rotational arcs to be optimized with re-
spect to n objectives fi, with n ≥ 2, and m constraints cj. All
objectives and constraints are assumed to map the dose dis-
tribution vector d to a nonnegative scalar. The constraints are
in addition assumed to be of a form such that the feasible
region is nonempty. An arc is represented as a sequence of
control points at uniform gantry spacing and fixed collimator
and couch angles. We consider optimization with respect to
MLC leaf positions x, control point MUs μ, and arc delivery
times t of the form

minimize
x,μ,t

[f1(d(ψ(x, μ))) · · · fn(d(ψ(x, μ)))]T

subject to cj (d(ψ(x, μ))) ≤ 0, j = 1, . . . , m,

(x, μ, t) ∈ F ,

(1)

where ψ is the energy fluence vector and F the set of or-
dered triplets (x, μ, t) that correspond to feasible machine set-
tings. The exact definition of F is determined by the com-
missioned machine specifications, see Ref. 23 for an explicit
formulation. The representation of arc delivery times as scalar
variables, as opposed to vectors of control point delivery
times, implies that the gantry speed is assumed to be con-
stant. This formulation is based on the recommendation by
Bzdusek et al.23 who found that variable gantry speed during

Medical Physics, Vol. 39, No. 11, November 2012



6714 Rasmus Bokrantz: Multicriteria optimization for volumetric-modulated arc therapy 6714

optimization does not contribute to any substantial plan im-
provements and often leads to large gantry accelerations that
may introduce delivery errors.

We briefly review some properties of the chain of
transformations from optimization variables to dose. The
energy fluence vector ψ is related to the vector of MLC leaf
positions x by an integral over the fluence distributions of the
bremsstrahlung target and the flattening filter. This integral
is, if assuming Gaussian fluence distributions, described by
a combination of error functions that are nonconvex due
to their sigmoidal shape.24 The components of the vector
of control point MUs μ enter the fluence calculation as
multiplicative factors. The function ψ(x, μ) is therefore
nonlinear and nonconvex in x, and linear in μ. The dose
distribution vector d is calculated from ψ by a superposition
of weighted kernels, which is a linear operation. The function
d(ψ) is therefore linear.

We now turn to discussing the interpretation of a solution
to problem (1). Solving a vector-valued optimization problem
is most commonly understood in the sense of selecting the
most preferred solution from the set of Pareto optimal solu-
tions: feasible solutions such that none of the objectives can
be improved without impairing at least one other objective,
see, e.g., the monograph.25 The current paradigm in multi-
criteria IMRT planning is to approximate the set of Pareto
optimal solutions with a discrete set of points and their con-
vex combinations. The theoretical justification of this method
hinges on a convex problem formulation, i.e., that all objec-
tives are convex functions of the optimization variables and
the feasible region a convex set. If this criterion is satisfied,
the set of Pareto optimal solutions forms a connected surface
in the boundary of a convex set26 (called the Pareto surface).
Convex combinations of Pareto optimal points, moreover, re-
main feasible and with objective function values bounded by

the corresponding convex combination of objective function
value vectors.

II.C. Overview of the solution approach

The framework for convex MCO planning outlined in
Sec. II.B cannot be directly applied to problem (1) due to its
nonconvexity. This property is accounted for by first consid-
ering a convex relaxation of this problem, and then consider-
ing a convex restriction in a neighborhood of the solution to
the relaxed problem. The cornerstones of this procedure is an
algorithm for approximating convex Pareto surfaces, an algo-
rithm for navigating a discrete Pareto surface representation,
and a routine for single-objective VMAT optimization. These
algorithms are applied to solve a sequence of optimization
problems of the following form:

(a) Fluence map optimization
The relaxation of the initial problem given by consider-
ing energy fluence as a directly controllable variable.

(b) Reference dose-volume histogram optimization
The problem of reproducing the dose-volume his-
togram (DVH) of a fluence-based solution with respect
to deliverable machine settings.

(c) Segment weight optimization
The restriction of the initial problem given by consid-
ering control point MUs and arc delivery times as vari-
ables while keeping the MLC leaf positions fixed.

The above procedure is summarized in Fig. 1. Because the op-
timization problems in (a) and (c) are vector-valued, solving
these problems entails generating a discrete set of solutions
using the Pareto surface approximation algorithm, and letting
a decision maker select the most preferred convex combina-
tion from this representation using the navigation algorithm.

FIG. 1. Overview of the MCO method: A collection of nf fluence-based plans are generated and combined into a single navigated plan by a convex combination
with coefficient vector λ. The navigated plan is converted into a deliverable VMAT plan using reference DVH optimization, with the reference dose dref set
equal to the dose distribution of the navigated solution. A collection of ns segment weight-based plans in a neighborhood of the initial converted solution are
generated and combined into a final treatment plan by a convex combination with coefficient vector ξ . Parameters that constitute variables at each considered
step are indicated in bold. The mathematical notation used in the illustration is introduced in Secs. II.D–II.F.
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The final solution to a vector-valued problem is thus always a
single solution.

II.D. Fluence map optimization

The fluence map relaxation of (1) takes the form

minimize
ψ

[f1(d(ψ)) · · · fn(d(ψ))]T

subject to cj (d(ψ)) ≤ 0, j = 1, . . . , m,

ψ ≥ 0.

(2)

This problem is a convex optimization problem whenever all
objectives fi and constraints cj are convex in fluence since sub-
level sets of convex functions are convex. A sufficient condi-
tion for a dose-based function to be convex in fluence is that
the function is convex in dose. This fact follows from linearity
of d(ψ) and that composition with an affine function preserves
convexity.

A large number of degrees of freedom makes the fluence
map optimization problem a both computationally expensive
problem and an inaccurate model of VMAT delivery if con-
sidered at the final gantry spacing and without restriction on
fluence modulation. Problem (2) is therefore considered at a
coarsened gantry spacing and under a regularizing penalty on
a total variation measure of the fluence maps. This approach
is supported by a number of observations by previous authors:
Yu27 has conjectured that plan quality is essentially a function
of the number of strata, a quantity defined as the product be-
tween the number of beam angles and the number of intensity
levels per beam. The number of intensity levels within a flu-
ence modulated beam has been demonstrated by Zhu et al.28

to be highly correlated with the total variation of the fluence
vector. Finally, Tang et al.29 report that dosimetric quality is
insensitive to small angular displacements of the incident flu-
ence distribution.

The total variation of the fluence vector is in this study
defined as the L1-norm of its gradient with respect to the co-
ordinate axes of the fluence planes. To aid the definition of the
total variation functional TV(·), denote by B an index set over
the fluence planes, by �(b) the transmission matrix associated
with the bth fluence plane, and by IJ b the set of bixel index
pairs (i, j) associated with elements of �(b) that are considered
as optimization variables in Eq. (2). The total variation of the
fluence vector is with this notation given by a sum of forward
differences of the form

TV(ψ) =
∑
b∈B

⎛
⎜⎝ ∑

(i,j )∈IJ b :
(i+1,j )∈IJ b

∣∣�(b)
i,j − �

(b)
i+1,j

∣∣

+
∑

(i,j )∈IJ b :
(i,j+1)∈IJ b

∣∣�(b)
i,j − �

(b)
i,j+1

∣∣
⎞
⎟⎠ . (3)

Total variation minimization is in addition to its use for
smoothing of fluence maps in IMRT planning28, 30, 31 widely
used for image denoising where preserving edge informa-
tion is important. It is for this application well-known to
filter out high-frequency oscillations while preserving sharp

discontinuities.32 The scale of the image features that are
smoothed out are inversely proportional to the penalty weight
of the stabilizing functional.33 The penalty weight of the total
variation term was in this study determined by the empirical
L-curve method, as described in Appendix A. The absolute
values in Eq. (3) were made continuously differentiable using
a conservative approximation of the form

|x| = max{x,−x} ≈ 1

α
ln(eαx + e−αx),

for some positive scalar α. This approximation is computa-
tionally inexpensive and can be made arbitrary close to the
exact function by letting the parameter α tend to infinity. A
more rigorous approach for handling the nondifferentiability
of Eq. (3) would be to substitute linearly constrained auxiliary
variables for the absolute values in this expression.

II.E. Reference dose-volume histogram optimization

The purpose of reference DVH optimization is to convert
the navigated fluence-based solution to Eq. (2) into a deliver-
able VMAT plan. This conversion is carried out by DMPO to-
ward minimizing the error in DVH resulting from the conver-
sion. Discrepancies in the DVH domain are quantified using
reference DVH functions gk that map the current dose distri-
bution d and a reference dose distribution d ref into a one-sided
penalty on the integral between the associated pair of DVH
curves, see Fig. 2 for an illustration and Appendix C for a
precise definition.

A natural formulation of the reference DVH optimization
problem would be to minimize a vector of DVH penalties with
respect to the navigated solution to Eq. (2), subject to the
constraints of problem (1). The resulting problem would,
however, be a multiobjective program and therefore as diffi-
cult as problem (1) in general. Instead, positive weights wk

defined over an index set R over the considered ROIs are
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FIG. 2. Penalty imposed by a max reference DVH function assigned to an
OAR and a one-sided uniform reference DVH function assigned to a PTV.
The current DVH is indicated by solid lines and the reference DVH by dashed
lines. The shaded regions indicate cumulative volumes where a quadratic
penalty is imposed on differences along the dose axis.
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introduced to yield a scalar-valued problem of the form

minimize
x,μ,t

∑
k∈R

wkgk(d(ψ(x, μ)), d ref)

subject to cj (d(ψ(x, μ))) ≤ 0, j = 1, . . . , m,

(x, μ, t) ∈ F ,

(4)

where d ref is the dose distribution vector associated with
the navigated solution to Eq. (2). Scalarization with a priori
weights in Eq. (4) can be motivated by that this problem is ex-
pected to have feasible solutions where the functions gk eval-
uate to values close their lower bound of zero. This property
makes Eq. (4) less sensitive to the choice of weighting coeffi-
cients than the problem given by substituting a non-negatively
weighted sum of the objectives for the vector-valued objective
function in Eq. (1). Validity of this statement relies on that the
DVH associated with the navigated fluence-based solution is
close to a DVH that can be realized by a feasible VMAT plan.

II.F. Segment weight optimization

The segment weight optimization problem can be derived
from Eq. (1) by fixating the MLC leaf positions at the out-
put values x̂ from the reference DVH optimization step. It is
typically not necessary to consider all initial objectives dur-
ing segment weight optimization, but rather only those where
an improvement is prioritized. A set of n̄ objectives f̄i , where
n̄ ≥ 2, is therefore substituted for the objectives in Eq. (1).
A set of m̄ constraints c̄j chosen such that the solution to the
reference DVH optimization problem is feasible is similarly
substituted for the constraints in Eq. (1). The resulting opti-
mization problem is of the form

minimize
μ,t

[f̄1(d(ψ(x̂, μ))) · · · f̄n̄(d(ψ(x̂, μ)))]T

subject to c̄j (d(ψ(x̂, μ))) ≤ 0, j = 1, . . . , m̄,

(x̂, μ, t) ∈ F .

(5)

The set F is defined by a set of linear inequalities and
therefore convex. This property together with the linear re-
lation between MU and dose implies that Eq. (5) is a convex
problem whenever all functions f̄i and all c̄j are convex in
dose. The linearity between MU and dose also implies that
dose computed by a high-accuracy algorithm prior to solving
Eq. (5) remains valid during segment weight optimization.

II.G. Treatment planning system

The suggested MCO method was implemented in a re-
search version of the RayStation treatment planning system
version 2.6 (RaySearch Laboratories, Stockholm, Sweden).
The single-objective VMAT algorithm used in this system is
described in Bzdusek et al.23 Briefly, fluence map optimiza-
tion is first performed at a gantry spacing of 24◦. MLC shapes
are subsequently generated to approximate the optimized flu-
ence profiles, distributed over adjacent gantry angles, and fur-
ther optimized using DMPO. Segment weight optimization
can optionally be performed as a final step. Dose calculations

during fluence map optimization and DMPO is performed
using a pencil beam convolution technique based on singu-
lar value decomposition, similar to Bortfeld et al.34 Accurate
dose is computed using a collapsed cone (CC) convolution al-
gorithm, see, e.g., Ahnesjö.35 If an intermediate CC dose cal-
culation is performed, it is used as a background dose for sub-
sequent dose calculations. All nonlinear programming tasks
are performed using a quasi-Newton sequential quadratic pro-
gramming (SQP) method, see, e.g., Gill et al.36 for a review
of a similar algorithm. The considered version of RayStation
does not support nonlinear constraints for rotational arcs. All
dose-based constraints in Eqs. (4) and (5) were therefore re-
laxed into penalty terms in the objective function. Multiobjec-
tive programs are solved by approximating the Pareto surface
with a predetermined number of plans. Each plan is generated
by minimizing a non-negatively weighted sum of objectives
subject to the initial constraints. The weighting coefficients
are chosen toward optimally limiting the approximation er-
ror of the current representation of the Pareto surface, as de-
tailed in Bokrantz and Forsgren.37 A graphical user interface
allows for selection of the most preferred combination of ba-
sis plans, see Craft et al.13 for a description of a prototype
version.

II.H. Patient cases

The developed method is evaluated by retrospective plan-
ning for four patient cases:

� A prostate case with a prescribed dose of 72.2 Gy over
39 fractions to a PTV that encompasses the prostate and
seminal vesicles, with a simultaneous boost of 78 Gy in
total to the prostate. Considered critical structures are
the bladder, femurs, and rectum.

� A pancreas case with prescribed dose to the PTV of
50.4 Gy over 28 fractions. Considered critical structures
are the kidneys, liver, and stomach.

� A lung case with a PTV that encompasses a primary
tumor situated in middle lobe of the right lung, and
surrounding lymph nodes. The PTV is composed of two
disjoint subvolumes that are about 5 mm apart. Its pre-
scribed dose was 66 Gy over 24 fractions. The right lung
of the patient was partially collapsed and filled with
fluid. Considered critical structures are the esophagus,
heart, lungs, and spinal cord.

� A head and neck case with a prescribed dose of 72 Gy
over 36 fractions to the PTV of the primary tumor and
a prescribed dose of 59.4 Gy over 36 fractions to the
elective nodal PTV. Considered critical structures are
the brainstem, esophagus constrictors, larynx, mandible,
oral cavity, parotids, and spinal cord.

The objectives and constraints used during treatment plan
optimization were of the form of least-squares penalties on
deviation in voxel dose or equivalent uniform dose (EUD)
from a reference level. A complete summary of objectives
and constraints per patient case is provided in Appendix B.
Mathematical definition of the used optimization functions is
given in Appendix C.
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The DVH-based functions that were used for a subset of
the target constraints are nonconvex in dose38 and therefore
violate the convexity requirement stated in Sec. II.B. Em-
pirical evidence, however, indicates that this class of func-
tions do not impose any severe local minima effects, and that
they therefore are compatible with gradient-based optimiza-
tion algorithms.39, 40 DVH-based functions were included in
the present study since functions of this form are in standard
use in clinical practice.

II.I. Machine model and algorithm settings

All patient cases were planned for delivery with a Varian
2100 linear accelerator (Varian Medical Systems, Palo Alto,
California) equipped with a 120-leaf interdigitating MLC sys-
tem and at a nominal energy of 6 MV. The treatment machine
was modeled with continuously variable dose rate in the range
50–600 MU/min, a maximum gantry speed of 5.54 ◦/s, and a
maximum leaf speed of 22.5 mm/s. An upper bound on the
maximum delivery time was introduced at 120 s for each arc,
the control point spacing was set to 3◦, the collimator angle set
to 45◦, and the couch angle set to 0◦, with the latter two being
defined according to IEC convention. Cases with close to con-
vex target geometries (prostate, pancreas) were planned for
delivery with a 359◦ single arc while cases with highly non-
convex target geometries (lung, head and neck) were planned
for delivery with a 359◦ dual arc. Dual arcs were preferred
over single arc delivery at a refined control point spacing and
with an increased bound on the arc delivery time because the
considered implementation of DMPO requires a dose calcu-
lation at every considered control point angle. Dose calcula-
tions for a single arc plan with halved control point spacing
are therefore approximately twice as costly as those for a dual
arc plan because the fluence distributions of each arc in the
dual arc plan can be superimposed prior to making the trans-
formation from fluence to dose. A discretization of the fluence
planes into 5 × 5 mm2 bixels and a discretization of the pa-
tient volume into 3 × 3 × 3 mm3 voxels were used through-
out during optimization. The maximum number of SQP iter-
ations during fluence map optimization, DMPO, and segment
weight optimization was kept at 50, 45, and 30, respectively.
An intermediate CC dose calculation at iteration 30 and a final
CC dose calculation at completion was throughout performed
during DMPO.

III. RESULTS

III.A. Treatment plan generation

A single benchmark plan per patient case was generated
by minimizing a positively weighted sum of the objectives in
Eq. (1) subject to the initial constraints of this problem. Ob-
jective weights were manually adjusted and the plan reopti-
mized until a treatment plan that was deemed satisfactory had
been obtained. MCO plans were subsequently generated with
navigation manually performed toward finding a plan with a
similar tradeoff between objectives as that of the correspond-
ing benchmark plan, this in order to facilitate a fair sideways

comparison. The number of treatment plans in the Pareto sur-
face representations was 50 during fluence map optimization
and 25 during segment weight optimization. Reference DVH
optimization was, unless otherwise stated, performed with re-
spect to all ROIs assigned with an objective and a 10 mm shell
isotropically expanded from the union of all targets. Target
structures were assigned with a one-sided uniform reference
DVH function, critical structures with a max reference DVH
function, and unclassified tissue with a reference dose fall-off
function. The weights wk in problem (4) were set to 30 for
functions associated with targets or shell structures and set to
unity otherwise. The objective function of all segment weight
optimization problems was augmented with a term identical
to the composite objective function of the preceding reference
DVH optimization problem at a relative weight of 10−4 in or-
der to avoid radically altering the dose distribution.

III.B. Evaluation of plan quality

Plan quality was assessed with respect to target coverage,
dose conformity, and sparing of organs at risk (OARs). Tar-
get coverage was quantified by a homogeneity index (HI)
(Ref. 41) according to

HI = (D2 − D98) / D50.

Dose conformity was quantified by a conformity index (CI)
(Ref. 42) being the ratio between treated volume at 95% of
the prescription level and target volume according to

CI = VExternal
95% / VPTV,

with volume interpreted in absolute sense. Note that the ideal
values for the HI and CI metrics are 0% and 100%, respec-
tively. Sparing of OARs was quantified in terms of dose-
volume statistics. Plan quality was additionally assessed with
respect to DVH and planned dose distribution. The isodose
lines of all depicted dose distributions follow a color table
that is defined relative to the minimal prescription level taken
over all target structures of the considered patient case.

III.B.1. Prostate

The results for the prostate case are summarized in
Fig. 3 and Table I. The main dosimetric challenge was to ob-
tain a uniform dose to both target volumes at their respec-
tive prescription level. This goal was in sharp conflict with
sparing of the rectum. The treatment plan selected during
fluence-based navigation is slightly better than the benchmark
plan with respect to all objectives, most notably so by an im-
proved average rectal dose of about 3 Gy. The plan obtained
after reference DVH optimization shows mean dose levels for
the bladder and rectum that are within 1 Gy of those of the
benchmark plan. A comparison of the DVH curves of the tar-
get structures reveals a shift toward the low dose region of
about 0.8 Gy for the MCO plan. Segment weight optimiza-
tion was performed with respect to the subset of initial ob-
jectives that were associated with the PTVs and rectum. The
treatment plan selected during segment weight-based naviga-
tion is essentially equivalent to the benchmark plan in terms

Medical Physics, Vol. 39, No. 11, November 2012



6718 Rasmus Bokrantz: Multicriteria optimization for volumetric-modulated arc therapy 6718

(a)

0 20 40 60 80
0

20

40

60

80

100

Dose [Gy]

V
o
lu

m
e

[%
]

PTV−
72.2

PTV78

Rectum

Bladder

Fluence map opt.

0 20 40 60 80
0

20

40

60

80

100

Dose [Gy]

V
o
lu

m
e

[%
]

PTV−
72.2

PTV78

Rectum

Bladder

Reference DVH opt.

0 20 40 60 80
0

20

40

60

80

100

Dose [Gy]

V
o
lu

m
e

[%
]

PTV−
72.2

PTV78

Rectum

Bladder

Segment weight opt.

(b)

Fluence map opt. Reference DVH opt. Segment weight opt.

Multicriteria optimization Benchmark plan

FIG. 3. (a) DVH results for the prostate case. Incremental stages of the MCO method are indicated by solid lines while the benchmark plan is indicated by
dashed lines. (b) Transversal slices of dose distributions for the prostate case at incremental stages of the MCO method and for the benchmark method. ROI
contours are indicated in black.

of target homogeneity and dose conformity, while showing a
lower bladder mean dose of about 0.5 Gy, and a higher rectum
mean dose of about 1 Gy.

III.B.2. Pancreas

The results for the pancreas case are summarized in
Fig. 4 and Table II. Prioritized goals during fluence-based
navigation was to limit kidney dose to V10 ≤ 60% and V20 ≤
30%. The discrepancy to the benchmark plan of 3–4 per-
centage points (pp) in the right kidney DVH for cumulative
volumes below 15% could not be improved without compro-
mising either sparing of the left kidney or target coverage.
This discrepancy can however, at least in part, be attributed
to that the min dose constraint at 45.4 Gy for the PTV was
handled rigorously for the MCO plan, while relaxed into a
penalty term for the benchmark plan. As a consequence of
this constraint handling, 0.37% of the PTV volume violated
this constraint, as compared to 0.01% for the fluence-based
MCO plan. The treatment plan obtained after reference DVH
optimization is qualitatively similar the benchmark plan. The
most notable differences is a shift of the target DVH of about

0.5 Gy and the discrepancy for the right kidney that was al-
ready present in the fluence domain. Segment weight opti-
mization was performed toward the subset of the initial objec-
tives that were associated with the PTV and right kidney. The
treatment plan selected during segment weight-based naviga-
tion shows comparable target coverage with the benchmark
plan whereas sparing of the right kidney could not be simul-
taneously improved. The dose statistics in Table II indicates
that the MCO plan is essentially equivalent to the benchmark
plan in terms of target homogeneity and sparing of the liver
and stomach, while slightly less conformal, and has higher
V20 levels for both kidneys of about 3 pp–4 pp.

III.B.3. Lung

The results for the lung case are summarized in Fig. 5 and
Table III. The primary consideration during treatment plan
optimization was to obtain a uniform dose to the PTV at the
prescription level while maintaining a sharp dose fall-off out-
side this structure. Secondary goals were to reduce lung dose
and to avoid dose in the PTV overlap volume of the esoph-
agus and heart beyond the prescription level. Sparing of the

TABLE I. Dose statistics for the prostate case.

PTV78 PTV−
72.2 PTV72.2 Bladder Rectum

Plan HI (%) CI (%) HI (%) CI (%) D10 (Gy) D̄ (Gy) D10 (Gy) D̄ (Gy)

Fl. map 6.6 113.9 9.4 122.1 62.8 24.2 70.4 28.0
Ref. DVH 8.6 119.6 11.7 121.3 64.0 24.8 71.0 31.2
Seg. wt. 8.0 125.1 11.0 124.1 64.3 25.2 71.5 31.8
Benchmark 8.5 124.8 10.7 125.8 65.5 25.7 70.9 30.7
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FIG. 4. (a) DVH results for the pancreas case. Incremental stages of the MCO method are indicated by solid lines while the benchmark plan is indicated by
dashed lines. (b) Transversal slices of dose distributions for the pancreas case at incremental stages of the MCO method and for the benchmark method. ROI
contours are indicated in black.

left lung was prioritized over sparing of the right lung due to
the location of the primary tumor. The treatment plan selected
during fluence-based navigation is better than the benchmark
plan with respect to all objectives, in particular with respect
to those associated with OAR sparing. Reference DVH op-
timization was performed with respect to all ROIs assigned
with an objective, except for the ROI derived from the union
of the lungs. A 70 mm shell expanded from the PTV was also
included in the optimization. Expansion beyond 10 mm was
for this structure exclusively performed in the gantry rotation
plane. The treatment plan obtained after reference DVH op-
timization remains better than the benchmark plan in terms
of all objectives associated with OARs, whereas it is slightly
worse than the benchmark plan in terms of conformity and
homogeneity. The improvement in mean dose level is less
than 1 Gy for all OARs. Segment weight optimization was
performed with respect to the subset of initial objectives that
were associated with the PTV and lungs. The treatment plan
selected during segment weight-based navigation shows tar-
get uniformity that is comparable with the benchmark plan
and OAR sparing that is within 1 Gy in terms of mean dose.
The benchmark plan is marginally more conformal than the
MCO plan.

III.B.4. Head and neck

The results for the head and neck case are summarized
in Fig. 6 and Table IV. Treatment plan optimization was
performed toward obtaining a uniform dose to both target
volumes at their respective prescription level while sparing
the parotid glands and avoiding hot spots. Sparing of the
left parotid was prioritized over sparing of the right parotid
as the left gland was more remotely located from the pri-
mary tumor volume. In comparison to the benchmark plan,
the treatment plan selected during fluence-based navigation
shows a higher degree of homogeneity for both targets, and
improved parotid sparing in the low dose region (<20 Gy).
Reference DVH optimization was performed with respect to
all ROIs assigned with an objective and two shells expanded
50 and 70 mm, respectively, from the union of the PTVs. Ex-
pansion beyond 10 mm was for these structures exclusively
performed in the gantry rotation plane. The resulting treat-
ment plan shows target coverage for PTV72 that is compara-
ble with the benchmark plan, slightly worse target coverage
for PTV72, and improved parotid sparing in the low dose re-
gion. Segment weight optimization was performed with re-
spect to the subset of initial objectives that were associated

TABLE II. Dose statistics for the pancreas case.

PTV50.4 L kidney R kidney Liver Stomach

Plan HI (%) CI (%) V20 (%) D̄ (Gy) V20 (%) D̄ (Gy) D̄ (Gy) D̄ (Gy)

Fl. map 7.5 103.8 12.1 12.3 28.3 17.0 15.7 19.1
Ref. DVH 10.0 105.8 11.7 12.3 28.5 17.3 16.2 18.9
Seg. wt. 9.7 108.5 13.2 12.8 27.8 17.1 16.2 19.1
Benchmark 10.9 105.5 10.4 12.5 24.1 16.6 16.7 19.1
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FIG. 5. (a) DVH results for the lung case. Incremental stages of the MCO method are indicated by solid lines while the benchmark plan is indicated by dashed
lines. (b) Transversal slices of dose distributions for the lung case at incremental stages of the MCO method and for the benchmark method. ROI contours are
indicated in black.

with the PTVs, a max dose objective for a 10 mm PTV shell
with reference dose level at 56.5 Gy, and a max dose objective
for the structure given by subtracting PTV59.4 with a margin
of 10 mm from the external ROI, with reference dose level
at 35 Gy. The treatment plan selected during segment weight-
based navigation has better homogeneity for both PTVs than
the benchmark plan, but is slightly less conformal. The MCO
plan shows a lower parotid mean dose of about 0.7 Gy for both
glands.

III.C. Computational cost

Computational times for generation of the conventionally
optimized benchmark plans were 15–20 min for the single arc
plans and 40–50 min for the dual arc plans. These values are
the total time required for a single optimization that includes
two CC dose calculations and do not take into account the
time required to manually identify suitable objective weights.
Generating a single fluence-based MCO plan took about 2
min for the single arc plans and about 5 min for the dual
arc plans, totaling to a time of about 1.5 h and 4 h, respec-
tively, for complete generation of the fluence-based Pareto
plan databases. Computational times for reference DVH opti-

mization were comparable with those reported for the bench-
mark plans. Generating a single segment weight-based plan
took about 1.2 min for the single arc plans and about twice
that time for the dual arc plans, totaling to a time of about
30 min and 1 h, respectively, for complete generation of the
segment weight-based Pareto plan databases.

IV. DISCUSSION

The main difficulty in applying MCO to VMAT planning
is modeling the initially nonconvex VMAT optimization prob-
lem in a convex setting. We have studied two convex decom-
positions: a fluence-based relaxation and a segment weight-
based restriction. The fluence-based formulation was defined
at a coarsened gantry spacing and under a regularizing penalty
on total fluence modulation, with the penalty weight of the to-
tal variation functional determined by empirical L-curve anal-
ysis. A requirement on identical MLC shapes was imposed on
the segment weight-based formulation to allow for continu-
ous interpolation between treatment plans. This formulation
has the additional advantage that dose computed by a high-
accuracy algorithm remains valid during navigation. The two

TABLE III. Dose statistics for the lung case.

PTV66 Esophagus Heart L lung R lung

Plan HI (%) CI (%) D̄ (Gy) D̄ (Gy) V20 (%) D̄ (Gy) V20 (%) D̄ (Gy)

Fl. map 7.0 107.2 30.1 17.5 16.6 11.3 60.5 30.4
Ref. DVH 11.9 102.8 35.7 24.6 26.2 15.0 61.8 31.5
Seg. wt. 10.9 108.9 36.4 25.6 28.3 15.7 62.3 31.8
Benchmark 10.4 105.9 36.6 24.9 27.0 15.0 62.8 31.3
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FIG. 6. (a) DVH results for the head and neck case. Incremental stages of the MCO method are indicated by solid lines while the benchmark plan is indicated
by dashed lines. (b) Transversal slices of dose distributions for the head and neck case at incremental stages of the MCO method and for the benchmark method.
ROI contours are indicated in black.

convex domains were interconnected by DMPO toward repro-
ducing the DVH distribution of the fluence-based solution.

The MCO method was evaluated with respect to treatment
planning for prostate, pancreas, lung, and head and neck by
direct comparison with benchmark plans generated using a
standard inverse planning method. The final MCO plans were
consistently qualitatively very similar to their corresponding
benchmark plan. Dose-volume statistics associated with OAR
sparing was within 1 Gy or 1pp of those of the benchmark
plan. The single exception to this observation was a discrep-
ancy of 3 pp–4 pp for the V10 level of the kidneys for the
pancreas case that was in favor of the benchmark plan. It was
argued that this is an effect of approximate constraint han-
dling during optimization of the benchmark plan. Dose uni-
formity was quantitatively comparable for all target structures
across all patient cases. Dose conformity was comparable for
the pancreas and prostate case, whereas the plans for the lung
and head and neck case were slightly less conformal than their
corresponding benchmark plan.

The goal of the evaluation was to assess the dose distri-
bution quality of the MCO plans. The tradeoff between ob-
jectives of the benchmark plan was for the purpose of the
evaluation assumed to be the best possible from a clinical
perspective. This is a strong assumption that may not be
fulfilled in practice. An inherent difficulty in conventional
inverse planning is to assess whether a given plan is the
best possible for the considered patient case. It is in gen-
eral also not clear how to adjust the optimization problem
formulation in order to introduce a desired modification to
the optimized dose distribution. Accordingly, multiple stud-
ies show that the treatment quality of plans generated by
conventional methods varies with the level of experience of
the treatment planner.43, 44 Physicians have furthermore in
blinded tests been shown to judge plans generated by MCO
as superior to conventionally optimized plans,15, 16 a plausi-
ble explanation being that MCO enables treatment planners to
find a more appropriate balance between conflicting treatment
goals.

TABLE IV. Dose statistics for the head and neck case.

PTV72 PTV−
59.4 PTV59.4 L parotid R parotid

Plan HI (%) CI (%) HI (%) CI (%) V30 (%) D̄ (Gy) V30 (%) D̄ (Gy)

Fl. map 5.8 134.2 11.1 153.1 11.1 14.6 19.6 19.6
Ref. DVH 8.0 139.5 16.7 152.2 10.6 18.1 18.6 21.3
Seg. wt. 7.8 139.3 15.7 160.2 11.2 18.5 19.1 21.9
Benchmark 8.4 137.2 16.1 145.7 11.1 19.2 20.0 22.6
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FIG. 7. L-curves of total variation of the fluence vector versus composite
function value of a weighted sum of the objectives, with both quantities nor-
malized to [0, 1]. The L-curves are parameterized by the penalty weight λ of
the total variation functional.

Likewise, the reported computational times should be
viewed in context of that conventional inverse planning meth-
ods typically require multiple reoptimizations to yield accept-
able treatment plans. A recent example is an average number
of 27.6 ± 10.4 reoptimizations reported in a study on head
and neck planning.45 Generation of plans that form a discrete
Pareto surface representation—the major computational ex-
pense in MCO procedure—can also be performed in fully au-
tomated fashion and in parallel over multiple workstations.

V. CONCLUSIONS

The developed method allows the dosimetric tradeoffs be-
tween conflicting objectives encountered in VMAT planning
to be explored in an intuitive manner without sacrificing treat-
ment quality. The fluence-based relaxation is the primary do-
main of interest for trading sparing of sensitive structures
against target coverage. The segment weight-based restriction
is useful in retrieving loss of plan quality due to conversion
into a deliverable VMAT plan, and for compensating for inac-
curacies in an approximate optimization dose algorithm. The

potential of the developed method is best realized with a clini-
cal implementation that exploits that generation of Pareto sur-
face representations can be performed without manual inter-
action and is well suited for distributed computing.
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APPENDIX A: PRESTUDY ON CHOICE
OF REGULARIZATION PARAMETER

A suitable penalty weight for the total variation term (3)
was determined empirically by L-curve analysis, see, e.g.
Hansen,46 for a review. This technique selects the regular-
ization parameter from the high-curvature region of a plot
of smoothing norm (total variation) as a function of resid-
ual norm (objective function value). For the sake of brevity,
results are only presented for the pancreas and lung case.

L-curves over the tradeoff between dosimetric quality and
fluence modulation are shown in Fig. 7. The curves were
plotted on a linear scale, to the contrary of on a logarith-
mic scale as is the convention for L-curves, in line with the
recommendation by Chvetsov47 regarding L-curve analysis
of IMRT plans. The depicted results were generated by flu-
ence map optimization for a single-objective problem con-
structed by replacing the vector-valued objective function in
Eq. (2) by a positively weighted sum of its components. Fifty
SQP iterations per treatment plan were used throughout. The
results indicate that the relevant range of regularization pa-
rameter values is λ ∈ [10−5, 10−3]. The relationship between
regularization parameter and fluence modulation for values
in this range is illustrated in Figs. 8 and 9. A regularization
parameter of λ = 10−4 was used in all subsequent numerical
experiments based on the depicted results.

FIG. 8. Optimized fluence profile at a fixed gantry angle as function of penalty weight λ of the total variation functional for the pancreas case.

FIG. 9. Optimized fluence profile at a fixed gantry angle as function of penalty weight λ of the total variation functional for the lung case.

Medical Physics, Vol. 39, No. 11, November 2012



6723 Rasmus Bokrantz: Multicriteria optimization for volumetric-modulated arc therapy 6723

TABLE V. Problem formulation for the prostate case.

Objectives Constraints

ROI Function d̂ (Gy) ROI Function d̂ (Gy)

PTV78 Min dose 78.0 PTV78 Min dose 70.2
Uniform dose 78.0 Min 98% DVH 74.1

PTV−
72.2 Min dose 72.2 Max dose 81.9

Uniform dose 72.2 PTV−
72.2 Min dose 65.0

Bladder Max EUD a = 2 0.0 Min 98% DVH 68.6
Rectum Max EUD a = 2 0.0 PTV−4 mm

72.2 Max dose 75.8
External Dose fall-off 10 mm 30.0–78.0 R femoral head Max dose 38.0

L femoral head Max dose 38.0
External Max dose 81.9

APPENDIX B: PROBLEM FORMULATIONS

The objectives and constraints using during treatment plan
optimization of the patient cases described in Sec. II.H are
summarized in Tables V–VIII. Reference dose and reference
EUD levels are both denoted by d̂.

APPENDIX C: OPTIMIZATION FUNCTIONS

The optimization functions used in this study can be
broadly categorized into dose-volume functions, EUD func-
tions, and reference dose-based functions. All functions act
on the restriction of the dose distribution to the voxels of a
specified ROI.

1. Dose-volume functions

The dose-volume functions considered in this study are
min dose, max dose, uniform dose, min DVH, max DVH, and
dose fall-off functions. Min DVH and max DVH functions are
specified by a reference dose level d̂ and a reference volume
level v̂. A max DVH function imposes a penalty according to
the cumulative volume integral

f (d) =
∫ 1

v̂

max{D(v, d) − d̂, 0}2 dv, (C1)

where D( · , d) is the function that takes the dose distribution
vector d to parameterizations of the DVH curve for the con-
sidered ROI along the cumulative volume axis. A min DVH
functions is obtained if reversing the sign of the two terms

TABLE VI. Problem formulation for the pancreas case.

Objectives Constraints

ROI Function d̂ (Gy) ROI Function d̂ (Gy)

PTV50.4 Min dose 50.4 PTV50.4 Min dose 45.4
Uniform dose 50.4 Min 95% DVH 47.9

L kidney Max EUD a = 2 0.0 Max dose 53.9
R kidney Max EUD a = 2 0.0 Spinal cord Max dose 35.0
Liver Max EUD a = 2 0.0 External Max dose 53.9
Stomach Max EUD a = 2 0.0
External Dose fall-off 10 mm 25.2–50.4

TABLE VII. Problem formulation for the lung case.

Objectives Constraints

ROI Function d̂ (Gy) ROI Function d̂ (Gy)

PTV66 Min dose 66.0 PTV66 Min dose 59.4
Uniform dose 66.0 Min 95% DVH 62.7

Esophagus Max EUD a = 2 0.0 Max dose 70.6
Heart Max EUD a = 2 0.0 Esophagus Max dose 66.5
L & R lungs Max EUD a = 2 0.0 Heart Max dose 66.5
L lung Max EUD a = 2 0.0 Spinal cord Max dose 38.0
PTV66 shell 10 mm Max dose 56.0 External Max dose 70.6
External Dose fall-off 10 mm 30.0–66.0
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TABLE VIII. Problem formulation for the head and neck case.

Objectives Constraints

ROI Function d̂ (Gy) ROI Function d̂ (Gy)

PTV72 Min dose 72.0 PTV72 Min dose 64.8
Uniform dose 72.0 Min 98% DVH 68.4

PTV−
59.4 Min dose 59.4 Min 90% DVH 71.3

PTV59.4 Uniform dose 59.4 Max dose 77.0
L parotid Max EUD a = 2 0.0 PTV−

59.4 Min dose 53.5
R parotid Max EUD a = 2 0.0 Min 90% DVH 58.1
PTV59.4 shell 10 mm Max dose 49.4 PTV−6 mm

59.4 Max 10% DVH 61.8
External Dose fall-off 10 mm 35.0–59.4 Max 1% DVH 65.3

Brainstem Max dose 45.0
Esophagus constr. Max EUD a = 2 45.0
Larynx Max EUD a = 2 45.0
Mandible Max EUD a = 2 45.0

Max dose 65.0
Oral cavity Max EUD a = 2 45.0
Spinal cord Max dose 40.0
External Max dose 77.0

in the first argument of the max function in Eq. (C1) and in-
tegrating over (0, v̂]. Min dose and max dose functions can
be derived from their DVH counterparts by specializing v̂ to
unity and zero, respectively. A uniform dose function is given
by the direct sum of a min dose function and a max dose func-
tion. A dose fall-off function is of the form of a max dose
function with spatially variable reference dose level accord-
ing to

d̂(r) =

⎧⎪⎪⎨
⎪⎪⎩

∞ if r = 0,

d low + (dhigh − d low)(1 − r
δ
) if 0 < r < δ,

d low otherwise,

where r is the distance from the closest target structure, d low

a low dose level, dhigh a high dose level, and δ a dose fall-off
distance. Min DVH and max DVH functions are in general
nonconvex functions of the dose distribution, whereas min
dose, max dose, uniform dose, and dose fall-off functions are
convex in dose.

2. Equivalent uniform dose functions

The only EUD function that is considered is max EUD.
This function is specified by a reference EUD level d̂ and an
exponent a, where a ≥ 1. The penalty imposed by a max EUD
function is given by

f (d) = max

{(∫ 1

0
da(v) dv

)1/a

− d̂, 0

}2

,

where the integral is taken over relative volume. The exponent
a is a tissue-specific parameter that allows continuous scaling
between a penalty on mean dose (a = 1) and a penalty on
maximum dose (a → ∞). Max EUD functions are convex in
dose.

3. Reference dose-based functions

The reference dose-based functions considered in this
study are min reference DVH, max reference DVH, one-sided
uniform reference DVH, and reference dose fall-off. All ref-
erence dose-based functions are specified by a reference dose
distribution d ref. Min reference DVH and max reference DVH
functions can be derived from their DVH function counter-
parts by substituting D(v, d ref) for d̂ in Eq. (C1) and integrat-
ing over (0, 1]. A one-sided uniform reference DVH function
is of the form of a max reference DVH function for cumula-
tive volumes in the range (0, 1/2], and of the form of a min
reference DVH function for cumulative volumes in the range
(1/2, 1]. A reference dose fall-off function is defined analo-
gously with a dose fall-off function, but with d̂(r) determined
from the reference dose distribution. The components of d ref

are partitioned into subsets according to shortest distance for
the associated voxel to a target structure. The partitioning is
performed so that each subset corresponds to a distance inter-
val with length equal to the shortest side length of a voxel. The
function d̂(r) is made continuous by linear interpolation and
extrapolation over the 95th percentile levels of the subsets.
Min reference DVH, max reference DVH, and one-sided uni-
form reference DVH functions are nonconvex in dose, while
reference dose fall-off functions are convex in dose.
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