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Abstract

Rubik's Cube is a three dimensional mechanical puzzle. In this report Ru-
bik's Cube is considered from a mathematical perspective. We see that
Rubik's Cube can be given the structure of a group and we de�ne this group
and deduce some of its properties. For the reader unfamiliar with group
theory, a short introduction to elementary group theory is provided.
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Chapter 1

On Rubik's Cube

1.1 Introduction

The aim of this report is to describe Rubik's Cube in a mathematical way.
The mathematical structure describing Rubik's Cube is a group structure,
and we will therefore use abstract algebra and group theory to classify Ru-
bik's Cube as a mathematical object.

The �rst section of the �rst chapter is devoted to elementary group the-
ory and may be skipped by readers familiar with these concepts. However,
references will be made to this chapter in subsequent chapters.

In the second section of the �rst chapter we discuss the mathematical
properties of Rubik's Cube. We start by considering sequences of rotations
of the faces of the cube, and let them act on the set of facets of the cube. We
thus obtain one in�nite group of concatenations of rotations and one �nite
group of scramblings of facets. Through observations of Rubik's Cube and
group theoretic arguments we describe the latter group and determine its
cardinality. Since the cube has 54 facets, the latter group is a subgroup of
S54. Since this is an enormous group we choose to divide the cubies of the
cube into two subsets, corners and edges, and de�ne a concept of orientation
of the cubies. We shall see that the permutation of the corner cubies must
have the same sign as the permutation of the edge cubies. We shall also see
that we cannot change the orientation of a single cubie without changing the
orientation of another cubie of the same kind.

The last �ve chapters are devoted to various subjects related to Rubik's
Cube.
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1.2 Introductory Group Theory

In this section we will introduce and prove notions concerning introductory
group theory. People who are familiar with basic concepts concerning groups
may skip ahead to the next section.

1.2.1 Groups

This subsection will de�ne and prove some basic properties of groups.

De�nition 1.2.1. A binary operator on a set S is a function ∗ : S×S 7→ S
where S × S is the set of ordered pairs of elements in S.

It is important to note that if (s1, s2) ∈ S × S then ∗(s1, s2) 6= ∗(s2, s1)
in general. If ∗(s1, s2) = ∗(s2, s1) then s1 and s2 are said to commute. If
∗(s1, s2) = ∗(s2, s1) for all (s1, s2) ∈ S×S then the binary operator ∗ is said
to be Abelian or commutative.

Remark 1.2.2. If (s1, s2) ∈ S × S we denote ∗(s1, s2) as s1 ∗ s2 or simply as
s1s2.

De�nition 1.2.3. A group is a set G with an associated binary operator
∗, satisfying:

(1)Associativity:

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3, ∀g1, g2, g3 ∈ G.

(2)Identity:

∃id ∈ G such that ∀g ∈ G, g ∗ id = id ∗ g = g.

(3)Inverse:

∀g ∈ G there is a g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = id.

Remark 1.2.4. A group G under the operation ∗ is denoted by (G, ∗), (or
simply by G if the binary operator is clear from the context).

Example 1. The set of continuous, bijective functions, F , on R is a group
under the operation of composition. We check that this is true by verifying
the group axioms.

We know from Calculus that f1, f2, f3 ∈ F ⇒ f1 ◦(f2 ◦f3) = (f1 ◦f2)◦f3,
so F is associative under composition. The identity element in this case is
f0(x) = x, since f ∈ F ⇒ f0 ◦ f = f ◦ f0 = f . It is also clear that
f ∈ F ⇒ ∃ f−1 ∈ F such that f ◦ f−1 = f−1 ◦ f = x = f0. We have thus
shown that F is a group under the operation of composition.

Below follow some simple, but important, facts about groups.
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Proposition 1.2.5. If G is a group then the following is true:
(1) The identity, id, of G is unique.
(2) If g ∈ G then the inverse of g, g−1, is unique.

(3) The inverse of g1g2, g1, g2 ∈ G, is g−12 g−11 .
(4) The inverse of the identity, id, is the identity itself.
(5) If g ∈ G, then (g−1)−1 = g.

Proof. (1) Let id1 and id2 be identities ofG. Then id1∗g = g∗id1 = g,∀g ∈ G
and id2∗g = g∗id2 = g, for all g ∈ G. In particular id1∗id2 = id2∗id1 = id2
and id2 ∗ id1 = id1 ∗ id2 = id1. Hence id1 = id1 ∗ id2 = id2 ∗ id1 = id2, so
the identity is unique.

(2) Let g be an element of G and let g1 ∈ G and g2 ∈ G be elements such
that gg1 = g1g = id and gg2 = g2g = id. If we multiply the latter equation
from the left by g1 we get

g1 ∗ (g ∗ g2) = g1 ∗ id,

(g1 ∗ g) ∗ g2 = g1,

(id) ∗ g2 = g1,

g2 = g1.

Hence, the inverse of every element g ∈ G is unique.
(3) Multiply g1g2 from the right by g−12 g−11 . This gives

(g1g2)(g
−1
2 g−11 ) = g1(g2g

−1
2 )g−11 = g1(id)g−11 = g1g

−1
1 = id.

g−12 g−11 is therefore a right inverse of g1g2.
Now multiply g1g2 from the left by g−12 g−11 .

(g−12 g−11 )(g1g2) = g−12 (g−11 g1)g2 = id

Hence, the inverse of g1g2 is g
−1
2 g−11 .

(4) id ∗ id = id⇒ id−1 = id
(5) Consider the equation g−1(g−1)−1 = id. Multiplying from the left by

g gives (g−1)−1 = g.

Proposition 1.2.6 (Generalised Associative Law). Let G be a group. For
any g1, g2, . . . , gn ∈ G the value of the expression g1g2 . . . gn is independent
of how the expression is bracketed.

Proof. Let
∏1
i=1 gi = g1 and de�ne

∏n+1
i=1 gi recursively by

n+1∏
i=1

gi =

(
n∏
i=1

gi

)
gn+1.
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Now, let n be a �xed, nonnegative integer and consider the expression(
n∏
i=1

gi

) m∏
j=1

gn+j

 .

We want to prove that the above is equal to
∏n+m
i=1 gi.

By de�nition, this is the case for m = 1. Now assume that the above
holds for m = k ≥ 1 and consider the case m = k + 1. We have(

n∏
i=1

gi

)k+1∏
j=1

gn+j

 =

(
n∏
i=1

gi

) k∏
j=1

gn+j

 gn+k+1

 =

=

( n∏
i=1

gi

) k∏
j=1

gn+j

 gn+k+1 =

(
n+k∏
i=1

gi

)
gn+k+1 =

n+k+1∏
i=1

gi,

which proves the claim.

De�nition 1.2.7. If G is a group and g ∈ G we will denote the expression
gg . . . g︸ ︷︷ ︸
n times

by gn.

Note that, because of the generalised associative law, gn is well de�ned.

Proposition 1.2.8. Let G be a group and let g1, g2 ∈ G. Then the equations
g1x = g2 and xg1 = g2 have unique solutions in G.

Proof. Consider the equation g1x = g2. Multiply both sides from the left by
g−11 . This gives x = g−11 g2. By Proposition 1.2.5 g−11 is unique. Hence x is
unique.

Now consider the equation xg1 = g2. Multiply both sides of the equation
from the right by g−11 . This gives x = g2g

−1
1 . Since g−11 is unique, so is x.

Corollary 1.2.9. The left and right cancellation laws hold in groups, (i.e.
gx = gy implies x = y and xg = yg implies x = y).

Proof. This follows immediately from Proposition 2.1.8.
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1.2.2 The Symmetric Group

In this subsection we will introduce the symmetric group and concepts asso-
ciated with this group.

De�nition 1.2.10. For any set A, a bijection φ : A −→ A is called a
permutation of A.

Proposition 1.2.11. The set of all permutations on a set A, denoted SA,
is a group under the operation of composition of functions.

Proof. (1) The associative condition holds since permutations are functions,
thus being associative.
(2) The identity element is the permutation idA(a) = a, ∀a ∈ A.
(3) Let φ ∈ SA. φ is bijective, hence φ has a bijective inverse, φ−1. φ−1 is a
bijective function from A to A and therefore an element of SA.

Note that A is not assumed to be �nite in the above de�nitions. In the
following however, this will be assumed.

De�nition 1.2.12. A cycle is a permutation on a subset {ai} ⊆ A (A
�nite) de�ned by a1 −→ a2, a2 −→ a3, . . . , an −→ a1. A cycle is denoted
(a1a2 . . . an) and the number n is called the length of the cycle. A cycle of
length n is called an n-cycle.

Note that there are several ways of writing the same cycle. For example
the cycle (a1a2 . . . an) is the same as the cycle (ana1a2 . . . an−1). This is
however not a problem when the cycles are considered to be functions. We
may also note that compositions of disjoint cycles commute.

When writing compositions of cycles, the singlet cycles, (a), will be omit-
ted. Compositions of permutations will also be referred to as products of
permutations.

There is a generalisation of the cycle concept to bijections on any set, not
necessarily �nite. Let σ be a function on the set A. If a ∈ A the sequence

. . . , σ−2(a), σ−1(a), σ0(a), σ1(a), σ2(a), . . .

is called the orbit of a under σ and is denoted Oσ(a). Note that if A is a
�nite set the orbit of a is just the cycle (a σ(a) σ2(a) . . . σn(a)) where n is
the largest integer such that σn(a) 6= σm(a) for all m < n, m ≥ 0.

Proposition 1.2.13. Any permutation σ on a set A can be written as a
product of disjoint cycles.

Proof. Take σ ∈ SA. The orbits of the elements of A under σ de�ne an
equivalence relation, ∼, on A, by a ∼ b precisely if a = σi(b) for some i ∈ Z.
This can be veri�ed by checking the axioms for equivalence relations, namely
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(1) a ∼ a (Re�exivity)
(2) a ∼ b⇔ b ∼ a (Symmetry)
(3) a ∼ b and b ∼ c⇒ a ∼ c (Transitivity)

(1) If a ∈ A then σ0(a) = a so a ∼ a.
(2) If a, b ∈ A and a ∼ b then there is an i ∈ Z such that a = σi(b). But
then b = σ−i(a) so b ∼ a.
(3) If a, b, c ∈ A, a ∼ b and b ∼ c there are integers i, j ∈ Z such that
a = σi(b) and b = σj(c). Hence a = σi+j(c) so a ∼ c.

Hence ∼ is an equivalence relation on A. It is well known that an equiva-
lence relation induces a partition on the underlying set. Hence each element
a ∈ A lies in precisely one orbit. This proves the claim.

Theorem 1.2.14. Assume that |A| = n. Then, |SA| = n!.

Proof. Take a1 ∈ A. This element can be mapped by σ ∈ SA in n di�erent
ways. Pick one of them. Take a new element a2 ∈ A such that a1 6= a2.
The bijectivity of σ gives that a2 can be mapped in n − 1 ways. Iterating
over the elements of A, we see that the number of possible permutations is
n · (n− 1) . . . · 2 · 1 = n!.

Proposition 1.2.15. Every permutation may be expressed as a product of
2-cycles.

Proof. Consider the cycle (a1a2 . . . an). This cycle can be expressed as
(a1a2 . . . an) = (a1an)(a1an−1) . . . (a1a3)(a1a2). Thus every cycle can be
expressed as a product of 2-cycles. But every permutation can be expressed
as a product of disjoint cycles, of which each can be expressed as a prod-
uct of 2-cycles. Hence, every permutation can be expressed as a product of
2-cycles.

Remark 1.2.16. 2-cycles are also called transpositions.

De�nition 1.2.17. Let σ be a permutation. If σ can be written as an even
number of transpositions we say that the permutation σ is even. Similarly,
if σ can be written as an odd number of transpositions we say that σ is odd.

Theorem 1.2.18. No permutation may be written as a product of both an
even number of transpositions and an odd number of transpositions.

Proof. Note that SA, for |A| = n, is isomorphic to the permutations of the
rows in the identity matrix In. We know from linear algebra that this matrix
has determinant 1, and that interchanging two rows of any matrix will change
the sign of the determinant. Thus, if any matrix could be obtained by both
a sequence of even and a sequence of odd permutations, it would have both
determinant 1 and −1. This is impossible and the claim follows.
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Remark 1.2.19. The proof above suggests the de�nition of a sign function
on permutations. We de�ne the signature of the permutation σ ∈ SA to be
1 if the determinant of the matrix of the proof corresponding to σ is 1 and
−1 if the determinant is −1. We see that this is just another way of saying
that a permutation is even or odd, but nonetheless sometimes useful.

De�nition 1.2.20. For a permutation SX on a �nite set X, we call the set
of even permutations on X the alternating group on X, and we denote this
set AX .

Theorem 1.2.21. AX , as de�ned above, is a group.

Proof. (1) Closure Take x, y ∈ AX . x can be written as a product of 2n
transpositions, while y can be written as a product of 2m transpositions,
m,n ∈ Z. The product can be written as 2(m + n) transpositions, and is
therefore in AX .

(2) Identity The identity, id, of SX is a product of 0 transpositions.
This is clearly an even number of transpositions so id is also an element of
AX .

(3) Inverse The inverse of any permutation can be obtained by reversing
the order of its transpositions. The inverse of an even permutation must
therefore be even and thus an element of AX .

Theorem 1.2.22. The cardinality of AX is n!
2 if |X| = n ≥ 2.

Proof. Let us denote the odd permutations of X as BX . If we can �nd a
bijection between AX and BX , we have proven the theorem, since the two
sets must then have the same cardinality.

Let us de�ne a bijection φ as such: Take any transposition (which must
exist, since |X| ≥ 2) σ ∈ SX , and de�ne φ(x) = σ ◦ x, x ∈ AX . x be-
ing even gives that φ(x) is odd, therefore φ(x) ∈ BX . Note that ∀x, y ∈
AX , φ(x) = φ(y) implies σ ◦ x = σ ◦ y, and left cancellation gives x = y.
Therefore, φ is one-to-one. The cancellation law also gives that for any
γ ∈ BX , φ−1(γ) = σ−1γ ∈ AX . Therefore, φ is onto, and we have that φ is
a bijection. Therefore,
|AX | = |BX |
|AX |+ |BX | = n!
which gives that |AX | = n!

2 .

Lemma 1.2.23. The set S ={(1, 2), (2, 3), . . . , (n−1, n)} for n ≥ 2 generates
Sn.

Proof. Let (x, x + k) be a transposition in Sn. Then, (x, x + k) = (x, x +
1)(x + 1, x + 2) · · · (x + k − 2, x + k − 1)(x + k − 1, x + k)(x + k − 2, x +
k− 1 · · · ) · · · (x, x+ 1)(x+ 1, x+ 2). So by conjugation of the transpositions
in the set S we can obtain any transposition in Sn. It then follows from
Proposition 1.2.15 that S generates Sn.
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Theorem 1.2.24. The alternating group, An, is generated by the 3-cycles
(1, 2, 3), (2, 3, 4), ...(n− 2, n− 1, n).

Proof. An is generated by all products of two transpositions. Thus it su�ces
to prove that we can get all the products of two transpositions. Clearly we
can get all the products of transpositions two �adjacent� numbers:

(1, 2, 3) = (1, 2)(2, 3)
(2, 3, 4) = (2, 3)(3, 4)

(3, 4, 5) = (3, 4)(4, 5)
. . .
(n− 2, n− 1, n) = (n− 2, n− 1)(n− 1, n).

and if one would like to obtain the pair (x, x+1)(x+k, x+k+1) this can be
done by successively multiplying the 3-cycle (x, x+ 1, x+ 2) by the elements
of the rows between (x, x+ 1, x+ 2) and (x+ k, x+ k + 1, x+ k + 2), i.e.

(x, x+ 1)(x+ k, x+ k+ 1) = (x, x+ 1, x+ 2) · · · (x+ k, x+ k+ 1, x+ k+ 2).

(This corresponds to �taking a walk down the stairs�, starting at
(x, x+ 1)(x+ 1, x+ 2), and multiplying all the elements on the way down to
(x+ k− 1, x+ k)(x+ k, x+ k+ 1)). It then follows from Lemma 1.2.23 that
An can be generated by the 3-cycles mentioned above.
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1.2.3 Subgroups

This section will deal with the notion of subgroups and associated concepts.

De�nition 1.2.25. For a group (G, ∗), a subgroup (H, ∗) of (G, ∗) is a set
H ⊆ G which is a group under ∗.
Theorem 1.2.26. A nonempty subset H ⊆ G is a subgroup of G precisely
if

(1) x, y ∈ H ⇒ xy ∈ H and
(2) x ∈ H ⇒ x−1 ∈ H.

Proof. If (H, ∗) is a subgroup of G, (1) and (2) will hold by de�nition. Con-
versely (for x ∈ H), if (1) and (2) hold, xx−1 ∈ H. But xx−1 = id, so
id ∈ H. The associativity holds, since the operation in H is the same as for
G. Thus, (H, ∗) is a group, and therefore a subgroup of G.

Corollary 1.2.27. For a �nite nonempty set H, (1) is su�cient.

Proof. If a ∈ H ⇒ ∀n ∈ N, an ∈ H. But H is �nite, so ∃m > n ∈ N : am =
an. Canceling, am−n = id, so a−1 = am−n−1 ∈ H. Note that if m = n + 1,
a = id.

Theorem 1.2.28. Let G be a group and let A be a nonempty collection of
subgroups of G. Then H =

⋂
Hk∈AHk is a subgroup of G.

Proof. Let a, b ∈ H. Then a ∈ Hk for all Hk ∈ A and b ∈ Hk for all
Hk ∈ A. Since Hk is a subgroup for every Hk ∈ A and a, b ∈ Hk we must
have ab ∈ Hk for all Hk ∈ A. Moreover, a−1 and b−1 are also elements of
Hk for all Hk ∈ A. Thus, ab ∈ H for all a, b ∈ H, so H is closed under the
group operation, and every element of H has an inverse in H. Hence, H is
a subgroup of G.

De�nition 1.2.29. Let G be a group and let S be a subset of G. We de�ne
the subgroup generated by S, denoted < S >, as the intersection of all
subgroups Hi of G containing S, i.e. < S >=

⋂
Hi.

De�nition 1.2.30. Let G be a group and let S be a subset of G. If < S >=
G we say that G is generated by the subset S and the elements of S are
called generators of G. If S consists of a single element then G is said to be
cyclic.

Remark 1.2.31. The term �cyclic� comes from the fact that in the �nite case
a cyclic group, generated by s, may be written

{s0, s1, s2, . . . , sn}

where n is the smallest integer such that sn+1 = id.
We see that cyclic groups, both �nite and in�nite, must be abelian since

if G is a cyclic group generated by g and g1, g2 ∈ G we must have g1 = gi

and g2 = gj , for some i, j ∈ Z, so g1g2 = gigj = gi+j = gj+i = gjgi = g2g1.
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1.2.4 Homomorphisms and Isomorphisms

This subsection will introduce the concepts of homomorphisms and isomor-
phisms.

De�nition 1.2.32. Let (G, ∗) and (H, ◦) be groups. A function φ : G→ H
is a homomorphism if, for all a, b ∈ G, φ(a ∗ b) = φ(a) ◦ φ(b).

De�nition 1.2.33. A homomorphism which is also bijective is called an
isomorphism. If G and H are groups and there exists an isomorphism
between G and H we say that G and H are isomorphic and write G ∼= H.

Every group is, of course, isomorphic to itself since the identity map
clearly is an isomorphism from the group to itself. However, this may not
be the only isomorphism from the group to itself. Such an isomorphism is
called an automorphism and the set of all automorphisms of a group G is
denoted Aut(G).

De�nition 1.2.34. For a homomorphism φ : G −→ H, the set

Ker(φ) = {g ∈ G|φ(g) = idH}

is called the kernel of φ. The set

Im(φ) = {φ(g) ∈ H|g ∈ G}

is called the image of φ.

Note that Ker(φ) is a subset of G and that Im(φ) is a subset of H.

Proposition 1.2.35. Let φ be a homomorphism between groups G and H,
let g be an element of G and let idG and idH be the identities of G and H
respectively. Then the following is true:

(1) φ(idG) = idH .
(2) φ(g−1) = φ(g)−1.
(3) φ(gn) = φ(g)n.
(4) Ker(φ) is a subgroup of G and Im(φ) is a subgroup of H.

Proof. (1) φ(idGidG) = φ(idG)φ(idG). But idGidG = idG so φ(idGidG) =
φ(idG). Hence, φ(idG)φ(idG) = φ(idG). Cancellation implies φ(idG) = idH .

(2) φ(g−1g) = φ(g−1)φ(g). But φ(g−1g) = φ(idG) = idH so φ(g−1)φ(g) =
idH . Cancellation gives φ(g−1) = φ(g)−1.

(3) φ(gn) = φ(g)φ(gn−1) = . . . =
n∏
i=1

φ(g) = φ(g)n.

(4) We note that Ker(φ) is nonempty, since idG ∈ Ker(φ). Let g1 and
g2 be elements of Ker(φ). φ(g1g2) = φ(g1)φ(g2) = idHidH = idH . Hence
g1g2 ∈ Ker(φ).
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We now need to show that if g ∈ Ker(φ) then g−1 ∈ Ker(φ). Take
g ∈ Ker(φ) and g−1 ∈ G. φ(gg−1) = φ(g)φ(g−1) = idH . But g ∈ Ker(φ) so
φ(g)φ(g−1) = idHφ(g−1) = φ(g−1). Hence φ(g−1) = idH so g−1 ∈ Ker(φ).

We note that Im(φ) is nonempty, since idH = φ(idG) ∈ Im(φ). Take
h1, h2 ∈ Im(φ). Then there is g1, g2 ∈ G such that φ(g1) = h1 and φ(g2) =
h2. But φ(g1g2) ∈ H and φ(g1g2) = φ(g1)φ(g2) = h1h2 so h1h2 ∈ H.

Now take h ∈ Im(φ). Hence, there is a g ∈ G : φ(g) = h. g−1 ∈ G
so φ(g−1) ∈ Im(φ). But φ(gg−1) = φ(g)φ(g)−1 = idH so h−1 = φ(g)−1 ∈
Im(φ). By Theorem 1.2.26, Ker(φ) and Im(φ) are subgroups of G and H,
respectively.
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1.2.5 Group Actions

In this section the notion of group actions will be de�ned.

De�nition 1.2.36. Let G be a group and let A be a set. A group action

of G on A is a map f : G×A→ A that satis�es:
(1) f(g1, f(g2, a)) = f(g1g2, a), for all g1, g2 ∈ G and a ∈ A.
(2) f(id, a) = a for all a ∈ A.

Given a group action f : G× A → A one says that the group G acts on
the set A. It is customary to write g.a, instead of f(g, a), and say that the
element g ∈ G acts on the element a ∈ A.

Proposition 1.2.37. For �xed g ∈ G the map σg : A → A de�ned by
σg(a) = g.a de�nes a permutation of the set A.

Proof. A permutation of a set A is a bijective map from A to A. Hence, σg
is a permutation i� it has a left and a right inverse.

Left inverse: Let a ∈ A. Consider the map σg−1 . Now consider the
composition σg−1 ◦ σg(a) = f(g−1, f(g, a)) = g−1.(g.a) = id.a = a. Hence,
σg−1 is a left inverse of σg.

Right inverse: Let a ∈ A. Again, consider the map σg−1 . Now consider
the composition σg ◦ σg−1(a) = g.(g−1.a) = (gg−1).a = id.a = a. Hence,
σg−1 is a right inverse of σg.

Thus, σg ∈ SA.

Proposition 1.2.38. De�ne a map π : G→ SA by π(g) = σg. This map is
a homomorphism.

Proof. Let g, h ∈ G and let a ∈ A. Then

π(gh)(a) = σgh(a) = gh.a = g.(h.a) = σg(h.a) = σg ◦ σh(a) = π(g)π(h)(a).

Hence π is a homomorphism.
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1.2.6 Quotient Groups

In this section we will introduce the notion of Quotient Groups.

Proposition 1.2.39. Let G and H be groups and let φ : G → H be a
homomorphism. We de�ne a relation, ∼, on G by saying that if a, b ∈ G
then a ∼ b precisely if φ(a) = φ(b). The relation, ∼, is an equivalence
relation.

Proof. We need to check the three equivalence axioms.
(1) ∼ is re�exive since φ(a) = φ(a).
(2) φ(a) = φ(b)⇔ φ(b) = φ(a). Thus, ∼ is symmetric.
(3) If φ(a) = φ(b) and φ(b) = φ(c) this implies that φ(a) = φ(c). Thus,

∼ is transitive.
Hence, ∼ is an equivalence relation.

De�nition 1.2.40. If a and b are equivalence classes under ∼ we de�ne the
product ab as the set {g ∈ G|φ(g) = φ(ab)} (i.e. ab is the equivalence class
of ab, ab).

Proposition 1.2.41. Let G, H, φ and ∼ be de�ned as in Proposition 1.2.39.
The set of equivalence classes under ∼ forms a group under the operation
de�ned in De�nition 1.2.40. This group is called a quotient group and is
denoted G/Ker(φ).

Proof. Let the equivalence class of an element g ∈ G be denoted by ḡ.
(1) a(bc) = abc = abc = (ab)c = (ab)c. Hence, associativity holds.
(2) The identity is id (i.e. Ker(φ)).
(3) If g ∈ G is of equivalence class g and g−1 of equivalence class g−1 we see
that φ(g)φ(g−1) = φ(g)φ(g)−1 = idH . Hence, gg−1 = id.
This shows that G/ker(φ) is a group.

Theorem 1.2.42. Let G and H be groups and let φ be a homomorphism
from G to H. Then G/Ker(φ) ∼= Im(φ).

Proof. De�ne ϕ : G/Ker(φ) → Im(φ) by ϕ(g) = φ(g). If g1 and g2 both
lies in the equivalence class g then, by de�nition, φ(g1) = φ(g2) so ϕ(g) is
well de�ned (i.e. it does not depend on the choice of representative of g).

We claim that ϕ is an isomorphism.
ϕ is a homomorphism because ϕ(g1 g2) = ϕ(g1g2) = φ(g1g2) = φ(g1)φ(g2) =

ϕ(g1)ϕ(g2).
If h ∈ Im(φ) then there is a g ∈ G such that φ(g) = h. But then

ϕ(g) = h so ϕ is surjective.
Assume ϕ is not injective. Then there is g1 6= g2 such that ϕ(g1) = ϕ(g2).

But then φ(g1) = φ(g2) which leads us to conclude that g1 = g2. This is a
contradiction so ϕ must be injective.

We have thus shown that ϕ is a homomorphism that is surjective and
injective, and thus bijective. Hence, G/Ker(φ) is isomorphic to Im(φ).

15



De�nition 1.2.43. Let N be a subgroup of a group G. N is said to be a
normal subgroup if gNg−1 = N for all g ∈ G. If N is a normal subgroup
of G we write N EG.

De�nition 1.2.44. The left coset, gH, of a subgroup H in a group G,
where g is an element of G, is de�ned as gH = {a ∈ G|a = gh, h ∈ H}, i.e.
all elements in G that can be written as a product of the element g and an
element in H.

It is possible to de�ne quotient groups using the notion of normal sub-
groups. The following proposition clari�es why.

Proposition 1.2.45. A subgroup N of a group G is normal precisely if it is
the kernel of a homomorphism.

Proof. First assume that N is the kernel of a homomorphism φ : G → H
where H is some group. If n ∈ N , then φ(gng−1) = φ(g)φ(n)φ(g−1) =
φ(g)idHφ(g)−1 = idH . Hence, gng−1 ∈ ker(φ) = N for all g ∈ G so N is a
normal subgroup of G.

Now assume that N is a normal subgroup of G. We may de�ne a binary
operation on the cosets of N by g1Nġ2N = (g1g2)N . This operation is well
de�ned because if a1, a ∈ aN and b1, b ∈ bN we may write a1 = an and
b1 = bn′ for some n, n′ ∈ N (since if c1 ∈ cN we have c1n1 = cn for some
n1, n ∈ N). What we want to show is that a1b1 ∈ abN :

a1b1 = (an)(bn′) = a(bb−1)nbn′ =

= ab(b−1nb)n′ = ab(n′′n′)

where n′′ = b−1nb. Hence, a1b1 ∈ abN .
We now claim that the set of all cosets of N form a group, GN , under

the operation de�ned above.
(1) Associativity holds because aN(bNcN) = aNbcN = abcN = abNcN =

(aNbN)cN . (2) The identity is idN since gNidN = g ∗ idN = gN =
id∗gN = idNgN . (3) The inverse of gN is g−1N since gNg−1N = gg−1N =
idN .

We now de�ne a function ϕ : G→ GN by ϕ(g) = gN for all g ∈ G. ϕ is
a homomorphism because if g1, g2 ∈ G then ϕ(g1g2) = g1g2N = g1Ng2N =
ϕ(g1)ϕ(g2). We now note that N ⊆ ker(ϕ) because if n ∈ N then ϕ(n) =
nN = N . Conversely, if g ∈ ker(ϕ) then gN = idN so g = id ∗ n for some
n ∈ N . Hence, g ∈ N so ker(ϕ) ⊆ N . This shows that ker(ϕ) = N and the
proof is complete.

The above proposition shows that the notion of a normal subgroup is
�the same� as the notion of a kernel of a homomorphism. Hence, it makes
sence to talk about the quotient group G/N as well as the quotient group
G/ker(ϕ). Note that G/N is precisely the group GN in the proof above.
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Remark 1.2.46. One may ask whether it is possible to make the construction
of GN of the proof for subgroups that are not normal. It turns out that this
is not possible. This is because if H is a subgroup of G and the operation
g1Hg2H = g1g2H is well de�ned then a1, a ∈ aH and b1, b ∈ bH implies
a1b1H = abH. Now let g be any element of G and h be any element of H.
Let a1 = h, a = id and let b1 = b = g−1. This gives id ∗ g−1H = hg−1H and
g−1H = hg−1H. Hence, hg−1 ∈ g−1H so hg−1 = g−1h′ for some h′ ∈ H.
Hence, ghg−1 = h′ ∈ H. This shows that it is only possible to de�ne the
binary operation of the proof for normal subgroups.
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1.2.7 Direct and Semi-Direct Products

In this section, we will introduce the concept of direct products and show
some results associated with this notion.

De�nition 1.2.47. Let G1, G2, . . . , Gn be groups. De�ne the direct prod-
uct G1 ×G2 × . . .×Gn as the set consisting of all n-tuples (g1, g2, . . . , gn),
where g1 ∈ G1, g2 ∈ G2, . . . , gn ∈ Gn.

De�nition 1.2.48. LetG1, G2, . . . , Gn be groups with operations ∗1, ∗2, . . . , ∗n.
We de�ne a binary operation ∗ on G1 × G2 × . . . Gn by (g1, g2, . . . , gn) ∗
(g′1, g

′
2, . . . , g

′
n) = (g1 ∗1 g′1, g2 ∗2 g′2, . . . , gn ∗n g′n).

Proposition 1.2.49. The direct product de�ned in De�nition 1.2.47 together
with the binary operation de�ned in De�nition 1.2.48 forms a group G.

Proof. Let g = (g1, . . . , gn), h = (h1, . . . , hn), k = (k1, . . . , kn) ∈ G.

g(hk) = (g1, g2, . . . , gn)[(h1, h2, . . . , hn)(k1, k2, . . . , kn)] =

= (g1, g2, . . . , gn)(h1k1, . . . , hnkn) = (g1h1k1, . . . , gnhnkn) =

(g1h1, . . . , gnhn)(k1, . . . , kn) = [(g1, . . . , gn)(h1, . . . , hn)](k1, . . . , kn) =

Consider the element e = (id1, . . . , idn) ∈ G and let g = (g1, . . . , gn) ∈ G.

eg = (id1, id2, . . . , idn)(g1, g2, . . . , gn) =

= (id1g1, . . . , idngn) = (g1, . . . , gn) = g

Hence, e is the identity of G.
Let g = (g1, . . . , gn) ∈ G and consider the element l = (g−11 , . . . , g−1n ) ∈ G.

gl = (g1, g2, . . . , gn)(g−11 , g−12 , . . . , g−1n ) =

= (g1g
−1
1 , . . . , gng

−1
n ) = (id1, . . . , idn) = id

Since g is an arbitrary element in G, every element in G has an inverse.
Hence, G is a group.

Proposition 1.2.50. The subgroup, G′i, of G = G1×G2×. . .×Gn consisting
of the elements (id1, . . . , idi−1, gi, idi+1, . . . , idn) is an isomorphic copy of Gi.
This subgroup is normal.

Proof. This is a subgroup because if g′1, g
′
2 ∈ G′i then

(id1, . . . , g
′
1, . . . , idn)(id1, . . . , g

′
2, . . . , idn) = (id1, . . . , g

′
1g
′
2, . . . , idn) ∈ G′i

and

(id1, . . . , g
′, . . . , idn)(id1, . . . , g

′−1, . . . , idn) = (id1, . . . , idi, . . . , idn).
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We now de�ne a function φ : Gi → G′i by φ(g) = (id1, . . . , g, . . . , idn). That
φ is an isomorphism is obvious.

Let g ∈ G and g′ ∈ G′i.

gg′g−1 = (g1, . . . , gi, . . . , gn)(id1, . . . , g
′, . . . , idn)(g−11 , . . . , g−1i , . . . , g−1n ) =

= (id1, . . . , gig
′g−1i , . . . , idn).

This is again an element of G′i which shows that G′i is an normal subgroup
of G.

Proposition 1.2.51. The cardinality, |G|, of G = G1×G2× . . . Gn is equal
to |G1||G2| . . . |Gn|.

Proof. Each element g ∈ G is an n-tuple of the form (g1, g2, . . . , gn) where
gi ∈ Gi. We may choose g1 in |G1| ways, g2 in |G2| ways and so on. Each of
these choises are independent. Hence, |G| = |G1||G2| . . . |Gn|.

Note that, by the above proposition, the quotient group G1× . . .×Gn/Gi
makes sense. Quite naturally the quotient group G1 × . . . × Gn/Gi is iso-
morphic to the group G1 × . . .×Gi−1 ×Gi+1 × . . .×Gn (note the striking
resemblance to multiplication and division of numbers).

One of the reasons for introducing the notions of quotient groups and
direct products of groups is the prospect of decomposing large and seemingly
complex groups into simpler parts (the factor groups of a product) or to
unravel hidden similarities of the elements of a group through the equivalence
classes in a quotient group. However, both concepts either require normality
of the subgroup (in the case of quotient groups) or impose normality on the
subgroup (in the case of direct products of groups). This is a quite strong
requirement that in general prevents us from decomposing a group into a
product. We therefore wish to extend the concept of products of groups.

Proposition 1.2.52. Let N and H be groups and let ϕ : H → Aut(N) be
a homomorphism where ϕ(h) is denoted ϕh. The set S = {(n, h)|n ∈ N,h ∈
H} with the operation (n, h) ∗ (n′, h′) = (n · ϕh(n′), h · h′) is a group. This
group is called a semidirect product of N and H and is denoted N oϕ H.

Proof. Since ϕh ∈ Aut(N) for all h ∈ H the product n · ϕh(n′) ∈ N so ∗
is a binary operation on S. We may therefore proceed to verify the group
axioms.

(1) Associativity holds because:

(n, h) ∗ ((n′, h′) ∗ (n′′, h′′)) = (n, h) ∗ (n′ · ϕh′(n′′), h′ · h′′) =

= (n · ϕh(n′ · ϕh′(n′′)), h · h′ · h′′) = (n · ϕh(n′) · ϕh(ϕh′(n
′′)), h · h′ · h′′) =

= (n · ϕh(n′) · ϕh·h′(n′′), h · h′ · h′′)) = (n · ϕh(n′), h · h′) ∗ (n′′, h′′) =
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= ((n, h) ∗ (n′, h′)) ∗ (n′′, h′′).

(ϕ(h)(ϕ(h′)(n′′)) = ϕ(h · h′)(n′′) follows from the fact that ϕ ∈ Aut(N) and
hence is a homomorphism).

(2) The identity is (idn, idh) since:

(idn, idh) ∗ (n, h) = (idn · ϕ(idh)(n), idh · h),

and
(n, h) ∗ (idn, idh) = (n · ϕh(idn), h · idh).

Since ϕ is a homomorphism we know that ϕidh = idAut(N) and idAut(N)(n) =
n so (idn, idh) ∗ (n, h) = (n, h). Further, ϕh is also a homomorphism so
ϕh(idn) = idn which shows that (n, h) ∗ (idn, idh) = (n, h).

(3) The inverse of the element (n, h) is (ϕh−1(n−1), h−1) since:

(n, h) ∗ (ϕh−1(n−1)) = (n · ϕh(ϕh−1(n−1)), h · h−1) =

= (n · ϕh·h−1(n−1)), idh) = (n · idAut(N)(n
−1)), idh) =

= (n · n−1, idh) = (idn, idh).

and

(ϕh−1(n−1), h−1) ∗ (n, h) = (ϕh−1(n−1) · ϕh−1(n), h−1 · h) =

(ϕh−1(n−1 · n), idh) = (ϕh−1(idn), idh) = (idn, idh).

Proposition 1.2.53. The cardinality of N nϕ H is |N ||H|.

Proof. The proof is completely the same as for direct products.

One may note that if ϕh = idAut(N) for all h ∈ H then N nϕ H is just
N ×H.
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1.3 The Cube Group

Rubik's Cube is a three dimensional mechanical puzzle. The goal of the
puzzle is to rotate the faces of the cube in a sequence such that at the end
of the sequence each face is coloured in a single, distinct colour.

When discussing the cube it is convenient to have some terminology. The
cube consists of 26 smaller cubes which we will refer to as cubies. The cubies
are grouped in sets of 8 or 9 that can be rotated together. These sets will be
refered to as layers. Each face of the cube consists of nine small, coloured
squares. We will refer to these squares as facets.

Instead of referring to the faces of the cube by their colours we choose to
�x the cube in space, with one face facing us, and call that side the front

face. The other sides are then called the back face, up face, down face,

right face and left face. A 90◦ clockwise rotation, as seen from the face,
of the front face is denoted by F . Rotations of the other faces are similarly
denoted B, U , D, R and L as seen from the respective faces. A 90◦ counter-
clockwise rotation will be denoted by a −1 superscript. For instance, a 90◦

counter-clockwise rotation of the front face is denoted F−1.

Figure 1.1: A cubie of the Cube

Remark 1.3.1. One might think that rotations of the center layers are also
useful to de�ne. These are however super�uous, as each rotation of a center
layer is equivalent to rotating the two adjacent face layers.
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Figure 1.2: A layer of the Cube.

Remark 1.3.2. The relative con�guration of the center facets of each face
cannot be altered by any rotation of the layers.

1.3.1 The free group

A natural way to start when one wants to determine the group structure of
Rubik's Cube is to consider a free group consisting of the concatenations of
rotations of the faces of the cube.

De�nition 1.3.3. We de�ne the concatenation operator of two rotations
by saying that AB denotes the sequence of rotations of �rst rotating B then
A.

We can form sequences of rotations of arbitrary length with the concate-
nation operator.

A natural way to de�ne a group is to consider sequences of the above
rotations. Such sequences will correspond to scrambling the Cube, (or solv-
ing it). In order to form a group, we also have to introduce the concept of
reducing sequences.

De�nition 1.3.4. If x = a1a2 . . . an is a sequence of rotations the corre-
sponding reduced sequence x̂ is the sequence obtained from x by removing
all partial sequences of two elements where an element is adjacent to its
inverse.

Proposition 1.3.5. The set S consisting of all �nite, reduced sequences
of rotations R,L,U,D, F,B and inverses R−1, L−1, U−1, D−1, F−1, B−1 is
a group under the operation of concatenation. We denote this group by GR

(read �frac-G-R�) and call it the free Rubik's Group.
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Figure 1.3: A facet of the Cube.

Proof. We check the group axioms.
1. Associativity: ∀a, b, c ∈ GR, a(bc) = (ab)c by the de�nition of the con-
catenation operator.
2. Identity: The empty sequence ∅ is the identity element, since
∀x ∈ GR, ∅x = x∅ = x.
3. Inverse: Let x = a1a2 . . . an be an element ofGR. Then x−1 = a−1n . . . a−12 a−11

since xx−1 = x−1x = ∅.

We note that this de�nes a group of in�nite order. This is because it
describes the rotations of the faces of the cube and not the scrambled state,
or permutations, of the facets. The latter is however what we are most
interested in and we therefore want GR to act on the set of facets of the
cube.

We note that we have a total of 54 facets of the standard cube, since
each face has nine facets, and there are a total of six faces. We can thus give
each facet a unique index from 1 to 54 such as the one seen in Figure 1.4.

De�nition 1.3.6. Given an indexation such as the one in Figure 1.4, we can
de�ne a group action φ : GR × [54] → [54]1 by φ(g, x) = y, g ∈ GR, x ∈ [54]
where y ∈ [54] is the index of the facet that x is brought to by the sequence
g.

Note that by Proposition 1.2.38 the above group action de�nes a homo-
morphism from GR to S54. However, S54 is rather cumbersome to work with,

1[54] is the set of all natural numbers 1 to 54
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Figure 1.4: Each facet of the cube given a number 1, . . . , 54.

so a simpli�cation of the current situation is desirable. We also note that
the group obtained from this group action is only a subgroup of S54, which
will be seen below.

1.3.2 Positions of edge pieces and corner pieces

Consider the set of edge pieces, E, and the set of corner pieces, C, of
the cube. We see that each sequence of rotations will map corner pieces to
corner pieces, and edge pieces to edge pieces. Hence, all facet permutations
of S54 are not allowed, since one cannot map a corner facet to an edge facet.

With this in mind, we can assign each edge piece an index between
1 and 12, and each corner piece an index between 1 and 8, i.e. E =
{e1, e2, e3 . . . , e12}, C = {c1, c2, . . . , c8} as seen in Figure 1.5.

We let GR act on E by

g.x = y, g ∈ GR, x ∈ E

where y is the index of the edge position that x is brought to by g. We may
also let GR act on C by

g.x = y, g ∈ GR, x ∈ C

where y is the index of the corner position that x is brought to by g. We
thus obtain two homomorphisms, φE : GR → S12 and φC : GR → S8.

Given the indexation shown in Figure 1.5 the rotations generating GR

are mapped to the following permutations in S8 and S12, respectively:
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Figure 1.5: Each corner given a number 1, . . . , 8 and each edge given a
number 1, . . . , 12.

S8 :
φC(U) = (c1c2c3c4); φC(D) = (c5c8c7c6)
φC(F ) = (c1c4c8c5); φC(B) = (c3c2c6c7)
φC(R) = (c3c7c8c4); φC(L) = (c1c5c6c2)

S12 :
φE(U) = (e1e2e3e4); φE(D) = (e9e12e11e10)
φE(F ) = (e4e8e12e5); φE(B) = (e2e6e10e7)
φE(R) = (e3e7e11e8); φE(L) = (e1e5e9e6)

Remark 1.3.7. It's worth stressing that the edge pieces have two orientations,
and the corner pieces have three, due to the fact that they consist of two and
three facets, respectively. This observation is not contained in the description
of the positions of the edges and corners, thereby making it incomplete for
describing the di�erent states of the cube. We will complete our description
later in the text.

Theorem 1.3.8. φC and φE are surjective mappings.

Proof. We have to �nd a transposition of two adjacent corners in C. By the
symmetry of the cube it follows that if we can transpose one pair of adjacent
corners then we can transpose all pairs of adjacent corners. This will thus
complete the proof for C, since any permutation thereof can be written as
a product of transpositions of adjacent corners, since if a, b, c ∈ C and a, b
are adjacent and b, c are adjacent, then (ab)(cb)(ab) = (ac). Further, if d is
adjacent to c then (ac)(cd)(ac) = (ad). A corner cannot possibly have more
than two corners between itself and any other corner so this covers all cases.
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But φC((LBU)5) = ((c1c5c6c2)(c3c2c6c7)(c1c2c3c4))
5 =

((c1c2)(c3c4c5c6c7))
5 = (c1c2), hence φC is surjective.

By the same reasoning, it is su�cient to �nd a transposition of two
adjacent edge pieces in E. Consider:

φE(UR3U3B3UBR)

= (e1e2e3e4)(e3e8e11e7)(e1e4e3e2)(e2e7e10e6)(e1e2e3e4)(e2e6e10e7)(e3e7e11e8)

= (e1e4)

so both φC and φE are surjective.

Remark 1.3.9. We note that, by Theorem 1.3.8, Im(φE) ∼= S12, and Im(φC) ∼=
S8.

But φC and φE only consider the positions of corner pieces and edge
pieces independent of each other. In order to determine the full structure, we
need to consider the positions of corner pieces and edge pieces simultaneously.

De�nition 1.3.10. We de�ne φC,E : GR → S8×S12 as φC,E(X) = (φC(X), φE(X)).

Proposition 1.3.11. φC,E is a homomorphism.

Proof. This follows immediately from the fact that φC and φE are homo-
morphisms.

One might think that φC,E is surjective since φC and φE are surjective.
This is however not the case, as the following theorem shows.

Theorem 1.3.12. φC,E is not surjective.

Proof. Note that GR is generated by Sgen = {F,B,U,D,R,L}. For each
generator X ∈ Sgen φC,E(X) = (φC(X), φE(X)) where both φC(X) and
φE(X) are 4-cycles, i.e. φC(X) and φE(X) are both odd permutations.
It follows from the fact that φC,E is a homomorphism that if φC,E(Y ) =
(φC(Y ), φE(Y )) is the image of an element Y ∈ GR then φC(Y ) and φE(Y )
are both odd or both even. S8×S12 contains elements (σ, π) where σ is odd
and π is even (and the other way around). These elements are clearly not in
the image of φC,E . Hence, φC,E is not surjective.

A natural question would be if all pairs of an even corner permutation
and an even edge permutation can be achieved (and the analogue for odd
permutations).

Lemma 1.3.13. All pairs (σC , σE), σC ∈ S8, σE ∈ S12, where σC and σE
are both even or both odd, lie in the image of φC,E.
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Proof. Consider the set of all pairs, (σC , σE) ∈ Im(φC,E), where both σC
and σE are even. Given such an element, (σ′C , σ

′
E), we know that σ′E is an

even permutation in S12 and there are elements in Im(φC,E) that �xes the
edges while permuting three of the corners cyclically. Such an element is

φC,E(FRF−1LFR−1F−1L−1) =

((c1c4c8c5)(c3c7c8c4)(c1c5c8c4)(c1c5c6c2)

(c1c4c8c5)(c3c4c8c7)(c1c5c8c4)(c1c2c6c5),

(e4e8e12e5)(e3e7e11e8)(e4e5e12e8)(e1e5e9e6)

(e4e8e12e5)(e3e8e11e7)(e4e5e12e8)(e1e6e9e5)) =

= ((c1)(c2)(c3)(c4)(c5c8c6)(c7), id) = ((c5c8c6), id)

By the symmetry of the cube, every 3-cycle such that all three corners lie
in the same face is an element of the image of φC,E . From Theorem 1.2.24
we know that these cycles will generate A8, and thus every even permutation
of the corners lies in the image of φC,E . But σ′E is an arbitrary permutation
in A12 and hence, every combination (σC , σE) such that both σC and σE are
even lies in Im(φC,E).

Now consider the pairs (σC , σE) ∈ φC,E such that both σC and σE are
odd. Consider an odd element σ′′E ∈ S12. This element will be paired with an
odd element σ′′C ∈ S8. σC is a representative of a coset of A8. Hence we have,
by the same reasoning as in the previous case, that all odd permutations of
S8 can be paired with σ′′E , and since σ′′E is an arbitrary element every pair
(σC , σE) such that both σC and σE are odd lies in the image of φC,E . This
completes the proof.

1.3.3 Orientation of edge pieces and corner pieces

Until now we have considered the positioning of the corners and edges. There
is however no guarantee that the cube is solved even though all edges and
corners are in their correct positions. This is because they may be ��ipped�.
Therefore, as mentioned earlier, we also need to consider the orientation of
the pieces to completely determine the structure of the cube group, and in
particular the cardinality of the group.

In its correct position each edge piece can be �ipped in two ways and
each corner piece in three ways. However, we want to de�ne the orientation
of the pieces in such a way that it is possible to determine the orientation of
a piece independently of whether it is in its correct position or not.

De�nition 1.3.14. Consider a cube in its solved state on which a cross
has been drawn on precisely one side of each edge and corner piece. These
crosses determine themap of the orientations of the positions of the cube
(see Figure 1.6 and Figure 1.7). An edge piece in an unsolved cube is said to
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be correctly oriented if its cross coincides with the cross of that position in
the orientation map, and incorrectly oriented otherwise. Similarly, a corner
piece in an unsolved cube is said to be correctly oriented if its cross coincides
with the cross of that position in the orientation map, if it is rotated 120◦

clockwise it is said to have incorrect orientation of the �rst type and if it
is rotated 120◦ anti-clockwise it is said to have incorrect orientation of the
second type.

Figure 1.6: Orientations of the edges.

We may represent the orientation of the edges of the cube by a 12-tuple
of zeros and ones where each coordinate represents an edge position. A
coordinate is 0 if the edge piece in that position is correctly oriented and 1
otherwise. Similarly, the orientation of the corners can be represented by an
8-tuple of zeros, ones and twos where each coordinate represents a corner
position. A coordinate is 0 if the corner piece in that position is correct,
1 if it is of incorrect orientation of the �rst type and 2 if it is of incorrect
orientation of the second type.

Now consider how the orientations of the edges change when we perform
a rotation of a single face, X := π = (x1x2x3x4) ∈ S12. Before performing X
we have performed some sequence Y that has permuted the edges to the state
described by σ ∈ S12 and changed the orientations to the state described by
the 12-tuple (ε1, . . . , ε12), εi ∈ {0, 1}. If we perform X on a solved cube the
change of orientations will be represented by the 12-tuple (ω1, . . . , ω12). We
now perform X on a cube with orientations ε = (ε1, . . . , ε12) and thus obtain
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Figure 1.7: Orientations of the corners.

a representation for the orientations of the �nal state, (ω′1, . . . , ω
′
12). We note

that ω′i = ωi whenever εxi−1 = 0 (εx1−1 = εx4) and that ω′i = ωi + 1(mod2) if
εxi−1 = 1 (if εi−1 = 0 there will be no di�erence to the case of performing X
on a solved cube and if εi−1 = 1 the �nal state will be completely opposite
to a solved cube. We note that this can be stated as

(ω′1, ..., ω
′
12) = (ε1, ..., εx4︸︷︷︸

pos x1

, ..., εx1︸︷︷︸
pos x2

, ..., εx2︸︷︷︸
pos x3

, ..., εx3︸︷︷︸
pos x4

, ..., ε12) + (ω1, ..., ω12)

where the sum is reduced mod2. We see that π−1 has permuted the indices
of ε.

We now try to generalise the discussion above. Therefore let X be a
�nite sequence of rotations that permutes the edges of a solved cube in a
way described by π ∈ S12 and changes the orientations in a way described
by the 12-tuple ω. We perform X on a solved cube after �rst performing
a sequence Y that permutes the faces of a solved cube in way described by
σ and the orientations in a way described by ε. Let the orientations after
applying XY be described by ω′. We again see that ω′i = ωi precisely if
εi−1 = 0 and ω′i = ωi + 1(mod2) precisely if εi−1 = 1. This observation can
be summarised

ω′ = ω + π.ε

where π acts by permuting the indices of ε according to π−1 and the sum is
reduced mod2. We have thus shown that the positions and orientations of
the edges, and how they change, are described by (some subgroup of) the
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group

S12 nϕ

Z2 × . . .× Z2︸ ︷︷ ︸
12 times

 = S12 nϕ Z
12
2

where (π, ω) ∗ϕ (σ, ε) = (πσ, ω + ϕπ(ε)), where ϕπ(ε) is the element of Z12
2

obtained from ε by permuting its indices according to π−1.
We now want to do something similar with the orientations of the cor-

ners. Therefore let X be a �nite sequence of rotations that permutes the
corners of a solved cube in a way described by π ∈ S8 and changes the ori-
entations in a way described by the 8-tuple ω = (ω1, . . . , ω8), ωi ∈ {0, 1, 2}.
We perform X on a solved cube after �rst performing the sequence Y that
permutes the corners in a way described by σ and changes the orientations in
a way described by ε = (ε1, . . . , ε8), εi ∈ {0, 1, 2}. Let the orientations after
applying XY be described by ω′. We see that ω′i = ωi precisely if εi−1 = 0
(ε1−1 = ε8), ω′i = ωi + 1(mod3) precisely if εi−1 = 1 and ω′i = ωi + 2(mod3)
precisely if εi−1 = 2. This observation may be summarised

ω′ = ω + π.ε

where π acts on ε by permuting the indices according to π−1 and the sum is
reduced modulo 3. We have thus shown that the positions and orientations
of the edges and how they change are described by (some subgroup of) the
group

S8 nϕ

Z3 × Z3︸ ︷︷ ︸
8 times

 = S8 nϕ Z
8
3

where (π, ω) ∗ϕ (σ, ε) = (πσ, ω + ϕπ(ε)), where ϕπ(ε) is the element of
Z8
3 obtained from ε by permuting its indices according to π−1. From the

discussion above, we may now de�ne a binary operator on the set describing
the positions and orientations of edge and corner pieces respectively.

De�nition 1.3.15. Let s1 and s2 be two scramblings of the cube and let
them be described by the following 4-tuples:

s1 = (πC , oC , πE , oE) : πC ∈ S8, oC ∈ Z8
3 , πE ∈ S12, oE ∈ Z12

2

s2 = (π′C , o
′
C , π

′
E , o

′
E) : π′C ∈ S8, o′C ∈ Z8

3 , π
′
E ∈ S12, o′E ∈ Z12

2

The �rst element describes the position of the corner pieces, the second the
orientation of the corner pieces, the third element descibes the position of
the edge pieces and the fourth the orientation of the edge pieces. A binary
operator on the set of scramblings, ·, is de�ned as follows:

s1 · s2 = (πCπ
′
C , oC + πC .o

′
C , πEπ

′
E , oE + πE .o

′
E).
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Figure 1.8: How to distribute crosses on one side

Di�erent placements of the edge crosses will yield di�erent 12-tuples for
the generators. However, the following is true for any choice of placement of
the crosses.

Lemma 1.3.16. Regardless of placement of the crosses on the edges of the
solved cube, the sum of the elements of the 12-tuples representing the edge
orientation of the generators will always be a multiple of 2.

Proof. We start by noting two things. Firstly, a generator will only change
the orientation of edge pieces lying in that particular face. Secondly, there
are only four di�erent ways in which one can arrange the crosses of the edge
pieces in a particular face without getting equivalent results. These four
con�gurations are shown in �gure 1.8. Denote the edge pieces of the partic-
ular face by a, b, c, d according to �gure 1.8 and let the tuple (oa, ob, oc, od)
denote the part of the 12-tuple that represents the orientation of the par-
ticular edges. Now consider the di�erent cross con�gurations and let G =
(oa, ob, oc, od) be the e�ect of the generator rotating the considered face.

(1): G = (0, 0, 0, 0)
(2): G = (1, 0, 0, 1)
(3): G = (0, 1, 0, 1)
(4): G = (1, 1, 1, 1)

Since the rest of the edges will be unchanged, the rest of the 12-tuples will
be �lled with zeros. Thus, the sum of the change of orientations of the edge
pieces induced by a generator will be a multiple of 2. This completes the
proof.

Proposition 1.3.17. The sum of the orientations of the edges is a multiple
of 2.

Proof. Let
∑
εi denote the sum of all elements of the tuple ε. The proof will

use induction over the number of rotations of the cube. Firstly, consider the
edges of a cube in the solved state, (id, 0) ∈ S12 o Z12

2 . The rotation of one
side is given by (σG, εG) where G denotes generator. The new state of the
cube is given by:

(σG, εG) ∗ (id, 0) = (σGid, εG + σG.0) = (σG, εG)
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Figure 1.9: Sketch to help explain cross distribution on the corners of one
side

Since the sum of all elements of the 12-tuple,
∑

(εG)i, is a multiple of 2 for
all the generators, we know that after one rotation

∑
(εG)i = 0(mod2). Let

εn denote the edge orientation after n rotations. Assume that
∑

(εn)i =
0(mod2). Now consider the edges of the cube after n + 1 rotations. These
are given by:

(σG, εG) ∗ (σn, εn) = (σGσn, εG + σG.εn)

for some generator G. Consider the element describing the edge orientation;

εG + σG.εn

We know that
∑

(εG)i = 0(mod2) for all generators and
∑

(εn)i = 0(mod2)
by assumption. We note that the permutation of the elements in εn does not
change

∑
(εn)i. Thus;∑

(εG + σG.εn)i =
∑

(εG + εn)i =
∑

(εG)i +
∑

(εn)i = 0(mod2)

By induction we now know that
∑

(ε)i = 0(mod2) for any con�guration of
the cube. This completes the proof.

We now want to do something similar for the corner pieces. We note that
di�erent placements of the corner crosses will yield di�erent 8-tuples for the
generators. However, the following is true for any choice of placement of the
crosses.

Lemma 1.3.18. Regardless of placement of the crosses on the corners of the
solved cube, the sum of the elements of the 8-tuples representing the corner
orientation of the generators will always be a multiple of 3.

Proof. We note two things. Firstly, the generators will only change orienta-
tion of the corner pieces lying in that particular face. It is therefore enough
to consider the four elements corresponding to the four corners of the face of
the 8-tuple describing the orientations of the corners when stating how the
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generators will change the orientation of the corner pieces. Secondly, there
are only seven di�erent ways in which one can put crosses on the corners of
one face without obtaining equivalent con�gurations. These con�gurations
are (with notation used in �gure 1.9):

(1): Crosses on A1, A2, A3, A4
(2): Crosses on A1, A2, A3, B4
(3): Crosses on A1, A2, A3, C4
(4): Crosses on A1, A2, B3, B4
(5): Crosses on A1, A2, B3, C4
(6): Crosses on A1, B2, A3, B4
(7): Crosses on A1, B2, A3, C4

Let G = (oa, ob, oc, od) denote the 4-tuple corresponding to the four consid-
ered corners, with a, b, c, d given by �gure 1.9. The seven cross con�gurations
give the following 4-tuples for the generators:

(1): G = (0, 0, 0, 0)
(2): G = (1, 0, 0, 2)
(3): G = (2, 0, 0, 1)
(4): G = (1, 0, 2, 0)
(5): G = (2, 0, 2, 2)
(6): G = (2, 1, 2, 1)
(7): G = (2, 2, 1, 1)

The remaining corner pieces will not change their orientation and thus, the
rest of the 8-tuple will consist of zeros. Hence, the change of orientation of
the corner pieces induced by a generator will always be a multiple of 3. This
completes the proof.

Proposition 1.3.19. The sum of the orientations of the corners is a multiple
of 3.

Proof. Let
∑
εi denote the sum of all elements of the tuple ε. This proof

will use induction over the number of rotations of the cube. Firstly, consider
the corners of a solved cube, (id, 0) ∈ S8 o Z8

3 . A generator is given by the
element (σG, εG) where G denotes generator. Thus, the element obtained
after one rotation is:

(σG, εG) ∗ (id, 0) = (σGid, εG + σG.0) = (σG, εG)

We know that
∑

(εG)i = 0(mod3) for all generators. Therefore the sum of the
orientations of the corners is a multiple of 3 after one rotation. Let (σn, εn)
describe the corners after n rotations. Assume that

∑
(εn)i = 0(mod3). Now

consider the element describing the corners after n+ 1 rotations. It is given
by:

(σG, εG) ∗ (σn, εn) = (σgσn, εG + σG.εn)

for some generator G. Consider the element describing the corner orienta-
tion. We know that

∑
(εG)i = 0(mod3) since this holds for all generators.
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We also know that
∑

(εn)i = 0(mod3) by assumption. We note that the
permutation of the elements of εn does not change the sum of the elements.
Thus;∑

(εG + σG.εn)i =
∑

(εG + εn)i =
∑

(εG)i +
∑

(εn)i = 0(mod3)

By induction, we have
∑
εi = 0(mod3) for any number of rotations of the

cube. This completes the proof.

Remark 1.3.20. Note that this gives restrictions regarding how one could
orient the corners and edges. For example if one knows the orientations of 7
corners or 11 edges the orientation of the last one will be determined since
we can't change the orientation of a single corner or edge. This also implies
that if one �ips two corners, one has to be �ipped counterclockwise and the
other has to be �ipped clockwise. Other interesting properties include the
fact that we cannot �ip three edges at the same time but we can �ip for
example three corners in the same direction.

Figure 1.10: Flipping the edges.

Lemma 1.3.21. The number of ways to orient the edge pieces is 211.

Proof. The sequence given by

FRUR−1U−1RUR−1F−1L−1ULU−1L−1U2LF−1U−1FU−1F−1U2

FRUR−1URU2R−1F−1U−1FU−1GF−1U2F
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�ips two edges according to the �gure above without changing the position
of the cubies. From symmetry one can deduct that one can obtain corre-
sponding sequences for the rest of the edge pieces. Consider one such �ip.
By �ipping another piece we can construct an independent �ip of one of the
edges. Continuing in this way, we will get 11 independent �ips with two
con�gurations, i.e. 211 elements. But Theorem 1.3.17 states that the num-
ber of incorrectly oriented edge pieces is always even, i.e. it is impossible
to �ip a single edge, thus giving the upper limit 212/2 which coincides with
the constructed number. Thus, we have obtained all the possible �ips. This
completes the proof.

Figure 1.11: Flipping the corners.

Lemma 1.3.22. The number of ways to orient the corner pieces is 37.

Proof. The sequence given by LU2L−1U−1LU−1L−1RU2RUR−1UR gives
an orientation change of two corner pieces, where one of them is turned
counterclockwise and the other clockwise. By the same argumentation as
in the proof of Lemma 1.3.21 one can obtain 7 independent rotations of
the 8 corner pieces. This is the maximum number of con�gurations, since
Proposition 1.3.19 states that it is impossible to �ip a single corner.

1.3.4 Rubik's Group and its cardinality

In the previous parts of this section, we have determined the number of
possible ways to position corner and edge pieces, the number of ways one
can orient corner and edge pieces and also expressed how the rotations of
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the faces of the cube a�ect the positions and orientations of corner and edge
pieces. From this, it is now possible to determine the structure of Rubik's
Group.

Theorem 1.3.23. Rubik's Group, GR, is described by the set

S ={(πC , oC , πE , oE) : πC ∈ S8, oC ∈ Z8
3 , πE ∈ S12, oE ∈ Z12

2 ,

sgn(πC) = sgn(πE),
8∑
i=1

(oC)i ≡ 0(3),
12∑
i=1

(oE)i ≡ 0(2)}

and the binary operator · de�ned by

(πC , oC , πE , oE) · (π′C , o′C , π′E , o′E) = (πCπ
′
C , oC + πC .o

′
C , πEπ

′
E , oE + πE .o

′
E)

Proof. From Lemma 1.3.13 we know that the set of permutations describing
the positions of the pieces is correct. From Proposition 1.3.17 and Propo-
sition 1.3.19 we know that the set of tuples describing the orientations is
correct. From De�nition 1.3.15 we know that the binary operator works
correctly for Rubik's Cube. This completes the proof.

In addition to determine the structure of Rubik's Group, we may also
determine the cardinality of Rubik's Group.

Theorem 1.3.24. The cardinality of Rubik's Group, |GR|, is 1
2
1
2
1
312!8!21238.

Proof. We know from Theorem 1.3.13 that all of the odd/odd and even/even
permutations lie in the image of φC,E . This set has the cardinality 12!8!/2,
and we know from Lemma 1.3.21 and Lemma 1.3.22 that we can obtain
11 edge-orientations independently and 7 corner-orientations independently.
Thus, the cardinality must be 1

2
1
2
1
312!8!21238.
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Chapter 2

�Short Sequences of Moves on

Rubik's Cube�

by Patrick Masawe

2.1 Introduction

In this report we will show how to calculate the number of di�erent patterns
obtained on the Rubik's cube when applying some sequences of moves con-
sisting of 90◦ and 180◦ turns on the cube.
The cube has six faces and consists of 26 smaller cubes which we shall con-
tinue refer to as cubies. As before we shall think of the cube as being �xed
in space with one of its faces facing us. We call the face of the cube facing
us the front face and the other sides are then called back face, up face,
down face, right face and left face. We let F denote a 90◦ clockwise
rotation of the front face when looking at the front face. Similarly, we let
B, U, D, R and L denote 90◦ clockwise rotations of the corresponding faces
of the cube when looking at the speci�c face. In this work we will refer to
these moves as rotations, for example the move M = FUR consists of three
rotations, the �rst one being R, the second U and the last rotation being
F. Every face of the cube has a total of 9 cubies, the cubie at the center is
called the center cubie, the four cubies at the corners are called corner

cubies and the rest of the cubies are called edge cubies. Occasionally we
will call the corner cubies and edge cubies simply corner and edge.
We will use the homomorphisms φC and φE developed in section 1.3.2 sev-
eral times when studying the change of positioning of the cubies in the cube.

Now to some de�nitions from group theory. If S is a subset of a group
G, then S generates a subgroup of G and as before we will denote this sub-
group by <S>. The order of a group G is the number of elements in G
and the order of an element a of G is the number of elements in the
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cyclic subgroup of G generated by a. We denote the order of G by |G| and
the order of an element a of G by |<a>|.

So, the question of how many di�erent patterns on the cube it is possi-
ble to obtain by the move, say UR, can with the above de�nitions from
group theory be rephrased to, what is the order of UR. In this work we will
show that the order of UR is 105 or using the notations above, |<UR>|=
105. Also, we will show that the order of the group generated by the move
UU and RR is 12 or shorter, |<UU, RR>|= 12 and in the last chapters we
will proove that |<UU, RR, LL>|= 96 and that |<UU, RR. LL, DD>|= 192.
We begin by de�ning a homomorphism that we will use several times through-
out this work.

2.1.1 Permutation for the orientations of the cubies

We de�ne a group action µ : G × X → X where G is any subgroup of the
Rubik's cube group and X is the set of orientations of one speci�c cubie.
For example, a corner cubie with a total of three faces can be described by
X = {f1, f2, f3} where the �rst coordinate is the top face (or down face) and
the other two are the faces on both sides, see Figure 2.1. This group action
gives rise to a homomorphism γ : G→ SX . We will use this homomorphism
γ several times when calculating the order of some groups.

Figure 2.1: A corner cubie with its three faces marked with index f1, f2 and
f3.

2.1.2 Cyclic abelian groups

The moves we will be studying in this section are UR, UUR, URR, UUUR
and URRR. These moves generate cyclic subgroups of movements on the
Rubik's cube. The orders of the cyclic subgroups that they generate are as
follows:
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| <UR> |= 105
|<UUR>|= |<URR>|= 30
|<UUUR>|= |<URRR>|= 63

The above results can be obtained by just repeating the moves on a Ru-
bik's cube, counting the number of rotations and then observing when the
cube goes back to its original state. This can be very tedious, especially
when the order of a movement is as large as 105.
There is however a mathematical approach to this problem of �nding the
order of these cyclic groups where it su�ces to look at only a few sequences
of moves. But before we begin we will �rst present a de�nition and with it
an useful lemma.

De�nition 2.1.1. Let cubie A and cubie B be two cubies in the cube and
let M be any nonidentity move on the cube that brings cubie A and cubie
B back to their original positions in the cube. Also, let p1, p2, . . . , pn be the
n ≥ 2 labels for the positions that cubie A assumes in consecutive order for
consecutive rotations in M, where p1 is the label marking the �rst position
in the cube that cubie A assumes by the �rst rotation in M and p2 the label
marking the second position in the cube that cubie A assumes by the second
rotation in M etc, and lastly, pn the label marking the original position in
the cube that cubie A assumes by the last rotation in M. Note that di�erent
labels may mark the same position in the cube.
We will here introduce a new terminology, by saying that a cubie assumes
a label p we mean that the cubie assumes the position in the cube that the
label p is marking.
Now, if pi for some i ∈ {1, 2, . . . , n} is a label marking the original position
of cubie B and if cubie B assumes all the n labels of cubie A in consecutive
order for consecutive rotations in M, starting with assuming pi+1 by the �rst
rotation in M and then pi+2 by the second rotation in M etc, ending by
assuming the label pi by the last rotation in M, then we call the set P =
{p1, p2, . . . , pn} the path through the cube of cubie A and cubie B

under the move M and we say that cubie A and cubie B have the same

path through the cube under the move M.
As stated above, di�erent labels may mark the same position in the cube.
But this causes no problem. When this is the case it is all a matter of
choosing the labels, if it is possible to choose the labels for two cubies moved
by a move M so that the above conditions hold, then the cubies have the
same path through the cube under the move M.

Remark 2.1.2. The above de�nition for a path through the cube of two cubies
under a move M may at �rst be hard to grasp. The reader may think that
it is complicated to determine if two cubies have the same path through the
cube under a certain move, but it is actually a fairly easy observation. What
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De�nition 2.1.1 actually says is that two cubies have the same path through
the cube under a move M if the two cubies have the same movement through
the cube when moved by a move M.
So, to determine that two cubies have the same path through the cube under
a move M, you �rst check that the cubies are of the same kind, that is, that
both cubies are either corner cubies or edge cubies, since corner cubies always
move to corner cubies and edge cubies move to edge cubies. Then, you check
that the cubies assume the same positions in the cube when applying the
move M. Finally, you check that the cubies assume these same positions in
the same order. If all these three conditions apply to your cubies, then they
have the same path through the cube under the move M.

Apply the move (UR)7 on the cube. We observe that all edges have the
same path through the cube under the move (UR)7. The move (UR)7 brings
all edges back to their original positions in the cube and they all end up
right orientated as well, all at once. This is not a coincidence but a general
rule that leads us to the following lemma.

Lemma 2.1.3. Let c1, c2 . . . cn be n cubies in the cube, with n ≥ 2. Let
M be any nonidentity move on the cube that brings all the n cubies back
to their original positions in the cube. If all n cubies have the same path
through the cube under the move M and if one of the cubies assumes its
original orientation when the move M is made, then all the cubies assume
their original orientation.

Proof. Let cubie A and cubie B be any two of the n cubies. Consider cubie
A at position A in the cube and cubie B at position B, see Figure 2.2 (cubie
A and cubie B are not depicted).
The move M brings cubie A and B back to their original positions, position
A and position B respectively. Cubie A and cubie B have the same path
through the cube under the move M and therefore they must both be either
corner cubies or edge cubies. So, we can label the faces of cubie A and B and
give them an index depending on if the cubies are edges or corners. Here we
use the set of orientations X and the homomorphism γ from section 2.1.1
and get that the move M gives rise to di�erent orientation permutations on
cubie A and B. These orientation permutations are illustrated in Figure 2.2.
Now, consider cubie A at position A and cubie B at position B. Cubie A goes
through a change of orientation by the move M described by the permutation
α = βσ.
Cubie B, when moved to position A goes through a change of orientation
described by the permutation β, and its change of orientation when moved
from position A back to position B is described by the permutation σ. All in
all, cubie B goes through a change of orientation by the move M described
by the permutation µ = σβ. These changes of orientation on cubie A and
cubie B when moved back and forth from position A and B are all due to the
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fact that cubie A and cubie B have the same path through the cube under
the move M.
Let α be of order k, we shall prove the lemma by showing that µ is also of
order k. We have that,

α = σ−1(σβ)σ = σ−1µσ (1)

and we get that,
α = σ−1µσ ⇒ αk = (σ−1µσ)k

= σ−1µσσ−1µσ · · ·σ−1µσ︸ ︷︷ ︸
k times

= σ−1µkσ = id⇒ µk = id.

where id is the identity permutation.

The orientation permutations of the cubies in the cube can only be of order
1, 2 or 3, so 1 ≤ k ≤ 3 and k has therefore no other divisors than 1 and k.
If µ is of order 1, then from (1) we get that σ is also of order 1. Thus, µ is
of order k. Since cubie A and cubie B are any two of the n cubies involved,
this same condition holds for all n cubies.

Figure 2.2: The inner line together with the boxes marking position A and
B illustrate the path through the cube of cubie A and cubie B under the
move M. The orientation permutations α, β and σ are also shown.

Proposition 2.1.4. The group <UR> is of order 105.
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Proof. We start by considering the corner cubies.
Using the same notation as in section 1.3.2, we have that φC(UR) = φC(U)φC(R)=
(c1c2c3c4)(c3c7c8c4) =
(c3c7c8c1c2), so every �fth repetition of the move UR on the cube, brings
every corner cubie back to its original position in the cube. This information
is however not enough to determine the order of <UR> since the cubies may
have changed their orientation so that the wrong colours are on the wrong
faces of the cubies. We must consider the change of orientation that is made
by the move UR.

Figure 2.3: The two sides of the cube that are taken into account by the move
UR. We will look further into the movements of the corner cubies marked
with a circle and a cross.

Consider Figure 2.3 showing the two sides of the Rubik's cube that are par-
ticipating in the move UR. By repeating the move UR we observe that every
corner cubie involved in the movement, except for the one marked with a
cross in Figure 2.3, has the same path through the cube under the move
(UR)5, so by Lemma 2.1.3, it su�ces to look at the change of orientation
made on only one of these corner cubies.
Let us take a closer look at the corner cubie marked with a ring in Figure 2.3.
The move (UR)5 will move the corner cubie marked with a ring in Figure 2.3
back to its original position. The change of orientation made on that cubie
after this move is illustrated in Figure 2.4.

If we label the green face 1, the red face 2 and the yellow face 3 of the
cubie on the left in Figure 2.4, then the set X in section 2.1.2 is given by,
X = {1, 2, 3}. The cubie on the right in Figure 2.4 shows that the move
(UR)5 gives rise to the permutation σ = (123) on the set X. We have that
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Figure 2.4: The change of orientation on cubie marked with a ring in Fig-
ure 2.3 when the move (UR)5 is applied on the cube.

σ = (123) is of order 3 and more generally,

(UR)15n = id, n ∈ N (2)

where id is the identity element in the case of corner positioning and orien-
tation.

This result applies to all corner cubies involved, except for the one marked
with a cross in Figure 2.3. Considering the corner cubie marked with a cross
in Figure 2.3, we observe that it does not change its position for any of the
moves in <UR>. Here again we �nd that the change of orientation of the
corner cubie with a cross is given by the permutation σ = (123) and more
generally we have,

(UR)3n = id, n ∈ N (3)

for the corner cubie with a cross.

Now, considering the edges, we get that φE(UR)= φE(U)φE(R) =
(e1e2e3e4)(e3e7e11e8) = (e3e7e11e8e4e1e2), so every seventh move of UR
brings all the edges back to their original position. Here we observe that
all edges have the same path through the cube under the move (UR)7. We
�nd that the orientation on one of the edge cubies does not change and con-
clude that the same holds for the rest of the edges. Thus,

(UR)7n = id, n ∈ N (4)

for all the edges.

The cube returns to its original state when all the equations (2)-(4) are
simultaneously satis�ed. So the order of UR is the least common multiple
of 15, 3 and 7, that is, |<UR>|= 105.

Remark 2.1.5. The proof that |<UUR>|= |<URR>|= 30 and |<UUUR>|=
|<URRR>|= 63 is similar to the proof of Proposition 2.1.4.
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Theorem 2.1.6. Let G be a cyclic group of order n generated by an element
a. Then every element of G in the form, am, for positive integer m, generates
a subgroup H of G, where |H| = n/gcd(m,n) and where gcd(m,n) denotes
the greatest common divisor of m and n.

Proof: See Theorem 6.14 in "A First Course In Abstract Algebra" (Fraleigh).

Theorem 2.1.6 tells us the size of each and one of the subgroups of a cyclic
group G provided that we know their generators.

Example 2. Take for example the element (UUR)15 in the group <UUR>.
Here n = 30, m = 15 and H = <(UUR)15>, so by Theorem 2.1.6 we get
that |H| = 30/gcd(15, 30) = 30/15 = 2.

2.1.3 Nonabelian groups

Up till now we have only been looking at abelian subgroups of the Rubik's
cube group. In this section we will consider some nonabelian subgroups. We
will begin by presenting a lemma.

Lemma 2.1.7. Let G be a �nite group generated by two nonidentity elements
a and b such that a2 = b2 = id, where id is the identity element of G.
Then, |G| = 2|<ab>| = 2|<ba>|.

Proof. Since the elements a and b of G are both of order two, every element
of G can be written in one of �ve forms. These are,

(1) id

(2) abab . . . ab︸ ︷︷ ︸
i times

, for 1 ≤ i ≤ n− 1

(3) baba . . . ba︸ ︷︷ ︸
i times

, for 1 ≤ i ≤ n− 1

(4) baba . . . ba︸ ︷︷ ︸
i times

b, for 0 ≤ i ≤ n− 1

(5) abab . . . ab︸ ︷︷ ︸
i times

a, for 0 ≤ i ≤ n− 1

where n is the order of ab and ba

For an element of G can either be the identity element id or start with
an "a" and end with an "a", or start with an "a" and end with a "b" etc,
giving a total of �ve possible ways to express the elements in G.
The elements written in the form (3) are actually the inverses of the elements
written in the form (2). The element (ba)i, for i ∈ {1, 2, . . . , n − 1} in (3),
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is the inverse of the element (ab)i and is therefore equal to (ab)−i = (ab)n−i

which is an element of (2), since 1 ≤ n − i ≤ n − 1. This shows that ev-
ery element in (3) is in (2). Conversely, the element (ab)i in (2) is equal to
(ba)−i = (ba)n−i which is an element of (3), that is, every element in (2) is
in (3). This shows that the elements in the form (2) and (3) are the same.
By the result above we see that the element (ba)ib for
i ∈ {0, 1, 2, . . . , n− 1} in (4) is equal to (ab)n−ib which is an element of (5),
since 1 ≤ n− i ≤ n. Therefore every element in (4) is in (5). The proof that
all elements in (5) are in (4) is similar. This shows that the elements in (4)
and (5) are the same.
Now, we want to prove that (2) = (3) 6= (4) = (5) by showing that (3) 6=
(5). Assume there are i, j ∈ Z such that (ab)i = (ab)ja. If i = j, then we
get that a = id which is a contradiction. With i > j we have that,

(ab)i = (ab)ja⇔ (ab)i−j = a

which is a contradiction, so (2) = (3) 6= (4) = (5).
This reduces the number of distinct forms to express the elements of G to
only 3. These are,

(1) id

(2) abab . . . ab︸ ︷︷ ︸
i times

, for 1 ≤ i ≤ n− 1

(3) baba . . . ba︸ ︷︷ ︸
i times

b, for 0 ≤ i ≤ n− 1

Here we see that the number of elements in G is equal to 2n =2<ab> =
2<ba>.

Proposition 2.1.8. The group <UU, RR> is of order 12.

Proof. We have that (UU)2 = (RR)2= id, where id is the identity move, so
by Lemma 2.1.7 we get that |<UU, RR>| = 2|<UURR>|.
We will calculate the order of UURR in much the same way as when we
calculated the order of UR in section 2.1.2. We shall begin by considering
the edges.
Using the same notation as in section 1.3.2, we have that, φE(UURR)=
(φE(U))2(φE(R))2 =
(e1e2e3e4)

2(e3e7e11e8)
2 = (e1e3)(e2e4)(e3e11)(e7e8) = (e3e11e1)(e2e4)(e7e8),

so every sixth move of UURR brings all the edges back to their original
position.
We observe that the edges switches between only two positions in the cube
and therefore it is easy to see that they do not change their orientation by
the move (UURR)2 and more generally we have, (UURR)6n = id, n ∈ N for
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all the edges.
For the positioning of the corner cubies we get, φC(UURR)=
(c1c2c3c4)

2(c3c7c8c4)
2 = (c1c3)(c2c4)(c3c8)(c7c4) = (c3c8c1)(c4c7c2), so every

third move of UURR brings all the corners back to their original position.
Consider Figure 2.5, we see that the corner cubies marked with a ring have
the same path through the cube under the move (UURR)3 and likewise with
all the corners marked with a cross. So we need only to check the change of
orientation on a corner cubie marked with a ring and a corner cubie marked
with a cross. But by the symmetry of the cube, the change of orientation
on the corner cubies marked with a ring will be the same as the change of
orientation on the corner cubies marked with a cross. So, it su�ces to check
the orientation change on only one corner cubie. Doing that we see that
the move (UURR)3 does not change the orientation of the corners and more
generally, (UURR)3n = id, n ∈ N for all the corners.
So the order of <UURR> is the least common multiple of 3 and 6, that is,
|<UURR>| = 6, giving |<UU,RR>| = 2 · 6 = 12.

Figure 2.5: The corners marked with a cross and a ring.

Theorem 2.1.9. The set S = {(12), (23), (34), . . . , ((n − 1)n)} for n ≥ 2,
generates Sn and Sn is of order n!.

Proof: See Lemma 1.2.23 and Theorem 1.2.14.

We are now going to present a somehow trivial lemma.

Lemma 2.1.10. Let H =<(ab), (ac), (cd)> and K =<(ef), (eg), (gh)> for
(ab), (ac), (cd), (ef), (eg), (gh) ∈ Sn, n ≥ 2. Then there exists an isomor-
phism µ : H → K and if id is the identity permutation of H, then µ(id) is
the identity permutation of K.
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Proof. Let µ be a function mapping the elements of H with the elements of
K in the following way,

a→ e

b→ f

c→ g

d→ h

It is clear that µ as de�ned above form a homomorphism from how we mul-
tiply permutations. For example we have, µ((ab)(ac)) = µ((acb)) = (egf)
and µ((ab))µ((ac)) = (ef)(eg) = (egf) = µ((ab)(ac)).
Since µ maps every "number" in the transpositions of H one-to-one onto the
numbers in the transpositons of K according to the mapping scheme pre-
sented above, it is clear that any two permutations σ1 and σ2 in H satisfying
µ(σ1) = µ(σ2) must be the same. Moreover, since this mapping is onto the
numbers in the transpositions in K and µ is a homomorphism we get that
µ is surjective.
From Proposition 1.2.35, condition (1), we have that, µ(id) is the identity
permutation of K.

Proposition 2.1.11. The group <UU, RR, LL> is of order 96.

Proof. Recall that the only moves allowed are those in the group
<UU, RR, LL>, so whenever we speak about an allowed move we shall al-
ways mean a move from this group.
Now, let us begin by considering the orientation of the cubies.
Since the only moves allowed are those generated by RR, UU and LL we see
that every cubie involved has a limited path through the cube. For instance,
if we regard the movement of the corners, we see that every corner has a
limited movement through the cube as illustrated in Figure 2.6, a corner
marked with a cross always moves to a corner marked with a cross and a
corner marked with a ring always moves to a corner marked with a ring.
Consider a speci�c corner cubie marked with, say, a cross, which we shall call
corner cubie A. Apply any move allowed on the cube that brings corner cubie
A away from its original position, to a position B in the cube. From Fig-
ure 2.6 it is clear that in order to bring cubie A back to its original position
in the cube, we must apply the same move on the cube, but in the reverse
order, as we did when we brougth cubie A to position B. By doing that we
obtain the identity move for corner cubie A, thus the orientation of corner
cubie A will not change when moved back to its original position. This same
argument applies to all corner cubies by the symmetry of the cube.
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The edge cubies have an even more limited movement through the cube than
the corner cubies. The edges switches between only two positions and it is
easy to see that they do not change their orientation when moved back to
their original positions.
Thus, every position con�guration in the cube has only one orientation con-
�guration and the order of <UU, RR, LL> is therefore entirely determined
by the positioning of the cubies.

Figure 2.6: Corners marked with a cross and corners marked with a ring
have their own limited movement through the cube. The green and white
lines illustrates their movement through the cube.

By the indexation given in Figure 2.7, we get the following result for the
positioning of the cubies.

φE(RR)=(21)(56); φC(RR)=(12)(47)
φE(UU)=(23)(78); φC(UU)=(16)(43)
φE(LL)=(34)(9(10)); φC(LL)=(65)(38)

Let σ be any product of (21), (23) and (34) and µ be any product of (56),
(78) and (9(10)). Since σ and µ are products of disjoint cycles, the product
σµ is the identity permutation id when both σ = id and µ = id. This means
that whenever we apply an allowed move on the cube that returns the edges
marked with index 1-4 in Figure 2.7 back to their original positions in the
cube, the edges marked with 5-10 return as well.
The permutations of the edges that do not commute, that is, (21), (23) and
(34) are of the form (ab), (ac) and (cd). While the permutations of the
corners (12), (16) and (65) are of the form (ef), (eg) and (gh). Also, (47),
(43) and (38) are of the form (ij),(ik) and (kl).
Let H =<(21), (23), (34))>, K =<(12), (16), (65))> and
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M =<(47), (43), (38)>.
By Lemma 2.1.10 there exist two isomorphisms f and g from H onto K and
M respectively.
Let φC,E : <UU, RR, LL>→ S8×S12 be such that φC,E(X) = (φC(X), φE(X))
for a move X ∈ <UU, RR, LL>. We know that φC,E is a homomorphism
since φC and φE are homomorphisms.
This homomorphism describes the positioning of the corners and edges for
every allowed move. The kernel of φC,E consists of moves that leaves the
corners and edges untouched regarding their positions. For every allowed
move X we have, φC,E(X) = (φC(X), φE(X)) = (βγ, σµ) where β ∈ K,
γ ∈ M , σ ∈ H and µ is a product of (56), (78) and (9(10)) that depends
on σ. Note that β, γ and σ are not independent. By Lemma 2.1.10 we can
write this relation as, φC,E(X) = (βγ, σµ) = (f(σ)g(σ), σµ).
Let M be any allowed move on the cube that do not change the posi-
tions of the edges, by the result above and by Lemma 2.1.10 we have that,
φC,E(M) = (f(id)g(id), idid) = (id, id), thus M is in the kernel of φC,E .
This means that whenever the edges return to their original positions in the
cube, the corners return as well.
So every position con�guration of the edges has only one position con�gura-
tion of the corners and we get that the order of <UU, RR, LL> is entirely
determined by the positioning of the edge cubies.

Figure 2.7: The red face of the cube is the right face, the yellow is the up
face, the brown is the left face and the white is the down face of the cube.

Considering the permutations of the edges, we see that all products of
(12), (23) and (34) combine to form all of S4 which is of order 4! = 24,
by Theorem 2.1.9. But we must also consider the permutations that com-
mute, (56), (78) and (9(10)).
Consider a �x position con�guration of the edges marked with index 1-4 in
Figure 2.7. We want to know the number of ways we can change the posi-
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tioning of the edges marked with index 5-10 in Figure 2.7 without changing
the �x position con�guration of the edges 1-4.
We see that applying the move (RR)n for any n ≥ 0 on the cube provides
only one way of having the edges 5-10 positioned for a �x position con�gu-
ration of the edges 1-4. The same holds for the moves (UU)n and (LL)n. So
we need to combine these three moves, RR, UU and LL.
When combining we get that every �x position con�guration of the edges
1-4 has at most 5 possible position con�gurations of the edges 5-10, these
can be described by the permutations,

Edges 5-10:
(56)(78)

(56)(9(10))
(78)(9(10))

(56)(78)(9(10))
id

We now introduce a new terminolgy that we will use frequently in the re-
mainder of the proof. Let M be a move on the cube, σ be a permutation
and let cubie A be a cubie, then, whenever we say a move M produces σ for
cubie A we mean that when applying the move M on the cube, M changes
the position of cubie A in the cube in a way that can be described by σ.
Now, the move (RRUU)3 produces id for the edges 1-4 and (56)(78) for the
edges 5-10. This is one possible position con�guration of the edges.
The move (UURRUULL)3 produces id for the edges 1-4 and (56)(9(10))
for the edges 5-10. The move (UULL)3 produces id for the edges 1-4 and
(78)(9(10)) for the edges 5-10, so this is a third possible con�guration of the
edges.
However, there is no allowed move that produces id for the edges 1-4 and
(56)(78)(9(10)) for the edges 5-10.
Because if there were such a move, then it must consist of all three moves,
RR, UU and LL since each one of these moves are necessary to produce the
permutations (56), (78) and (9(10)) for the edges 5-10.
Moreover, it must be a move that consists of an odd number of each of the
moves RR, UU and LL. For example, the move RRUULLRR contains two
moves of RR that produces (56)2(78)(9(10)) = (78)(9(10)) for the edges 5-10
and this is not the one we want.
So, this move will therefore produce a permutation for the edges 1-4 that is
a product of an odd number of transpositions, that is, an odd permutation.
An odd permutation in S4 is either a 2-cycle or a 4-cycle, both of these types
of permutations are of even order. Thus, this move produces a permutation
of even order for the edges 1-4. But the transpositions of the edges 5-10
commutes with each other and any product of these permutations is there-
fore a permutation of order at most 2. So we see that whenever this move
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produces id for the edges 1-4, it also produces id for the edges 5-10.
In summary, we have that every �x position con�guration of the edges 1-4
has the following possible position con�gurations of the edges 5-10.

Edges 5-10:
(56)(78)

(78)(9(10))
(56)(9(10))

id

So every �x position con�guration of the edges 1-4 has a total of four di�er-
ent positions con�gurations of the edges 5-10. This gives, |<UU,RR,LL>|
= 4! · 4 = 24 · 4 = 96

Remark 2.1.12. It is possible to prove Proposition 2.1.8 by the methods used
in Proposition 2.1.11.

Theorem 2.1.13. Let H be a subgroup of a �nite group G and let (G : H)
be the number of left cosets of H in G. Then, |G| = (G : H)|H|.

Proof. The relation under which left cosets are formed is an equivalence
relation. This means that every element of G is in exactly one of the left
cosets of H. Also, the number of elements in each left coset of H is as many
as the number of elements in H. So, the total number of elements in G is
equal to the number of left cosets of H in G times the number of elements
in H, that is, |G| = (G : H)|H|.

Corollary 2.1.14. The group <UU,RR,LL,DD> is of order 192.

Proof. Remember that we are only dealing with moves from the group<UU,RR,LL,DD>
which we refer to as allowed moves.
Let us begin by considering the orientation of the corner cubies.
The group we are dealing with here is the same at the one in Proposi-
tion 2.1.11 with the only di�erence that we have an extra move, the move
DD.
In the proof of Proposition 2.1.11 we saw that the only possibilty to return a
corner cubie to its original position, when the only allowed moves were from
the group <UU,RR,LL>, is to apply the same moves, but in the reverse
order, as we did when we brought the corner cubie away from its original
position. This move turned out to be the identity move for the corner cubie
and therefore did not change the orientation of the corner cubie.
But with the group <UU,RR,LL,DD> we have one more possibility to re-
turn a corner cubie to its original position.
We can return a corner cubie to its original position by moving it "around"
the cube. For example, regard the corner cubie marked with 1 in Figure 2.8,
the move RRDDLLUU brings that corner cubie "around" the cube and back
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to its original position. This move may not be an identity move for the
corner cubie when regarding its change of orientation. But by checking we
see that it actually is. By the symmetry of the cube, we see that this same
condition applies to all corner cubies. So, all in all, every move in the group
<UU,RR,LL,DD> that brings the corner cubies back to their original posi-
tions does not change the orientation of the corner cubies.
The edge cubies have a limited movement when applying moves from the
group <UU,RR,LL,DD>. They only switch between two positions and it is
clear that they do not change their orientations when returning back to their
original positions.

From the proof of Proposition 2.1.11 we know that the number of di�er-
ent patterns obtained on the cube, when applying 180◦ turns on the up,
right and left faces of the cube, is entirely determined by the positioning of
the edges. By the symmetry of the cube we get that the same holds when
applying 180◦ turns on the down, right and left faces of the cube and there-
fore on all the four faces, up, right, left and down faces of the cube.
So, the order of the group <UU,RR,LL,DD> is entirely determined by the
positioning of the edges.

Let G =<UU, RR, LL, DD> and H =<UU, RR, LL>. The product of
the following permutations describes the positioning of the edges when ap-
plying a move in H.

Edges: (14)(56)
(14)(78)

(14)(9(10))

By the indexation in Figure 2.8 we get that φE(DD) = (14)((11)(12)). So,
if we only regard the edges 1-4, we see that H describes the move DD. But
there is no move in H that a�ects the edges marked with index 11 and 12,
see Figure 2.8.
Now, there are two types of moves in G, moves in H and moves in H con-
taining the move DD. The latter type can further be categorized into moves
consisting entirely of DD and nonidentity moves in H containing DD.
Consider the left cosets H and DDH of H in G. All moves in H are in the
coset H. So, we are left to �nd the left cosets of H for the type of moves in
H that contains DD.
Moves consisting entirely of DD are of the form DDn for n ∈ N . When n is
even we have that DDn = id where id denotes the identity move in G, this
is a move that belongs to the coset H. When n is odd we have that DDn =
DD and this is a move in the coset DDH.
Now we are left with nonidentity moves in H containing DD.
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If we for the moment only regard the edges 1-4 we see that both cosets H and
DDH describe DD by the arguments above. But if we regard the edges 5-12
we see that when we have nonidentity moves in H containing an odd number
of moves of DD we get that the permutations describing the positioning of
the edges has the factor ((11)(12)), that is, we are dealing with a move that
a�ects the edges 11 and 12. This type of move belongs to the coset DDH.
Nonidentity moves in H containing an even number of moves of DD do not
a�ect the edges 11 and 12 and this type of move belongs therefore to the
coset H.
So, the cosets H and DDH are enough to describe all moves in G, together
they exhaustG. Thus, H has only two left cosets inG and by Theorem 2.1.13
and by Proposition 2.1.11, we get that |G| = (G : H)|H| = 2 · 96 = 192.

Figure 2.8: The red face of the cube is the right face, the yellow is the up
face, the brown is the left face and the white is the down face of the cube.
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Chapter 3

�Rubik's Cube Group Elements

of Order Two�

by Joel Mickelin

This paper describes the elements of order two in the Rubik's Cube Group.
They are �rst enumerated, and found to be of the order 1011 many. They are
then divided into conjugacy classes with respect to conjugation by the Rubik's
Cube Group. Each conjugacy class will contain elements being composed of a
�xed number of corner and edge transpositions. Finally, the structure of the
subgroups of the Cube Group which are isomorphic to S3 is discussed, and a
lower limit to how many such groups exist is given as being of the order 1012.

Denna rapport syftar till att beskriva elementen av ordning två i Rubiks
Kub-gruppen. Dessa element beräknas först vara av ordning 1011 många.
Elementen visas sedan kunna delas upp i konjugansklasser, under konju-
gans med Kub-gruppen. Varje konjugansklass kommer att innehålla element
bestående av ett �xt antal transpositioner av kant- och hörnbitar. Slutligen
diskuterar vi strukturen hos de delgrupper av Kub-gruppen som är isomorfa
med S3, och beräknar en lägre gräns för antalet sådana delgrupper som exis-
terar, vilken bestäms till storleksordningen 1012.
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3.1 Cube elements of order two

This section examines the Cube elements of order two, all of which fascinate
the author for their ability to �unlock themselves�, so to speak. The purpose
of this section is �rst to enumerate the elements of order two using strictly
combinatorial arguments, then to examine the elements of order two as dis-
tinct orbits of a conjugacy operation. Lastly, some interesting isomorphims
to S3 are pointed pout.

We will see that the elements of order two can be summarized as being
of the order 1011 many. Merely a fraction, that is, of the total number of
elements in the group (being of the order 1019). We will further see that the
elements of order two can be divided into conjugacy classes, where any given
conjugacy class contains only elements being composed of a �xed number of
transpositions of corner pieces and edge pieces, respectively.

Finally, we note that the subgroups of the Cube Group which are iso-
morphic to S3, which all by necessity contain elements of order two, can be
estimated as being at least 1012 many.

3.1.1 Counting the elements of order two

Our �rst task is to simply count the elements in question. We will see that
these can be divided into three distinct subsets. We will be able to count the
elements of order two in the cube group, using quite simple combinatorial
arguments.

First, we note that the set of Cube elements of order two can be divided
into three disjoint subsets (this is almost a tautology).

De�nition 3.1.1. C2 is the set of Cube elements of order two which are
permutations of only corner pieces. E2 is the set of Cube elements of order
two which are permutations of only edge pieces. E2C2 is the set of Cube
elements of order two which are permutations of both corner pieces and edge
pieces.

We will examine the structure of each subset separately.

3.1.2 Elements permuting only corner pieces

Theorem 3.1.2. An element in C2 must be orientation preserving.

Proof. Assume x ∈ C2 alters (in keeping with the notation of Prop. 2.18) at
least one coordinate εi of the corner orientation tuple. If

x(εi) ≡ εi + 1 mod 3⇒ x3(εi) ≡ εi mod 3

and so x must be of order three. The same is true if x(εi) ≡ εi + 2 mod 3.
Hence, if x permutes at least one coordinate of the orientation tuple, the
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order of x is at least three, which would contradict our assumption. Thus,
the assumption is false.

Proposition 3.1.3. The elements of C2 are swaps of an even number of
corners.

Proof. This follows from Lemma 1.3.13, and the fact that no edges are per-
muted by the elements in C2 (i.e. the even identity permutation is used on
the set of edge pieces).

We will now proceed to compute the cardinality of C2, and we do so
by selecting the corner pairs to permute, noting that each pair can have
three di�erent orientations relative to each other, and that the order of the
transpositions is irrelevant.

We summarize the above reasoning in writing the following proposition.

Proposition 3.1.4.

|C2| =
1

4!

(
8

2

)(
6

2

)(
4

2

)
34 +

1

2!

(
8

2

)(
6

2

)
32 = 10395

Proof. We construct each element of C2 thus: we choose the number of
corners pairs to transpose, which must be even. We note that for each corner
pair, we have three orientation preserving swaps (since each corner piece has
three orientations, and an orientation shift in one piece would necessitate
a corresponding shift in the other), so each corner transposition will give
a contribution of 3 to the total number of elements. Finally, we note that
the order in which we choose each pair is irrellevant, which accounts for the
above divisions. Summing up after this fashion, we get the above result.

3.1.3 Elements permuting only edge pieces

We now turn our attention to E2.
What we �rst must be aware of is that the elements in E2 need not be

orientation preserving, as we concluded when proving Theorem 1.3.21 that
the edge orientation can be choosen independently. Seeing as the edge pieces
each have two possible orientations, we know the orientation changes to be
of order two. By the same reasoning as for C2, we know that the order two
elements of E2 are all even.

Theorem 3.1.5. The elements of E2 all contain zero or an even number of
edge piece swaps.

Proof. From the reasoning behind Lemma 1.3.21, we know that the 211 pos-
sible orientations of the edge pieces can be achieved independently. Hence,
the permutations generating them must be even. Thus, the elements of E2,
which may consist of both swaps and orientation �ips, must contain an even
number of edge piece transpositions in order to satisfy the demand for parity,
since no corner pieces are moved.
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When counting the elements of E2, we �rst choose the corner pairs to
transpose, noting that each pair has two possible orientations relative to each
other, and that we must choose an even number of pairs. We then notice
that the orientations of the remaining pieces, save for one, can be chosen
independently, according to Lemma 1.3.21.

We summarize the above into a proposition.

Proposition 3.1.6. |E2| = 1
6!

(
12
2

)(
10
2

)(
8
2

)(
6
2

)(
4
2

)
26 + 1

4!

(
12
2

)(
10
2

)(
8
2

)(
6
2

)
2423 +

1
2!

(
12
2

)(
10
2

)
2227 +

(
12
0

)
211 = 8080447

Proof. We construct the elements of E2 by �rst noting that all permutations
involving an even number of edge transpositions are included in E2 due to
Lemma 1.3.13. Thus, we can proceed to choose an even number of edge pairs
to transpose, noting that the order in which we choose pairs is irrelevant. We
also note that there are two orientation preserving swaps for each for each
edge transposition, so each edge transposition will contribue with a factor
2. Furthermore, according to Lemma 1.3.21, each edge piece not transposed
save for one will contribute with a factor 2 as well, since its orientation can
be switched independently. Summing up in this fashion, we get the above
result.

3.1.4 Elements permuting both edge pieces and corner pieces

Lastly, we turn our attention to E2C2. E2C2 can be further divided into two
subsets. The �rst of these subsets contain all elements permuting an even
number of corner pairs as well as an even number of edge pairs. We call this
set E2evenC2even and its cardinality is simply |E2||C2|.

The second subset, that containing the elements transposing an odd num-
ber of corner pairs as well as an odd number of edge pairs, is a bit more
interesting. Its cardinality will be that of |E2odd||C2odd|, where E2odd and
C2odd are the sets of odd elements of order two permuting edges and corners,
respectively.

Using ideas entirely analogous to those used in the previous two sections,
we make the necessary computations.

Proposition 3.1.7.

|C2odd| =
1

3!

(
8

2

)(
6

2

)(
4

2

)
33 +

(
8

2

)
3 = 11424

Proof. We once more choose corner pairs to transpose, yet taking care to
violate the demand for parity by choosing uneven numbers of corner pairs
to transpose. We note that there are three orientation preserving swaps for
each corner pair, and sum after that fashion.

Proposition 3.1.8. |E2odd| = 1
5!

(
12
2

)(
10
2
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8
2
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2
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)
25 ·2+ 1

3!

(
12
2

)(
10
2

)(
8
2

)
2325 +(

12
2

)
2 · 29 = 7607424
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Proof. We take care to violate the demand for parity for the edges as well,
yet must note that the edge orientation may be independently changed.

3.1.5 Summation of the elements of order two

We now proceed to sum the elements of order two, using the above compu-
tations.

|E2|+ |C2|+ |E2||C2|+ |E2odd||C2odd| = 170911549183 ≈ 1.7 · 1011

We see that though the elements of order two are plentiful, they make
up a mere fraction of the elements of the Cube group, which are of the order
1019 many.

The author has veri�ed the above computations through comparison with
those made by David Joyner (Adventures in Group Theory, John Hopkins
University Press 2002) who makes analogous arguments using a slightly dif-
ferent notation.

3.1.6 Concerning conjugacy classes of elements of order two

De�nition 3.1.9. Suppose we have a group G. a, b ∈ G are conjugate if
∃g ∈ G : g.a.g−1 = b.

Theorem 3.1.10. Conjugacy is an equivalence relation.

Proof. We check the three conditions necessary for the theorem. Conjugacy
is re�exive, since id−1.a.id = id.a.id = a∀a ∈ G. Conjugacy is symmetric,
for g−1.a.g = b⇒ g.b.g−1 = a∀a, b ∈ G. Lastly, conjugacy is transitive, for if
g−1ag = b and f−1.b.f = c then f−1.g−1.a.g.f = (gf)−1.a.gf = c∀a, b, c,∈
G. Hence, conjugacy is an equivalence relation.

De�nition 3.1.11. A conjugacy class C(a) of an element a in a group G
is the set {g.a.g−1 : g ∈ G}.

Remark 3.1.12. Note that all conjugacy classes can be described as orbits of
a group action g.x = g.x.g−1.

Theorem 3.1.13. A conjugacy operation of the Rubik's Cube Group on a
Rubik's element x of order two cannot change the number of transpositions
of edge or corner pieces of x.

Proof. We study any cube element x, which can be written as a series of
transpositions, where all transpositions may be written in coupled pairs.
We note that any two permutation pairs may be interchanged, provided
the Cube pieces one pair permutes are disjoint from those of the other
pair. For example, (c1c2)(c3c4)(c5c6)(c7c8) = (c5c6)(c7c8)(c1c2)(c3c4) but
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(c1c2)(c3c4)(c5c6)(c1c8) 6= (c5c6)(c1c8)(c1c2)(c3c4). We also note that if x
is of order two, it can only contain one transposition of any Cube piece.
Therefore, any two coupled transposition pairs may be freely interchanged
in x.

Let us now see which e�ect the conjugation of x by a cube element g
has. Imagine that g transposes no cube pieces which already occur in the
transpositions of x. Then, since we can always interchange the coupled
transposition pairs making up g−1.x.g, provided we do not interchange any
two pairs in neither g−1 nor g, we see that g−1.x.g = g−1.g.x = id.x = x.

Assume then that the transposition pairs of g do transpose elements
already transposed in x. Using the interchange argument de�ned above, we
can rearrange the series so that we may assume g to only be composed of
one single transposition pair, since what we do otherwise is study the e�ect
of sequentially applied transposition pairs of g. We may also, without loss
of generality, study only the e�ect of g on either corner or edge pieces.

We assume g contains a transposition (x1x2), and that x contains a
transposition (x1x3), where xi are either corner or edge pieces. Through
various rearrangements as detailed above, we end up with the permuta-
tion . . . (x1x2)(x1x3)(x1x2) . . . = . . . (x2x3) . . . as part of the transposition
series of g−1.x.g. If x also contains a transposition (x2x4), we see that
we can obtain a rearrangement so that part of the transposition series is
. . . (x1x2)(x1x3)(x2x4)(x1x2) . . . = . . . (x1x4)(x2x3) . . .. In either case, each
transposition pair acting on x by conjugation can only change the transpo-
sitions making up x, and not the number of them. By iteration, we see that
neither can g as a whole.

From the arguments presented in the above, rather lengthy proof, we
obtain the following corollary.

Corollary 3.1.14. Any transposition of two corner or two edge pieces in a
cube element x of order two may be changed into any other independently,
by conjugation.

Proof. Imagine that we have the transposition (xixj), which we want changed
into (xkxl) without a�ecting any other transpositions in the series. This can
be done by the following algorithm:

Pick any transposition (xmxn) in x, where m,n /∈ {i, j, k, l}. Conjugate
x with the cube element (xmxn)(xixk). This will not a�ect the transposition
(xmxn), yet change (xixj) into (xkxj). Conjugate once more, now with the
element (xmxn)(xjxl), which will change (xkxj) into (xkxl) without a�ecting
any other transpositions.

We now realise that we may divide the elements of order two into conju-
gacy classes using the above theorems. We shall now seek to compute how
many there are.
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Theorem 3.1.15. C2 can be divided into two conjugacy classes.

Proof. We know that all permutations of two corner pairs, and all permu-
tations of four corner pairs, respectively, can be conjugated into any other
such permutations.

Theorem 3.1.16. E2 can be divided into 211+27+23+1 conjugacy classes.

Proof. We know that any element of E2 involving a certain number of trans-
positions may be conjugated into any other, save for di�erences in the orien-
tation of the edge pieces, since changes to this orientation are independent
from other permutations, and will thus cancel themselves out by conjuga-
tion. All elements having a certain orientation and being composed of a
certain number of edge piece transpositions will thus constitute one conju-
gacy class.

Theorem 3.1.17. E2C2 may be divided into 2(211+27+23+1)+2(2+25+29)
conjugacy classes.

Proof. Since any permutation of two edge pieces or two corner pieces may be
changed into any other such, we have that the number of conjugacy classes
of even-even elements in E2C2 will simply be the product of the number of
conjugacy classes in E2 and C2.

Using a similar reasoning as for C2, we see that that the conjugacy classes
of the set C2odd are the sets of permutations composed of three or one cor-
ner transpositions, two in total. Analogously, but taking note of di�erent
orientations, as we did for E2, we see that the elements of E2odd contains
elements having either 5, 3 or 1 transpositions, thus giving that the number
of conjugacy classes in E2odd are 2 + 25 + 29.

A quick summation gives that the total number of conjugacy classes of
elements of order two is 7649.

3.1.7 Conjugative stabilizer subgroups of elements of order

two

A natural question to ask is what the stabilizer of a given order two element
under conjugation looks like.

De�nition 3.1.18. Suppose we have a group action of a group G on a set
X. For any element x ∈ X, we have that the stabilizer Gx of x is the set
Gx = {g ∈ G : g.x = x}.

Theorem 3.1.19. ∀g ∈ G, Gx is a subgroup of G.

Proof. We need to prove that Gx is closed and that every element is invert-
ible. First, we see that ∀g1, g2 ∈ Gx, (g1.g2).x = g1.(g2.x) = g1.x = x ⇒
g1.g2 ∈ Gx. Moreover, x = id.x = (g−1.g).x = g−1.(g.x) = g−1.x ⇒ g−1 ∈
Gx. Thus, Gx is a subgroup of G.
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Theorem 3.1.20. For a group G acting on a set X, we have that

|G| = |Gx||Gx| ∀x ∈ X

.

Proof. The result would follow if we could �nd a bijection from Gx to G/Gx,
for then |Gx| = |G/Gx| = |G|/|Gx|. We do this by taking y ∈ Gx. We take g
from Gy, and de�ne a function φ(x1) = gG from Gx to G/Gx. The function
is independent of the choice of g, for if we also take f ∈ Gx, we see that
g.x = f.x⇒ g−1.(g.x) = g−1.(f.x) = x⇒ g−1.f ∈ Gx ⇒ f ∈ gGx.

We need to �rst show the injectivity of φ. Suppose y, z ∈ Gx, and that
φ(y) = φ(z), which gives that there are f, g ∈ G such that f.x = y, g.x = z
and f ∈ gGx, from which we can deduce that there is an element h ∈ Gx
such that g.h = f . But then we have that y = f.x = (g.h).x = g.(h.x) =
g.x = z ⇒ y = z. Thus, φ must be injective.

To show the surjectivity of φ, take a left coset gGx, and note that
gGx = φ(g.x). Thus, φ is also surjective, therefore bijective, which proves
our theorem.

As a form of error check for our computation of the number of conjugacy
classes, we may use the above theorem to see if |G| = |Gx||Gx| for the
corresponding orbits Gx. We note that, since the number of transpositions
of corners and edges determines the conjugacy class, we can compute each
Gx by noting how we choose these transpositions.

For example, the orbits of elements containing just two corner transpo-
sitions would contain 1

2!

(
8
2

)(
6
2

)
elements. The elements with the most mul-

tiplicative factors are those containing the most transpositions, that is the
largest elements of the even-even and odd-odd permutations of elements per-
muting both corner and edge pieces.

The largest even-even orbits would have
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)
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)
elements, which factors as 34 · 53 · 72 · 11.

The largest odd-odd orbits would have
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)
· 1
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)
elements, which factors as 23 · 35 · 52 · 72 · 11.

The cardinality of the Rubik's Cube group G obtained in Theorem 1.3.24
factors as 227314537211, and we see that |G| is divisible by |Gx| for the largest
orbits of elements of order two. The number of elements in these orbits
contain the multiplicative factors of the number of elements in the other
orbits. Therefore, |G| is divisible by |Gx| for every x of order two, when G
acts on x by conjugation.
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3.1.8 Isomorphisms to S3

Finding subgroups of the Rubik's Cube is generally either very tricky or very
boring, as many of the subgroups that are easy to �nd have a very simple
structure. One notable, and in the author's opinion interesting, exception
is the subgroups one may construct from elements of order two, which are
isomorphic to S3.

Lemma 3.1.21. Assume a, b as elements of a group G. If a and b are of
order two, and ab is of order three, then ba is of order three.

Proof. We know that ababab = id, and therefore conclude that aba =
(bab)−1, but (bab)−1 = bab, since a and b are elements of order two. There-
fore,

ababab = id = (aba)(bab) = (bab)(bab) = (bab)(aba) = bababa

and we see that (ba)3 = id.

We now provide a theorem concerning the structure of the subgroups of
the Cube Group which are isomorphic to S3.

Theorem 3.1.22. If a, b are elements of the Cube Group, where a, b are of
order two, and ab is of order three, then the group generated by a and b will
be isomorphic to S3.

Proof. S3 can be generated by the transpositions (1 2) and (2 3). We note
that (1 2)(2 3) and (2 3)(1 2) are both of order three, as well as being
each others' inverses. Therefore, the mapping a → (1 2), b → (2 3) will
be an isomorphism, since ab of order three gives that ba is of order three,
according to Lemma 3.1.21, and we also know that ba = (ab)−1, since a and
b are of order two.

We now proceed to compute a lower limit to how many subgroups of the
Cube Group which are isomorphic to S3 exist.

Remark 3.1.23. We know that a Cube Group element of order three must be
composed of disjoint 3-cycles, where each 3-cycle contains either only corner
pieces or only edge pieces.

Lemma 3.1.24. Any Cube element composed of 3-cycles may be written as
a concatenation of two Cube elements of order two.

Proof. We begin by studying the elements composed of an even number of 3-
cycles. We will, without loss of generality, study the element (x1x2x3)(x4x5x6),
where xi are assumed to be distinct cube pieces such that each of the two
3-cycles permutes only corner pieces or only edge pieces. We see that this
element is a concantenation of, for example, the two elements (x1x2)(x4x5)
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and (x2x3)(x5x6), these elements being of order two. We also see that an
element of order three containing an uneven number of 3-cycles, like
(x1x2x3)(x4x5x6)(x7x8x9) can be written as a concatenation of order two ele-
ments like (x1x2)(x4x5)(x7x8)(x10x11) and (x2x3)(x5x6)(x8x9)(x10x11).

We will now proceed to compute a lower limit of the number of groups
isomorphic to S3, by computing the number of distinct generator pairs whose
concatenation is composed of 3-cycles of corner Cube pieces and edge Cube
pieces, respectively.

We will de�ne the groups not by choosing the two generators a and b,
but instead by de�ning their concatenation, ab, and accounting for all the
possible generator pairs whose concatenation is the element ab.

We choose the elements of the 3-cycles, noting that a maximum of two 3-
cycles of corner pieces and a maximum of four 3-cycles of edge pieces may be
constructed. We also note that the elements in the 3-cycle may be permuted
in 3! ways, yet each 3-cycle will be counted three times in this fashion. Thus,
we must multiply by a factor 3!

3 = 2 for each cycle. We also note that S3
has two elements of order three, so for each group counted, we will have two
corresponding elements of order three. Thus, we must divide by a factor two.
Thus, an element with n 3-cycles must be multiplied by a factor 2n−1. We
also note that the order in which we choose 3-cycles is irrelevant, so for x
chosen 3-cycles, we divide by x!. We note that we may (and, in the case of an
uneven number of 3-cycles, must) add a number of redundant transpositions
not contributing to the 3-cycles in the concatenation, provided all of these
transpositions are included in both generators, in which case they will cancel
each other out during concatenation. We choose these transpositions from
the elements not in the 3-cycles, taking care to adhere to the demand for
parity, and noting the di�erence between having redundant transpositions of
corner pieces, edge pieces, or both. For n chosen redundant transpositions
of corner or edge pieces, we must also divide by n!, for the order in which
they are choosen does not matter.

We shall now proceed with the promised calculations. The sensitive
reader is warned that the calculations involved are slightly tedious.

We begin by choosing the groups concatenating to 3-cycles of corners,
after the fashion described above:
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= 2962574720 ≈ 2.7 · 109
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After the same fashion, we enumerate the elements forming 3-cycles of
only corner pieces:
1
4!

(
12
3

)(
9
3

)(
6
3

)
23·(1+

(
8
2

)(
6
2

)(
4
2

)
1
4!+
(
8
2

)(
4
2

)
1
2!)+

1
3!

(
12
3

)(
9
3

)(
6
3

)
22·(

(
3
2

)
+
(
3
2

)
(
(
8
2

)(
6
2

)(
4
2

)
1
4!+(

8
2

)(
6
2

)
1
2!) + (

(
8
2

)(
6
2

)(
4
2

)
1
3! +

(
8
2

)
)) + 1

2!

(
12
3

)(
9
3

)
2 · (1 +

(
6
2

)(
4
2

)
1
2! + (

(
8
2

)(
6
2

)(
4
2

)
1
4! +(

8
2

)(
6
2

)
1
2!) + (

(
6
2

)
(
(
8
2

)(
6
2

)(
4
2

)
1
3! +

(
8
2

)
) +

(
6
2

)(
4
2

)
1
2!(
(
8
2

)(
6
2

)(
4
2

)
1
4! +

(
8
2

)(
6
2

)
1
2!) +(

6
2

)(
4
2

)
1
3!(
(
8
2

)(
6
2

)(
4
2

)
1
3! +

(
8
2

)
)) + 1

3!

(
12
3

)(
9
3

)(
6
3

)
22 · (

(
3
2

)
+ (
(
8
2

)(
6
2

)(
4
2

)
1
3! +

(
8
2

)
) +(

3
2

)
(
(
8
2

)(
6
2

)(
4
2

)
1
4!+
(
8
2

)(
6
2

)
1
2!))+ 1

1!

(
12
3

)
20 ·((

(
8
2

)(
6
2

)(
4
2

)
1
3!+
(
8
2

)
)(1+

(
9
2

)(
7
2

)(
5
2

)(
3
2

)
1
4!+(

9
2

)(
7
2

)
1
2!) + (

(
9
2

)(
7
2

)(
5
2

)
1
3! +

(
9
2

)
) · (1 +

(
8
2

)(
6
2

)(
4
2

)
1
4! +

(
8
2

)(
6
2

)
1
2!))

= 1449131200 ≈ 1.5 · 109

We note that these numbers also have to be multiplied by a factor 211,
corresponding to the possible independent edge orientation changes available.
Any such change can be included in both generators, and will be negated
during concatenation. Summing up, in total we so far have 211 · (1.5 + 2.7) ·
109 = 8.6106 · 1012 possible groups.

The inquisitive reader can no doubt surmise the scope of the number
of terms involved when computing the number of generator pairs whose
concatenation involve both 3-cycles of corner pieces and 3-cycles of edge
pieces. For the purpose of this text, that particular calculation has been
omitted, and we will contend ourself with the lower limit we have calculated.

We conclude the text by remarking that the Cube subgroups isomorphic
to S3 are at least of the order 1012 many, an order of magnitude small in
comparison to the total number of elements in the Cube Group, which are
of the order 1019 many. Yet, this order of magnitude is quite large when
compared to the number of elements of order two in the Cube Group, being
of the order 1011 many.
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Chapter 4

�An Element of Greatest

Order�

by Mikael Hedberg

4.1 Abstract

This paper examines two problems concerning Rubik's Cube. The �rst prob-
lem is the structure of Rubik's Cube which is proven in the end of section
one. The second problem is to �nd the greatest order of an element, this
order turned out to be 1260. While analysing the problem of proving the
existence of this element, a theorem describing orders inside a general group
similar to the one of Rubik's Cube was found.
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4.2 Introduction

The paper is divided into two sections.

The �rst section, devoted to the structure of Rubik's Cube, is a conse-
quence of the group G = (Z8

3 oϕ1 S8)× (Z12
2 oϕ2 S12). It is known that the

abstract group of Rubik's Cube is isomorphic to a proper subgroup of G,
thus it's desirable to investigate the possibility of �nding an explicit group
to which the group of Rubik's Cube is isomorphic. In e�ect, the outline of
investigation is the following:

(1) Start by de�ning the abstract group of Rubik's Cube.
(2) Continue by proving recognition theorems.
(3) Apply the theorems on subgroups of the Cube.
(4) Iterate the process on the subgroups.

This lead to the theorem below:

Theorem 4.2.1. Let GR be the abstract group of Rubik's Cube,
then GR ∼= ((Z11

2 ×Z7
3)oϕ1((A12×A8)oϕ2Z2)) where ϕ2, ϕ1 is left conjugation

by Z2 on (A8 ×A12) and by (A12 ×A8) oϕ2 Z2 on Z11
2 × Z7

3 respectively.

In the second section we are trying to �nd an element of greatest order
inside GR. The interpretation on the Cube is the following: given a sequence
of turns on the Cube, then we know that this sequence can maximally be
repeated as many times as the greatest order. Thus, let us continue by stating
the theorem concerning this order, and afterwards by giving an outline of
the proof.

Theorem 4.2.2. An element of greatest order in Rubik's Cube has order
1260.

Outline:

(1) Find a condition for orders of elements in GR.
(2) Prove a general theorem that especially con�nes the orders of GR.
(3) Find a way to express the orders in the mothergroup G of GR.
(4) Find the supremum of the set of orders of the mothergroup.
(5) Prove the existence of an element having this order inside GR.

A consequence of (2) in the outline is Theorem 4.4.4, a�rming the fact
that the orders of elements inside the generalised symmetric group1 can be
obtained by almost explicitly regarding the orders of the permutations.

1David Joyner, Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and
Other Mathematical Toys. Page 194, Example 9.7.3 [2008-15-05]
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4.3 The abstract group of Rubik's Cube

Figure 4.1: Facets with corresponding indexes

Let us start by de�ning the abstract group of Rubik's Cube, but �rst,
some preparatory manoeuvres are needed. Adequately, �x the cube in space
(since the symmetry of the cube itself is hardly relevant), then index all
the facets with numbers 1 to 54 according to Figure 4.1. Afterwards, de�ne
the binary operator to be turnings of the layers, this is equivalent of saying:
permutations of the indexes given by the corresponding turns of layers. Let
F,B,U,D,R and L be the turns given on Page 1.3, then this will correspond
to the permutations below.

F = (1,7,9,3)(2,4,8,6)(10,46,45,36)(30,12,52,39)(11,49,42,33)
B = (19,25,27,21)(20,22,26,24)(16,34,43,48)(28,37,54,18)(17,31,40,51)
U = (10,16,18,12)(11,13,17,15)(7,28,21,46)(30,19,48,9)(29,20,47,8)
D = (43,37,39,45)(44,40,38,42)(1,52,21,34)(36,3,54,25)(2,53,26,35)
R = (46,48,54,52)(47,51,53,49)(3,12,21,43)(45,9,18,27)(6,15,24,44)
L = (28,30,36,34)(29,33,35,31)(1,37,19,10)(39,25,16,7)(13,4,38,22)

(4.3.1)

De�nition 4.3.1. The abstract group of Rubik's Cube is the subgroup
GR = 〈F,B,U,D,R,L〉 ≤ S54

Remark 4.3.2. According to the above de�nition GR ≤ S54. This can be
strengthened observing that the middle pieces do not move, hence GR ≤ S48
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Now when the abstract group of Rubik's Cube is de�ned, it's time to
investigate if there is an explicit group to which GR is isomorphic. Thus,
let us continue by two de�nitions, afterwards moving on to proving some
theorems that will help us with the recognition of the abstract group.

De�nition 4.3.3. LetH andK be subsets of a group G, HK is then de�ned
by HK = {hk ∈ G |h ∈ H, k ∈ K}.

De�nition 4.3.4. Let G be a group and K ≤ G. Recall that for any
g ∈ G, gKg−1 = {gkg−1 | k ∈ K}. The normaliser of K in G is de�ned by
NG(K) = {g ∈ G | gKg−1 = K}.

Theorem 4.3.5. If H and K are subgroups of a group G, then HK ≤ G if
and only if HK = KH.

Proof. Let H, K ≤ G and assume HK is a subgroup. Take hk ∈ HK, since
HK is a subgroup we know that k−1h−1 ∈ HK. But k−1h−1 ∈ KH which
means that HK ⊆ KH. The reverse containment is similair, proving the
right implication.
Now for the reverse statement assume that HK = KH. Take some a, b ∈
HK, then we know from the de�nition of HK that a = h1k1, b = h2k2 for
h1, h2 ∈ H and k1, k2 ∈ K. Thus ab = h1k1h2k2 = h1h3k3k2 where k1h2 =
h3k3 ∈ HK since HK = KH. But h1h3 = h4 ∈ H and k3k2 = k4 ∈ K since
H and K are subgroups. Hence ab = h1k1h2k2 = h1h3k3k2 = h4k4 ∈ HK
and HK is closed. The fact that HK contains an inverse for each a ∈ HK
is due to a−1 = k−1h−1 ∈ KH = HK. Thus HK ≤ G.

Corollary 4.3.6. If H ≤ NG(K) then HK ≤ G.

Proof. Assume it holds, then HK = {hk |h ∈ H, k ∈ K} = {(hkh−1)h |h ∈
H, k ∈ K} ⊆ KH. The reverse containment is similar.

Now we are prepared to prove the two recognition theorems. The �rst
theorem will recognise direct products and the second will recognise semidi-
rect products, where the homomorphism to the automorphism group will be
given by left conjugation. Before doing this, a lemma is needed.

Lemma 4.3.7. Let H and K be subgroups of a group G. The number of
distinct ways of writing each element in HK on the form hk, for some h ∈ H
and k ∈ K is |H ∩K|.

Proof. Take some a ∈ HK and we know from the de�nition of HK that
a = hk, h ∈ H, k ∈ K. It is clear that H ∩K 6= ∅ since id is in both H and
K. Now, if we take any bi ∈ H ∩K then bi can be written as h̃i or as k̃i.
Thus for hk ∈ HK, hk = hh̃ih̃

−1
i k = (hh̃i)(k̃

−1
i k). This equality holds for

|H ∩ K| di�erent bi in the intersection H ∩ K. Let us now show that this
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equality holds only for elements in the intersection. Take any c ∈ G where
c /∈ H ∩K, then hk = (hc)(c−1k). To be written di�erently it's necessary
that c−1k ∈ K, hc ∈ H. But since c /∈ H ∩K we know that either c−1k /∈ K
or hc /∈ H because one of them will be in a coset not equal to the group
itself. This is a contradiction, thus we have |H ∩K| di�erent ways of writing
hk ∈ HK.

Theorem 4.3.8. Suppose G is a group and H, K subgroups. If

(1) H,K E G and
(2) |H ∩K| = 1,

then G ≥ HK ∼= (H ×K)

Proof. Suppose (1) and (2) holds. HK forms a subgroup by Corollary 4.3.6
since obviously H ≤ NG(K) = G. De�ne ϕ : HK → H × K by hk 7→
(h, k). Observe that condition (2) in Lemma 4.3.7 makes this well de�ned.
Before proving this is a homomorphism we observe that k−1(hkh−1) ∈ K
but (k−1hk)h−1 ∈ H, hence (2) implies k−1hkh−1 = id ⇔ hk = kh. Now
ϕ(h1k1h2k2) = ϕ(h1h2k1k2) = (h1h2, k1k2) = ϕ(h1k1)ϕ(h2k2). The fact
that ϕ is a bijection is due to ker(ϕ) = {id} ⇒ ϕ injective and by de�nition
ϕ is surjective.

Theorem 4.3.9. Suppose G is a group and N , K subgroups. If

(1) N E G and
(2) |N ∩K| = 1,

then G ≥ NK ∼= (N oϕ K) where ϕ : K → Aut(N) such that ϕ(k) equals
left conjugation on N by k.

Proof. Assume (1) and (2) holds. We know from Corollary 4.3.6 as in
the above proof that NK forms a subgroup. Let ξ : NK → N oϕ K by
nk 7→ (n, k), ξ is well de�ned like in the proof above. Now we show that
this mapping is a homomorphism. ξ((h1k1)(h2k2)) = ξ(h1(k1h2k

−1
1 )k1k2) =

ξ(h1h3k1k2) = (h1h3, k1k2) = (h1(k1h2k
−1
1 ), k1k2) = (h1ϕ(k1)(h2), k1k2) =

(h1, k1)(h2, k2) = ξ(h1k1)ξ(k2h2). From the very de�nition of ξ it's clear
that ξ is bijective.

De�nition 4.3.10. Let N,K,G be according to the above theorem.
If NK = G then K is called a complement of N .

Now when all preparations are done, we can start looking at the actual
structure of GR. In order to do this, we begin by noting that the set of all
orientation changes, referred to as �ips, is a normal subgroup F of GR. This
will be proved, and afterwards we try to �nd a complement P ≤ GR of F .
Hence by Theorem 4.3.9 we can split GR itself into a semidirect product.
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Proposition 4.3.11. The nonempty set F ⊆ GR consisting of all possible
�ips and the identity, without permuting the cubies, forms a normal subgroup
in GR.

Proof. It is clear from Lemma 1.3.21, Lemma 1.3.22 that F 6= ∅. Further-
more F ≤ GR, since for all f1, f2 ∈ F we know that f1f2 �ips edges or
corners and that f1f2 can not permute cubies. Hence f1f2 ∈ F and since
GR is �nite this implies F ≤ GR. Suppose F is not normal, then we have at
least one g ∈ (GR \ F), f ∈ F such that gfg−1 /∈ F .
This is clearly a contradiction since g permutes cubies and therefore g−1

permutes them back, leaving gfg−1 ∈ F .

Now it's desirable to �nd a complement of F . We know from Lemma 1.3.13
that all the allowed corner and edge permutations can be generated, but the
elements corresponding to this are far from unique. Thus, if we can pick
a subset of all the allowed permutations respecting the orientations in Fig-
ure 4.2, we can be sure that this set will form a complement of F since
the permutations don't �ip any corner/edges in accordance with the given
de�nition. This observation needs however a proof.

Figure 4.2: Red cross for corner orientation and black cross for edge orien-
tation
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Proposition 4.3.12. The nonempty set P ⊆ GR of corner/edge permuta-
tions respecting the orientations in Figure 4.2 forms a complement of F .

Proof. Firstly, we prove that P is a subgroup and that it contains all the
permutations of corners/edges according to Lemma 1.3.13 in the common
part. The only di�erence is that the permutations are contained in this
orientation. In e�ect, we know from Lemma 1.3.13 that we can obtain all
the pairs (σC , σE) ∈ S8 × S12 where σE , σC must have the same sign (recall
that we can't establish other permutations). Thus, reconstruct the proof
of Lemma 1.3.13 with 3-cycles contained in the orientation in accordance
with Figure 4.2 and observe that this can always be done due to the proof
of Lemma 1.3.21 and of Lemma 1.3.22. Now, let P be the set of the newly
constructed permutations (obviously nonempty). Thus τ1, τ2 ∈ P and since
both τ1, τ2 are contained in the orientation according to Figure 4.2, we know
that τ1τ2 ∈ P. Hence P ≤ GR since GR is �nite.
Secondly, let us prove that | P ∩ F | = 1 and PF = GR. | P ∩ F | = 1
is clear since the only element in common is the identity. Finally, recall
that |P| = 8!12!

2 , |F| = 21137 and since |PF| = |P||F| = 372108!12! = |GR|
according to the proof of Theorem 1.3.24, we know that PF = GR. Hence
P is a complement of F .

Corollary 4.3.13. GR ∼= F oϕ P where ϕ is left conjugation by P on F .

Proof. Apply Theorem 4.3.9.

Remark 4.3.14. It is interesting to note that this complement is far from
unique. We know that it is possible to �nd at least 21137 di�erent comple-
ments. So, how many are they?

Neither F nor P gives much information about the group GR itself.
Continuing in the same manner with the subgroups F and P we can hopefully
obtain a more �enlightened� group.

De�nition 4.3.15. Let ~v ∈ Znk then sum(~v) =
∑n

i=1 ci where ci is the
coordinate i in ~v.

Proposition 4.3.16. F is isomorphic to the abelian group Z7
3 × Z11

2 .

Proof. Let C, E be the sets of corner rotations and edge rotations respec-
tively. These are obviously two subgroups of F , where both of them are
normal and |E ∩ C| = 1. Using the same de�nition of the orientations as
before, we know from Proposition 1.3.17, Proposition 1.3.19 in the common
part that C = {~c ∈ Z8

3 | sum(~c) = 0} and E = {~e ∈ Z12
2 | sum(~e) = 0}.

For ~c1, ~c2 ∈ C we have that sum(~c1 + ~c2) = sum(~c1) + sum(~c2) = 0. Thus
~c1 + ~c2 ∈ C and C forms a subgroup of Z8

3. But the only isomorphic alterna-
tive for C is Z7

3 since |C| = 37 by Lemma 1.3.22 and the fundamental theorem
of �nitely generated abelian groups gives the rest. An equivalent calculation
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shows the same for E. Thus since |EC| = |E||C| = 21137 = |F| by the proof
of Theorem 1.3.24 in the common part we know F ∼= E × C ∼= Z11

2 × Z7
3.

Now it is also desireable to look at the structure of the group P.

Proposition 4.3.17. P is isomorphic to (A8 × A12) oϕ Z2 where ϕ is left
conjugation by Z2 on (A8 ×A12).

Proof. We know from the proof of Lemma 1.3.13 in the common part that
a subgroup of even permutations only permuting edges is isomorphic to A12

and that another subgroup of even permutations only permuting corners
is isomorphic to A8. Denote the isomorphic copies inside P by E and C
respectively. It is clear that subgroups only permuting edges exclusively
or corners are normal inside P and that E ∩ C = 1. Thus P ≥ EC ∼=
A8 × A12 according to Theorem 4.3.8. It is immediate that A8 × A12 is
normal inside P since it has index 2 (recall that |P| = 8!12!12 from the
proof of Theorem 1.3.24, common part). But now we want a complement
K ≤ P such that |A8×A12 ∩K| = 1. Consequently, K can be the subgroup
generated by any odd permutation of order two inside P; to be precise, this
means that the pair (σC , σE) ∈ S8 × S12 according to Lemma 1.3.13 is odd
and that it has order 2. Hence |(A8 × A12) ∩K| = 1 since K contains the
identity and an odd permutation. Furthermore we know that K ∼= Z2 since
it is cyclic. Thus, |(EC)K| = |E||C||K| = 8!12!12 = |P| and by Theorem
4.3.9 we know that (EC)K ∼= (A8 ×A12) oϕ Z2 where ϕ is left conjugation
by Z2 on (A8 ×A12).

Thanks to all of the calculations above the proof of the theorem below
is very short. The theorem shows the structure of Rubik's Cube.

Theorem 4.3.18. Let GR be the abstract group of Rubik's Cube,
then GR ∼= ((Z11

2 ×Z7
3)oϕ1((A12×A8)oϕ2Z2)) where ϕ2, ϕ1 is left conjugation

by Z2 on (A8 ×A12) and by (A12 ×A8) oϕ2 Z2 on Z11
2 × Z7

3 respectively.

Proof. Firstly, it's known from Corollary 4.3.13 that GR ∼= F oφ1 P where
φ1 is left conjugation. Secondly, we know that F ∼= Z7

3 × Z11
2 according

to Proposition 4.3.16. Lastly, P ∼= (A8 × A12) oϕ2 Z2 in accordance with
Proposition 4.3.17. Thus GR ∼= ((Z11

2 × Z7
3) oϕ1 ((A12 × A8) oϕ2 Z2) which

proves the theorem.
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4.4 An element of greatest order

Let us begin this section by writing out the Theorem which is the main
result.

Theorem 4.4.1. An element of greatest order in Rubik's Cube has order
1260.

The mothergroup of a group G is a group in which G is contained. Now
recall from the introduction that the outline, in order to prove the theorem,
is the following:

(1) Find a condition for orders of elements in GR.
(2) Prove a general theorem that especially con�nes the orders of GR.
(3) Find a way to express the orders in the mothergroup of GR.
(4) Find the supremum of the set of orders of the mothergroup.
(5) Prove the existence of an element having this order inside GR.

In e�ect, let us summarise some facts about Rubik's Cube that are help-
ful in the quest of �nding an element of greatest order. Afterwards, the
general theorem describing orders in the mothergroup of GR will be written
out. The theorem is important in the sense of con�ning the possible orders
in Rubik's Cube.

Let (~v, σ), (~u, τ) ∈ (Z8
3 oϕ S8), we know from Page 1.3.3

(~v, σ) ∗ϕ (~u, τ) = (~v + ϕσ(~u), στ) (4.4.1)

where ϕσ acts as a permutation on the coordinates according to σ−1. This
notation is a bit tedious, therefore we will denote ϕσ(~u) by σ.~u . It is
exactly the same for any element in Z12

2 oϕ S12. Furthermore, we know from
Theorem 1.3.23 that GR ≤ (Z8

3 oϕ1 S8) × (Z12
2 oϕ2 S12) where (~v, σ, ~u, τ) ∈

(Z8
3 oϕ1 S8)× (Z12

2 oϕ2 S12) is in GR if and only if:

(1) sgn(σ) = sgn(τ)
(2) sum(~v) = 0
(3) sum(~u) = 0

(4.4.2)

Equation 4.4.1 implies quickly a condition for an element of order d in
each coordinate of the direct product. Let (~v, σ) ∈ Z8

3 oϕ1 S8 and (~u, τ) ∈
Z12
2 oϕ2 S12, then

~v + σ.~v + · · ·+ σd1−1.~v = ~0 , σd1 = id

~u+ τ.~u+ · · ·+ τd2−1.~u = ~0 , τd2 = id
(4.4.3)

Now when we have a bit of information about the problem of actually
determining the greatest order of an element, we continue by writing out the

73



theorem mentioned in the beginning of this section. Before doing this, it is
worth stressing the importance of this theorem. Recall from Equation 4.4.3
that in order to have an element of a certain order, it's necessary that the
sum in Equation 4.4.3 is equal to the zero vector. If all the values d1,d2 for
which the sum is the zero vector are known, it is an easy task to calculate the
least common multiple of the orders of the permutations, and of the given
values d1,d2. E�ectively, let us continue by con�ning the values for which
the sum is the zero vector when the permutation is a cycle.

Theorem 4.4.2. Let n, k ∈ N \ {0}, k ≥ 2 and let σ be a n-cycle in Sn.
(1) If d is any positive divisor of nk, then there exists at least one ~v ∈ Znk
such that

∑d−1
i=0 σ

i.~v = ~0 and
∑q−1

i=0 σ
i.~v 6= ~0 for 0 < q < d.

(2) Let ~u ∈ Znk . If d 6= 0 is the smallest positive integer such that
∑d−1

i=0 σ
i.~u =

~0, then d | nk.

Proof. Part (1), assume that d | nk and σ = (12 . . . n). The statement will
be divided in two cases and afterwards generalised to an arbitrary n-cycle.

(a) d = n1k1 where n1 | n and k1 | k such that k1 6= 1.
Now, let x ∈ Zk such that |x| = k1; this is possible since Zk is cyclic.
Consider the vector ~v = (0, . . . , x,︸ ︷︷ ︸

length n1

0, . . . , x,︸ ︷︷ ︸
length n1

. . . 0, . . . , x︸ ︷︷ ︸
length n1︸ ︷︷ ︸

length n

) and observe that ~v

can always be constructed since n1 | n. From the fact that σ = (12 . . . n),
it's clear that

∑n1−1
i=0 σi.~v = (x, x, . . . , x). Furthermore, since |x| = k1 we

know that
∑n1k1−1

i=0 σi.~v = k1(x, x . . . , x) = ~0 and that
∑a−1

i=0 σ
i.~v 6= ~0 for

0 < a < n1k1. Hence the statement holds for conditions under (a) with the
given σ.

(b) d = n1 where n1 | n.
Here it's necessary to choose a vector di�erently from the case (a). If d 6= 1,
then let x ∈ Zk and x 6= 0. Now, consider the vector:

~v = (0, . . . ,−x, x,︸ ︷︷ ︸
length d

0, . . . ,−x, x,︸ ︷︷ ︸
length d

. . . 0, . . . ,−x, x)︸ ︷︷ ︸
length d︸ ︷︷ ︸

length n

and we see directly that
∑d−1

i=0 σ
i.~v = ~0 and that

∑b−1
i=0 σ

i.~v 6= ~0 for 0 < b < d.
If d = 1, then ~v = ~0 which is the trivial case. Hence the statement holds for
conditions under (b) with the given σ.

To generalise the above proof for a general n-cycle τ , let us note that
τ = ασα−1 since σ and τ have the same type(σ, τ, α ∈ Sn). Let ~u ∈ Znk
and note also that if

∑d−1
i=0 σ

i(α−1.~u) = ~0, then
∑d−1

i=0 τ
i.~u = α(id + σ +
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· · ·+ σd−1)α−1.~u = ~0. Thus let ~u = α.~v, which proves the statement in the
general case.

Part (2), assume that ~v ∈ Znk and σ ∈ Sn. Let Pn(σ) = 1 +σ+ ...+σn−1

denote a polynomial in σ, and P0(σ) = 0. Let a, b be positive integers such
that d = ab, then we know that Pn(σ) = Pa(σ

b)Pb(σ) = Pb(σ
a)Pa(σ). Let

n = mq + r where m, q, r integers such that 0 ≤ r < q. If Pq(σ)(~v) = ~0 then
Pmq(σ)(~v) = Pm(σq)Pq(σ)(~v) = 0 ⇒ σrPmq(σ)(~v) = ~0. This means that if
Pd(σ)(~v) = ~0 and Pq(σ)(~v) = ~0, then Pd(σ)(~v) = σrPmg(σ)(~v)︸ ︷︷ ︸

=~0

+Pr(σ)(~v) =

~0 ⇒ Pr(σ)(~v) = ~0. E�ectively, let Pd(σ)(~v) = ~0 and d0 be the smallest
integer such that Pd0(σ)(~v) = ~0, then Pd(σ)(~v) = σrPqd0(σ)(~v) +Pr(σ)(~v) =
~0 (0 ≤ r < d0). But since d0 is the smallest integer, this forces r = 0, hence
d0 | d.

Now let us look at Pnk(σ)(~v), we know that Pnk(σ)(~v) = Pk(σ
n)Pn(σ)(~v) =

Pk(1)Pn(σ)(~v) = kPn(σ) = ~0 since ~v ∈ Znk . But this means that if we let
d0 ≥ 1 be the smallest positive integer such that Pd0(σ)(~v) = ~0, then d0 | nk.
This proves the second statement of the theorem.

A natural question is now, if it's possible to generalise the above theorem
for any permutation σ ∈ Sn. This is indeed the case, but �rst we need a
lemma.

Lemma 4.4.3. Let n, ci ∈ N \ {0} and let l = lcm(c1, c2, . . . , cs).
If A = {lcm(d1, d2, . . . , ds) : di | cin} and B = {k ∈ N \ {0} : k | ln}, then
B = A.

Proof. We will show that A ⊆ B and B ⊆ A ⇔ A = B.

lcm(c1n, c2n, . . . , csn) = lcm(. . . lcm(lcm(c1n, c2n), c3n) . . . , csn) ⇔
lcm(c1n, c2n, . . . , csn) = lcm(. . . lcm(n · lcm(c1, c2), c3n) . . . , csn) ⇔

lcm(c1n, c2n, . . . , csn) = n · lcm(c1, c2, . . . , cs) = ln.

Take an a = lcm(d1, d2, . . . , ds) ∈ A, but di | cin which means that a must
divide lcm(c1n, c2n, . . . , csn) = ln, thus A ⊆ B.
Let b ∈ B, by de�nition we know that b | ln. Therefore, let b = n1l1
where n1 | n and l1 | l. It is obvious that if l = lcm(c1, c2, . . . , cs), then
l1 = lcm(c̃1, c̃2, . . . , c̃s) where c̃i | ci. In e�ect, let us choose ki = n1c̃i
which implies that b = lcm(k1, k2, . . . , ks) = lcm(n1c̃1, n1c̃2, . . . , n1c̃s) =
n1lcm(c̃1, c̃2, . . . , c̃s) = n1l1. But ki | nci, thus b ∈ A ⇒ B ⊆ A and hence
A = B.

Theorem 4.4.4. Let n, k ∈ N \ {0} and let σ ∈ Sn where s = |σ|.
(1) If d is any positive divisor of sk, then there exists at least one ~v ∈ Znk
such that

∑d−1
i=0 σ

i.~v = ~0 and
∑q−1

i=0 σ
i.~v 6= ~0 for 0 < q < d.
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(2) Let ~u ∈ Znk . If d 6= 0 is the smallest positive integer such that
∑d−1

i=0 σ
i.~u =

~0, then d | sk.

Proof. Part (1): If ~v ∈ Znk , then we can partition the coordinates in ~v accord-
ing to the orbits of σ. A cell of the partition of ~v will be denoted subvector
of ~v. Thus, we know that

∑d−1
i=0 σ

i.~v = ~0 when the corresponding sums of
all the subvectors of ~v are zero, because they permute internally according
to the cycles of σ. Hence from Theorem 4.4.2 we know that we can es-
tablish a subvector of ~v for each divisor q of kr ,where r is the size of the
orbit, such that the subvector is zero in the sum

∑q−1
i=0 σ

i.~v and nonzero in∑c−1
i=0 σ

i.~v where 0 < c < q. Thus, we can construct a vector ~u ∈ Znk for each
a ∈ A = {lcm(d1, d2, . . . , dm) : di | cik} where ci is the size of an orbit cor-
responding to a subvector, such that

∑a−1
i=0 σ

i.~u = ~0 and that
∑c−1

i=0 σ
i.~u 6= ~0,

0 < c < a. But from Lemma 4.4.3 we know that A = {z ∈ N \ {0} : z|sk}
since s = lcm(c1, ...cm). This proves the statement.

Part (2) is proved in Theorem 4.4.2.

Remark 4.4.5. Knowing that the theorem is true, it gives very nice conditions
for orders of elements in the group (Z8

3 oϕ1 S8)× (Z12
2 oϕ2 S12). Maybe it is

possible to prove a similar theorem applieable to GR? That is, to take into
account that the vector sums is zero. This can be examined by regarding
the vectors in the proof of Theorem 4.4.2.

Finally it's time to investigate an element of greatest order in GR. What
is done in the previous page is actually to give a general condition not only
applicable to GR. Of course we can't apply the conditions in Theorem 4.4.4
directly to describe all the possible orders of elements in Rubik's Cube, since
we can't guarantee the existence of ~v in the theorem. But what we can do
is to describe all the orders of the group in which GR is contained, thus
making it plausable that maybe, if we �nd an element of greatest order in
(Z8

3oϕ1S8)×(Z12
2 oϕ2S12), then this element is found inGR. Let us start with

the general question of determining all possible orders of the mothergroup
of GR.

De�nition 4.4.6. The set of induced orders by σ ∈ Sn in Znk is Dσ = {z ∈
N \ {0} : z divides k|σ|}

Example 3. Let G = (~v, σ) ∈ Z8
3 oϕ1 S8 where ~v is arbitrary and σ =

(12345)(67) ⇒ |σ| = 10. Let us now study powers of (~v, σ). We know
that (~v, σ)d1 = (~0, id) ⇔ (~v + σ.~v + · · · + σd1−1.~v, σd1) = (~0, id). But the
left coordinate is exactly the sum given in Theorem 4.4.4, hence we know
directly for which d1 the sum is ~0. The values are in this case all the divisors
of 3 ∗ 10 = 30, since according to Theorem 4.4.4 (1), there is a ~v for each
d|30 such that ~v + σ.~v + · · · + σd−1.~v = ~0 ( 6= ~0 for values less than d).
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Furthermore, according to (2) we know that there can not exist a vector ~v
such that ~v+σ.~v+ · · ·+σq−1.~v = ~0 and q is not a divisor of 30. This implies
that if we want to study orders of elements inside G, we can just look at
the least common multiple between the order of σ and members of the set
of induced orders by σ.

A direct consequence of this example is the theorem below.

Theorem 4.4.7. Let G = (Z8
3 oϕ1 S8)× (Z12

2 oϕ2 S12) and σ ∈ S8, τ ∈ S12.
Furthermore let Dσ,Dτ be the sets of induced orders by σ and by τ in Z8

3,
Z12
2 respectively, then:

(1) the set Oσ,τ = {lcm(lcm(dσ, |σ|), lcm(dτ , |τ |)) : dσ ∈ Dσ, dτ ∈ Dτ}
contains all the possible orders given by σ and by τ , and consequently
(2) the set O =

⋃
σ∈S8,τ∈S12

Oσ,τ contains all the possible orders of G.

Proof. Part (1), let ~v ∈ Z8
3 and ~u ∈ Z12

2 be two arbitrary vectors. It's known
from Condition 4.4.3 that (~v, σ)d = (~0, id)⇔ (~v + σ.~v + · · ·+ σd−1.~v, σd) =
(~0, id). But we know from Theorem 4.4.4 that

∑d−1
i=0 σ

i.~v = ~0 for d | 3|σ| and
that this holds only for d (6= ~0 for values less than d). But d = dσ ∈ Dσ,
which means that the orders of elements inside Z8

3 oϕ1 S8, given by σ, are
lcm(dσ, |σ|). A similair argument for τ and the arbitrary vector ~u shows
that the orders of elements inside Z12

2 oϕ2 S12, given by τ , are lcm(dτ , |τ |).
E�ectively, since we have the orders in each coordinate in the direct product
of G, it's clear that Oσ,τ = {lcm(lcm(dσ, |σ|), lcm(dτ , |τ |)) : dσ ∈ Dσ, dτ ∈
Dτ} contains all possible orders inside G, given by σ and by τ .
Part (2) is just a direct consequence of Part (1) as indicated in the theorem.

Remark 4.4.8. It is very important to observe that the orders in G only
depend on the orders of the permutations in S8 and in S12.

Let us not be too hasty and trying to �nd supO in order to search this
element in GR. There is a huge probability that we will not �nd the element
in GR since the parity condition in Condition 4.4.2 will reduce the number
of orders dramatically. Therefore, let us look at a subset of O where the
parity condition holds.

Remark 4.4.9. The cases one needs to consider in the unconstrained group
are not too many and supO is actually 2520, hence giving at the moment a
upper limit of 2520.

Since we observed in Remark 4.4.8 that the orders of elements inside G
only depend on the orders of the permutations, we can partition the integers
8 and 12. These partitions will correspond to the sizes of the possible orbits
in the permutations, hence making it easy to �nd the possible orders of the
permutations. The number of partitions of 8 is 22 and of 12 is 77, thus it
does not make sense writing out all of them. Therefore a list of the partitions
of 8 is satisfactory because the method applied is the same for 12.
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A list of even partitions
7+1
6+2
5+3

5+1+1+1
4+4

4+2+1+1
3+3+1+1
3+2+2+1

3+1+1+1+1+1
2+2+2+2

2+2+1+1+1+1
1+1+1+1+1+1+1+1

A list of odd partitions
8

6+1+1
5+2+1
4+3+1
4+2+2

4+1+1+1+1
3+3+2

3+2+1+1+1
2+2+2+1+1

2+1+1+1+1+1+1

Analysing these lists, one �nds quickly all the possible orders of per-
mutations in S8. They are just written out here without calculations since
the author �nds this very straightforward (just look at the lcm of the par-

titions). Let A(8)
o be the set of orders of odd permutations and A

(8)
e the set

of orders of even permutations, we then summarise it in the equations below.

A(8)
e = {1, 2, 3, 4, 5, 6, 7, 15} (4.4.4)

A(8)
o = {2, 4, 6, 8, 10, 12} (4.4.5)

Analysing the permutations in S12 in the same manner we will obtain
the sets below.

A(12)
e = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 20, 21, 30, 35} (4.4.6)

A(12)
o = {2, 4, 6, 8, 10, 12, 14, 18, 20, 24, 28, 30, 42, 60} (4.4.7)

Finally it's time to actually give a strong upper limit for the elements
in GR. This will be done by looking at the subset Op ⊆ O where p stands
for parity i.e the permutations in Theorem 4.4.7 who are both even or both
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odd. Furthermore, we see from Theorem 4.4.7 that the induced orders by
σ ∈ S8 in Z8

3 can be a product of 3 and that the induced orders by τ ∈
S12 in Z12

2 ca be a product of 2. If they are not, we are only examining
the orders of the permutations. Thus we can assume, in order to �nd the
maximum value of Op, that the induced orders are 3|σ| and 2|τ |, hence
the least common multiples are always lcm(3|σ|, 2|τ |). This means that

supOp is the same as supremum of the set B = {lcm(3a, 2b) | a ∈ A
(8)
e , b ∈

A
(12)
e or a ∈ A

(8)
o , b ∈ A

(12)
o }. A quick examination of the multiples, one �nd

that supOp = supB = lcm(3 ∗ 15, 2 ∗ 14) = 1260. Let us state this in a
lemma in order to �nd an element of greatest order. The proof is omitted of
course since all the calculations are done.

Lemma 4.4.10. The upper limit for orders of elements in Rubik's Cube is
1260.

The �nal result of this section is stated and prooved in the theorem below

Theorem 4.4.11. An element of greatest order in Rubik's Cube has the
order 1260.

Proof. Let A ⊆ GR be the set of elements with order 1260. We will now
prove that this set is nonempty, hence proving the theorem. Take σ =
(12345)(678) ∈ S8 and ~v = (1, 0, 0, 0, 0, 0, 0, 0, 2) ∈ Z8

3. Now take τ =
(1234567)(89)(10 11) ∈ S12 and ~u = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) ∈ Z12

2 . We
realise quickly that sum(~v) = 0, sum(~u) = 0 and sgn(σ) = sgn(τ), hence
by Condition 4.4.2 this is a valid element of GR.
Let us examine the order of this element in (Z8

3oϕ1 S8)× (Z12
2 oϕ2 S12). The

induced order of ~v by σ is 3 ∗ lcm(5, 3) = 3 ∗ 15 and the induced order of ~u
by τ is 2∗ lcm(7, 2, 2) = 2∗14. Thus |(~v, σ, ~u, τ)| = lcm(3∗15, 2∗14) = 1260
and A 6= ∅. But we know from Lemma 4.4.10 that this is the greatest order,
hence proving the theorem.
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Chapter 5

�The Void Cube�

by Olof Bergvall

Abstract

The Void Cube is a variation of Rubik's Cube obtained by making the center
facets indistinguishable. We see that also the Void Cube may be given a
group structure and that this group can be seen as a subgroup of the Rubik's
Cube group.

Figure 5.1: The Void Cube.

5.1 Introduction

The Void Cube is a variation of Rubik's Cube that is obtained by making
the center facets indistinguishable. The manufacturer of the Void Cube
achieves this by removing the center of the cube, though the same e�ect
can be obtained by simply painting the center facets black. However, by
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removing the center one acquires the �rst iteration of a Menger sponge, a
three dimensional fractal set similar to the Sierpinski triangle.

In Rubik's Cube the center facets serve as a reference frame since their
relative positions never change. Thus, when this reference frame is removed
some states that used to be di�erent become indistinguishable. A number
of natural questions arises. Do the states of the Void Cube form a group?
In that case, which cardinality does this group have? Which distinguishable
states in Rubik's Cube are indistinguishable in the Void Cube?

In the following sections we will see that the states of the Void Cube
indeed form a group, which we shall denote GV . This group is a subgroup
of GR of cardinality 1

12 |GR|, where GR is the Rubik's Cube group. The
states of Rubik's Cube that become indistinguishable in the Void Cube form
a subgroup of GR isomorphic to A4, the group of rotational symmetries of
a tetrahedron. However, we shall see that A4 is not normal in GR so GV
is not expressible as a quotient GR/A4. We shall also �nd that GV is not
normal in GR so it is not possible to express the relationship between GR
and GV by expressing GR as a semidirect product GV o A4. Section 5.5.3
is devoted to somewhat overcome these di�culties. In the last section some
possible generalisations are informally discussed.
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5.2 Solved States of the Void Cube

In this section we shall discuss the states of Rubik's Cube that appear as
solved when seen as states of the Void Cube. We have mostly discussed
Rubik's Cube in terms of permutations and orientations of cubies. When
discussing solved states of the Void Cube it turns out to be more useful to
use terms of (allowed and forbidden) permutations of facets, although we
shall occasionally use the �old� terminology as well.

The main results of this section is summarised in the following theorem:

Theorem 5.2.1. The states of Rubik's Cube that appear as solved states of
the void cube are

(i) the (one) identity state (see Figure 5.2a),

(ii) the (three) states where two opposite center facets are �xed and the two
other opposite pairs of center facets are transposed (see Figure 5.2b)
and

(iii) the (eight) states where two sets of three pairwise adjacent center facets
are permuted cyclically around two opposite corners (see Figure 5.2c).

(a) Case 1. (b) Case 2. (c) Case 3.

Figure 5.2: The three cases.

A state of a Rubik's Cube will be a solved state of a Void Cube precisely
if it is obtained from a solved Rubik's by permuting its center facets in some
way. Since there are six faces of the cube, a person without any knowledge
about Rubik's Cube might expect 6! of the states of Rubik's Cube to be
solved states of the Void Cube. However, we know that the relative positions
of the center facets never change and we therefore conclude that 6! is a gross
overestimation.

To obtain a more reasonable upper bound (and eventually the correct
number) we may reason as follows. Consider a solved Void Cube, such as
the one seen in Figure 5.1. We may construct a state of Rubik's Cube
from the solved Void Cube by �rst choosing one of the six �holes� to be,
for instance, the white center facet. Since the relative con�guration of the
center facets is �xed we know that the opposite center facet must be the
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yellow one (provided that the standard colouring is used, see Figure 5.2 for
the standard colouring). We then have a certain freedom in choosing how to
place the remaining center facets. Let us begin by placing the blue center
facet. There are four �holes� left and any is valid. When we have chosen the
hole to contain the blue center facet we know that the green center facet must
be opposite. The placement of the remaining center facets is now completely
determined. Hence there are at most 6 ∗ 4 = 24 states of Rubik's Cube that
appear as solved states in the Void Cube.

Figure 5.3: Permuting four adjacent center facets.

The states described above are the only ones that satisfy the requirement
that the relative con�guration of the center facets is �xed. This is however
not enough for the states to be valid states of Rubik's Cube. Consider, for
instance, the state obtained by �xing one of the center facets in its right
place and thereafter permuting the adjacent center facets counterclockwise
one step, as seen from the �xed facet, see Figure 5.3. This state has the
required relative con�guration of the center facets. However, if we were to
obtain this state by permuting the corner and edge cubies this would require
the corner cubies to be permuted in two disjoint 4-cycles and the edges in
three disjoint 4-cycles. Hence, the permutation of the corners would be even
and the permutation of the edges would be odd. This shows that these states
are not possible states of Rubik's Cube. There are six states of this type
(each corresponding to a face of the cube) so we see that there are at most
24− 6 = 18 states of Rubik's Cube that appear as solved states in the Void
Cube.

If we instead permute the adjacent facets two steps we still end up with
the required con�guration of the center facets but this time the corner cubies
have to be permuted according to four transpositions and the edge cubies
according to six transpositions. Thus, both the permutation of the corners
and the permutation of the edges are even. This could be a possible state of
Rubik's Cube but we still have to check if the change of orientation satis�es
the conditions that we derived in the chapter about Rubik's Cube. The
choice of orientation seen in Figure 5.4 gives the same orientation before and
after the permutations, both for the edges and the corners. Hence, these
states are possible states of Rubik's Cube. There are 3 such states (since
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permuting the center facets two steps counter clockwise seen from one side
gives the same result as permuting them two steps counterclockwise seen
from the opposite side). Since the solved state of Rubik's Cube also will
appear as solved in the Void Cube we have at least 3 + 1 = 4 states of
Rubik's Cube that appear as solved states in the Void Cube.

Figure 5.4: A choice of orientation.

To continue the investigation pick a center facet, X, and place it in
the hole of the Void Cube opposite to its right place. Since the relative
con�guration of the center facets is �xed it is impossible to have one center
facet in the hole opposite to its right place while all adjacent center facets
are in their right places. However, it is possible to have two center facets
adjacent to X and opposite to each other, in their right positions (in fact,
this is one of the states we obtain by permuting the four facets adjacent to a
�xed center facet two steps counterclockwise). If we permute the four center
facets adjacent to X one step counterclockwise, see Figure 5.5, we obtain a
state where no center facet is in its right place that is in accordance with
the relative con�guration of the center facets. We now want to see if this is
a possible state of Rubik's Cube.

Figure 5.5: The center facets on the grey faces are wrong and the center
facets on the white faces are right before the counter clockwise permutation
by one step.

To obtain the required state the corner cubies have to be permuted by
four transpositions, see Figure 5.6a. The edges on the other hand have to
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be permuted by �ve transpositions, see Figure 5.6b (one of the black kind
and four of the grey kind). The remaining two edges have to be mapped to
themselves. Hence the corner permutation is even and the edge permutation
is odd. Hence this state is impossible. There are 6 such states (each corre-
sponding to a particular center facet of Rubik's Cube) so we have at most
18−6 = 12 states of Rubik's Cube that appear as solved in the Void Cube.

(a) Corner transposition. (b) Edge transpositions.

Figure 5.6: The di�erent transpositions.

Let us again pick a center facet, X, but this time we place it in one of
the holes adjacent to its right position (and once the position of X is known,
the position of the center facet opposite to X is known). Because of the
�xed relative con�guration of the center facets it is impossible for the four
remaining center facets to all be in their right positions, however two may
be. Let us place the center facets in such a way. Now we permute the four
center facets adjacent to X one step counter clockwise, seen from X. The
resulting state is a permutation of the center facets in two disjoint 3 cycles,
see Figure 5.7.

Figure 5.7: The permutation of the center facets.

We now consider if this is a possible state of Rubik's Cube. Two of
the corner cubies are in their right positions, (but are turned 1 respectively
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2 steps counter clockwise). The other corner cubies are permuted in two
disjoint 3-cycles. The edges are permuted in four disjoint 3-cycles. Hence
both the permutation of the corners and the permutation of the edges are
even. From Figure 5.8 we see that two corners have unchanged orientation,
three corners have orientation of type 1 and three of type 2. Hence the sum
of the changes of orientation is 3∗1+3∗2 = 9 which is a multiple of 3. From
Figure 5.9 we see that four edges have unchanged orientation and eight have
changed orientation. Hence the sum of the changes of orientation is 8∗1 = 8
which is a multiple of 2.

Of course, the sum of the changes of orientation depends on our particular
choice of de�nition of orientation but the fact that they are multiples of 3
and 2 respectively is independent of choice of orientation, by the chapter
about Rubik's Cube. Hence the permutations of the corners and the edges
are both even and the sum of changes of orientations is a multiple of 3 for
the corners and a multiple of 2 for the edges. This state is thereby a possible
state of Rubik's Cube.

There are 8 such states (since there are 4 ways of placing X and per-
muting the adjacent center facets counter clockwise one step and 4 ways of
choosingX and permuting the adjacent center facets clockwise one step. The
latter case is not included in the discussion above, but choosing the center
facet X ′ opposite to X instead of X reduces this case to the case discussed
above). Hence there are at least 4 + 8 = 12 states of Rubik's Cube that will
appear as solved in The Void Cube. But we have already seen that there are
at most 12 states that appear as solved in the Void Cube. This shows that
there are precisely 12 such states.

We conclude this section by restating Theorem 5.2.1:

Theorem 5.2.1 The states of Rubik's Cube that appear as solved states
of the void cube are

(i) the (one) identity state (see Figure 5.2a),

(ii) the (three) states where two opposite center facets are �xed and the two
other opposite pairs of center facets are transposed (see Figure 5.2b)
and

(iii) the (eight) states where two sets of three pairwise adjacent center facets
are permuted cyclically around two opposite corners (see Figure 5.2c).
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(a) A de�nition of orientation. (b) A state of the considered
type.

Figure 5.8: Orientation of the corners before and after the permutation.

(a) A de�nition of orientation. (b) A state of the considered
type.

Figure 5.9: Orientation of the edges before and after the permutation.
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5.3 Transpositions in the Void Cube

The main result of this section is:

Theorem 5.3.1. In the Void Cube, corner cubies and edge cubies may be
transposed independently.

We saw in Section 5.2 that it is impossible to permute the center facets
of Rubik's Cube in a way which �xes two opposite facets while it permutes
the other four cyclically. The reason for this was that such a state would
require the corner cubies to be permuted by four transpositions while the
edges had to be permuted by �ve transpositions. However, if we require all
cubies, except two opposite edge cubies of a face of the cube, to be permuted
as described in Figure 5.10 we obtain a possible state of Rubik's Cube. The
state in Figure 5.10 is possible because it requires the corners to be permuted
in two 4-cycles and the edges in two 4-cycles and two transpositions, i.e. both
the corners and the edges are permuted evenly, while it is possible to de�ne
the orientation such that this state has orientation 0 both for the corners and
the edges (see Figure 5.11). By the symmetry of the cube we may transpose
any pair of facewise opposite edge cubies (�facewise opposite� means that the
edge cubies are opposite on a particular face of the cube, see Figure 5.10b).

(a) The state of Rubik's
Cube.

(b) The state in the Void
Cube.

Figure 5.10: A transposition of edges.

We may permute one pair of facewise opposite edge cubies and at the
same time transpose any other pair of edge or corner cubies. The permu-
tation of the edges will thus have the same sign as the permutation of the
corners so this is a valid state of Rubik's Cube. If we regard the state as
a state of the Void Cube we may now transpose the pair of facewise op-
posite edges back to their original position leaving only the other pair of
cubies transposed. This shows that any pair of edge or corner cubies may
be transposed without any other e�ect on the Void Cube.
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Figure 5.11: A de�nition of orientation.
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5.4 The Void Cube Group

Since it is possible to de�ne a group that describes the di�erent states of
Rubik's Cube it is natural to ask whether this is possible for the Void Cube
as well. The easiest way to do so would be to use the states of Rubik's Cube
that become solved in the Void Cube to de�ne an equivalence relation on
Rubik's Cube and then let the equivalence classes be the Void Cube group,
i.e. to describe the Void Cube by a group of fractions. However, for this to
make sense the set of elements of the Rubik's Cube group that becomes the
identity in the Void Cube group must be a normal subgroup of the Rubik's
Cube group. To simplify the further discussion we denote the Void Cube
group (yet unde�ned) by GV and the set of states of Rubik's Cube that are
solved states of the Void Cube by GI . Remember that the Rubik's Cube
group, GR, is the set

GR ={(σC , oC , σE , oE) : σC ∈ S8, σE ∈ S12, oC ∈ Z8
3 , oE ∈ Z12

2 ,

sgn(σC) = sgn(σe),

8∑
i=1

oC,i ≡ 0(3),

12∑
i=1

oE,i ≡ 0(2)}

under the product de�ned by

(σC , oC , σE , oE)(πC , o
′
C , πE , o

′
E) = (σCπC , oC + σC .o

′
C , σEπE , oE + σE .o

′
E).

Since each state in GI �xes the relative positions and orientations of the
corners and edges, a product of states in GI will also have this property. We
deduce that GI is a subgroup of GR. For GI to be normal we must have
g−1sg ∈ GI for all g ∈ GR and s ∈ GI . Let g be the element depicted in
Figure 5.12a and let s be the element depicted in Figure 5.12b. We see that
g−1sg /∈ GI (g transposes two pairs of edge cubies on the white face, s moves
the pairs to the yellow face and g−1 = g transposes two other pairs of edge
cubies). Hence GI is not normal so the suggested approach to the problem
would not be very fruitful.

Instead we might try to mimic the approach used when the Rubik's Cube
group was constructed. In that case it was easy to de�ne the �right� position
and orientation of a cubie in terms of the �xed center facets. This is clearly
not possible in this case so we need some other way of de�ning the right
position and orientation of a cubie. To do this we choose an edge cubie and
�x it (both its position and its orientation). In the solved state the relative
con�guration of the colours of the faces is �xed so �xing this edge cubie
de�nes the right position and orientation of each cubie, see Figure 5.13.

Note that �xing an edge cubie makes two moves �forbidden� (in our
case F and D). On the other hand it is no longer meaningful to �forbid�
rotations of the center layers that do not contain the �xed edge cubie. It
is thus better to discuss the Void Cube, described in this way, through the
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(a) g ∈ GR. (b) s ∈ SR.

Figure 5.12: An element of GR and an element of SR.

Figure 5.13: A de�nition of positions and orientations.

rotations SV = {R,L,U,B,CF , CD} where the rotation CF is a 90◦-rotation
counter clockwise of the center layer between F and B, seen from the front,
and CD is a 90◦-rotation counter clockwiseof the center layer between U and
D, seen from the down face of the cube. Our previous discussion of the Void
Cube through Rubik's Cube carries over to these rotations since the rotation
F in Rubik's Cube is equivalent to the sequence C−1F B and the rotation D
is equivalent to the sequence C−1D U .

Let M be the set

M = {(σC , oC , σE , oE) : σC ∈ S8, σE ∈ S11, oC ∈ Z8
3 , oE ∈ Z11

2 }.

As for Rubik's Cube we de�ne the free Void Cube group, GV , as the set of
reduced �nite sequences of the rotations in SV (and corresponding inverses).
We then de�ne a function Φ : GV → M by �rst de�ning the image of the
elements in SV as the permutations and orientation changes corresponding
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to that particular rotation

Φ(R) = ((2583), (0, 0, 0, 0, 0, 0, 0, 0), (2 7 9 5), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) ,

Φ(L) = ((1476), (0, 0, 0, 0, 0, 0, 0, 0), (1 4 10 6), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) ,

Φ(U) = ((3874), (0, 0, 2, 2, 0, 0, 1, 1), (3 5 11 4), (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1)) ,

Φ(B) = ((5678), (0, 0, 0, 0, 1, 2, 1, 2), (8 10 11 9), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) ,

Φ(CF ) = (id, (0, 0, 0, 0, 0, 0, 0, 0), (4 6 7 5), (0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)) ,

Φ(CD) = (id, (0, 0, 0, 0, 0, 0, 0, 0), (1 10 9 2), (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0)) ,

and then de�ne the image of a sequence to be the product of the images of
the rotations in the sequence

Φ(X1X2 . . . Xn) = Φ(X1)Φ(X2) . . .Φ(Xn), Xi ∈ SV or X−1i ∈ SV .

We see that Φ, by de�nition, is a homomorphism from GV to the group
(M, ∗) where ∗ is de�ned by

(σC , oC , σE , oE) ∗ (πC , o
′
C , πE , o

′
E) = (σCπC , oC + σC .o

′
C , σEπE , oE + σE .o

′
E)

where σ.o, σ ∈ Sn, o ∈ Znr is de�ned by

σ.o = (oσ−1(i), oσ−1(2), . . . , oσ−1(n)).

Finally, we de�ne the Void Cube group, GV , to be the image of Φ.
As seen in Section 5.3, the corner and edge cubies can be transposed

independently, although here the reason is more apparent; Φ(CF ) and Φ(CD)
permute the corner cubies according to an odd permutation while the edges
are not permuted at all. Hence the corner cubies may be permuted according
to any permutation in S8 and the edge cubies may be permuted by any
permutation in S11.

The sums of the orientations of the generators are however still multiples
of 3 and 2, respectively. Hence the proof from the chapter about Rubik's
Cube carries over word for word.

Hence the Void Cube group can be expressed as GV ≤ (S8nZ8
3 )×(S11n

Z11
2 )

GV ={(σC , oC , σE , oE) : σC ∈ S8, σE ∈ S11, oC ∈ Z8
3 , oE ∈ Z11

2 ,

8∑
i=1

oC,i ≡ 0(3),

11∑
i=1

oE,i ≡ 0(2)}.

We see that the cardinality of the Void Cube group, |GV |, is

|GV | =
1

2 · 3
· 11! · 8! · 38 · 211 =

1

12
|GR|.

Remark 5.4.1. One could equally well de�ne positions and orientations by
�xing a corner. One would then obtain the Void Cube as a subgroup of
(S7 n Z7

3 )× (S12 n Z12
2 ).
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5.5 The Void Cube Group as a Subgroup of the

Rubik's Cube Group

As it is, it is not very obvious whether or not the Void Cube group is a
subgroup of the Rubik's Cube group or not. Intuitively, it should be but it
is very much desirable to prove this and to express the groups in a way that
makes this relationship apparent. Since it is not possible to express GV as
a quotient GR/GI we investigate the possibility to express GR as GV oGI ,
but before doing this we investigate GI a little further.

5.5.1 The Identity States Subgroup

We have already noted that the 12 states of Rubik's Cube that become the
identity in the Void Cube, GI , form a subgroup of the Rubik's Cube group.
The aim of this section is to determine the isomorphism class of this group.

We already know that |GI | = 12. There are not many isomorphism
classes of groups of order 12, in fact one can show that any group of order
12 is isomorphic to one of the following �ve groups; Z12, Z2

2 ×Z3, A4, D12 or
Z3oZ4 [1] (the group D12 is called the dihedral group of order 12 ). We note
that the �rst two groups are abelian while the other three are nonabelian.

To determine the structure it would be convenient to describe GI in a
suitable way. To attempt this we note that every state in GI corresponds to
a permutation of the center facets of Rubik's Cube. The previous discussion
suggests that opposite center facets are related in some way. We should
therefore try to take some care to describe this when we label the faces. Let
the center face on the face U be given the label 1, D be given 4, F be given
2, B be given 5, R be given 3 and L be given 6. With this choice of labels
opposite faces are of the same congruence class modulo 3.

With these labels the allowed permutations of the center faces, i.e. the
elements of GI , are

{id, (14)(25), (14)(36), (25)(36),

(123)(456), (132)(465), (153)(426), (135)(462),

(126)(453), (162)(435), (156)(423), (165)(432)}.

We see that in the last eight permutations the second 3-cycle might be deter-
mined by the �rst according to the rule; if the �rst 3-cycle is (abc) then the
second is (a′b′c′) where a′ is the element in {1, . . . , 6} of the same congruence
class modulo 3 as a but not equal to a.

Now consider the elements σ1 = (14)(25) and σ2 = (123)(456). A short
computation shows

σ1σ2 = (14)(25)(123)(456) = (156)(423)

and
σ2σ1 = (123)(456)(14)(25) = (153)(426).
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Hence σ1σ2 6= σ2σ1, so GI is not abelian and hence not isomorphic to Z12

or Z2
2 × Z3. We thus only have three candidates left.
We now remember thatD12 has elements of order 6. GI only has elements

of order 1, 2 and 3. Hence GI is not isomorphic to D12.
Now consider A4;

A4 ={id, (12)(34), (13)(24), (14)(23), (123), (132),

(124), (142), (134), (143), (234), (243)}.

Note that A4 contains three pairs of disjoint transpositions and eight 3-
cycles, not completely unlike GI . We therefore try to construct an explicit
isomorphism between GI and A4.

To do this let

H = {(123)(456), (153)(426), (126)(453), (156)(423)}

and
K = {(123), (124), (134), (234)}

We now note that

GI =< H > and that A4 =< K > .

De�ne Φ : GI → A4 by

Φ(hi) = ki, for all hi ∈ H

and
Φ(hi1 · · ·hir) = Φ(hi1) · · ·Φ(hir) = ki1 · · · kir .

Φ is clearly surjective and since we know that |GI | = |A4| = 12 we conclude
that it must also be injective. Hence Φ is a bijection.

Let σ1, σ2 ∈ GI , σ1 = hi1 · · ·hir for some hi1 , . . . , hir ∈ H and σ2 =
hj1 · · ·hjr for some hj1 , . . . , hjs ∈ H. By the de�nition of Φ we have

Φ(σ1σ2) =Φ(hi1 · · ·hirhj1 · · ·hjs) = Φ(hi1) · · ·Φ(hir)Φ(hj1) · · ·Φ(hjs) =

= Φ(hi1 · · ·hir)Φ(hj1 · · ·hjs) = Φ(σ1)Φ(σ2).

This shows that Φ is an homomorphism. Φ is thereby a bijective homomor-
phism from GI to A4. Hence GI ∼= A4, and the goal of this section is thereby
achieved.

Remark 5.5.1. The group A4 is isomorphic to the group of rotational symme-
tries of a tetrahedron. Note that in Figure 5.14, each edge of the tetrahedron
coincides with a center facet of the cube.
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Figure 5.14: A tetrahedron inside a cube.

5.5.2 Normal Subgroups of the Rubik's Cube Group

To understand Rubik's Cube more fully it is very helpful to be familiar with
its normal subgroups. This will also greatly simplify our further investigation
of the relationship between Rubik's Cube and the Void Cube. In this section
we shall therefore brie�y consider the normal subgroups of Rubik's Cube.

Several of the normal subgroups of GR are discovered quite easily through
simple observations. Firstly we have the normal subgroups

CO = {(id, oC , id, 0) : oC ∈ Z8
3 ,

8∑
k=1

≡ 0(3)},

and

EO = {(id, 0, id, oE) : oE ∈ Z12
2 ,

12∑
k=1

≡ 0(2)}.

The normality of these groups follows directly from the construction of GR.
Since CO and EO are abelian, every subgroup is normal, seen as a subgroup
of CO or EO. However, the only subgroup that remains normal when seen
as a subgroup of GR is the group

E′O = {(id, 0, id, o′E) : o′E,i = o′E,j , i, j = 1, . . . , 12}.

To see this, take a nonzero element of any other subgroup and conjugate
with a transposition that takes a nonzero coordinate outside the group in
the �rst step. This nonzero coordinate will remain nonzero after the inverse
has been applied, so the product will not be an element of the subgroup.

Now consider the subgroup that only a�ects positions and orientations
of corners. Since the edge permutation in this group is the identity and the
edge and corner permutation must have the same sign, we conclude that the
corner permutation is even. We have seen that this is the only restriction
so this group is isomorphic to A8 nCO. Since the operation of GR does not
relate the corners and the edges and A8 E S8 we conclude that this group is
normal.

With an analogous argument we also see that A12nEO is normal in GR.
Of course we may take direct products of the above subgroups to obtain

new normal subgroups, provided that their intersection is trivial. In this way

95



we obtain the groups

E′O;

EO;

CO;

CO × E′O;

CO × EO;

A8 n CO;

A12 n EO;

(A8 n CO)× E′O;

(A8 n CO)× EO;

CO × (A12 n EO);

(A8 n CO)× (A12 n EO).

We have thus found 11 nontrivial, proper normal subgroups of GR. It can
be shown that this is a complete list, see [2].

One important consequence of the above is that none of the normal sub-
groups has the same cardinality as the Void Cube group. Hence it is impos-
sible to describe the Rubik's Cube group as a semidirect product GV nGI .

Another interesting consequence is that the smallest normal subgroup
containing GI is (A8 n CO) × (A12 n EO), a subgroup of cardinality 1

2 |GR|
and a little more than 1.8 · 1018 times the cardinality of GI .

5.5.3 The Rubik's Cube Group in a New Way

One could say that the underlying reason of the di�erent appearance of GR
and GV is that their reference frames are di�erent. Rubik's Cube has a
�natural� reference frame in the center facets while the reference frame of
the Void Cube is not very natural.

However, it should be possible to describe the states of Rubik's Cube
from the same frame of reference as the Void Cube, i.e. by relating the
positions and orientations to a �xed edge cubie. A major di�erence from the
old frame is that the center facets are no longer �xed.

Let us label each center facet with an integer in the set {1, . . . , 6} in such
a way that opposite facets are congruent modulo 3. There are several ways
of labeling the center facets in such a way, but let us label them in a way
such that turning the center layers by 90◦ counter clockwise will correspond
to the 4-cycles (1245), (1346) and (2356). Since one edge cubie is �xed, we
are �forbidden� to rotate one of the center layers. Hence one of the 4-cycles
is not obtainable by a single center layer rotation. Let us assume that this
4-cycle is (2356). Now consider(

(1245)(1346)(1245)(1346)2
)3

= (2356).
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Hence (2356) is still a possible permutation of the center facets.
Now let GC =< (1245), (1346), (2356) > and let R be the group of

rotational symmetries of an ordinary cube. There are three types of rotations
in R, see Figure 5.15. If S is a set containing one rotation of each type
then < S >= R. If we label each face with an integer 1, . . . , 6 in such a
way that opposite faces are congruent modulo 3, a possible choice of S is
S = {(1245), (135)(462), (13)(25)(46)}.

Now consider
(1245)(1346) = (135)(462) (a)

and
(1245)(2356)(1245) = (13)(25)(46). (b)

Hence we can express a set of generators of R with products of generators
of GC . Hence R ≤ GC .

On the other hand, (1245) is an element of R so its inverse, i.e. (1245)3,
is also an element of R. Hence we may multiply (a) by (1245)3 from the
left and thus see that (1346) = (1245)3(135)(462) ∈ R. Similarly, we may
multiply (b) by (1245)3 from the left and the right to obtain (2356) =
(1245)3(13)(25)(46)(1245)3. Hence the generators of GC are expressible as
products of elements of R so GC ≤ R as well. This shows that GC = R.

Figure 5.15: The three types of rotations of a cube.

It is well known that R ∼= S4 so the above shows that GC ∼= S4. However,
if we take all cubies into account, that is edge and corner cubies as well
as center cubies, not all permutations of the center facets are obtainable
without a�ecting the other cubies. We have already seen that the only
permutations with this property are the permutations of GI which we have
shown to be isomorphic to A4. The odd permutations of the center facets
require that either the permutation of the corner or the edge cubies is odd.
Somewhat conversely, we saw in the section about transpositions in the Void
Cube that corner cubies and edge cubies can be transposed independently,
provided the permutation of the center facets is odd if the sign of the corner
permutation di�ers in sign from the sign of the edge permutation. This can
also be deduced from the fact that each of the moves U,B,R,L,CF , CD either
permutes four corners and four edges cyclically or permutes four centers and
four edges cyclically. Every element is a product of such elements so if a
permutation of one type of cubie is odd we must have that precisely one of
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the other two permutations must be odd and if a permutation of one type
of cubie is even the other two must either both be odd or both be even.

The above discussion leads us to de�ne:

S′R ={(g, π) : g = (σ′C , o
′
C , σ

′
E , o

′
E) ∈ GV , π ∈ S4,

an even number of π, σ′C and σ′Eare odd}.

Our aim is to �nd a binary operation, ∗ , on S′R that makes (S′R, ∗) into
a group isomorphic to GR. It is close at hand to chose ∗ to be �the usual�
operation in the �rst four coordinates and composition in the �fth. However,
this choice implies that (A8 nCO)× (A11 n ẼO) is normal in (S′R, ∗), where

ẼO = {o′E ∈ Z11
2 :

12∑
i=1

o′E,i ≡ 0(2)}.

This is not a normal subgroup of GR so this choice of ∗ is a poor one.
The failure above suggests that the center facets are not permuted in-

dependently of the edges and corners (apart from being entangled because
of the requirement of the sign). Since we have imposed a restriction on the
edges it is not too farfetched to suspect that the edges may act on the centers
in some sense.

To see why this is the case we may reason as follows. Consider a state
g in GR. The edge piece labeled 12 will have some position α and some
orientation a. We now bring it to its original position and orientation by
applying a rigid rotation of the cube, π. This will bring the cube to a state
in S′R described by s = (σC , oC , σE , oE , π) where the �rst four coordinates
generally are not the same as the coordinates in g.

Let us interpret all elements of S′R as described above. Let s1 and s2 be
elements of S′R. We may de�ne the product s1s2 by �rst mapping s1 and
s2 back to GR, taking the product of the preimages and �nally mapping the
product back to S′R.

Let us investigate the process described above more carefully. Let

s1 = (αC , aC , αE , aE , π1),

and let
s2 = (βC , bC , βE , bE , π2).

Let g1 and g2 be the preimages of s1 and s2 respectively. We see that

g1 = (π1.αC , π1.aC , π1.αE , π1.aE)

and
g2 = (π2.βC , π2.bC , π2.βE , π2.bE)
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where the action is inverse rotation of the cube. We now take the product

g1g2 =(π1.αC , π1.aC , π1.αE , π1.aE)(π2.βC , π2.bC , π2.βE , π2.bE) =

((π1.αC)(π2.βC), (π1.aC) + (π1.αC).(π2.bC),

(π1.αE)(π2.βE), (π1.aE) + (π1.αE).(π2.bE)) =

= π1.(αC(π2.βC), aC + αC .(π2.bC),

αE(π2.βE), aE + αE .(π2.bE)).

The image of g1g2, s1s2, is thus determined by π1.(αE(π2.βE))(12) and
π1.(aE+αE .(π2.bE)))12. In particular this means that the �fth coordinate of
s1s2, i.e. the permutation of the center cubies, is determined independently
of the states of the corner cubies in s1 and s2.

Further, we may take the above as a de�nition of a binary operator, ∗,
on S′R. That (S′R, ∗) is a group follows from the fact that GR is a group and
it is isomorphic to GR by the de�nition of ∗. From now on we shall denote
(S′R, ∗) by G′R.

5.5.4 The Void Cube Subgroup

G′R has an appearance that is much more similar to GV than GR. This
suggests that it might be easier to deduce whether or not GV is a subgroup
of G′R.

Note that if g is an element of GV , there are many elements in G′R
which have the same four �rst coordinates as g. If the edge and corner
permutation of g have the same sign there is an element g′ in G′R with the
same four �rst coordinates as g and the identity in the last coordinate. If
the edge permutation di�ers in sign from the corner permutation there is no
such element. However, there is an element g′′ in G′R with the same �rst
four coordinates as g and the last coordinate the permutation corresponding
to the rotation around a diagonal passing through the edge labeled 12, see
Figure 5.16. Let this permutation be denoted by χ. Then χ transposes three
pairs of center facets and is thus odd and of order two.

Figure 5.16: Rotation around a diagonal passing through the edge labeled
12.
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Now consider the map Φ : GV → G′R de�ned by

Φ((σC , oC , σE , oE)) =

{
(σC , oC , σE , oE , id), if sgn(σC) = sgn(σE),
(σC , oC , σE , oE , χ), if sgn(σC) 6= sgn(σE).

Since χ is its own inverse and the edge labeled 12 never changes position
we deduce that Im(Φ) is a subgroup of G′R. Moreover, Φ is injective and a
homomorphism so Im(Φ) ∼= GV . This shows that the Void Cube group is
a subgroup of the Rubik's Cube group, as expected. This subgroup can be
identi�ed with the subgroup of Rubik's Cube where one edge cubie, say 12,
is �xed in position i.e.

GV ∼= {g = (σC , C , σE ,E) : g ∈ GR, 12 ∈ fix(σE)} ≤ GR.
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5.6 Generalisation

As mentioned in the introduction, the Void Cube is the �rst iteration of a
fractal set called theMenger sponge. The Menger sponge is constructed from
a solid cube by dividing it into 27 smaller cubes, removing the center cube
of each face as well as the interior cube. The process is then repeated on the
smaller cubes. The second iteration is shown in Figure 5.17. As more and
more steps are carried out the remaining cubes converge to a fractal set of
(topological) dimension 1, this is what is called the Menger sponge.

Figure 5.17: The second iteration in the construction of the Menger sponge.

A possible generalisation of the Void Cube would be Menger sponge cube
of higher order. Let the n : th Menger cube be denoted Mn. Thus M0 is a
single cube, M1 is the Void Cube, M2 is the cube depicted in Figure 5.17
and so on. Let M∞ denote the group of symmetries of the Menger sponge.

Assume that the layers of Mn can be rotated as in Rubik's Cube or the
Void Cube. We can impose a group structure on Mn by assigning each facet
a unique integer and identifying a sequence of rotations of layers with the
corresponding permutation (note that we by assigning each facet a unique
integer avoid the consideration of the possibility of equivalent elements in
Mn).

We shall not delve too deeply in this subject, but a few things are rather
immediate. Firstly, we may identify the group Mn as a subgroup of Mn+1,
or higher order Menger cubes for that matter. We thus obtain an in�nite
chain of subgroups M0 ≤M1 ≤M2 ≤ . . .. Further, except for M0, Mi is not
normal in Mi+k for k ≥ 1. One may also note that Mi ≤ Mi+1 for all (at
least �nite) i.

Another possible generalisation in a slightly di�erent direction would be
to colour the interior facets of the n : th Menger cube as well, yielding a still
more complex object, see Figures 5.18- 5.19. This makes no di�erence in the
case of M0 and M1 but for higher order cubes it might.
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Figure 5.18: Inside a Menger cube (�gure used under creative commons
licence).

Figure 5.19: Inside a larger Menger cube (�gure used under creative com-
mons licence).
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Chapter 6

�The Black-and-White Cube�

by Elin Hynning

Abstract

Denna artikel behandlar problem relaterade till en Rubiks kub som är färgad
med endast två färger. Huvudproblemet som tas upp är huruvida man får
en gruppstruktur med de olika blandningarna av en tvåfärgad kub som ele-
ment och sammansättning av rotationer av kuben som binär operator. Även
antalet olika blandningar som �nns för olika tvåfärgade kuber tas upp, samt
hur många färger man behöver för att få en gruppstruktur av ovan nämnda
typ.

Något överraskande visar det sig att man inte får någon gruppstruktur
som är analog med den som bestämts för Rubiks kub när man betraktar en
tvåfärgad kub. Anledningen till detta är att den binära operatorn inte blir
välde�nierad när en kub har �era identiska bitar. Därför undersöks även om
man kan få någon grupp mindre än Rubiks Grupp genom att märka likadana
bitar. Det visar sig att alla likadana bitar måste märkas och att man inte
kan konstruera någon grupp mindre än Rubiks Grupp. Det visar sig även
att man behöver sex olika färger för att kunna få en gruppstruktur med
sammansättning av rotationer som binär operator. De två olika typerna av
tvåfärgade kuber har

(
8

3,3,1,1

)
·
(

12
3,3,6

)
· 36 · 26 respektive

(
8
4,4

)
·
(

12
2,2,8

)
· 37 · 28

olika blandningar.
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6.1 The Black-and-White Cube

6.1.1 Introduction

The black-and-white cube is a cube with the same mechanical properties as
Rubik's Cube, with the only di�erence that just two colours have been used
to colour the faces of the cube. We will only consider colourings where three
faces are black and three faces are white. There are two ways in which one
may colour three faces black and three faces white. These will be referred
to as the corner colouring and the strip colouring and are shown in
Figure 6.1.

With these new types of cubes we essentially want to do the same thing
as we did with Rubik's Cube in section 1.3, i.e. determine whether or not we
can form a group of the scramblings of the di�erent black-and-white cubes
together with the binary operator consisting of concatenation of rotations of
the cubes. We also want to determine how many di�erent scramblings there
are, regardless of whether or not they actually form a group.

We will obtain the somewhat surprising result that the di�erent scram-
blings of the black-and-white cubes together with the above mentioned bi-
nary operator do not form a group. When we determine the number of
di�erent scramblings, we will �nd that there are

(
8

3,3,1,1

)
·
(

12
3,3,6

)
·36 ·26 di�er-

ent scramblings of the corner coloured cube and that the number of di�erent
scramblings of the strip coloured cube is

(
8
4,4

)
·
(

12
2,2,8

)
· 37 · 28. We will also

see that in order to form a group structure, every face of the cube needs to
be coloured in a unique colour, thus making it the ordinary Rubik's Cube.

In order to investigate the group structure of the di�erent black-and-
white cubes we will start out in the same way as we did with Rubik's Cube.
We consider the free group consisting of concatenation of rotations of the six
faces of the cube and their respective inverses, i.e. GR of Proposition 1.3.5.
We then consider this free group acting on the set of di�erent scramblings of
the black-and-white cubes. Let S denote the set of di�erent scramblings of
the considered black-and-white cube. The group action will work as follows:
consider a sequence of rotations g ∈ GR and a scrambling s1 ∈ S. The group
action g × s1 → s2 represents applying the sequence of rotations g to the
scrambling s1 and thus obtaining a new scrambling s2. (Note that s1 and
s2 might be the same scrambling.) Two sequences of rotations g1, g2 ∈ GR

will be considered to be the same if they have the same e�ect when applied
to the cube. This group action will thus be used to form a group consisting
of the set S and the binary operator consisting of concatenation of rotations
of the cube. The binary operator, ·, will work in the following way: consider
two scramblings s1, s2 ∈ S. The scrambling, s3, obtained from the following
operation s2 · s1 = s3 is the scrambling one would get if one starts from a
solved cube, then applies the rotations that scramble the cube to s1, and
then from this scrambling applies the rotations that would scramble a solved
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Figure 6.1: The two di�erent ways of colouring three faces of the cube black
and three faces white. The left cube shows the corner colouring and the right
cube shows the stripcolouring

cube to s2.
The group action de�ned above is essentially the same as the one used in

order to form Rubik's Group. The only di�erence is that now GR is acting
on a subset of the set used when Rubik's Group was de�ned. We realise that
the di�erence between the black-and-white cubes and the Rubik's Cube, i.e.
the di�erence between the sets on which GR is acting, will be the occurence
of identical pieces in the black-and-white cubes. There will also be pieces
for which orientation lacks importance, since there are unicoloured pieces in
the black-and-white cubes.

In order to determine whether or not a cube colouring is a group, we
start out by determining when the binary operator obtained from the group
action is well de�ned.

Lemma 6.1.1. For a cube where three corner pieces or three edge pieces are
identical, and there exist corner pieces and edge pieces that are not identical
to these three, the binary operator consisting of concatenation of rotations of
the cube does not yield a group together with the di�erent scramblings of the
cube.

Proof. Consider a cube where corner pieces 1, 2 and 3 are identical. We know
from section 1.3.4 that there exists a series of rotationsA1 ∈< F,B,R,L, U,D >
that will permute corner pieces at position 1, 2 and 3 among themselves and
not a�ect the cube in any other way. Consider applying A1 on a solved
cube. Then A1 will have no visible e�ect on the cube and will thus be con-
sidered to be the identity element. Now consider a state where the cube has
been scrambled in such a way that the corner pieces currently in position
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1, 2 and 3 are not identical. If we apply the rotations A1 on this state, we
will obtain a di�erent state of the cube, since we have permuted three non-
identical corner pieces. Thus, from this state, A1 is not the identity element.
Hence, the binary operator does not yield a group together with the di�erent
scramblings of the cube.

Now consider a cube where edge pieces 1, 2 and 3 are identical. We know
from section 1.3.4 that there exists a series of rotationsA2 ∈< F,B,R,L, U,D >
that permutes edge pieces at positions 1, 2 and 3 without a�ecting the cube
in any other way. The rest of the proof is completely analogous to the case
with identical corner pieces. This completes the proof.

Lemma 6.1.2. For a cube where two pairs of pieces, either corner pieces
or edge pieces, are identical, and there exist pieces that are not identical to
these pieces, the binary operator consisting of concatenation of rotations of
the cube does not yield a group together with the di�erent scramblings of the
cube.

Proof. Consider a cube where pieces, either corner or edge, 1 and 2 are
identical and pieces 3 and 4 are identical. We know from section 1.3.4 that
there exists a series of rotations A ∈< F,B,R,L, U,D > such that pieces
in positions 1 and 2 switch positions and pieces in positions 3 and 4 switch
positions and the rest of the cube is left unchanged. Consider applying A
to a solved cube. Then there will be no visible change and A will be the
identity. Now consider a state of the cube where the pieces in positions 1
and 2 are not identical or pieces in positions 3 and 4 are not identical. If we
apply A to this state, there will be a visible change of the cube. Thus, A is no
longer the identity, and the binary operator does not yield a group together
with the di�erent scramblings of the cube. This completes the proof.

Lemma 6.1.3. For a cube where two corner pieces are identical and two edge
pieces are identical, and there exist corner pieces and edge pieces that are
not identical to these pieces, the binary operator consisting of concatenation
of rotations of the cube does not yield a group together with the di�erent
scramblings of the cube.

Proof. Consider a cube where corner pieces 1 and 2 are identical and edge
pieces 1 and 2 are identical. We know from section 1.3.4 that there exists
a series of rotations A ∈< F,B,R,L, U,D > such that corner pieces in
positions 1 and 2 are interchanged and edge pieces in positions 1 and 2 are
interchanged, and the rest of the cube is left unchanged. If A is applied to
a solved cube, the cube will be left unchanged and A will be the identity
element. Now consider a state where the cube has been scrambled in such
a way that the corner pieces currently at corner positions 1 and 2 are non-
identical, or the edge pieces currently at edge positions 1 and 2 are non-
identical. If we apply A to this state, we will end up in a di�erent state,
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since we have interchanged at least two pieces that are non-identical. Thus,
in this state, A is no longer the identity element. Hence the binary operator
does not yield a group together with the di�erent scramblings of the cube.
This completes the proof.

Lemma 6.1.4. For a cube where two pieces of the same kind are unicoloured,
i.e. unoriented, and there exist pieces of this kind that are not unicoloured,
the binary operator consisting of concatenation of rotations of the cube does
not yield a group together with the di�erent scramblings of the cube.

Proof. Consider a cube where pieces 1 and 2 of the same kind are both uni-
coloured. We know from section 1.3.4 that there exists a series of rotations
A ∈< F,B,R,L, U,D > such that pieces at positions 1 and 2 change orien-
tation, regardless of whether 1 and 2 are corner pieces or edge pieces, and
the rest of the cube is left unchanged. Consider applying A on a solved cube.
There will be no visible change of the cube, and thus A will be an identity
element. Now consider applying A to a scrambled state of the cube where
pieces at positions 1 and 2 are not both unicoloured. Then at least one piece
has changed its orientation and a di�erent scrambling is obtained. Thus, A
is not an identity element for this state. Hence, the binary operator does
not yield a group together with the di�erent scramblings of the cube.

6.1.2 The Corner Colouring

The corner coloured cube has two �xed points, namely the unicoloured corner
pieces. Regardless of how we rotate the corner coloured cube in space, these
two pieces will always have a �xed position in reference to the corner coloured
cube itself. With Rubik's Cube we have the same phenomenon; with refer-
ence to the cube, we always know where the di�erent pieces are supposed
to be positioned no matter how the cube is rotated in space. Therefore, we
do not need to �x the corner coloured cube in space in order to consider
the same rotations, and thus the same binary operator, as the ones used in
Rubik's Group operating on the corner coloured cube.

The corner coloured cube have four di�erent kinds of corner pieces; one
with three black facets, one with three white facets, three with two black
facets and one white facet and three with one black facet and two white
facets. Let them be numbered as shown in Figure 6.2.

The corner coloured cube also has three di�erent kinds of edge pieces;
three with two white facets, three with two black facets and six with one
black and one white facet. Let them be numbered as shown in Figure 6.3.

We can now determine whether or not the corner coloured cube together
with the binary operator of concatenation of rotations of the cube form a
group.
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Figure 6.2: Numbering of the corner pieces of the corner coloured cube.

Figure 6.3: Numbering of the edge pieces of the corner coloured cube.
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Theorem 6.1.5. The di�erent scramblings of the corner coloured cube to-
gether with the binary operator of concatenation of rotations of the cube do
not form a group.

Proof. We see that the corner coloured cube have two groups of three identi-
cal corner pieces. By Lemma 6.1.1 we know that the binary operator does not
yield a group together with the di�erent scramblings of the cube. Hence, no
group can be formed. Furthermore, we also have two groups of three identi-
cal edge pieces, one group of six identical edge pieces, two unicoloured corner
pieces, and six unicoloured edge pieces. By Lemmas 6.1.3 and 6.1.4 the bi-
nary operator does not yield a group together with the di�erent scramblings
of the cube. We are thus far away from being able to form a group.

This result is somewhat surprising. Since the corner coloured cube is
so similar to Rubik's Cube, and Rubik's Cube has a group structure when
we consider the di�erent scramblings together with the concatenation of
rotations, we expect the same result to hold for the corner coloured cube.
However, as seen above, the intuition leads us wrong in this case. The fact
that we cannot form a group structure in the same way as we did with
Rubik's Cube for the corner coloured cube also says something about the
rotations in GR that leave the corner coloured cube unchanged.

Corollary 6.1.6. The set of sequences of rotations in < F,B,U,D,R,L >
that leave the corner coloured cube unchanged does not form a normal sub-
group in GR.

Proof. Assume that the sequences of rotations that leave the corner coloured
cube unchanged form a normal subgroup, N , in GR. Then one would be able
to form the quotient group GR/N and its elements would be precisely the dif-
ferent scramblings of the corner coloured cube. From Theorem 6.1.5 we know
that these elements do not form a group with the binary operator of con-
catenation of rotations. Hence, the sequences that leave the corner coloured
cube unchanged cannot form a normal subgroup in GR. This completes the
proof.

Now that we have determined that the di�erent scramblings of the corner
coloured cube do not form a group with the binary operator of the Rubik's
Group, the natural thing to investigate is whether or not there is a way to
obtain a group from the corner coloured cube. One way to do this, which
is analogous to the way one speci�es the group of the 4 × 4 × 4-cube, is
by �marking� identical pieces so that scramblings that look the same are
considered to be di�erent when di�erent, but identical, pieces are in di�erent
places. If we were to mark pieces in this way, would all identical pieces need
to be marked in order to form a group, or is it possible to only mark a few of
them and obtain some kind of group structure smaller than Rubik's Group?
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We already know that we cannot have three identical pieces, two pairs of
identical pieces or two identical corner pieces and two identical edge pieces
at the same time. We also know that we cannot have two unicoloured pieces
of the same kind, so the only way we might obtain a group smaller than
Rubik's Group is if the binary operator yields a group with two identical
pieces. Thus, we need to determine if the binary operator yields a group
for two identical pieces. If we use the regular de�nition of the group, i.e.
we �x the six center facets and rotate the faces, we will see that the binary
operator does not yield for two identical pieces.

Lemma 6.1.7. For a cube where two pieces, either corner or edge, are iden-
tical, and other pieces exist that are not identical to these two, the binary
operator consisting of concatenation of rotations of the cube does not yield a
group together with the di�erent scramblings of the cube.

Proof. Consider a cube where pieces, either edge or corner, 1 and 2 are
identical. Consider a sequence of rotations, A, that cycically rotates pieces
at position 1, 2 and 3 and leaves the rest of the cube unchanged. We know
from section 1.3.4 that such sequences exist. If A is applied to a solved cube,
it will appear as though only two pieces have switched position, and A will be
a transposition of pieces. Now consider a scrambling of the cube where pieces
at positions 1, 2 and 3 are all di�erent. If we apply A to this scrambling,
three pieces will change position, and A will be a 3-cycle. Thus, the binary
operator does not yield a group together with the di�erent scramblings of
the cube. This completes the proof.

However, there might be another way to de�ne the group such that we
are able to have two identical pieces. We could do this by de�ning the cube
group from one edge piece or one corner piece and allow for one piece of the
same kind to be identical to this piece. These two pieces will not cause a
problem in our attempt to form a group, since one of them is allowed to move
and the other one is not. In section 5.5.3, Rubik's Group is de�ned from
one single piece, and results from that section will be used here. However, a
new problem arises when we de�ne our group from one edge or corner piece,
namely the fact that the center facets are allowed to move relative to the
�xed piece. In order to determine whether or not we can have two identical
pieces, we thus have to determine whether or not the binary operator yields
a group when we have identical center facets.

Lemma 6.1.8. For a cube where two center facets are identical, and there
exist center facets that are not identical to these two, and we do not have
that every center facet is identical to the opposite center facet, the binary
operator de�ned in section 5.5.3 does not form a group.

Proof. Consider a cube where center facets 1 and 2 are identical. We realise
that we have two cases, either these two identical facets are situated on
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adjacent faces or they are situated on opposite faces. First consider the case
where they are adjacent. Now consider a sequence of rotations, A1, that
cyclically rotates center facets in positions 1, 2 and 3 among each other and
cyclically rotates center facets in positions 4, 5 and 6 among one another and
does not change the cube in any other way. We know from Theorem 5.2.1
that such sequences exist. Consider applying A1 to a solved cube. Then
A1 will be represented as a product of two disjoint cycles where one is a
transposition and the other is a 3-cycle. Now consider a scrambling of the
cube such that center facet 1 is in position 1, 2 or 3 and center facet 2 is
in position 4, 5 or 6. If we apply A1 to this scrambling, then it will be
represented as a product of two disjoint 3-cycles. Thus, the binary operator
does not yield a group.

Now consider the case where center facets 1 and 2 are opposite. Consider
a sequence of rotations, A2, such that center facets in opposite positions
1 and 2 switch positions and center facets in opposite positions 3 and 4
switch positions and the rest of the cube is left unchanged. We know from
Theorem 5.2.1 that such sequences exist. Consider applying A2 to a solved
cube. Then A2 will be represented as a transposition. Now consider a
scrambling where center facets 1 and 2 are at opposite positions 5 and 6.
We know from the section of the void cube that such scramblings exist. If
we apply A2 to this scrambling, it will be represented by a product of two
disjoint transpositions. Hence, the binary operator does not yield a group.
This completes the proof.

Remark 6.1.9. One could make all center facets identical and obtain a group
structure, i.e. the group structure of the void cube. But since we will always
have two di�erent colours of the center facets when considering a black-and-
white cube, this colouring of the center facets concerns a di�erent problem
than the one considered here.

Remark 6.1.10. This proof does not cover the case where all opposite cen-
ter facets are identical. However, neither of the black-and-white colourings
have all opposite center facets identical, thus this does not matter when
considering black-and-white cubes.

From these two lemmas we can deduct that we cannot have two identical
pieces, unless no center facets are identical, and with no identical center
facets, we have Rubik's Group. However, we might still be able to have a
smaller group than Rubik's Group by leaving one corner piece and one edge
piece unicoloured.

Lemma 6.1.11. If one corner piece and one edge piece are left unicoloured,
the number of possible orientations will be the same as the number of possible
orientations for a cube where no corner piece or edge piece is unicoloured.

Proof. From Lemma 1.3.21 we know that the number of possible edge orien-
tations is 211 and from Lemma 1.3.22 we know that the number of possible
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corner orientations is 37. We also know from the investigation of Rubik's
Cube that there exist sequences of rotations such that two edge pieces change
their respective orientations or two corner pieces change their respective ori-
entations, and the rest of the cube is left unchanged. Now consider applying
a sequence where one of the pieces that changes its orientation is unicoloured.
We have thus achieved a sequence where one piece changes its orientation
and the rest of the cube is left unchanged. This enables all possible ori-
entations of the eleven edge pieces that are not unicoloured, i.e. 211 edge
orientations, and all possible orientations of the seven corner pieces that are
not unicoloured, i.e. 37 corner orientations. We see that the number of pos-
sible orientations of edge and corner pieces are the same regardless of the
existence of a single unicoloured edge or corner piece. This completes the
proof.

Now we have determined how we need to mark the pieces in order to
obtain a group structure and may draw conclusions on the group we can
obtain.

Proposition 6.1.12. The smallest group one can obtain by marking iden-
tical pieces and di�erent facets of unicoloured pieces of the corner coloured
cube that is a subgroup of Rubik's Group is Rubik's Group itself.

Proof. From Lemma 6.1.7 we see that the ordinary binary operator is not
well de�ned when we have identical pieces, thus giving us the same number
and structure of positions for edge pieces and corner pieces for the smallest
possible group structure as for Rubik's Group. From Lemma 6.1.8 we see
that we cannot have two identical center facets, unless all center facets are
identical to their opposite center facets. However, with the corner coloured
cube we do not have all center facets identical to their opposite center facets,
and therefore we need to have no identical center facets. With no identical
center facets, we have the same number and structure of positions as for
Rubik's Group de�ned from one �xed piece. From Lemma 6.1.4 we see that
we cannot have more than one unicoloured piece of each kind and still have
the binary operator yield a group together with the di�erent scramblings of
the cube. Lemma 6.1.11 shows that one unicoloured piece does not make a
di�erence in the cardinality of the group. Hence, the smallest group structure
of the positions of the pieces is the structure of Rubik's Group and the
smallest group structure of orientations of corner and edge pieces is the
structure of Rubik's Group. This completes the proof.

Although we know that the di�erent scramblings of the corner coloured
cube do not form a group, we may determine how many di�erent scramblings
there are. In order to determine this, we start by determining the number
of di�erent corner positions there are.

Lemma 6.1.13. The number of di�erent corner positions is
(

8
1,1,3,3

)
.
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Proof. This proof is strictly combinatorial. From Figure 6.2 we see that we
have four kinds of corner pieces. One with three black facets, one with three
white facets, three with two black and one white facet and three with one
black and two white facets. We know from section 1.3.2 that any positioning
of these corner pieces is allowed if matched with a suitable positioning of the
edge pieces. Thus, we have 8 positions where we are supposed to place three
identical black-black-white pieces, three identical black-white-white pieces,
one unicoloured black piece and one unicoloured white piece. From basic
combinatorics, we know that the number of ways in which we can do this is(

8
1,1,3,3

)
. This completes the proof.

The next thing to determine is the number of ways in which we can
position the edge pieces.

Lemma 6.1.14. The number of di�erent edge positions is
(

12
3,3,6

)
.

Proof. This proof is strictly combinatorial. From Figure 6.3 we see that
we have three di�erent kinds of edge pieces. Three unicoloured white pieces,
three unicoloured black pieces and six black-and-white pieces. We know from
section 1.3.2 that any positioning of the edge pieces is possible as long as it
is matched with a suitable positioning of the corner pieces. Thus, we have 12
positions where we are supposed to place three identical white pieces, three
identical black pieces and six identical black-and-white pieces. From basic
combinatorics we know that the number of ways to do this is

(
12

3,3,6

)
. This

completes the proof.

To completely determine the number of positions that can be achieved
we need to investigate whether every corner position can be matched with
every edge position.

Lemma 6.1.15. Every corner position can be matched with every edge po-
sition. The total number of di�erent positions is

(
8

1,1,3,3

)
·
(

12
3,3,6

)
.

Proof. We know from Lemma 1.3.13 that every corner position represented
by an odd permutation can be matched with every edge position represented
by an odd permutation and that every corner position represented by an even
permutation can be matched with every edge position represented by an
even permutation. Now consider a position of corner pieces described by the
permutation σc. Let corners 1 and 2 be identical and consider the position
of corner pieces described by the permutation σc ·(12). Since corners 1 and 2
are identical, the positions described by σc and σc · (12) are the same. Since
we have considered an arbitrary position we see that any corner position can
be described by both even and odd permutations. Now consider an edge
position described by the permutation σe and let edges 1 and 2 be identical.
Consider the position described by σe · (12). We realise that this position is
the same as the one described by σc since edges 1 and 2 are identical. Since
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σc is an arbitrary position, every edge position can be described by both even
and odd permutations. Since every position, both for corners and edges, can
be described by both even and odd permutations, every combination of edge
and corner positions is allowed. This gives us the total number of di�erent
positions as the product of the number of corner positions and the number
of edge positions, i.e.

(
8

1,1,3,3

)
·
(

12
3,3,6

)
. This completes the proof.

We now only need to determine the number of di�erent corner orienta-
tions and edge orientations we may have in order to completely determine
the number of di�erent possible scramblings.

Lemma 6.1.16. The number of di�erent corner orientations that are pos-
sible is 36.

Proof. From Figure 6.2 we know that we have two unicoloured corner pieces,
and six corner pieces that can be oriented in three di�erent ways. From sec-
tion 1.3.3 we know that in order to change the orientation of one corner piece,
we need to change the orientation of another corner piece. We also know
that there are rotations such that the orientation of two corner pieces are
changed, but the rest of the cube stays the same. Consider a rotation where
two corner pieces have their orientation changed. Let one of these corners
be unicoloured. The orientation change of this piece will not be noticed, and
thus we have rotations that only change the orientation of one corner piece.
Hence, all di�erent orientations of the corner pieces are possible. Since we
have six corner pieces that can be oriented in three di�erent ways, we have
a total of 36 di�erent corner orientations. This completes the proof.

In the �nal step in order to determine the number of di�erent scramblings,
we need to determine the number of possible edge orientations.

Lemma 6.1.17. The number of di�erent edge orientations that are possible
is 26.

Proof. From Figure 6.3 we know that we have six unicoloured edge pieces and
six edge pieces that can be oriented in two di�erent ways. From section 1.3.3
we know that in order to change the orientation of one edge piece, we need
to change the orientation of another edge piece. We also know that there are
rotations such that two corner pieces change orientation whereas the rest of
the cube is left unchanged. Consider one such rotation. Let one of the edge
pieces that change orientation be a unicoloured piece. The orientation change
of this piece will not show and thus we have rotations that only change the
orientation of one edge piece. Hence, every di�erent orientation of the edge
pieces will be possible. Since we have six edge pieces that can be oriented
in two di�erent ways, we have a total of 26 di�erent edge orientations. This
completes the proof.
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Figure 6.4: Numbering of the corner pieces of the strip colouring.

With the previous lemmas, we may now determine the number of di�erent
scramblings of the corner coloured cube.

Theorem 6.1.18. The number of di�erent scramblings of the corner coloured
cube is

(
8

3,3,1,1

)
·
(

12
3,3,6

)
· 36 · 26.

Proof. We know from section 1.3.4 that any corner and edge orientation can
be combined with any position of the pieces. From Lemmas 6.1.15, 6.1.16
and 6.1.17 we have determined the number of positions, corner orientations
and edge orientations and the total number of di�erent scramblings is just
the product of these numbers. This completes the proof.

6.1.3 The Strip Colouring

As opposed to the corner coloured cube, the strip coloured cube does not have
any �xed pieces. Thus, in order to be able to treat the strip coloured cube
in the same way as Rubik's Cube and the corner coloured cube, we need
to lock the strip coloured cube in space, or equivalently, specify which of
rotations from {F,B,R,L, U,D} that rotate which particular face. Assume
we do that.

We now want to investigate whether or not the strip coloured cube form
a group with the binary operator from Rubik's Group. We start out by
specifying the pieces. From Figure 6.4 we see that we have two di�erent
kinds of corner pieces, namely the black-black-white ones and the black-
white-white ones. In addition, we have three di�erent kinds of edge pieces,
the black ones, the white ones and the black-and-white ones.

Now that we have determined the di�erent pieces we have to work with,
we can determine whether or not the di�erent scramblings of the strip
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Figure 6.5: Numbering of the edge pieces of the strip colouring.

coloured cube form a group with the concatenation of rotations as the binary
operator.

Theorem 6.1.19. The di�erent scramblings of the strip coloured cube do
not form a group with the concatenation of rotations as the binary operator.

Proof. By Lemmas 6.1.1, 6.1.3 and 6.1.4 we know that the speci�ed binary
operator does not yield a group when we have three identical pieces, or two
identical pieces of each kind, or two unicoloured pieces of the same kind.
With the strip colouring, we have two groups of four identical corner pieces,
two groups of two identical edge pieces, one group of eight identical edge
pieces, and four unicoloured edge pieces. Thus, the binary operator is far
away from being well de�ned. Hence, we cannot obtain a group with the
speci�ed binary operator.

Since we already know that the corner coloured cube does not form a
group of the same kind as Rubik's Group, we might have expected this
result for the strip coloured cube. However, it is still surprising that the strip
coloured cube does not have a group structure similar to the one of Rubik's
Cube if one only considers how similar Rubik's Cube and the strip coloured
cube are as objects. In the same way as in the case of the corner coloured
cube, we may now also draw some conclusions regarding the sequences of
rotations that leave the strip coloured cube unchanged.

Corollary 6.1.20. The set of sequences of rotations in < F,B,U,D,R,L >
that leave the strip coloured cube unchanged does not form a normal subgroup
in GR.

Proof. Assume that the set of sequences of rotations in < F,B,U,D,R,L >
that leave the strip coloured cube unchanged does form a normal subgroup,
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N , in GR. Then one can form the quotient group GR/N . The elements in
this group would be precisely the di�erent scramblings of the strip coloured
cube. But we know from Theorem 6.1.19 that these elements do not form
a group with the binary operator of concatenation of rotations. Hence the
set of sequences of rotations that leave the strip coloured cube unchanged
cannot be a normal subgroup in GR. This completes the proof.

We might try, as we did with the corner coloured cube, to mark the
identical pieces and identical facets of the unicoloured pieces in order to
obtain some kind of group structure. However, we will end up with Rubik's
Group for this colouring as well.

Proposition 6.1.21. The smallest group one can obtain by marking identi-
cal pieces and di�erent facets of unicoloured pieces of the strip coloured cube
that is a subgroup of Rubik's Group is Rubik's Group itself.

Proof. The proof is completely analogous to the proof of Proposition 6.1.12.

Although the strip coloured cube does not form a group with its di�erent
scramblings and the natural binary operator, we might still, as well as for
the corner coloured cube, determine the number of di�erent scramblings
that are possible with this colouring. In order to determine this, we start by
determining the number of di�erent corner positions.

Lemma 6.1.22. The number of di�erent positions of the corner pieces is(
8
4,4

)
.

Proof. This proof is strictly combinatorial. We know from section 1.3.2 that
any corner position is possible, as long as it is matched with an appropriate
edge position. From Figure 6.4 we know that we have four identical pieces
with two black facets and one white facet, and four identical pieces with one
black facet and two white facets. These pieces are supposed to be placed
in 8 positions. From basic combinatorics we know that this can be done in(

8
4,4

)
ways. This completes the proof.

The next step in order to determine the number of di�erent scramblings
is to determine the number of di�erent edge positions.

Lemma 6.1.23. The number of di�erent positions of the edge pieces is(
12

2,2,8

)
.

Proof. This proof is strictly combinatorial. We know from section 1.3.2 that
any edge position is possible, as long as it is matched with an appropriate
corner position. From Figure 6.5 we know that we have two identical black
edge pieces, two identical white edge pieces and eight identical black-and-
white edge pieces. These pieces are supposed to be placed in 12 positions.
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From basic combinatorics we know that this can be done in
(

12
2,2,8

)
ways.

This completes the proof.

Now that we have determined the number of di�erent corner and edge
positions, the natural thing to do is to determine whether all positions can
occur together.

Lemma 6.1.24. Every edge position can be obtained together with every
corner position. The total number of di�erent positions is

(
8
4,4

)
·
(

12
2,2,8

)
.

Proof. We know from Lemma 1.3.13 that every corner permutation repre-
sented by an odd permutation is allowed together with every edge position
represented by an odd permutation, and that every corner permutation rep-
resented by an even permutation is allowed with every edge position rep-
resented by an even permutation. Now consider a permutation σ, it might
describe the position of either corners or edges. Let corners, or edges, 1 and
2 be identical pieces. Then σ · (12) describes the same position of corners,
or edges, as σ. Since σ is an arbitrary positioning of corners, or edges, we
see that any positioning of corners, or edges, may be written as both even
and odd permutations. Hence, any corner position is allowed with any edge
position and the total number of positions possible is the number of posi-
tions for the corners multiplied by the number of positions for the edges, i.e.(

8
4,4

)
·
(

12
2,2,8

)
. This completes the proof.

Now that the number of di�erent positions are determined, we need to
determine the number of di�erent orientations that are possible.

Lemma 6.1.25. The number of di�erent orientations of the corner pieces
is 37.

Proof. From Figure 6.4 we know that the strip coloured cube have no uni-
coloured corner pieces. This is the same situation as with the corners of the
ordinary Rubik's Cube. Hence, the statement follows from Lemma 1.3.22.

Lemma 6.1.26. The number of di�erent orientations of the edge pieces is
28.

Proof. From Figure 6.5 we know that the strip coloured cube have four
unicoloured edge pieces. We know from section 1.3.4 that there are rotations
of the cube that �ip the orientation of two edges, and leave the rest of the
cube unchanged. Now consider one of these rotations where one of the edge
pieces that is being �ipped is a unicoloured edge piece. Then the only visible
di�erence of the cube will be one �ipped edge piece. Thus, there are rotations
such that one edge piece is �ipped and the rest of the cube is left unchanged.
There are 8 oriented edge pieces that can be �ipped in two ways. Hence, the
number of possible orientations of the edge pieces is 28. This completes the
proof.
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Figure 6.6: A �ve-coloured cube where two adjacent faces have the same
colour.

We have now done all the work to determine the number of di�erent
scramblings of the strip coloured cube.

Theorem 6.1.27. The number of di�erent scramblings of the strip coloured
cube is

(
8
4,4

)
·
(

12
2,2,8

)
· 37 · 28.

Proof. From Lemmas 6.1.24, 6.1.25 and 6.1.26 we know the numbers of these
positions and orientations of corner and edge pieces. We know from sec-
tion 1.3.4 that any positioning is allowed with any orientation of edges and
corners, making the total number of di�erent scramblings the product of the
numbers determined in the above mentioned lemmas. This completes the
proof.

6.1.4 Other colourings with less than six colours

We have in the two previous sections realised that there is no way to form a
group of the di�erent scramblings of a black-and-white cube with the binary
operator of concatenation of rotations, unless we mark identical pieces and
orient unoriented pieces. The question that arises now is how many colours
we need in order to form a group of the di�erent scramblings of the cube
with the above mentioned binary operator. We know that we get a group if
we have six colours, namely the Rubik's Group, but can one de�ne a group
structure with less colours?

Theorem 6.1.28. The lowest number of colours of the cube, that is greater
than one, that enables one to form a group of the di�erent scramblings of the
cube with concatenation of rotations of the cube as the binary operator is six.
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Figure 6.7: A �ve-coloured cube where two opposite faces have the same
colour.

Proof. We know that if we have six colours, and colour each side of a cube
in a unique colour, the di�erent scramblings of this cube together with the
binary operator of concatenating rotations of the cube form Rubik's Group.
Now consider a cube coloured with �ve di�erent colours. The two faces
with the same colour will either be adjacent or opposite. First consider the
situation where the two faces are adjacent. We see from Figure 6.6 that there
are two faces, in this case the red and the orange, that have two adjacent
faces with the same colour. Thus, there will be two pairs of edge pieces that
are identical. From Lemma 6.1.2 we know that the binary operator does not
yield a group for this case. Thus, this con�guration does not give rise to a
group.

Now consider the situation where the two faces with the same colour are
opposite. We see from Figure 6.7 that all remaining faces, i.e. non-white
faces, have two adjacent faces of the same colour and will thus have two
identical edge pieces. In total we have four pairs of identical edge pieces.
From Lemma 6.1.2 we know that the binary operator does not yield a group
for this case. Hence, this con�guration will not give rise to a group.

For colourings with less than �ve colours we realise that we will always
have at least two faces that have the same colour. From the above reasoning
we see that the binary operator will never be well de�ned for any of these
con�gurations, and thus no colouring with less than six colours, and more
than one colour, will give rise to a group structure. This completes the
proof.

Remark 6.1.29. We note that if the cube only has one colour, we have a
group, since all rotations leave the cube unchanged, and thus we only have
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the identity.
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