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Part 3: Optimal

Filtering

Aim: The key question answered here is:

Given a stochastic signal observed in noise, how does one

construct an optimal estimator of the signal?

The key results will be covered using elementary concepts

in probability and stochastic processes. Optimal Filters

are used in telecommunication systems, radar tracking

systems, speech processing.

• Review of key tools in probability and stochastic

processes: Bayes’ rule, Conditional Expectation

• Summarize 4 basic stochastic processes: white noise,

Markov processes, Hidden Markov Models (HMMs)

and state space models.

• Develop the key results in discrete time filtering –

including Kalman filter and HMM filter.

• Briefly describe sequential MCMC based particle

filters.

Note: A more rigorous development in continuous time

involves martingale theory, Girsanov’s theorem, etc. This

is not covered here
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Optimal filtering in Signal Processing

Wiener Filter: Nobert Wiener (MIT) 1940s:

Model Y = S +W , S is signal W is noise.

min
F

E‖S − FY ‖2

Widely used in LMMSE detection.

Kalman Filter: (1960s) Model S and N in time domain

(state space models). The Kalman filter is probably the

single most used algorithm in signal processing.

Hidden Markov Filter: Developed by statisticians (L.

Baum, T. Petrie) in 1960s

Significant application in Electrical Engg in 1990s in

speech recognition, channel equalization, tracking, etc

Sequential Markov Chain Monte Carlo Methods:

Particle filters – randomized (simulation based)

algorithms – applications in target tracking – late 1990s.

Stochastic Filtering theory studies optimal filtering.

Also called recursive Bayesian estimation.

Journals: IEEE Trans Signal Processing; Automatic

Control, Information Theory; Aerospace.

In continuous-time stochastic filtering theory involves

stochastic calculus – widely used in mathematical finance.
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Perspective

Given a partially observed stochastic dynamical system

xk+1 = Ak(xk) + Γk(xk)wk, x0 ∼ π0(·)
yk = Ck(xk) +Dk(xk)vk,

or equivalently in transition density form

p(xk+1|xk) = pw
(

Γ−1
k (xk) [xk+1 −Ak(xk)]

)

p(yk|xk) = pv
(

D−1
k (xk) [yk − Ck(xk)]

)

.

Assume known model: The aim is estimate state given

observations y1:k = (y1, . . . , yk).

State estimation has two broad philosophies

• Bayesian State Estimation: Model based

optimal filtering such as Kalman Filters, Hidden

Markov Model filters, particle filters. This is what we

will cover.

• Adaptive filtering: Stochastic Approximation e.g.

LMS, RLS. xk is assumed to vary very slowly with

unknown dynamics. We will briefly touch on this in

recursive parameter estimation.
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1 Results in Stochastic Processes

Likelihood of Observation:

Suppose

Y = X +W

where Y noisy measurement, X signal, W noise.

Assume noise W is independent of signal X.

✒✑
✓✏

✲ ✲

❄

Σ
X Y

W

Then conditional density of Y given X is given by

“Likelihood formula”

pY |X(y|x) = pW (y − x)

Remarks:

1. pY |X(y|x) is called observation probability or

observation likelihood. It denotes the likelihood of that

observation Y came from signal X.

2. Likelihood formula says that observation probability
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depends on noise density pW .

3. Likelihood formula is of fundamental importance in

communication systems, signal processing.

Example: For additive Gaussian channel Y = X +W

where W ∼ N(0, σ2). Hence from likelihood formula

pY |X(y|x) = pW (y − x) =
1√
2πσ

exp

[

−1

2

(y − x)2

σ2

]

4. Suppose Y = f(X,W ) and W can be expressed as

W = g(X,Y ). Then likelihood formula is

pY |X(y|X) = pW (g(X,Y ))

One problem with the above likelihood probabilities is

that they make no assumption on the prior information of

X.

How can we use apriori information on pX(x) together

with likelihood probabilities to compute a better estimate?

Bayes’ rule gives the answer.
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1.1 Bayes Rule

(The most important result in statistical inference).

Allows to reverse conditioning

pX|Y (x|y) = pY |X(y|x) pX(x)

pY (y)

=
pY |X(y|x)pX(x)

∫

IR
pY |X(y|ζ)pX(ζ) dζ

This is the single most important result which is at the

heart of all statistical inference and filtering.

In words: Suppose we know

• probability of receiving observation y given message x

was transmitted: pY |X(y|x) (observation probability)

• the probability that the source transmitted message

x: pX(x) (called a priori probability)

Suppose we received an observation y.

Then Bayes’ rule tells us how to compute the conditional

probability that the message sent was x given that the

received message is y: pX|Y (x|y) (called a posteriori

probability)
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1.2 Conditional Expectation

Essential tool in filtering, estimation and control.

(i) Definition: Math rigorous defn: (i) E{X|F} is

measurable wrt F .

(ii) E{IAE{X|F}} = E{IAX}, ∀A ∈ F
Engg defn:

E{X|Y = y} =

∫

IR

xpX|Y (x|y)dx

is a function of y.

More generally

E{g(X,Y )|Y = y} =

∫

IR

g(x, y)pX|Y (x|y)dx

(ii) Smoothing Property: If F1, F2 are two sigma

algebras with F1 ⊂ F2, then

E{E{X|F2}|F1} = E{X|F1}

Example: F1 = (Ω, ∅}, then
E{E{X|F2}|F1} = E{X|F1} = E{X} (unconditional

expectation).

(iii) Optimality: E{X|Y } is optimal in the following

min-variance sense: Suppose X, Y are rvs.
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Find the function g(Y ) which minimizes

E{(g(Y )−X)2}

Soln: g(Y ) = E{X|Y }
This is the basis of optimal state estimation via filtering.

Suppose X is the state observed via noisy observations Y .

Then the optimal (minimum variance) state estimate of

X given Y is E{X|Y }.
More generally: Bregman loss function Suppose φ convex:

Lφ(x, x̄) = φ(x)− φ(x̄)− (x− x̄)′∇φ(x̄).

κ∗(y) = E{x|y} = argmin
κ∈κ

E{Lφ(x, κ (y))}.

Convexity implies

Lφ(x, x̄) ≥ 0, and Lφ(x, x̄) = 0 iff x = x̄.

Ex1: Quadratic loss: φ(x) = x′Sx.

Lφ(x, x̄) = x′Sx− x̄Sx̄− 2(x− x̄)′x̄ = ‖x− x̄‖2

Ex 2. Kullback Liebler divergence: x = (x1, . . . , xX) with
∑X

i=1 xi = 1. Define the negative Shannon entropy as

φ(x) =
∑X

i=1 xi log xi.

Lφ(x, x̄) =

X
∑

i=1

xi log2 xi −
X
∑

i=1

x̄i log2 x̄i − (x− x̄)′∇φ(x̄)

=

X
∑

i=1

xi log2 xi −
X
∑

i=1

x̄i log2 x̄i
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Proof: Denote x̂ = E{x|y}. We will show:

E{Lφ(x, κ)} − E{Lφ(x, x̂)} = E{Lφ(x̂, κ)}.

The result then follows since E{Lφ(x̂, κ)} is minimized if

κ(y) = x̂ = E{x|y}.
By definition of the Bregman loss function

E{Lφ(x, κ)}−E{Lφ(x, x̂)} = E{φ(x̂)−φ(κ)−(x−κ)′∇φ(κ)

+ (x− x̂)′∇φ(x̂)}

Last term is zero via the smoothing property of

conditional expectation: E{(x− x̂)′∇φ(x̂)} =

E{E{(x− x̂)′∇φ(x̂) | y}} = E{(x̂− x̂)′∇φ(x̂)} = 0. Using

the smoothing property of conditional expectations yields

E{(x−κ)′∇φ(κ)} = E{E{(x−κ)′∇φ(κ)|y}} = E{(x̂−κ)′∇φ(κ)}

So

E{Lφ(x, κ)} − E{Lφ(x, x̂)} = E{φ(x̂)− φ(κ)− (x̂− κ)′∇φ(κ)}
= E{Lφ(x̂, κ)}
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2 Filtering

r

Noisy

Sensor

Filter

(Bayes’ Rule)

∫

X
xπk(x)dx

unit

delay

r

xk

state yk

πk = p(xk|y1:k)

posterior

πk−1

prior

x̂k

filtered

estimate

Figure 1: Schematic of optimal filter. The observa-

tion yk from the noisy sensor is combined with the

prior πk−1 via Bayes rule to compute the posterior

πk = p(xk|y1:k). The filtered (conditional mean) state

estimate is then computed in terms of the posterior as
∫
X
xπk(x)dx.



Filtering : c©Vikram Krishnamurthy 2013 11

2.1 The Problem

Given a stochastic dynamical system

xk+1 = Ak(xk) + Γk(xk)wk, x0 ∼ π0(·)
yk = Ck(xk) +Dk(xk)vk.

p(xk+1|xk) = pw
(

Γ−1
k (xk) [xk+1 −Ak(xk)]

)

p(yk|xk) = pv
(

D−1
k (xk) [yk − Ck(xk)]

)

.

Assume model and parameters are known.

Aim: Compute the min-variance state estimate x̂k|l given

the sequence of observations Yl = y1, . . . , yl.

As shown earlier x̂k|l = E{xk|Yl}.
There are 3 problems of interest:

• Filtering: If k = l

• Prediction: If k > l

• Smoothing: If k < l.

We focus here on filtering. From these, smoothers and

predictors can easily be obtained.

Remark: If xk does not evolve – regression problem.

Note: Unbiased estimator.
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2.2 Filtering solution

Model:

p(xk+1|xk) = pw
(

Γ−1
k (xk) [xk+1 −Ak(xk)]

)

p(yk|xk) = pv
(

D−1
k (xk) [yk − Ck(xk)]

)

.

Aim: Recursively compute

x̂k = E{xk|y1:k} =

∫

X

xk p(xk|y1:k)dxk, k = 1, 2 . . .

Denoting πk(x) = p(xk = x|y1:k) we want recursion on πk

Main Result:

πk+1(xk+1) =
p(yk+1|xk+1)

∫

X
p(xk+1|xk)πk(xk) dxk

∫

X
p(yk+1|xk+1)

∫

X
p(xk+1|xk)πk(xk) dxkdxk+1

x̂k+1 =

∫

X

xπk+1(x)dx

In terms of prediction and measurement update steps:

πk+1|k(xk+1)
defn
= p(xk+1|y1:k) =

∫

X

p(xk+1|xk)πk(xk) dxk

πk+1(xk+1) =
p(yk+1|xk+1)πk+1|k(xk+1)

∫

X
p(yk+1|xk+1)πk+1|k(xk+1)dxk+1

• With only 2 exceptions (Kalman and HMM filter)

Step 1 is not finite dimensional computable.

• Denominator= normalization = model likelihood



Filtering : c©Vikram Krishnamurthy 2013 13

Un-normalized Filter Update

π̃k(x) = p(xk = x, y1:k).

Clearly πk(x) = π̃k(x)/
∫

X
π̃k(x)

π̃k+1(x) =

∫

X

p(yk+1|xk+1 = x)p(xk+1 = x|xk)π̃k(xk)dxk.

x̂k+1 =

∫

X
x π̃k+1(x)dx

∫

X
π̃k+1(x)dx

.

Example

xk+1 = xk + wk, wk ∼ N(0, 1)

yk = xk + vk, vk ∼ N(0, 1)

Then p(yk|xk) =
1√
2π

exp

(

−1

2
(yk − xk)

2

)

p(xk+1|xk) =
1√
2π

exp

(

−1

2
(xk+1 − xk)

2

)

π̃k+1(xk+1) =
1√
2π

exp

(

−1

2
(yk+1 − xk+1)

2

)

×
∫ ∞

−∞

1√
2π

exp

(

−1

2
(xk+1 − xk)

2

)

π̃(xk)dxk

Can you guess a closed form expression for π̃k(x) so that

π̃k+1(x) has the same form?
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2.3 Kalman Filter

xk+1 = Akxk + fkuk + wk, x0 ∼ π0

yk = Ckxk + gkuk + vk.

wk ∼ N(0, Qk), vk ∼ N(0, Rk) and initial density

π0 ∼ N(x̂0, Σ0) is Gaussian.

x̂k+1|k = Akx̂k + fkuk, yk+1|k = Ck+1x̂k+1|k + gk+1uk+1

Σk+1|k = AkΣk|kA
′
k +Qk

Sk+1 = Ck+1Σk+1|kC
′
k+1 +Rk+1

x̂k+1 = x̂k+1|k +Σk+1|kC
′
k+1S

−1
k+1(yk+1 − yk+1|k)

Σk+1 = Σk+1|k −Σk+1|kC
′
k+1S

−1
k+1Ck+1Σk+1|k

p(xk+1|y1:k) = N(x̂k+1|k, Σk+1|k) where

x̂k+1|k = E{xk+1|y1:k}, Σk+1|k = E{(x̂k+1 − xk+1)(x̂k+1 − xk+1)
′}

x̂k+1|k = (Ak −KkCk)x̂k|k−1 +Kk (yk − gkuk) + fkuk,

Kk = AkΣk|k−1C
′
k(CkΣk|k−1C

′
k +Rk)

−1

Σk+1|k = Ak

(

Σk|k−1 −Σk|k−1C
′
k(CkΣk|k−1C

′
k +Rk)

−1CkΣk|k−1

)

A

Riccati equation for covariance update.
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Properties of the Kalman Filter

• Kalman Filter is linear, discrete-time, finite

dimensional system with 2 sufficient statistics.

• Covariance Σk|k can be precomputed since it is

independent of the data.

• Stability of KF is related to stability of

λk+1 = (Ak −KkCk)λk

• Steady State Kalman Filter. If A, B, C, Q and R are

time-invariant, then under stability conditions Kk

and Σk converge to a constant.

• Amongst the class of linear estimators the Kalman

filter is the minimum variance estimator.

• Above derivation is algebraic. Another method is

basd on projection theorem (Hilbert space approach

to linear functionals).

For a detailed exposition of Kalman filters see “Optimal

Filtering” by B.D.O Anderson and J.B.Moore, Prentice

Hall, 1979.
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Derivation of Kalman Filter

N(x;µ, P ) = (2π)−X/2|P |−1/2 exp

(

−1

2
(x− µ)′P−1(x− µ)

)

.

Swiss-Army-Knife for Gaussians:

N(y;Cx,R)N(x;µ, P )

= N(y;Cµ,CPC ′+R) N(x;m+K̄(y−Cµ), P−K̄CP )

where in the right hand side of the above equation

K̄ = PC ′(CPC ′ + R)−1

m = µ+ K̄(y − Cµ).

As a result, the following hold:
∫

X

N(y;Cx,R)N(x;µ, P )dx = N(y;Cµ,CPC ′ +R)

N(y;Cx,R)N(x;µ, P )
∫

X
N(y;Cx,R)N(x;µ, P )dx

= N(x;m+ K̄(y − Cµ), P − K̄CP )
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2.4 Hidden Markov Model Filter

Recall HMM is (P,B, π0).

Pij = P(xk+1 = ej |xk = ei), Bxy = p(yk = y|xk = x)

X = {e1, . . . , eX} where ei is a X indicator vector with 1

in the i-th position.

HMM Filter: Since X = {e1, . . . , eX}, so

πk(i) = P(xk = ei|y1:k), i = 1, . . . , X

πk+1(j) =
p(yk+1|xk+1 = ej)

∑X
i=1 Pijπk(i)

∑X
l=1 p(yk+1|xk+1 = el)

∑X
i=1 Pilπk(i)

j = 1, . . . , X,

In matrix-vector notation:

Byk = diag
[

p(yk|xk = e1) · · · p(yk|xk = eX)
]

.

πk =
[

πk(1) · · · πk(X)
]′

πk+1 = T (πk, yk+1) =
Byk+1P

′πk

σ(πk, yk+1)
, σ(πk, yk+1) = 1′Byk+1P

′πk.

Compute the conditional mean estimate of C ′xk+1 as

C ′x̂k+1 = E{C ′xk+1|y1:k+1} = C ′πk+1.

O(X2) multiplications at each time
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Belief Space:

Π(X)
defn
=

{

π ∈ IRX : 1′π = 1, 0 ≤ π(i) ≤ 1 for all i ∈ X
}

Unit vectors e1, e2, . . . , eX , that represent the X-states of

the Markov chain are the vertices of this simplex Π.

Un-normalized HMM filter and Forward algorithm

π̃k+1 = p(xk+1, y1:k+1) = Byk+1P
′π̃k.

x̂k+1 = E{xk+1|y1:k+1} =
π̃k+1

1′π̃k+1
.

Called forward algorithm.

Scaling: underflow problem remedied by scaling all the

elements of π̃k by any arbitrary positive number. Since x̂k

involves the ratio of π̃k with 1′π̃k, this scaling factor

cancels out in the computation of x̂k.

HMM Predictor: πk+∆ = P ′∆πk.

HMM Smoother: βk|N (x) = p(yk+1:N |xk = x).

βk|N =
[

βk|N (1), . . . , βk|N (X)
]

.

Backward recursion

βk|N = PByk+1βk+1|N , k = N − 1, . . . , 1, βN|N = 1

πk|N (i) = P(xk = i|y1:N ) =
πk(i)βk|N (i)

∑m
l=1 πk(l)βk|N (k)
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Markov Modulated Auto-regressive Time Series

Given y1, . . . , yk−1, distribution of yk depends not only on

the state xk of the Markov chain but also on

yk−1, . . . , yk−d

Example: Linear autoregressions with Markov regime

yk + a1(xk) yk−1 + · · ·+ ad(xk) yk−d = Γ (xk)wk,

Identical to HMM filter with observation density

Bx,yk = pw
(

Γ−1(x)(yk + a1(x) yk−1 + · · ·+ ad(x) yk−d)
)

.
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2.5 Viterbi Algorithm for HMM State

estimation

Unlike HMM filter, Viterbi algorithm generates Maximum

likelihood sequence estimates. Let XT = (x1, . . . , xk) and

YT = (y1, . . . , yT ). Then Viterbi algorithm computes

X̂T = argmax
XT

p(YT , XT )

= argmax
XT

T
∏

k=1

p(yk|xk)p(xk|xk−1)p(x1)

Solve via forward dynamic programming: For

k = 1, 2, . . . , T

δk+1(j) = max
i

[

δk(i)Pij

]

p(yk+1|xk+1 = qj)

uk+1(j) = argmax
i

[

δk(i)Pij

]

p(yk+1|xk+1 = qj)

Terminate at x̂T = argmaxi δT (i).

Then backtrack to read off MLSE X̂T as x̂k = uk+1(x̂k+1).

Viterbi generates hard estimates. But hard to analyse its

statistical properties.

In computer implementation use log δk to avoid numerical

underflow.
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Comparison of Kalman and HMM filter

(i) KF is linear filter, HMM filter is nonlinear filter.

(ii) KF requires Gaussian noise and a linear state space

model. In non Gaussian noise, KF is linear min-var

estimator. The HMM filter does not require Gaussian

noise – it works for any noise density. Also the observation

equation does not have to be linear in the Markov state.

(iii) KF is optimal for correlated noise (linearly filtered

white noise). HMM filter depends crucially on the

whiteness of vk

(iv) Both HMM and KF are geometrically ergodic, i.e.

they forget their initial condition exponentially fast.

(v) Martingale formulation of HMM: Let

xk ∈ {e1, . . . , eS} denote states of Markov chain. Then

HMM can be represented as

xk+1 = A′xk +Mk

yk = Cxk + vk

where Mk is a finite state martingale increment.
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Geometric Ergodicity of Optimal Filter

Assumption: (strong mixing - Attar, Zeitouni, 1997)

σ−µj ≤ Pij ≤ σ+µj

and 0 <
X
∑

j=1

µjBjy < ∞ for all y ∈ Y.

0 < σ− ≤ σ+ and µ is a pmf.

Theorem: Consider two HMMs (P,B, π0) and (P,B, π̄0).

Let πk and π̄k denote the filtered pmfs. Then

‖πk − π̄k‖TV ≤ 2
σ+

σ−

(

1− σ−

σ+

)k

‖π0 − π̄0‖TV

Pij(n|k) = P(xn = j|xn−1 = i, x0:n−2, y1:k)

Fixed-interval smoothed conditional probability vector

πn|k =
[

P(xn = 1|y1:k) · · · P(xn = X|y1:k)
]′

where n ≤ k. Chapman Kolomogorov equation

πn|k = P ′(n|k)πn−1|k =
1
∏

l=n

P ′(l|k)π0|k.



Filtering : c©Vikram Krishnamurthy 2013 23

Sub-multiplicative property of the Dobrushin coefficient

‖πn|k − π̄n|k‖TV = ‖
1
∏

l=n

P ′(l|k)π0|k −
1
∏

l=n

P ′(l|k)π̄0|k‖TV

≤ ‖π0|k − π̄0|k‖TV

n
∏

l=1

ρ(P (l|k)), n = 1, 2 . . . , k.

Step 1. Show Dobrushin coefficients ρ(P (l|k)) < 1.

Step 2. Establish an upper bound for ‖π0|k − π̄0|k‖TV.

Since always smaller than 1, Step 1 suffices. Sharper

bound: ‖π0|k − π̄0|k‖TV in terms of ‖π0 − π̄0‖TV.

We proceed with Step 1.

Theorem: ρ(P (l|k)) ≤ 1− σ−

σ+

Proof:

Pij(l|k) = P(xl = j|xl−1 = i, x0:l−2, y1:k)

=
PijBjylβl|k(j)

∑X
x=1 PixBxylβl|k(x)

≥ σ−

σ+

µjBjylβl|k(j)
∑X

x=1 µxBxyβl|k(x)

Denote

ǫ =
σ−

σ+
, κj =

µjBjylβl|k(j)
∑X

x=1 µxBxyβl|k(x)

Clearly κj is a probability mass function and ǫ ∈ (0, 1]. So

we have Doeblin condition Pij(l|k) ≥ ǫκj . Therefore

ρ(P (l|k)) ≤ 1− ǫ.
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2.6 Approximate Filters

For general nonlinear systems – no finite dimensional

filter exists.

The following approximations are widely used.

1. Deterministic Grid approximation: HMM

approximation (e.g. bearings only target tracking)

π̃k+1(xk+1) = p(yk+1|xk+1)

∫

IR

p(xk+1|xk)π̃k(xk)dxk

Discretizing x to the grid [r1, . . . , rM ] yields

π̃k+1(rj) = p(yk+1|xk+1 = rj)

M
∑

i=1

p(xk+1 = rj |xk = ri)π̃k(ri)

Complexity: O(M2) at each time instant.

Approx error: O(M−1/N ) (N = state dim) – suffers from

curse of dimensionality.

2. Extended Kalman Filter: Linearize, then run KF.

Unscented Kalman filter is more sophisticated.

3. MAP estimators: Compute the MAP state estimate

(modal filtering) argmaxx1,...,xT
p(YT , x1, . . . , xT ).

4. Basis function approximations: (i) Gaussian sum

approximations, (ii) Particle filters
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Particle filters

Outline: Particle filters are a randomized grid

sub-optimal algorithm for nonlinear filtering. They use

the delta function basis approximation

p(x0:n|y1:n) ≈
N
∑

i=1

w̃
(i)
k δ(x

(i)
0:n).

The positions δ(x
(i)
0:n) of the N particles propagate

randomly according to system dynamics.

Weights w̃
(i)
k are updated via Bayes rule.

While deterministic grid error is O(N−1/X), for particle

filter the mean square error from CLT is O(N−1)

(randomization breaks the curse of dimensionality!).

The bootstrap particle filter was invented in 1968 by D.Q

Mayne. It was re-invented in 1996. Particle filters are a

class of sequential Markov Chain Monte Carlo (MCMC)

algorithms.
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1. Model: p(xk+1|x0:k), p(yk|y1:k−1, x1:k).

Aim: Compute E{φ(x0:k)|y1:k} via sequential MCMC.

We estimate pdf p(x0:k|y1:k), k = 1, 2, . . ..

2. Bayesian Importance sampling:

E{φ(x0:k|y1:k)} =

∫

φ(x0:k)
p(x0:k|y1:k)
π(x0:k|y1:k)

π(x0:k|y1:k)dx0:k

Sample x
(i)
0:k ∼ π(x0:k|y1:k), then by SLLN

N
∑

i=1

φ(x
(i)
0:k)

w
(i)
k

∑

j w
(j)
k

→ E{φ(x0:k)|y1:k}, w
(i)
k =

p(x
(i)
0:k|y1:k)

π(x
(i)
0:k|y1:k)

4. Sequential Importance sampling:

π(x0:k|y1:k) = π(x0|y1:k)
k
∏

t=1

π(xt|x0:t−1, y1:k)

Real time: π(x0:k|y1:k) = π(x0)

k
∏

t=1

π(xt|x0:t−1, y1:t)

wk(x
(i)
0:k) =

p(x
(i)
0:k|y1:k)

π(x
(i)
0:k|y1:k)

∝
p(yk|y1:k−1, x

(i)
0:k) p(x

(i)
k |x

(i)
0:k−1)

π(x
(i)
k |x

(i)
0:k−1, y1:k)

wk−1(x
(i)
0:k−1)

particle filter: p(x0:k|y1:k) ≈
N
∑

i=1

wk(x
(i)
0:k)

∑N
j=1 wk(x

(j)
0:k)

δ(x
(i)
0:k).
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Summary: Particle filter algorithm

Sequential Importance Sampling step: At each time k

• Sample N particles x̃
(i)
k ∼ π(xk|x(i)

0:k−1, y1:k).

Set x̃
(i)
0:k = (x

(i)
0:k−1, x̃

(i)
k ).

• Update importance weights wk and normalized

importance weights w̃
(i)
k of particles

wk(x̃
(i)
0:k) ∝

p(yk|y1:k−1, x̃
(i)
0:k)p(x̃

(i)
k |x̃(i)

0:k−1)

π(x̃
(i)
k |x(i)

0:k−1, y1:k)
wk−1(x

(i)
0:k−1)

w̃
(i)
t =

wk(x̃
(i)
0:k)

∑N
j=1 wk(x̃

(j)
0:k)

.

Selection step: Effective no. of particles: N̂ = 1
∑

N

i=1 w̃
(i)
k

.

If N̂ is smaller than a prescribed threshold, then

• Multiply/Discard particles x̃
(i)
0:k, i = 1, . . . , N with

high/low normalised importance weights w̃
(i)
k to

obtain N new particles x
(i)
0:k, i = 1, . . . , N .

Remarks: If φ(x0:n) = xn, then memory required: O(N).

lim
N→∞

∑N
i=1 x

(i)
n w

(i)
n

∑N
i=1 w

(i)
n

→ E{xn|y0:n} a.s.
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Implementation Issues

1. Choice of importance function: zillions of papers

(i) Optimal choice: (min var of p(x0:k|y0:k)/π(x0:k|y0:k)).

π(xk|x0:k−1, y0:k) = p(xk|x(i)
k−1, yk)

Then p(xk|xk−1, yk) =
p(yk|xk)p(xk|xk−1)

p(yk|xk−1)
.

So w
(i)
k = w

(i)
k−1p(yk|x

(i)
k−1).

Compute w
(i)
k , sample x

(i)
n in parallel since indpt of x

(i)
k !

Disadvantages of optimal importance function:

(a) Need to be able to sample from p(xk|x(i)
k−1, yk)

(b) Need to be able to compute p(yk|xk−1) in closed form.

Example: Nonlinear dynamics, linear observation:

xk+1 = f(xk) + vk, vk ∼ N(0, Σv)

yk = Cxk + wk, wk ∼ N(0, Σw)

Then p(xk|xk−1, yk) = N(mk, Σ) where

Σ−1 = Σ−1
v + C ′Σ−1

w C

mk = Σ(Σ−1
v f(xk−1)

′
CΣ

−1
w yk)

p(yk|xk−1) = N
(

Cf(xk−1), (Σw + CΣvC
′)
)

(ii) Prior Importance function: (Mayne 1969, Tanizaki
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1997): π(xk|x0:k−1, y0:k) = p(xk|xk−1).

Then w
(i)
k = w

(i)
k−1p(yk|x

(i)
k ). Sensitive to outliers.

Particles evolve indpt of obs.

(iii) Fixed importance function: π(xk|x0:k−1, y0:k) = p(xk)

Tanizaki (1994, econometrics), Kitagawa (1987).

2. Degeneracy: Variance of importance weights w
(i)
k

grows with time. Most particle weights become close to

zero – ill-conditioning.

Selection/Resampling Step: (zillions of papers)

(i) Discard particles with low normalized weight.

(ii) Multiply particles with high weight.

Before selection: p(x0:k|y0:k) ∝
∑

i w
(i)
k δ(x

(i)
0:k)

After selection: p(x0:k|y0:k) ∝
∑

i δ(x
(i)
0:k)

Methods: Sampling Importance Resampling, etc

Selection scheme increases variance - so compromise

between degeneracy and variance.

3. Variance reduction by conditioning

(Rao-Blackwellization): Based on the idea

var{E{X|Y }} ≤ var{E{X}}

Remark: In basic algorithm given, the particles do not

interact. Resampling (which reduces the degeneracy

problem) introduces dependencies in the particles.

Convergence is much more difficult to prove.
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Example: Jump Markov Linear System

zk+1 = A(rk+1) zk + Γ (rk+1)wk+1 + f(rk+1)uk+1

yk = C(rk) zk +D(rk) vk + g(rk)uk.

Aim: Estimate joint posterior p(r0:k, z0:k|y1:k).
Key insight: Why use a particle filter for JMLS?

p(r0:k, z0:k|y1:k) = p(z0:k|y1:k, r0:k)p(r0:k|y1:k).

p(x0:k|y1:k, r0:k) is Gaussian. p(r0:k|y1:k) is Xk mixture.

Can reformulate estimation of p(rk, zk|y1:k) as sampling

from p(r0:k|y1:k). Use particle filter Algorithm

w(r0:t) ∝ p (yt| y1:t−1, r0:t) p (rt| rt−1)

π (rt| y1:t, r0:t−1)
w(r0:t−1)

to estimate p(r0:k|y1:k)
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Data Augmentation Algorithm for Fixed-interval

Smoothing of JMLS

1. Initialization. Choose
(

r
(0)
0:N , z

(0)
0:N )

)

randomly.

2. Iteration. For n = 1, 2, . . .: Given
(

r0:N ,(n−1) , z0:N ,(n−1)
)

, compute
(

r0:N ,(n) , z0:N ,(n)
)

, for the nth iteration as follows:

• Simulate z
(n)
0:N ∼ p(z0:N |y1:N , r

(n−1)
0:N ).

• Simulate r
(n)
0:N ∼ p

(

r0:N |y1:N , z
(n)
0:N

)

.

3. State Estimation: Compute fixed-interval smoothed

estimates after N iterations as

r̂N0:N =
1

N

N−1
∑

n=0

E{r0:N |y1:N , z
(n)
0:N}, ẑN0:N =

1

N

N−1
∑

n=0

E{z0:N |y1:N ,

These are implemented, respectively, using the HMM

smoother and Kalman smoother algorithms.
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2.7 Multi-agent State Estimation:

Social Learning

Multi-agent system aims to estimate Markov state.

Each agent acts once in a predetermined sequential order

indexed by k = 1, 2, . . ..

(i) Private Observation: At time k, agent k records a

private observation yk ∈ Y = {1, 2, . . . , Y } from the

observation distribution Biy = P(y|x = i), i ∈ X .

(ii) Private Belief: Using public belief πk−1 available at

time k − 1, agent k updates private belief

ηk(i) = P (xk = i|a1, . . . , ak−1, yk)

ηk =
BykP

′π

1′
XByP ′π

, where Byk = diag(P (yk|x = i), i ∈ X ).

(iii) Myopic Action: Agent k takes action

ak ∈ A = {1, 2, . . . , A} to minimize its expected cost

ak = a(πk−1, yk) = argmin
a∈A

E{c(x, a)|a1, . . . , ak−1, yk}

= argmin
a∈A

{c′aηk}.

Here ca = (c(i, a), i ∈ X ) is cost vector

(iv) Social Learning Filter: Other agents use ak to
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perform social learning πk(j) = P (xk = j|a1, . . . , ak).

πk = T (πk−1, ak), where T (π, a) =
Rπ

aP
′π

σ(π, a)
, σ(π, a) = 1′

XRπ
aP

′π

Rπ
a = diag(P (a|x = i, π), i ∈ X )

with elements

P (ak = a|xk = i, πk−1 = π) =
∑

y∈Y

P (a|y, π)P (y|xk = i)

where P (ak = a|y, π) =







1 if c′aByP
′π ≤ c′ãByP

′π, for all ã ∈ A

0 otherwise

Remarks: (i) Filtering with hard decisions: E.g. A = X ,

ca = −ea then argmina c
′
aπ = argmaxa π(a) (MAP

estimate).

(ii) Dependence of observation likelihood on prior.

• An individual agent k herds on the public belief πk−1

if it chooses its action ak = a(πk−1, yk) independently

of its observation yk.

• A herd of agents takes place at time k∗, if the actions

of all agents after time k∗ are identical, i.e., ak = ak∗

for all time k > k∗.

• An information cascade occurs at time k∗, if the

public beliefs of all agents after time k∗ are identical,

i.e. πk = πk∗ for all k < k∗.
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Result: An information cascade takes place if and only

there exists some time k∗, such that for all k ≥ k∗, the

diagonal elements P(ak|x = i), i ∈ X of Rπ
ak

are identical.

Remark:

(i) An information cascade implies a herd of agents, that

is the action of all agents are identical after some time k∗.

But a herd of agents does not imply an information

cascade. This is because, even if all agents pick the same

action for time k∗ onwards, it is possible for the social

belief πk, k ≥ k∗ to evolve

(ii) If all individual agents herd after some time k∗, then

an information cascade occurs. If all individual agents

herd from a time k∗, then no information is revealed after

time k∗ and social learning ceases. Equivalently, P(a|y, π)
is independent of y, so

P (ak = a|x = i, πk−1 = π) =
∑

y

P(y|x = i) = 1

for all i ∈ X , and the social belief update freezes.

Information cascade implies all individual agents herd

Theorem: The social learning protocol leads to an

information cascade in finite time with probability 1.

That is there exists a finite time k∗ after which social

learning ceases, i.e., public belief πk+1 = πk, k ≥ k∗, and

all agents choose the same action, i.e., ak+1 = ak, k ≥ k∗.
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Proof: Define λk(i, j) = log(πk(i)/πk(j)), i, j ∈ X .

λk(i, j) = λk−1(i, j) + γk(i, j)

γk(i, j) = log
P (ak|x = i, π)

P (ak|x = j, π)
.

Ȳk: observation symbols for which it is optimal not to

choose u given belief π. So

P(ak = a|x, π) = 1− P(yk ∈ Ȳk|x)

γk(i, j) = log
1−∑

y∈Ȳk
P(y|x = i)

1−∑

y∈Ȳk
P (y|x = j)

.

If a cascade forms, then Ȳk is the empty set. For any y it

is always optimal to pick action a. So γk(, i, j) = 0.

If Ȳk is non-empty, then |γk(i, j)| > K where K > 0.

Define the filtration sigma-algebra Ak = σ(a1, . . . , ak).

πk(i) = P (x = i|a1, . . . , ak) = E{I(x = i)|Ak} is a Ak

martingale, since

E{πk+1(i)|Ak} = E{E{I(x = i|Ak+1}|Ak} = E{I(x = i|Ak}

(via the smoothing property of conditional expectations).

So by the martingale convergence theorem, there exists a

random variable π∞, such that πk → π∞ with probability

1 (w.p.1). Therefore λk(i, j) → λ∞(i, j) w.p.1. Now since

λk(i, j) → λ∞(i, j) w.p.1, there exists some k∗ such for all
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k ≥ k∗, that |λk(i, j)− λ∞(i, j)| < K/3 (where K is the

constant defined above).

Therefore, |λk+1(i, j)− λk(i, j)| < 2K/3. (1)

Suppose a cascade does not form. Then P (a|x = i, π) is

different from P (a|x = j, π) for at least one pair i, j ∈ X ,

i 6= j. This implies that the set Ȳk is non-empty and so

|γk+1(i, j)| = |λk+1(i, j)− λk(i, j)| ≥ K (2)

So (1), (2) constitute a contradiction.

Multiagent Estimation: Data Incest

Problem

Rumor propagation.

(1, 1) → (1, 2) → (1, 3)

ց ր
(2, 1) → (2, 2) → (2, 3)


