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Convex penalty functions for non-convex structure

1-norm promotes sparsity (Claerbout & Muir 1973; Tibshirani 1996, . . .)

n
Jzli =) |zl
i=1

Trace norm (nuclear norm) promotes low rank (Fazel, Boyd, Hindi 2001, . . .

X1 =Y 0i(X)

Extensions: sums of norms, atomic norms, . . .
(Yuan & Lin 2006; Bach 2008, Chandrasekaran et al. 2010, Shah et al. 2012, . . .)

useful in convex optimization heuristics; supported by recent theory
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Example: subspace system identification

N
minimize Y [ly(t) — §()llz + 7 [|W2Y Wal|,

t=1

e variables are y(t) (model outputs); Y is block-Hankel matrix from y(¢)
e 7(t) is given, measured output sequence
e different subspace methods use different Wy, W

Motivation

e first term penalizes deviation of model outputs from measured outputs
e 2nd term promotes low rank(W1Y W5), preserving Hankel structure

e can add constraints on y(t), use other penalties (e.g., ¢1, Huber, . . . )

more examples and applications in the other talks of the session
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Interior-point methods

Trace norm minimization (with 4 : R"™ — R?*9 a linear mapping)

minimize ||A(z) — B,

Equivalent semidefinite program

minimize  (trU +trV)/2

U (A -B)T ],

subject to A(z) — B v -

e expensive to solve via general-purpose solvers
e customized solvers have complexity O(pgn?) if n > max{p, q}

(cf., complexity of dense least-squares problem of same size)
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Outline

Algorithms for problems
minimize f(x) + v||A(z) — B||+

e f convex, not necessarily differentiable or strictly convex

e A(x) is linear matrix valued function of x

Proximal algorithms

e proximal-point algorithm: augmented Lagrangian methods
e Douglas-Rachford splitting: primal, dual (ADMM), primal-dual

e forward-backward methods: dual proximal gradient, Chambolle-Pock

4/24



Convex optimization with composite structure

minimize f(x) + g(Ax)

e f and g are ‘simple’ convex functions

e dual has a similar structure:
maximize —g*(2) — f*(—A'%)

g*(z) = sup,, (21'y — g(y)) and f* are the conjugates of g and f

Example (|| - || is arbitrary norm with dual norm || - ||q)
B o J Ve llzlla<y
9(y) = vlly — bl g (2) = { +00 otherwise
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Optimality conditions

Primal optimality conditions

0 € df(x)+ AT dg(Ax)
0 denotes subdifferential (set of subgradients)
Dual optimality conditions

0 € Og*(z) — AOf*(—AT %)

Primal-dual optimality conditions

ol S [T elars
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Outline

1. Duality and optimality conditions
2. Proximal-point algorithm
3. Douglas-Rachford splitting

4. Forward-backward and semi-implicit methods



Proximal operator

1
proxy, (v) = argmin (h(u) + 7 v — 2(j)

u

e uniquely defined for all  (if h is closed convex)

e Moreau decomposition: = = prox, (z) + prox;,-(z)

Examples

e h is indicator function o of closed convex set: Euclidean projection Pc

e h(x) = ||z — b||: generalized soft-thresholding operation
prox,,(r) = x — Po(x — b), tC ={z| ||z|qa <t}

(Moreau 1965, surveys in Bauschke & Combettes 2011, Parikh & Boyd 2013)
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Proximal point algorithm

to minimize h(x), apply fixed-point iteration to prox,,,

A prox,;, ()

e minimizers of h are fixed points of prox,,

e implementable if inexact prox-evaluations are used

Convergence

e O(1/e) iterations to reach h(z) — h(x*) <€

e O(1/+/€) iterations with accelerated algorithm (Giiler 1992)
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Monotone operator

Monotone (set-valued) operator. ' : R" — R” with

(y—T(x—2)>0 Va, & ye F(x), §€ F(&)

Examples

e subdifferential of closed convex function
e linear function F'(x) = Bz with B + B! positive semidefinite

e r.h.s. of primal-dual optimality condition for composite problem
0 AT T of ()
OG[—A O][z]—l_[@g*(z)
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Proximal point algorithm for monotone inclusion

to solve 0 € F'(x), run fixed-point iteration
vt = (I +tF)"(2)

the mapping (I +tF)~ ! is called the resolvent of I

o v = (I+tF) &) is (unique) solution of & € x + tF(x)
e resolvent of subdifferential F'(x) = Oh(x) is prox-operator:

(1 +toh)™*(z) = prox,,(z)

e PPA converges if F' has a zero and is maximal monotone
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Augmented Lagrangian method

proximal-point algorithm applied to the dual in
P: minimize  f(x)+ g(y) D: maximize — g*(2) — f*(—A'2)

subject to Az =y

1. minimize augmented Lagrangian

. . S 2
(27, y") = argmin (f(2) + g(5) + 1A% — 5 + 2/t]3)
LY

2. dual update: 2T =2z +t(Ax™T — y™)
e known in image processing as Bregman iteration (Yin et al. 2008)
e practical with inexact minimization (Rockafellar 1976, Liu et al. 2012, . . .)
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Proximal method of multipliers

apply proximal point algorithm to
0 AL T Of (x)
OE[—A O][z]+lﬁg*(z)

Algorithm (Rockafellar 1976)

1. minimize generalized augmented Lagrangian

: _ . b, . . 1. .
(%) = avgmin ( £(2) + () + Gl1AT ~ 7+ 2/115 + 5 )
oY)

2. dual update: 27 =z +t(AxT — y™)
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Outline

1. Introduction
2. Proximal-point algorithm
3. Douglas-Rachford splitting

4. Forward-backward and semi-implicit methods



Douglas-Rachford splitting algorithm

0€ F(x) = Fi(x) + Fs(x)

with F} and F5 maximal monotone

Algorithm (Lions and Mercier 1979)

= (IT+tF) Y(2)
yt = (I+tF) H(22T — 2)
ot o= a4yt —at

e useful when resolvents of F; and F} are inexpensive, but not (I +tF)~1

e under weak conditions (existence of solution), & converges to solution
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Alternating direction method of multipliers (ADMM)

Douglas-Rachford splitting applied to optimality condition for dual
maximize — g*(z) — f*(—A'2)

1. alternating minimization of augmented Lagrangian

. N 2
T = arg{nm(f(x)+§\|z4$—y+z/t||g>
. .t _
v = arguin (5) + gllAs* ~ 5+ 2/1]3)
J

2. dual update 2T = 2z + t(Azt — v)

also known as split Bregman method (Goldstein and Osher 2009)

Gabay & Mercier 1976; recent survey in Boyd, Parikh, Chu, Peleato, Eckstein 2011

14/24



Primal application of Douglas-Rachford method

D-R splitting algorithm applied to optimality condition for primal

minimize f(z) + g(y)+ d{0} (Az —y)
hlafg,y) hg(‘a?,y)

Main steps

e prox-operator of h;: separate evaluations of prox; and prox,

e prox-operator of hy: projection on subspace H = {(x,y) | Az =y}

Py(z,y) = [ i ] (I + AT A (z + ATy)

also known as method of partial inverses (Spingarn 1983, 1985)
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Primal-dual application

Main steps

e resolvent of Fi: prox-operator of f, g

e resolvent of Fb:

B N A A
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Summary: Douglas-Rachford splitting methods

minimize f(z) + g(Ax)

Most expensive steps

e Dual (ADMM)
L t 2
minimize (over z) f(x) _|_§]|Ag;—y—|—z/t|\2

a linear equation with coefficient V2f(x) +tAT A if f is quadratic

e Primal (Spingarn): equation with coefficient I + AT A

e Primal-dual: equation with coefficient I + t2A" A
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Outline

1. Introduction
2. Proximal-point algorithm
3. Douglas-Rachford splitting

4. Forward-backward and semi-implicit methods



Forward-backward method

0€ F(x) = Fi(x) + Fs(x)

Forward-backward iteration (for single-valued F})
vt = (I +tF) (I —tF (7))

e converges if I} is co-coercive with parameter L and t =1/L

(Fi(z) — Fi(2))" (z — ) > %I\Fl(fb‘) - F(2)|3 Vz,2

e Tseng's modified method (1991) only requires Lipschitz continuous F}
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Dual proximal gradient method

0€ dg°(z) — AVf*(—A"z)

Fa(2) Fi(z)

Proximal gradient iteration

r = argmin (f(2) + 2" AZ) = Vf*(—A"2)

X

27 = proxy.(z +tAx)

e does not involve linear equation
e requires Lipschitz continuous V f* (strongly convex f)
e accelerated methods: FISTA (Beck & Teboulle 2009), Nesterov's methods

for a comparison with ADMM, see Fazel, Pong, Sun, Tseng 2013
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Primal-dual (Chambolle-Pock) method
0 Al T of ()
ol S Lt [

Algorithm (with parameter 6 € [0, 1]) (Chambolle & Pock 2011)

27 = prox,.(z +tAT)
xt = prox,(z — tAT2T)
Tt = 2T+ 0" —2)

e step size fixed (¢t < 1/||A||2) or adapted by line search
e can be interpreted as semi-implicit forward-backward iteration

e can be interpreted as pre-conditioned proximal-point algorithm
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Subspace system identification example

minimize Zl\y (D113 + Y],

e one input, two outputs (Daisy continuous stirring tank data)
e Y is Hankel matrix from y(t), YII has rank n for an nth order model

e 2N optimization variables; Y'II has size p X ¢

Algorithms

e ADMM with adaptive step size (code from Liu, Hansson, Vandenberghe 2013)
e primal Douglas-Rachord (Spingarn) with fixed step size

e Chambolle-Pock with backtracking line search
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Convergence

, N = 434, p = 40, g = 400 , N =434, p = 40, g = 400
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Convergence
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Proximal algorithms for trace norm optimization

minimize f(z) + || A(x) — B||«

Douglas-Rachford splitting methods (primal, dual, primal-dual)

subproblems include quadratic term ||A(x)||% in cost function

Forward-backward methods (dual or primal-dual )

only require application of A and its adjoint 42

Proximal mapping of trace norm
e requires an SVD (for projection on max. singular value norm ball)

e avoided in methods based on nonconvex low-rank parametrizations
(Recht et al. 2010, Burer & Monteiro 2003, . . .)
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