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Dynamical System

Stable Input-Output System

G(q)u y

Transfer Function
G(q) =

∞∑
k=1

gkq
−k

State-Space Model

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t)

dim{x(t)} = n gk = CAk−1B



Observability, Controllability and the Hankel Matrix

Extended Observability Matrix Op = [C;CA; . . . CAp−1]
has rank less or equal to n.

Extended Controllability Matrix Cq = [B AB . . . Aq−1B]
has rank less or equal to n.

Hankel Matrix

Hp,q =


g1 g2 . . . gp
g2 g3 . . . gp+1

. . .
gq gq+1 . . . gq+p



H = OC has rank less or equal to n!



Flexible Models in System Identification

FIR (high order):

y(t) =
ng∑
k=1

gku(t− k),

ARX (high order):

y(t) = −
na∑
k=1

aky(t− k) +
nb∑
k=1

bku(t− k)

4SID Linear Regression (Jansson & Wahlberg 1996):

yα(t) = L1yβ(t− β) + L2uβ(t− β) + L3uα(t)

where yα(t) = [y(t), y(t+ 1), . . . y(t+ α− 1)]T , . . .



Constraints - A Priori Information

Stability

Rank {H} = n,
Range Space {H} = Range Space {Oq}

Rank {L1 L2]} = n,
Range Space {[L1 L2]} = Range Space {Oα}

⇒ Subspace Methods!



The Matrix Rank Tool in SI 1970 – 2000: SVD

The truncated Singular Value Decomposition (SVD) gives the
optimal un-structured rank r approximation of a given matrix.

S.Y. Kung. A new identification and model reduction algorithm via
singular value decomposition. In 12th Asilomar Conference on Circuits,
Systems and Computers, 1978.

SVD forms the base for Subspace System Identification.
Very efficient numerical algorithms!

A key to success was weighted subspace fitting!

(Optimal Hankel Norm Model Reduction goes far beyond SVD.)



The Matrix Rank Tool 2001 –: The Nuclear Norm

Difficult Problem

minimize Rank{X}
subject to X ∈ Convex Set

Heuristic Convex Optimization Problem:

minimize ‖X‖∗
subject to X ∈ Convex Set

where ‖X‖∗ is the nuclear norm.



Motivation of the Nuclear Norm

The singular values of X, {σi ≥ 0}, are the square root of
eigenvalues of XTX.

Induced norm: ‖X‖ = σmax

Frobenius norm: ‖X‖F =
√

tr{XTX} =
√∑r

i=1 σ
2
i

(l2-norm of the singular values)

Nuclear norm: ‖X‖∗ =
∑r
i=1 σi

(l1-norm of the singular values)

Recent overviews:
Recht, Fazel and Parrilo: Guaranteed Minimum-Rank Solutions of
Linear Matrix Equations via Nuclear Norm Minimization, 2010
Fazel, Pong, Sun, and Tseng: Hankel matrix rank minimization with
applications in system identification and realization, 2013



SDP Formulation

Nuclear norm equivalent problem:

minimize (tr{Y }+ tr{Z})/2

subject to
(
Y X
XT Z

)
� 0

X ∈ Convex Set

(Expensive to solve via general-purpose solvers)

M. Fazel, H. Hindi, and S. Boyd: A Rank Minimization Heuristic with
Application to Minimum Order System Approximation, ACC, 2001.
Over 300 citations!



SI using Hankel Matrix Rank Minimization

Example: Output Error Model with least squares fit using data
{y(t), u(t), t = 1 . . . N} and model order constraint:

minimize
N∑
t=1

[y(t)−
∞∑
k=1

gku(t− k)]2

subject to Rank {H(g)} = n

Equivalent to G(q) =
∞∑
k=1

gkq
−k = B(q)

F (q) of order n.

The rank constraint is as non-convex as the optimization
problem minimizing with respect to the coefficients of B(q)
and F (q).



Use the nuclear norm relaxation trick!

A high order FIR approximation and the SDP formulation ⇒

Heuristic Convex Optimization Problem:

minimize
N∑
t=1

[y(t)−
n∑
k=1

gku(t− k)]2 + λ(tr{Y }+ tr{Z})/2

subject to
(

Y H(g)
H(g)T Z

)
� 0

Ref: Grossmann, Jones and Morari, ECC 2009
Hjalmarsson, Welsh, Rojas, SYSID 2012

Compare with standard regularization techniques in SI where a
cost term is added to penalize the model complexity.



Does it work better than PEM/Subspace SI?

No local minima (seems less ad hoc than the three step
Kung algorithm).

Easy to add constraints on the outputs, or use more
complicated penalty terms (for example with missing data,
or non-quadratic penalties).

A lot of simulation benchmarks and real data test cases
have been done with good results. In particular, with high
order ARX and at low signal to noise ratios.

Weighting improves the result (work in progress by
Hjalmarsson). Compare Indirect PEM.

Generalized to Box-Jenkins models.



Does it work better than PEM/Subspace SI?

How effective is the nuclear norm heuristic in solving data
approximation problems?

Many promising examples by Sznaier at SYSID 2012 using
real data.

Some negative answers by Markovsky at SYSID 2012 using
simulation examples.

No performance analysis. E.g. the effect of λ?

Would compare to the-state-of-the-art in subspace system
identification 1990!

A lot of promising algorithms and initial results.
Alternative heuristics, iterative re-weighting, ...



Connection to Balanced Model Reduction

Use H = OC and let Y = OOT , and Z = CTC.

Feasible Solution:
(

Y H(g)
H(g)T Z

)
=
(
O
CT

)(
OT C

)
� 0

Optimality condition:

min(tr{Y }+ tr{Z})/2 = min(tr{OOT }+ tr{CTC})/2

= min(tr{OTO}+ tr{CCT })/2 =
n∑
k=1

σi

(the "truncated" observability and controllability grammians, and
the sum of the Hankel singular values.)
A balanced realization will satisfy this condition!

This approach to structured balanced model reduction was
explored in the mid 90s by Carolyn Beck and co-workers.



Subspace System Identification using the Nuclear
Norm

Block Hankel matrix formulation of the noise free state space
equations:

Y = GX +HU ⇒ Y U⊥ = GXU⊥ has rank n

Data pre-processing step:

minimize
ym

N∑
t=1

[y(t)− ym(t)]2 + λ||YmU⊥||∗

L. Liu and L. Vandenberghe, Interior-point method for nuclear norm
approximation with application to system identification, SIAM Journal
on Matrix Analysis and Applications, 2010.



Subspace System Identification using the Nuclear
Norm

Easier to select the model order than standard subspace
methods.

Slightly better than standard subspace SI methods on the
DaISy benchmarks.

Weighting improve results and efficient ADMM
implementation
in Hansson, Liu and Vandenberghe, CDC 2012.

Frequency Domain Subspace SI using the Nuclear Norm:
R. Smith, CDC 2012.



SI of Hammerstein Models

Let x, y ∈ Rn and study

xT y = tr{yxT } = tr{C}, Rank{C} = 1

Can be used to re-formulate certain bilinear optimization
problems as rank one optimization problems.

Example: FIR Hammerstein model

y(t) = tr{CΨ(t)} Rank{C} = 1

where x corresponds to the FIR parameters and y to the function
expansion parameters.

The nuclear norm heuristic for this problem is evaluated in Falck,
Suykens, Schoukens and De Moore, CDC 2010.



Blind Identification

Example: Blind identification of FIR models with piecewise
constant inputs

y(t) = tr{bTnuβ(t− β)} = tr{C}, Rank{C} = 1

Estimate both the FIR parameters and the input signal using the
nuclear norm heuristic and the total variation l1 heuristic.
Ref: Ohlsson, Ratliff, Dong and Sastry, ArXiv, 2013.

Can be dangerous to use multi-objective relaxations. One will
typically dominate. See Oymak, Jalali, Fazel, Eldar, and Hassibi,
ArXiv, 2013.



Take Home Message

We have lot of rank constraints in systems & control theory,
which can be utilized to regularize estimation problems.

Estimation using the nuclear norm heuristic is an extremely
active research area that is based on convex relaxation
heuristics.

Limited analytic results, which typically not are applicable to
dynamical system, e.g. the restricted isometry property and
random matrix theory.

A need for analysis beyond simulations to further improve
the methods!

A Lot of Exciting Ideas and Promising Methods!
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