Sublinear-Round Parallel Matroid Intersection

Joakim Blikstad

KTH Royal Institute of Technology

ICALP 2022

Matroid $\mathcal{M} = (V, \mathcal{I})$

1. Ground set V of n elements

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure

Eg. Colourful Matroid "no duplicate colours"

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure
 - Exchange property
 - "All maximal independent sets have the same size"

Eg. Colourful Matroid "no duplicate colours"

Matroid $\mathcal{M} = (V, \mathcal{I})$

- 1. Ground set V of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure
 - Exchange property
 - "All maximal independent sets have the same size"

Eg. Colourful Matroid "no duplicate colours"

 \mathcal{I} = "no duplicate colours"

 \mathcal{I} = "no duplicate colours"

 \mathcal{I} = "no duplicate colours"

Linear Matroid (2, 1, 4, 2, 3, 3) (1, 0, 1, 0, 1, 0) (3, 1, 5, 2, 4, 3) V = vectors $\mathcal{I} =$ "linear independence"

 \mathcal{I} = "no duplicate colours"

Linear Matroid (2, 1, 4, 2, 3, 3) (1, 0, 1, 0, 1, 0) (3, 1, 5, 2, 4, 3) V = vectors $\mathcal{I} =$ "linear independence"

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$

$$\bullet \mathcal{M}_2 = (V, \mathcal{I}_2)$$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$

Find a common independent set $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$

$$\blacksquare \mathcal{M}_2 = (V, \mathcal{I}_2)$$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

$$\mathbf{M}_1 = (V, \mathcal{I}_1)$$

 $\blacksquare \mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$

 $\mathbf{I} \mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.


```
\mathcal{M}_1 = "distinct suits"
\mathcal{M}_2 = "distinct colours"
```

$$\mathbf{M}_1 = (V, \mathcal{I}_1)$$

$$\square \mathcal{M}_2 = (V, \mathcal{I}_2)$$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Matroid Intersection: Examples

- Bipartite matching
- Arborescence (directed spanning tree)
- Rainbow spanning trees
- Tree/Arborescence packing
- Directed min-cut

. . .

- Graph orientation problems
- Matroid partitioning & union

Also connections to Submodular Function Minimization

Matroid Rank

 $rk(S) = max\{|A| : A \subseteq S, A \in \mathcal{I}\}$

= size of a maximum independent set in ${\cal S}$

= size of a maximal independent set in S

rk(S) = 3 = #distinct colours

Matroid Rank

 $rk(S) = max\{|A| : A \subseteq S, A \in \mathcal{I}\}$ = size of a maximum independent set in S = size of a *maximal* independent set in S

Properties:

- $\blacksquare S \in \mathcal{I} \iff \operatorname{rk}(S) = |S|$
- Submodular (Diminishing returns)
 If A ⊆ B, and x ∉ B then:
 rk(A+x)-rk(A) ≥ rk(B+x)-rk(B)

rk(S) = 3 = #distinct colours

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is rk(S)?"

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?" "NO"
- Rank query: "What is rk(S)?"

"3"

How to access a matroid?

Oracle Access

Independence query: "Is $S \in \mathcal{I}$?" "NO"

Rank query: "What is rk(S)?"

Important:

We do not know the underlying structure of the matroids!

"3"

Round: Issue a set of k queries simultaneously: "What is $rk(S_1)$?", "What is $rk(S_2)$?", ..., "What is $rk(S_k)$?" Can only depend on answers to queries in previous rounds!

```
Round: Issue a set of k queries simultaneously:
```

```
"What is rk(S_1)?", "What is rk(S_2)?", ..., "What is rk(S_k)?"
Can only depend on answers to queries in previous rounds!
```

Tradeoff:

- Total number of queries used
- Number of rounds (adaptivity)

```
Round: Issue a set of k queries simultaneously:
```

```
"What is rk(S_1)?", "What is rk(S_2)?", ..., "What is rk(S_k)?"
Can only depend on answers to queries in previous rounds!
```

Tradeoff:

- Total number of queries used $O(n^{3/2})$
- Number of rounds (*adaptivity*) $O(n^{3/2})$

```
Round: Issue a set of k queries simultaneously:
```

"What is $rk(S_1)$?", "What is $rk(S_2)$?", ..., "What is $rk(S_k)$?" Can only depend on answers to queries in previous rounds!

Tradeoff:

```
    Total number of queries used O(n^{3/2})
    Number of rounds (adaptivity) O(n^{3/2})
```

```
Round: Issue a set of k queries simultaneously:
```

"What is $rk(S_1)$?", "What is $rk(S_2)$?", ..., "What is $rk(S_k)$?" Can only depend on answers to queries in previous rounds!

Tradeoff:

Total number of queries used $O(n^{3/2})$ O(poly(n)) $O(2^n)$ Number of rounds (*adaptivity*) $O(n^{3/2})$? 1

Main Question:

How many rounds do we need if we can only use O(poly(n)) queries in total?

Can we do...

O(n)-rounds?

٠

O(polylog(n))-rounds?

O(polylog(n))-rounds? YES

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

Can we do. . .

O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds? YES

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

NO For general matroids: $\tilde{\Omega}(n^{1/3})$ (indep: KUW'86, rank: CCK'21)

Can we do. . .

O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds? YES

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

NO For general matroids: $\tilde{\Omega}(n^{1/3})$ (indep: KUW'86, rank: CCK'21)

o(n)-rounds?

O(polylog(n))-rounds? YES

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

NO For general matroids: $\tilde{\Omega}(n^{1/3})$ (indep: KUW'86, rank: CCK'21)

o(n)-rounds?

YES!

Main Theorem:

Matroid Intersection can be solved using poly(n) total queries and:

$$O(n_{\frac{3}{4}}^{3/4}) = O(n_{\frac{0.75}{2}}^{0.75})$$
 rounds (rank-oracle)

• $O(n^{7/8}) = O(n^{0.875})$ rounds (independence-oracle)

Common independent set $S' := S + b_1 - a_2 + b_3 - a_4 + b_5$ of size |S'| = |S| + 1

Algorithm

- 1. $S = \emptyset$
- 2. In parallel find all the edges of the exchange graph G(S)
- 3. If there is an augmenting path, augment along it and repeat

$$O(n)$$
 rounds

- \triangleright 1 round of $O(n^2)$ queries
- \triangleright only repeats O(n) times

- Disjoint paths not necessarily "compatible"
- Need to handle the inserted edges

 $\implies S + B_1 - A_2 + B_3 - A_4 + B_5 \in \mathcal{I}_1 \cap \mathcal{I}_2$

Exact Algorithm

- 1. Run $O(\sqrt{n}/\varepsilon)$ -round (1ε) -approximation algorithm
- 2. Now we have $|S| \ge OPT O(n\varepsilon)$
- 3. Do these augmentations one-by-one, in a single round each

Exact Algorithm

- 1. Run $O(\sqrt{n}/\varepsilon)$ -round (1ε) -approximation algorithm with $\varepsilon = n^{-1/4}$
- 2. Now we have $|S| \ge OPT O(n\varepsilon) = OPT n^{3/4}$
- 3. Do these augmentations one-by-one, in a single round each

$$O(n^{3/4})$$
-round algorithm!

Exact Algorithm

- 1. Run $O(\sqrt{n}/\varepsilon)$ -round (1ε) -approximation algorithm with $\varepsilon = n^{-1/4}$
- 2. Now we have $|S| \ge OPT O(n\varepsilon) = OPT n^{3/4}$
- 3. Do these augmentations one-by-one, in a single round each

$$O(n^{3/4})$$
-round algorithm!

Partial Augmenting Set, "Staircase"

In O(1) rounds accessing \mathcal{M}_2 :

In O(1) rounds accessing \mathcal{M}_2 :

Roughly $|B_1| - |B_\ell|$ elements are newly *discarded* or *selected*

Roughly $|B_1| - |B_\ell|$ elements are newly *discarded* or *selected*

In O(1) rounds accessing \mathcal{M}_1 :

Roughly $|B_1| - |B_\ell|$ elements are newly *discarded* or *selected*

In O(1) rounds accessing \mathcal{M}_1 :

Roughly $|B_1| - |B_\ell|$ elements are newly *discarded* or *selected* Each element can go *free* \rightarrow *selected* \rightarrow *discarded*

In O(1) rounds accessing \mathcal{M}_1 :

Roughly $|B_1| - |B_\ell|$ elements are newly *discarded* or *selected* Each element can go *free* \rightarrow *selected* \rightarrow *discarded* Only \sqrt{n} rounds until $|B_1| - |B_\ell| \leq \sqrt{n}$

•

Can define a graph *with respect to* our "staircase"

Can define a graph with respect to our "staircase"

In a single round we can find an "augmenting path"

Can define a graph with respect to our "staircase"

In a single round we can find an "augmenting path"

Can define a graph with respect to our "staircase"

- In a single round we can find an "augmenting path"
- Only need to repeat $O(\sqrt{n})$ times

What is the actual number of rounds required?
 Somewhere between \$\tilde{\Omega}(n^{1/3})\$ and \$O(n^{3/4})\$.

- What about *submodular function minimization* (SFM)?
- What about weighted matroid intersection?
 - Similar O(n) one-by-one algorithm works.
 - Can we also acheive sublinear number of rounds?

Thanks!