Sublinear-Round Parallel Matroid Intersection

Joakim Blikstad KTH Royal Institute of Technology

ICALP 2022

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

> Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

> Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

Eg. Colourful Matroid
"no duplicate colours"

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

- Downward closure

> Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

- Downward closure
- Exchange property
"All maximal independent sets have the same size"

$$
S \in \mathcal{I}
$$

> Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(V, \mathcal{I})$

1. Ground set V of n elements
2. Notion of independence \mathcal{I}

- Downward closure
- Exchange property
"All maximal independent sets have the same size"

$$
S \in \mathcal{I}
$$

> Eg. Colourful Matroid "no duplicate colours"

Matroids: Examples

Matroids: Examples

Graphic Matroid

Matroids: Examples

Graphic Matroid

$$
V=\text { edges }
$$

$$
\mathcal{I}=" \text { no cycles" }
$$

Matroids: Examples

Graphic Matroid

$$
V=\text { edges }
$$

$$
\mathcal{I}=" \text { no cycles" }
$$

Vámos Matroid

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

$$
\begin{aligned}
& \mathcal{M}_{1}=\text { "distinct suits" } \\
& \mathcal{M}_{2}=\text { "distinct colours" }
\end{aligned}
$$

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

$$
\begin{aligned}
& \mathcal{M}_{1}=\text { "distinct suits" } \\
& \mathcal{M}_{2}=\text { "distinct colours" }
\end{aligned}
$$

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

$\mathcal{M}_{1}=$ "distinct suits"
$\mathcal{M}_{2}=$ "distinct colours"

Matroid Intersection: Examples

- Bipartite matching
- Arborescence (directed spanning tree)
- Rainbow spanning trees
- Tree/Arborescence packing
- Directed min-cut
- Graph orientation problems
- Matroid partitioning \& union

Also connections to Submodular Function Minimization

Matroid Rank

$\operatorname{rk}(S)=\max \{|A|: A \subseteq S, A \in \mathcal{I}\}$
= size of a maximum independent set in S
= size of a maximal independent set in S

$$
\operatorname{rk}(S)=3=\# \text { distinct colours }
$$

Matroid Rank

$\operatorname{rk}(S)=\max \{|A|: A \subseteq S, A \in \mathcal{I}\}$
= size of a maximum independent set in S
= size of a maximal independent set in S

Properties:

- $S \in \mathcal{I} \Longleftrightarrow \operatorname{rk}(S)=|S|$
- Submodular (Diminishing returns)

If $A \subseteq B$, and $x \notin B$ then:
$\operatorname{rk}(A+x)-\operatorname{rk}(A) \geq \operatorname{rk}(B+x)-\operatorname{rk}(B)$

$$
\operatorname{rk}(S)=3=\# \text { distinct colours }
$$

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is $\operatorname{rk}(S)$?"

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is $\operatorname{rk}(S)$?"

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?" "NO"
- Rank query: "What is $\operatorname{rk}(S)$?"

Important:

We do not know the underlying structure of the matroids!

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
"What is $\operatorname{rk}\left(S_{1}\right)$?", "What is $\operatorname{rk}\left(S_{2}\right)$?", ..., "What is $\operatorname{rk}\left(S_{k}\right)$?"
Can only depend on answers to queries in previous rounds!

Parallel Query Algorithms

Runs in rounds
Round: Issue a set of k queries simultaneously:
"What is $\operatorname{rk}\left(S_{1}\right)$?", "What is $\operatorname{rk}\left(S_{2}\right)$?", ..., "What is $\operatorname{rk}\left(S_{k}\right)$?"
Can only depend on answers to queries in previous rounds!

Tradeoff:

- Total number of queries used
- Number of rounds (adaptivity)

Parallel Query Algorithms

Runs in rounds
Round: Issue a set of k queries simultaneously:
"What is $\operatorname{rk}\left(S_{1}\right)$?", "What is $\operatorname{rk}\left(S_{2}\right)$?", ..., "What is $\operatorname{rk}\left(S_{k}\right)$?"
Can only depend on answers to queries in previous rounds!

Tradeoff:

- Total number of queries used

$$
O\left(n^{3 / 2}\right)
$$

- Number of rounds (adaptivity) $O\left(n^{3 / 2}\right)$

Parallel Query Algorithms

Runs in rounds
Round: Issue a set of k queries simultaneously:
"What is $\operatorname{rk}\left(S_{1}\right)$?", "What is $\operatorname{rk}\left(S_{2}\right)$?", ..., "What is $\operatorname{rk}\left(S_{k}\right)$?"
Can only depend on answers to queries in previous rounds!

Tradeoff:

- Total number of queries used

$$
\begin{aligned}
& O\left(n^{3 / 2}\right) \\
& O\left(n^{3 / 2}\right)
\end{aligned}
$$

$$
O\left(2^{n}\right)
$$

- Number of rounds (adaptivity)1

Parallel Query Algorithms

Runs in rounds
Round: Issue a set of k queries simultaneously:
"What is $\operatorname{rk}\left(S_{1}\right)$?", "What is $\operatorname{rk}\left(S_{2}\right)$?", ..., "What is $\operatorname{rk}\left(S_{k}\right)$?"
Can only depend on answers to queries in previous rounds!

Tradeoff:

- Total number of queries used

$$
O\left(2^{n}\right)
$$

- Number of rounds (adaptivity)

$$
\begin{aligned}
& O\left(n^{3 / 2}\right) \\
& O\left(n^{3 / 2}\right)
\end{aligned}
$$

$$
O(\operatorname{poly}(n))
$$

$?$ 1

Main Question:

How many rounds do we need if we can only use $O($ poly $(n))$ queries in total?

Can we do...
$O(n)$-rounds?

Can we do...
$O(n)$-rounds?
YES Straightforward (Edmonds 60s)

Can we do...
$O(n)$-rounds? \quad YES Straightforward (Edmonds 60s)
O (polylog $(n))$-rounds?

Can we do...

$$
\begin{array}{lll}
O(n) \text {-rounds? } & \text { YES } & \text { Straightforward (Edmonds 60s) } \\
O(\text { polylog }(n)) \text {-rounds? } & \text { YES } & \begin{array}{l}
\text { For bipartite matching and linear matroid intersection } \\
\text { (Lovász'79, KUW'86, FGT'19, GT'20) }
\end{array}
\end{array}
$$

Can we do...

$O(n)$-rounds?
O (polylog $(n))$-rounds?

Straightforward (Edmonds 60s)

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

NO For general matroids: $\tilde{\Omega}\left(n^{1 / 3}\right)$ (indep: KUW'86, rank: CCK'21)

Can we do...

$O(n)$-rounds?
O (polylog(n))-rounds?
YES

NO For general matroids: $\tilde{\Omega}\left(n^{1 / 3}\right)$ (indep: KUW'86, rank: CCK'21)

$o(n)$-rounds?

Can we do...

$O(n)$-rounds? \quad YES Straightforward (Edmonds 60s)
O (polylog(n))-rounds?
YES

NO

$o(n)$-rounds?

For bipartite matching and linear matroid intersection (Lovász'79, KUW'86, FGT'19, GT'20)

For general matroids: $\tilde{\Omega}\left(n^{1 / 3}\right)$ (indep: KUW'86, rank: CCK'21)

Main Theorem:

Matroid Intersection can be solved using poly (n) total queries and:

- $O\left(n^{3 / 4}\right)=O\left(n^{0.75}\right)$ rounds (rank-oracle)
- $O\left(n^{7 / 8}\right)=O\left(n^{0.875}\right)$ rounds (independence-oracle)

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Given $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ construct the exchange graph $G(S)$. s, t-path \Longleftrightarrow can increase size of S !

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Given $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ construct the exchange graph $G(S)$.

$$
s, t \text {-path } \Longleftrightarrow \text { can increase size of } S!
$$

Exchange Graph \& Augmenting Paths [Edmonds'60s]

$$
\Longrightarrow S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5} \in \mathcal{I}_{2}
$$

Exchange Graph \& Augmenting Paths [Edmonds'60s]

$$
\Longrightarrow S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5} \in \mathcal{I}_{2}
$$

Common independent set $S^{\prime}:=S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5}$ of size $\left|S^{\prime}\right|=|S|+1$

Linear-round Algorithm [Edmonds'60s]

Algorithm

$O(n)$ rounds

1. $S=\varnothing$
2. In parallel find all the edges of the exchange graph $G(S)$
$\triangleright 1$ round of $O\left(n^{2}\right)$ queries
3. If there is an augmenting path, augment along it and repeat

- only repeats $O(n)$ times

Exchange graph $G(S)$ behaves weirdly...

- Disjoint paths not necessarily "compatible"
- Need to handle the inserted edges

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong'19]

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong'19]

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong'19]

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong'19]

Sublinear-round Algorithm

Key Lemma ("Blocking-Flow" Approximation Algorithm)
We can get a $(1-\varepsilon)$-approximation of the matroid intersection problem in $O(\sqrt{n} / \varepsilon)$ rounds of poly (n) many rank-queries.

Sublinear-round Algorithm

Key Lemma ("Blocking-Flow" Approximation Algorithm)
We can get a $(1-\varepsilon)$-approximation of the matroid intersection problem in $O(\sqrt{n} / \varepsilon)$ rounds of poly (n) many rank-queries.

Exact Algorithm

1. Run $O(\sqrt{n} / \varepsilon)$-round ($1-\varepsilon$)-approximation algorithm
2. Now we have $|S| \geq$ OPT $-O(n \varepsilon)$
3. Do these augmentations one-by-one, in a single round each

Sublinear-round Algorithm

Key Lemma ("Blocking-Flow" Approximation Algorithm)
We can get a $(1-\varepsilon)$-approximation of the matroid intersection problem in $O(\sqrt{n} / \varepsilon)$ rounds of poly (n) many rank-queries.

Exact Algorithm

1. Run $O(\sqrt{n} / \varepsilon)$-round $(1-\varepsilon)$-approximation algorithm with $\varepsilon=n^{-1 / 4}$
2. Now we have $|S| \geq \mathrm{OPT}-O(n \varepsilon)=\mathrm{OPT}-n^{3 / 4}$
3. Do these augmentations one-by-one, in a single round each

$$
O\left(n^{3 / 4}\right) \text {-round algorithm! }
$$

Sublinear-round Algorithm

Key Lemma ("Blocking-Flow" Approximation Algorithm)
We can get a $(1-\varepsilon)$-approximation of the matroid intersection problem in $O(\sqrt{n} / \varepsilon)$ rounds of poly (n) many rank-queries.

Exact Algorithm

1. Run $O(\sqrt{n} / \varepsilon)$-round $(1-\varepsilon)$-approximation algorithm with $\varepsilon=n^{-1 / 4}$
2. Now we have $|S| \geq \mathrm{OPT}-O(n \varepsilon)=\mathrm{OPT}-n^{3 / 4}$
3. Do these augmentations one-by-one, in a single round each

$$
O\left(n^{3 / 4}\right) \text {-round algorithm! }
$$

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

Partial Augmenting Set, "Staircase"
S

。 t

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In $O(1)$ rounds accessing \mathcal{M}_{2} :

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In $O(1)$ rounds accessing \mathcal{M}_{2} :

Roughly $\left|B_{1}\right|-\left|B_{\ell}\right|$ elements are newly discarded or selected

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

Roughly $\left|B_{1}\right|-\left|B_{\ell}\right|$ elements are newly discarded or selected

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In $O(1)$ rounds accessing \mathcal{M}_{1} :

。 t

Roughly $\left|B_{1}\right|-\left|B_{\ell}\right|$ elements are newly discarded or selected

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In $O(1)$ rounds accessing \mathcal{M}_{1} :

。 t

Roughly $\left|B_{1}\right|-\left|B_{\ell}\right|$ elements are newly discarded or selected
Each element can go free \rightarrow selected \rightarrow discarded

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In $O(1)$ rounds accessing \mathcal{M}_{1} :

。 t

Roughly $\left|B_{1}\right|-\left|B_{\ell}\right|$ elements are newly discarded or selected
Each element can go free \rightarrow selected \rightarrow discarded
Only \sqrt{n} rounds until $\left|B_{1}\right|-\left|B_{\ell}\right| \leq \sqrt{n}$

Falling back to paths

Falling back to paths

- Can define a graph with respect to our "staircase"

Falling back to paths

- Can define a graph with respect to our "staircase"
- In a single round we can find an "augmenting path"

Falling back to paths

- Can define a graph with respect to our "staircase"
- In a single round we can find an "augmenting path"

Falling back to paths

- Can define a graph with respect to our "staircase"
- In a single round we can find an "augmenting path"
- Only need to repeat $O(\sqrt{n})$ times

Open Problems

- What is the actual number of rounds required?
- Somewhere between $\tilde{\Omega}\left(n^{1 / 3}\right)$ and $O\left(n^{3 / 4}\right)$. \sqrt{n} ?
- What about submodular function minimization (SFM)?
- What about weighted matroid intersection?
- Similar $O(n)$ one-by-one algorithm works.
- Can we also acheive sublinear number of rounds?

Thanks!

