Online Edge Coloring is (Nearly) as Easy as Offline

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

4 colors?

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

4 colors?

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

4 colors? Optimal?

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

4 colors? Optimal?

$$\Delta := \max_{v \in V} \deg(v)$$

Claim: #Colors $\ge \Delta$

Given: Graph G = (V, E)**Goal:** Color *edges* with few colors **Constraint:** No two incident edges get the same color

4 colors? Optimal?

$$\Delta := \max_{v \in V} \deg(v)$$

Claim: #Colors $\ge \Delta$

Theorem: #Colors $\leq \Delta + 1$ [Vizing 1964]

Edge Coloring Algorithms

• Many algorithms computing $(\Delta + 1)$ -edge-colorings [Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau'85,Misra/Gries'92,...]

• NP-Hard to Δ -edge-color. [Holyer'81]

Many algorithms computing Δ -edge-color in *bipartite graphs* [Cole/Hopcroft'82,Cole/Ost/Schirra'01,Alon'03,Goel/Kapralov/Khanna'13,...]

Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi'98,...] PRAM [LevPippengerValiant'81,...] NC & RNC [KarloffShmoys'87, MotwaniNaorNaor'94,...] Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'18,...]

Edge Coloring Algorithms

• Many algorithms computing $(\Delta + 1)$ -edge-colorings [Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau'85,Misra/Gries'92,...]

• NP-Hard to Δ -edge-color. [Holyer'81]

Many algorithms computing Δ -edge-color in *bipartite graphs* [Cole/Hopcroft'82,Cole/Ost/Schirra'01,Alon'03,Goel/Kapralov/Khanna'13,...]

Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi'98,...] PRAM [LevPippengerValiant'81,...] NC & RNC [KarloffShmoys'87, MotwaniNaorNaor'94,...] Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'18,...]

This Talk: Online

Online: Graph revealed over time. Max-degree Δ known. **Task:** Color edge *irrevocably* when it is revealed.

Variants:

Edge or Vertex arrivals Adversarial or Random order Deterministic or Oblivious or Adaptive General or Bipartite graphs **Online:** Graph revealed over time. Max-degree Δ known. **Task:** Color edge *irrevocably* when it is revealed.

Variants:

Edge or Vertex arrivals Adversarial or Random order Deterministic or Oblivious or Adaptive General or Bipartite graphs

How many colors do we need? Still $\approx \Delta$?

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" available color. $Colors = \{1, 2, 3, \ldots\}$

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" available color.

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" available color.

Claim: $\leq 2(\Delta - 1)$ blocked colors

Claim: Greedy uses $\leq 2\Delta - 1$ colors

NO!

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta - 1)$ -stars

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

Silver Lining: LB requires $\Delta \cdot {\binom{2\Delta-2}{\Delta-1}} \approx 4^{\Delta}$ stars, that is $\Delta = O(\log n)$

Silver Lining: LB requires $\Delta \cdot {\binom{2\Delta-2}{\Delta-1}} \approx 4^{\Delta}$ stars, that is $\Delta = O(\log n)$

Can we do better when $\Delta = \omega(\log n)$?

Silver Lining: LB requires $\Delta \cdot {\binom{2\Delta-2}{\Delta-1}} \approx 4^{\Delta}$ stars, that is $\Delta = O(\log n)$

Can we do better when $\Delta = \omega(\log n)$? YES $\approx \Delta$ colors :)

Conjecture: $(1 + o(1))\Delta$ -colors sufficent when $\Delta = \omega(\log n)$.

[Bar-Noy/Motwani/Naor 1992]

Progress

Conjecture: $(1 + o(1))\Delta$ -colors sufficent when $\Delta = \omega(\log n)$.

[Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
 - [Aggarwal/Motwani/Shah/Zhu'03]:
 - [Bahmani/Mehta/Motwani'10]:
 - [Bhattacharya/Grandoni/Wajc'21]:

$$pprox \Delta$$
-coloring if $oldsymbol{\Delta} = oldsymbol{\omega}oldsymbol{(n^2)}$ (multigraphs)

- **1**. **27** Δ -coloring if $\Delta = \omega(\log n)$
 - $\approx \Delta$ -coloring if $\Delta = \omega(\log n)$

- Adversarial vertex arrivals:
 - [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
 ≈ Δ-coloring bipartite graphs

For unknown Δ :

- $\approx \frac{e}{e-1}\Delta$ -coloring **bipartite graphs (optimal)**
- [Saberi/Wajc'21]: $\approx 1.9\Delta$ -coloring general graphs
- Adversarial edge arrivals
 - [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1}\Delta$ -coloring

Progress

Conjecture: $(1 + o(1))\Delta$ -colors sufficent when $\Delta = \omega(\log n)$.

[Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
 - [Aggarwal/Motwani/Shah/Zhu'03]:
 - [Bahmani/Mehta/Motwani'10]:
 - [Bhattacharya/Grandoni/Wajc'21]:

$$pprox \Delta$$
-coloring if $oldsymbol{\Delta} = oldsymbol{\omega}oldsymbol{(n^2)}$ (multigraphs)

- **1**. **27** Δ -coloring if $\Delta = \omega(\log n)$
 - $\approx \Delta$ -coloring if $\Delta = \omega(\log n)$

- Adversarial vertex arrivals:
 - [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
 ≈ Δ-coloring bipartite graphs

For unknown Δ:

- $\approx \frac{e}{e-1}\Delta$ -coloring **bipartite graphs (optimal)**
- [Saberi/Wajc'21]: $\approx 1.9\Delta$ -coloring general graphs
- Adversarial edge arrivals
 - [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1}\Delta$ -coloring

This Talk: $\approx \Delta$ colors, most general setting of advesarial edge arrivals

Progress

Theorem:

Conjecture: $(1 + o(1))\Delta$ -colors sufficent when $\Delta = \omega(\log n)$.

[Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
 - [Aggarwal/Motwani/Shah/Zhu'03]:
 - [Bahmani/Mehta/Motwani'10]:
 - [Bhattacharya/Grandoni/Wajc'21]:

$$pprox \Delta$$
-coloring if $oldsymbol{\Delta} = oldsymbol{\omega}oldsymbol{(n^2)}$ (multigraphs)

- **1**. **27** Δ -coloring if $\Delta = \omega(\log n)$
 - $\approx \Delta$ -coloring if $\Delta = \omega(\log n)$

- Adversarial vertex arrivals:
 - [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
 ≈ Δ-coloring bipartite graphs

For unknown Δ :

- $\approx \frac{e}{e-1}\Delta$ -coloring **bipartite graphs (optimal)**
- [Saberi/Wajc'21]: $\approx 1.9\Delta$ -coloring general graphs
- Adversarial edge arrivals
 - [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1}\Delta$ -coloring

This Talk: $\approx \Delta$ colors, most general setting of advesarial edge arrivals
Techniques

Technical Part — Outline

Edge Coloring \iff Fair Matchings Reduction

Online Fair Matching Algorithm

- First Attempt
- New Algorithm
- Analysis: Martingales

Given: Graph G = (V, E) **Goal:** Find a matching M α -Fairness: $\Pr[e \in M] \ge \frac{1}{\alpha\Delta}$ for each edge $e \in E$

Given: Graph G = (V, E)**Goal:** Find a matching M α -Fairness: $\Pr[e \in M] \ge \frac{1}{\alpha \Delta}$ for each edge $e \in E$

Claim: $\alpha\Delta$ -edge-coloring algorithm $\implies \alpha$ -fair matching algorithm *Proof:* Pick random color as matching

Given: Graph G = (V, E) **Goal:** Find a matching M α -Fairness: $\Pr[e \in M] \ge \frac{1}{\alpha\Delta}$ for each edge $e \in E$

Claim: $\alpha \Delta$ -edge-coloring algorithm $\implies \alpha$ -fair matching algorithm *Proof:* Pick random color as matching

Lemma: α -fair matching \implies $(1 + o(1))\alpha\Delta$ -edge-coloring

[Cohen/Peng/Wajc'19]

Given: Graph G = (V, E) **Goal:** Find a matching M α -Fairness: $\Pr[e \in M] \ge \frac{1}{\alpha\Delta}$ for each edge $e \in E$

Claim: $\alpha \Delta$ -edge-coloring algorithm $\implies \alpha$ -fair matching algorithm *Proof:* Pick random color as matching

Lemma: α -fair matching \implies $(1 + o(1))\alpha\Delta$ -edge-coloring

[Cohen/Peng/Wajc'19]

New Objective: (1 + o(1))-fair matching algorithm

From Fair Matchings to Edge Coloring [Cohen/Peng/Wajc'19]

 \mathcal{A} : (1 + o(1))-fair matching algorithm

From Fair Matchings to Edge Coloring [Cohen/Peng/Wajc'19]

 \mathcal{A} : (1 + o(1))-fair matching algorithm

 \mathcal{A} : (1 + o(1))-fair matching algorithm

Lemma: α -fair matching $\implies (1 + o(1))\alpha\Delta$ -edge-coloring

New Objective: (1 + o(1))-fair matching algorithm

 $M_{k+k'}$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

(tree)
$$\Pr[both u, v free] = \Pr[u free] \cdot \Pr[v free]$$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

(tree)

$$\Pr[both \ u, v \text{ free}] = \Pr[u \text{ free}] \cdot \Pr[v \text{ free}]$$

$$\Pr[u \text{ free}] = 1 - \frac{\deg(u)}{\Delta + q} \ge \frac{q}{2\Delta}$$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

(tree)

$$Pr[both \ u, v \ free] = Pr[u \ free] \cdot Pr[v \ free]$$

$$Pr[u \ free] = 1 - \frac{\deg(u)}{\Delta + q} \ge \frac{q}{2\Delta}$$

$$p_t \le \frac{1}{\Delta + q} \cdot \left(\frac{2\Delta}{q}\right)^2$$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

$$(\text{tree})$$

$$\Pr[\text{both } u, v \text{ free}] = \Pr[u \text{ free}] \cdot \Pr[v \text{ free}]$$

$$\Pr[u \text{ free}] = 1 - \frac{\deg(u)}{\Delta + q} \ge \frac{q}{2\Delta}$$

$$p_t \le \frac{1}{\Delta + q} \cdot \left(\frac{2\Delta}{q}\right)^2$$

$$\le 1 \text{ if } q := 2\sqrt{\Delta}$$

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Example: *G* is a tree

Potential Problem: $p_t > 1$

$$v \quad e_t \qquad (\text{tree})$$

$$\Pr[\text{both } u, v \text{ free}] = \Pr[u \text{ free}] \cdot \Pr[v \text{ free}]$$

$$\Pr[u \text{ free}] = 1 - \frac{\deg(u)}{\Delta + q} \ge \frac{q}{2\Delta}$$

$$p_t \le \frac{1}{\Delta + q} \cdot \left(\frac{2\Delta}{q}\right)^2$$

$$\le 1 \text{ if } q := 2\sqrt{\Delta}$$

[Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\left(\frac{e}{e-1} + o(1)\right)\Delta$ -coloring subsampling locally tree-like graphs

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Potential Problem: $p_t > 1$

Open Problem: Does this "Natural Algorithm" work in general?

When $e_t = (u, v)$ arrives: Match e with probability $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free when } e_t \text{ arrives}]}$ $\implies \Pr[e \in M] = \frac{1}{\Delta + q}.$

Potential Problem: $p_t > 1$

Open Problem: Does this "Natural Algorithm" work in general?

Our Alternative Algorithm: $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free in current execution}]}$

Our Alternative Algorithm: $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free in current execution}]}$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} & \text{if } u \text{ and } v \text{ are still unmatched,} \\ 0 & \text{otherwise,} \end{cases}$$

where e_{t_1}, \ldots, e_{t_k} are those previously-arrived edges incident to the endpoints of e_t .

Our Alternative Algorithm: $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free in current execution}]}$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} & \text{if } u \text{ and } v \text{ are still unmatched,} \\ 0 & \text{otherwise,} \end{cases}$$

where e_{t_1}, \ldots, e_{t_k} are those previously-arrived edges incident to the endpoints of e_t .

Our Alternative Algorithm: $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free in current execution}]}$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} & \text{if } u \text{ and } v \text{ are still unmatched,} \\ 0 & \text{otherwise,} \end{cases}$$

where e_{t_1}, \ldots, e_{t_k} are those previously-arrived edges incident to the endpoints of e_t .

Our Alternative Algorithm: $p_t := \frac{1/(\Delta + q)}{\Pr[u, v \text{ both free in current execution}]}$

A More Fine-Grained Bayesian Approach

A More Fine-Grained Bayesian Approach

A More Fine-Grained Bayesian Approach

Core of Analysis: Prove $P(e_t) \leq 1$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \underbrace{\prod_{j=1}^k (1 - P(e_{t_j}))}_{0} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

Core of Analysis: Prove
$$P(e_t) \leq \frac{10}{\sqrt{\Delta}}$$

Previous work: Control Correlation Our work: Embrace Correlations

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \underbrace{\prod_{j=1}^k (1 - P(e_{t_j}))}_{0} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise.

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

Goal: Show $S_u \gtrless \sqrt[4]{\frac{1}{10\Lambda}}$

Scaling factor $S_u := (1 - \sum_j P(e_{t_j}))$

$$P(e_{t_1})$$

$$P(e_{t_7}) = u$$

$$P(e_{t_7}) = \frac{1}{\Delta + q}$$

$$P(f) = P(e_{t_2}) = \frac{1}{\Delta + q}$$

$$P(f) = P^{new}(e_{t_2}) \leftarrow 0$$

$$f \ f \ \text{matched} \implies P^{new}(e_{t_2}) \leftarrow P(e_{t_2})/(1 - P(f))$$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \underbrace{\prod_{j=1}^k (1 - P(e_{t_j}))}_{0} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

Scaling factor
$$S_u := (1 - \sum_j P(e_{t_j}))$$
 Goal: Show $S_u \gtrless \sqrt[4]{\frac{1}{102}}$

$$P(e_{t_1})$$

$$P(e_{t_7}) = u$$

$$P(e_{t_7}) = \frac{1}{\Delta + q}$$

$$P(e_{t_2}) = \frac{1}{\Delta + q}$$

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \underbrace{\prod_{j=1}^k (1 - P(e_{t_j}))}_{0} \\ 0 \end{cases}$$

if u and v are still unmatched, otherwise,

If f not matched $\implies P^{new}(e_{t_2}) \leftarrow P(e_{t_2})/(1 - P(f))$

time	

- Martingale $\mathbb{E}[Z_{t+1} Z_t \mid Z_1, Z_2, \dots, Z_t] = 0$
- Step size $|Z_{t+1} Z_t| \le A$
- Observed variance $\sum_{t} \mathbb{E} \left[(Z_{t+1} Z_t)^2 \mid Z_1, \dots, Z_t \right] \leq \sigma^2$

- Martingale $\mathbb{E}[Z_{t+1} Z_t \mid Z_1, Z_2, \dots, Z_t] = 0$
- Step size $|Z_{t+1} Z_t| \le A$
- Observed variance $\sum_{t} \mathbb{E} \left[(Z_{t+1} Z_t)^2 \mid Z_1, \dots, Z_t \right] \leq \sigma^2$

$$\implies \Pr[|Z_t - Z_0| \ge \varepsilon] \le 2\exp\left(-\frac{\varepsilon^2}{2(\sigma^2 + A\varepsilon/3)}\right)$$

Main Technical Result:

There is an online algorithm which outputs a random matching M so that

$$\Pr[e \in M] \ge \frac{1}{\Delta + q} \quad \forall e \in E, \quad \text{where} \quad q = O(\Delta^{3/4} \sqrt{\log \Delta})$$

Summary and Open Problems

For low-deg graphs $(2\Delta - 1)$ -edge-coloring is optimal.

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

```
List edge coloring
lists L(e) of allowed colors
|L(e)| \ge (1 + o(1))\Delta
{•••}
```

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

List edge coloring lists L(e) of allowed colors $|L(e)| \ge (1 + o(1))\Delta$ {•••} Local edge coloring

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^E$ satisfying $x_e \leq \varepsilon^5$, output matching M so that $\Pr[e \in M] \geq (1 - \varepsilon)x_e$.

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^E$ satisfying $x_e \leq \varepsilon^5$, output matching M so that $\Pr[e \in M] \geq (1 - \varepsilon)x_e$.

Also works in non-bipartite graphs depsite the integrality gap

- For low-deg graphs $(2\Delta 1)$ -edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm **Corollary:** online $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$

Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^E$ satisfying $x_e \leq \varepsilon^5$, output matching M so that $\Pr[e \in M] \geq (1 - \varepsilon)x_e$.

Also works in non-bipartite graphs depsite the integrality gap

 $x_e := \frac{1}{\Delta}$ recovers fair matching theorem

Deterministic?

- (Or equiv. randomized vs adaptive aversary)
- Completely open if one can beat greedy

- Deterministic?
 - (Or equiv. randomized vs adaptive aversary)
 - Completely open if one can beat greedy
- Correct Asymptotics:
 - Extra colors needed between $\Omega(\sqrt{\Delta} + \log n) \quad \text{and} \quad O(\Delta^{3/4}\sqrt{\log \Delta} + \Delta^{2/3}\log^{1/3} n)$
 - Beat greedy, or improve LB for $\Delta \in [\sqrt{\log n}, \log n]$?

- Deterministic?
 - (Or equiv. randomized vs adaptive aversary)
 - Completely open if one can beat greedy
- Correct Asymptotics:
 - Extra colors needed between $\Omega(\sqrt{\Delta} + \log n) \text{ and } O(\Delta^{3/4}\sqrt{\log \Delta} + \Delta^{2/3}\log^{1/3} n)$
 - Beat greedy, or improve LB for $\Delta \in [\sqrt{\log n}, \log n]$?
- Multigraphs?
 - Offline: $\min(\frac{3}{2}\Delta, \Delta + \mu)$ colors
 - Or even hypergraphs?

- Deterministic?
 - (Or equiv. randomized vs adaptive aversary)
 - Completely open if one can beat greedy
- Correct Asymptotics:
 - Extra colors needed between $\Omega(\sqrt{\Delta} + \log n) \text{ and } O(\Delta^{3/4}\sqrt{\log \Delta} + \Delta^{2/3}\log^{1/3} n)$
 - Beat greedy, or improve LB for $\Delta \in [\sqrt{\log n}, \log n]$?
- Multigraphs?
 - Offline: $\min(\frac{3}{2}\Delta, \Delta + \mu)$ colors
 - Or even hypergraphs?

Thanks!