
Online Edge Coloring is
(Nearly) as Easy as Offline

Joakim Blikstad∗ Ola Svensson†

Radu Vintan† David Wajc‡

∗KTH, Sweden & MPI-INF, Germany
†EPFL, Switzerland
‡Technion, Israel

May 2024
TTIC online seminar



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?Not Okay!



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
Optimal?



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
Optimal?

∆ ∶= maxv∈V deg(v)
Claim: #Colors ≥ ∆

∆ = 4



⋅

Edge Coloring

Given: Graph G = (V,E)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
Optimal?

∆ ∶= maxv∈V deg(v)
Claim: #Colors ≥ ∆

Theorem: #Colors ≤ ∆ + 1
[Vizing 1964]

∆ = 4
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Edge Coloring Algorithms

Many algorithms computing (∆ + 1)-edge-colorings

NP-Hard to ∆-edge-color.

Many algorithms computing ∆-edge-color in bipartite graphs

Studied in various computational models:

[Vizing’64, Gabow/Nishizeki/Kariv/Leven/Osmau’85,Misra/Gries’92,…]

[Holyer’81]

[Cole/Hopcroft’82,Cole/Ost/Schirra’01,Alon’03,Goel/Kapralov/Khanna’13,…]

Distributed [PanconesiSrinivasan’97,DubhashiGrablePanconessi’98,…]
PRAM [LevPippengerValiant’81,…]
NC & RNC [KarloffShmoys’87, MotwaniNaorNaor’94,…]
Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai’18,…]
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This Talk: Online
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Online Edge Coloring

Online: Graph revealed over time. Max-degree ∆ known.
Task: Color edge irrevocably when it is revealed.

How many colors do we need? Still ≈ ∆?

Variants:
Edge or Vertex arrivals
Adversarial or Random order
Deterministic or Oblivious or Adaptive
General or Bipartite graphs
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Warm-up: Greedy Algorithm

Greedy: Color edge with “lowest” avaliable color.
Colors = {1, 2, 3, . . .}

e

≤ ∆ − 1 ≤ ∆ − 1

Claim: ≤ 2(∆ − 1) blocked colors

Claim: Greedy uses ≤ 2∆ − 1 colors
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Can we do better?
Can we beat 2∆ − 1 colors?

NO!

Can we do better when ∆ = ω(log n)?Silver Lining: LB requires ∆ ⋅ (2∆−2
∆−1

) ≈ 4
∆ stars, that is ∆ = O(log n)

YES ≈ ∆ colors :)
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Progress

Conjecture: (1 + o(1))∆-colors sufficent when ∆ = ω(log n).
[Bar-Noy/Motwani/Naor 1992]

This Talk: ≈ ∆ colors, most general setting of advesarial edge arrivals

Theorem:
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Technical Part — Outline

Edge Coloring ⟺ Fair Matchings
Reduction

Online Fair Matching Algorithm
First Attempt
New Algorithm
Analysis: Martingales
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Proof: Pick random color as matching

Lemma: α-fair matching ⟹(1 + o(1))α∆-edge-coloring

[Cohen/Peng/Wajc’19]

New Objective: (1 + o(1))-fair matching algorithm
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From Fair Matchings to Edge Coloring

A

A ∶ (1 + o(1))-fair matching algorithm

A A A. . .G
G \M1 G \ (M1 ∪M2)

Greedy
M1 M2 M3 Mk

Mk+1

Mk+k′

⋮

Each matching reduces max-degree by ≈ 1
Fallback to greedy coloring when ∆ ≤ 100 log n

Lemma: α-fair matching ⟹

[Cohen/Peng/Wajc’19]

(1 + o(1))α∆-edge-coloring

New Objective: (1 + o(1))-fair matching algorithm
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Fair Matching — Natural First Attempt

When et = (u, v) arrives:
Match e with probability pt ∶= 1/(∆+q)

Pr[u, v both free when et arrives]

Example: G is a tree

et
u

v
Pr[both u, v free] = Pr[u free] ⋅ Pr[v free](tree)

Pr[u free] = 1 − deg(u)
∆+q

≥ q

2∆

pt ≤ 1
∆+q

⋅ ( 2∆
q
)2

≤ 1 if q ∶= 2
√
∆

⟹ Pr[e ∈ M] = 1
∆+q

.

Potential Problem: pt > 1

[Kulkarni/Liu/Sah/Sawhney/Tarnawski’22]( e
e−1

+ o(1))∆-coloring subsampling locally tree-like graphs
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A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: pt ∶= 1/(∆+q)
Pr[u, v both free in current execution]
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Pr[u, v free ∣ R] = 1 Pr[u, v free ∣ R] = (1 − 1
∆+q−1 )

Scaling factor depends
on execution path!

e3 e3 e3

R =randomness of e1
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Previous work: Control Correlation
Our work: Embrace Correlations

Core of Analysis: Prove P (et) ≤ 10√
∆
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Analysis Idea — Random Walk

et

P (et1)
P (et7)

P (et2)

Scaling factor Su ∶= (1 −∑j P (etj))

P (et2) = 1
∆+q

f

P (f)
If f matched ⟹ P

new(et2) ← 0

If f not matched ⟹ P
new(et2) ← P (et2)/(1 − P (f))E[Snew

u ] = Su

Goal: Show Su ⪆ 4
√

1
10∆

time

S
(0)
u

u

S
(t)
u

≈ q/∆
≈ q/(3∆) ≈ 1/ 4

√
10∆
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Martingale Process

S
(0)
u

S
(t)
u

≈ q/∆
≈ q/(3∆)

(If no correlations: Chernoff bound) q ∶≈ ∆
3/4

Freedmans Inequality:
• Martingale E[Zt+1 − Zt ∣ Z1, Z2, . . . , Zt] = 0

• Step size ∣Zt+1 − Zt∣ ≤ A

• Observed variance ∑t E [(Zt+1 − Zt)2 ∣ Z1, . . . , Zt] ≤ σ
2

⟹ Pr [∣Zt − Z0∣ ≥ ε] ≤ 2 exp (− ε
2

2(σ2+Aε/3))
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Fair Matching Result

Main Technical Result:
There is an online algorithm which outputs a random matching M so that

Pr[e ∈ M] ≥ 1

∆ + q
∀e ∈ E, where q = O(∆3/4√

log∆)
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Summary

List edge coloring

Otherwise, edge coloring is (nearly) “as easy as offline”:
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))∆-edge-coloring algorithm when ∆ = ω(log n)

For low-deg graphs (2∆ − 1)-edge-coloring is optimal.

Extensions / Generalizations:

}{

}{}{

}{

Local edge coloring
lists L(e) of allowed colors∣L(e)∣ ≥ (1 + o(1))∆

color(u, v)
≤ (1 + o(1))max(deg(u),deg(v))

+O(logn)

u v
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Summary

Otherwise, edge coloring is (nearly) “as easy as offline”:
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))∆-edge-coloring algorithm when ∆ = ω(log n)

For low-deg graphs (2∆ − 1)-edge-coloring is optimal.

Extensions / Generalizations:
Online Rounding of “Spread Out” Fractional Matchings:
Given (online) fractional matching x ∈ RE satisfying xe ≤ ε

5,
output matching M so that Pr[e ∈ M] ≥ (1 − ε)xe.

0.1

0.3 0.3

0.3

0.1
0.3

0.2

0.2

xe ∶= 1
∆

recovers fair matching theorem

Also works in non-bipartite graphs
depsite the integrality gap
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Open Problems

Deterministic?
(Or equiv. randomized vs adaptive aversary)
Completely open if one can beat greedy

Thanks!

Correct Asymptotics:
Extra colors needed between

Ω(√∆ + logn) and O(∆3/4√
log∆ +∆

2/3
log

1/3
n)

Beat greedy, or improve LB for ∆ ∈ [√log n, log n]?
Multigraphs?

Offline: min( 3

2
∆,∆ + µ) colors

Or even hypergraphs?


