Online Edge Coloring is (Nearly) as Easy as Offline

Joakim Blikstad*
Ola Svensson ${ }^{\dagger}$
Radu Vintan ${ }^{\dagger} \quad$ David Wajc ${ }^{\ddagger}$

TTIC online seminar
May 2024

* KTH, Sweden \& MPI-INF, Germany \dagger EPFL, Switzerland
\ddagger Technion, Israel

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
Optimal?

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

> 4 colors?
> Optimal?
> $\Delta:=\max _{v \in V} \operatorname{deg}(v)$

Claim: \#Colors $\geq \Delta$

Edge Coloring

Given: Graph $G=(V, E)$
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
 Optimal?

$\Delta:=\max _{v \in V} \operatorname{deg}(v)$
Claim: \#Colors $\geq \Delta$
Theorem: \#Colors $\leq \Delta+1$
[Vizing 1964]

Edge Coloring Algorithms

- Many algorithms computing ($\Delta+1$)-edge-colorings
[Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau'85,Misra/Gries'92,...]
- NP-Hard to Δ-edge-color.
[Holyer'81]
■ Many algorithms computing Δ-edge-color in bipartite graphs
[Cole/Hopcroft'82,Cole/Ost/Schirra'01,Alon'03,Goel/Kapralov/Khanna'13,....
- Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi' $98, \ldots$,..] PRAM [LevPippengerValiant'81,...]
NC \& RNC [KarloffShmoys'87, MotwaniNaorNaor'94,...]
Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'18,...]

Edge Coloring Algorithms

- Many algorithms computing ($\Delta+1$)-edge-colorings
[Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau'85,Misra/Gries'92,...]
- NP-Hard to Δ-edge-color.
[Holyer'81]
■ Many algorithms computing Δ-edge-color in bipartite graphs
[Cole/Hopcroft'82,Cole/Ost/Schirra'01,Alon'03,Goel/Kapralov/Khanna'13,....
- Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi' $98, \ldots$,..] PRAM [LevPippengerValiant'81,...]
NC \& RNC [KarloffShmoys'87, MotwaniNaorNaor'94,...]
Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'18,...]
This Talk: Online

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Variants:

Edge or Vertex arrivals Adversarial or Random order Deterministic or Oblivious or Adaptive General or Bipartite graphs

Online Edge Coloring

Online: Graph revealed over time. Max-degree Δ known. Task: Color edge irrevocably when it is revealed.

Variants:

Edge or Vertex arrivals Adversarial or Random order Deterministic or Oblivious or Adaptive General or Bipartite graphs

How many colors do we need? Still $\approx \Delta$?

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color.

$$
\text { Colors }=\{1,2,3, \ldots\}
$$

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color.

$$
\text { Colors }=\{1,2,3, \ldots\}
$$

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color.

$$
\text { Colors }=\{1,2,3, \ldots\}
$$

Claim: $\leq 2(\Delta-1)$ blocked colors
Claim: Greedy uses $\leq 2 \Delta-1$ colors

Can we do better?

Can we beat $2 \Delta-1$ colors?

Can we do better?

Can we beat $2 \Delta-1$ colors?

NO!

Lower Bound

Theorem: No online algorithm can (2 $\Delta-2)$-edge-color every graph.

Lower Bound

Theorem: No online algorithm can (2 $\Delta-2)$-edge-color every graph.

> [Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta-1)$-stars

Lower Bound

Theorem: No online algorithm can (2 $\Delta-2)$-edge-color every graph.

> [Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta-1)$-stars
Eventually have Δ stars colored the same (pigeonhole principle)

Lower Bound

Theorem: No online algorithm can (2 $\Delta-2)$-edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta-1)$-stars
Eventually have Δ stars colored the same (pigeonhole principle)

Lower Bound

Theorem: No online algorithm can (2 $\Delta-2)$-edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of $(\Delta-1)$-stars
Eventually have Δ stars colored the same (pigeonhole principle)

Can we do better?

Can we beat $2 \Delta-1$ colors?
NO!

Can we do better?

Can we beat $2 \Delta-1$ colors?

NO!

Silver Lining: LB requires $\Delta \cdot\binom{2 \Delta-2}{\Delta-1} \approx 4^{\Delta}$ stars, that is $\Delta=O(\log n)$

Can we do better?

Can we beat $2 \Delta-1$ colors?

NO!

Silver Lining: LB requires $\Delta \cdot\binom{2 \Delta-2}{\Delta-1} \approx 4^{\Delta}$ stars, that is $\Delta=O(\log n)$
Can we do better when $\Delta=\omega(\log n)$?

Can we do better?

Can we beat $2 \Delta-1$ colors?

NO!

Silver Lining: LB requires $\Delta \cdot\binom{2 \Delta-2}{\Delta-1} \approx 4^{\Delta}$ stars, that is $\Delta=O(\log n)$
Can we do better when $\Delta=\omega(\log n)$?

$$
\text { YES } \approx \Delta \text { colors }: \text {) }
$$

Progress

Conjecture: $(1+o(1)) \Delta$-colors sufficent when $\Delta=\omega(\log n)$.
[Bar-Noy/Motwani/Naor 1992]

Progress

Conjecture: $(1+o(1)) \Delta$-colors sufficent when $\Delta=\omega(\log n)$.

[Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
- [Aggarwal/Motwani/Shah/Zhu'03]: $\approx \Delta$-coloring if $\boldsymbol{\Delta}=\boldsymbol{\omega}\left(\boldsymbol{n}^{2}\right)$ (multigraphs)
- [Bahmani/Mehta/Motwani'10]: 1.27 Δ-coloring if $\Delta=\omega(\log n)$
- [Bhattacharya/Grandoni/Wajc'21]: $\approx \Delta$-coloring if $\Delta=\omega(\log n)$
- Adversarial vertex arrivals:
- [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
$\approx \Delta$-coloring bipartite graphs
For unknown Δ :
- [Saberi/Wajc'21]:
$\approx \frac{e}{e-1} \Delta$-coloring bipartite graphs (optimal)
$\approx 1.9 \Delta$-coloring general graphs
- Adversarial edge arrivals
- [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1} \Delta$-coloring

Progress

Conjecture: $(1+o(1)) \Delta$-colors sufficent when $\Delta=\omega(\log n)$.

> [Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
- [Aggarwal/Motwani/Shah/Zhu'03]: $\approx \Delta$-coloring if $\boldsymbol{\Delta}=\boldsymbol{\omega}\left(\boldsymbol{n}^{2}\right)$ (multigraphs)
- [Bahmani/Mehta/Motwani'10]:
1.27 Δ-coloring if $\Delta=\omega(\log n)$
- [Bhattacharya/Grandoni/Wajc'21]: $\approx \Delta$-coloring if $\Delta=\omega(\log n)$
- Adversarial vertex arrivals:
- [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
$\approx \Delta$-coloring bipartite graphs
For unknown Δ :
- [Saberi/Wajc'21]:
$\approx \frac{e}{e-1} \Delta$-coloring bipartite graphs (optimal)
$\approx 1.9 \Delta$-coloring general graphs
- Adversarial edge arrivals
- [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1} \Delta$-coloring

This Talk: $\approx \Delta$ colors, most general setting of advesarial edge arrivals

Progress

Theorem:

Conjecture: $(1+o(1)) \Delta$-colors sufficent when $\Delta=\omega(\log n)$.

> [Bar-Noy/Motwani/Naor 1992]

- Random order edge arrivals:
- [Aggarwal/Motwani/Shah/Zhu'03]: $\approx \Delta$-coloring if $\boldsymbol{\Delta}=\boldsymbol{\omega}\left(\boldsymbol{n}^{2}\right)$ (multigraphs)
- [Bahmani/Mehta/Motwani'10]:
1.27 2 -coloring if $\Delta=\omega(\log n)$
- [Bhattacharya/Grandoni/Wajc'21]: $\approx \Delta$-coloring if $\Delta=\omega(\log n)$
- Adversarial vertex arrivals:
- [Cohen/Peng/Wajc'19] (simplified [B./Svensson/Vintan/Wajc'24]:
$\approx \Delta$-coloring bipartite graphs
For unknown Δ :
- [Saberi/Wajc'21]:
$\approx \frac{e}{e-1} \Delta$-coloring bipartite graphs (optimal)
$\approx 1.9 \Delta$-coloring general graphs
- Adversarial edge arrivals
- [Kulkarni/Liu/Sah/Sawhney/Tarnawski'22] $\approx \frac{e}{e-1} \Delta$-coloring

This Talk: $\approx \Delta$ colors, most general setting of advesarial edge arrivals

Techniques

Technical Part - Outline

■ Edge Coloring \Longleftrightarrow Fair Matchings

- Reduction
- Online Fair Matching Algorithm
- First Attempt
- New Algorithm
- Analysis: Martingales

Fair Matching Problem

Given: Graph $G=(V, E)$
Goal: Find a matching M α-Fairness: $\operatorname{Pr}[e \in M] \geq \frac{1}{\alpha \Delta}$ for each edge $e \in E$

Fair Matching Problem

Given: Graph $G=(V, E)$
Goal: Find a matching M α-Fairness: $\operatorname{Pr}[e \in M] \geq \frac{1}{\alpha \Delta}$ for each edge $e \in E$

Claim: $\alpha \Delta$-edge-coloring algorithm $\Longrightarrow \alpha$-fair matching algorithm Proof: Pick random color as matching

Fair Matching Problem

Given: Graph $G=(V, E)$
Goal: Find a matching M α-Fairness: $\operatorname{Pr}[e \in M] \geq \frac{1}{\alpha \Delta}$ for each edge $e \in E$

Claim: $\alpha \Delta$-edge-coloring algorithm $\Longrightarrow \alpha$-fair matching algorithm Proof: Pick random color as matching

Lemma: α-fair matching \Longrightarrow
$(1+o(1)) \alpha \Delta$-edge-coloring

Fair Matching Problem

Given: Graph $G=(V, E)$
Goal: Find a matching M α-Fairness: $\operatorname{Pr}[e \in M] \geq \frac{1}{\alpha \Delta}$ for each edge $e \in E$
Claim: $\alpha \Delta$-edge-coloring algorithm $\Longrightarrow \alpha$-fair matching algorithm Proof: Pick random color as matching

Lemma: α-fair matching \Longrightarrow
$(1+o(1)) \alpha \Delta$-edge-coloring
[Cohen/Peng/Wajc'19]
New Objective: ($1+o(1)$)-fair matching algorithm

From Fair Matchings to Edge Coloring

$\mathcal{A}:(1+o(1))$-fair matching algorithm

From Fair Matchings to Edge Coloring

$\mathcal{A}:(1+o(1))$-fair matching algorithm

Each matching reduces max-degree by ≈ 1
Fallback to greedy coloring when $\Delta \leq 100 \log n$

From Fair Matchings to Edge Coloring

$\mathcal{A}:(1+o(1))$-fair matching algorithm
Lemma: α-fair matching $\Longrightarrow(1+o(1)) \alpha \Delta$-edge-coloring
New Objective: $(1+o(1))$-fair matching algorithm

Each matching reduces max-degree by ≈ 1
Fallback to greedy coloring when $\Delta \leq 100 \log n$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Cannot match e_{2}

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

e_{1}

Cannot match e_{2}

Match e_{2} with probability $\frac{1}{4}$? Must scale up: $\frac{1}{\Delta+q} /\left(1-\frac{1}{\Delta+q}\right)^{\Delta+q}$

Fair Matching Algorithm

Goal: Match each edge with probability $\operatorname{Pr}[e \in M] \approx \frac{1}{\Delta}$

$$
\operatorname{Pr}[e \in M]=\frac{1}{\Delta+q} \quad q:=\Theta\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)=o(\Delta)
$$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.
Potential Problem: $p_{t}>1$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.

Example: G is a tree

Potential Problem: $p_{t}>1$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.

Example: G is a tree

Potential Problem: $p_{t}>1$

$$
\begin{gathered}
\text { (tree) } \\
\operatorname{Pr}[\text { both } u, v \text { free }]=\operatorname{Pr}[u \text { free }] \cdot \operatorname{Pr}[v \text { free }]
\end{gathered}
$$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.

Example: G is a tree

Potential Problem: $p_{t}>1$

$$
\begin{gathered}
\text { (tree) } \\
\operatorname{Pr}[\text { both } u, v \text { free }]=\operatorname{Pr}[u \text { free }] \cdot \operatorname{Pr}[v \text { free }] \\
\operatorname{Pr}[u \text { free }]=1-\frac{\operatorname{deg}(u)}{\Delta+q} \geq \frac{q}{2 \Delta}
\end{gathered}
$$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.

Example: G is a tree

Potential Problem: $p_{t}>1$

$\operatorname{Pr}[$ both u, v free $]=\operatorname{Pr}[u$ free $] \cdot \operatorname{Pr}[v$ free $]$

$$
\begin{gathered}
\operatorname{Pr}[u \text { free }]=1-\frac{\operatorname{deg}(u)}{\Delta+q} \geq \frac{q}{2 \Delta} \\
p_{t} \leq \frac{1}{\Delta+q} \cdot\left(\frac{2 \Delta}{q}\right)^{2}
\end{gathered}
$$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.

Example: G is a tree

Potential Problem: $p_{t}>1$

$\operatorname{Pr}[$ both u, v free $]=\operatorname{Pr}[u$ free $] \cdot \operatorname{Pr}[v$ free $]$

$$
\begin{gathered}
\operatorname{Pr}[u \text { free }]=1-\frac{\operatorname{deg}(u)}{\Delta+q} \geq \frac{q}{2 \Delta} \\
p_{t} \leq \frac{1}{\Delta+q} \cdot\left(\frac{2 \Delta}{q}\right)^{2} \\
\leq 1 \text { if } q:=2 \sqrt{\Delta}
\end{gathered}
$$

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.
Example: G is a tree

Potential Problem: $p_{t}>1$
[Kulkarni/Liu/Sah/Sawhney/Tarnawski'22]
$\left(\frac{e}{e-1}+o(1)\right) \Delta$-coloring subsampling locally tree-like graphs

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.
Potential Problem: $p_{t}>1$
Open Problem: Does this "Natural Algorithm" work in general?

Fair Matching — Natural First Attempt

When $e_{t}=(u, v)$ arrives:
Match e with probability $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}\left[u, v \text { both free when } e_{t} \text { arrives }\right]}$
$\Longrightarrow \operatorname{Pr}[e \in M]=\frac{1}{\Delta+q}$.
Potential Problem: $p_{t}>1$
Open Problem: Does this "Natural Algorithm" work in general?
Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

Alternative Natural Algorithm

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$
Algorithm 1 (NaturalMatchingAlgorithm).
When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched } \\ 0 & \text { otherwise }\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Alternative Natural Algorithm

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$
Algorithm 1 (NaturalMatchingAlgorithm).
When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched } \\ 0 & \text { otherwise }\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Alternative Natural Algorithm

$$
\text { Our Alternative Algorithm: } p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}
$$

Algorithm 1 (NaturalMatchingAlgorithm).
When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched } \\ 0 & \text { otherwise }\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

$R=$ randomness outside of incident edges.

Alternative Natural Algorithm

Algorithm 2 (MATCHINGAlGORITHM).
Initialization: Set $F_{1}(v) \leftarrow 1$ for every vertex v and $M_{1} \leftarrow \emptyset$.
ecution]
Algo At the arrival of edge $e_{t}=(u, v)$ at time t :
When • Sample $X_{t} \sim \operatorname{Uni}[0,1]$.

- Define

$$
P\left(e_{t}\right)= \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{F_{t}(u) \cdot F_{t}(v)} & \text { if } u \text { and } v \text { are unmatched in } M_{t} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\hat{P}\left(e_{t}\right)= \begin{cases}P\left(e_{t}\right) & \text { if } \min \left\{F_{t}(u), F_{t}(v)\right\} \cdot\left(1-P\left(e_{t}\right)\right) \geqslant q /(4 \Delta) \\ 0 & \text { otherwise } .\end{cases}
$$

nmatched,

$$
-F_{t+1}(u) \leftarrow F_{t}(u) \cdot\left(1-\hat{P}\left(e_{t}\right)\right) ;
$$

$$
-F_{t+1}(v) \leftarrow F_{t}(v) \cdot\left(1-\hat{P}\left(e_{t}\right)\right)
$$

$$
-M_{t+1} \leftarrow \begin{cases}M_{t} \cup\left\{e_{t}\right\} & \text { if } X_{t}<\hat{P}\left(e_{t}\right) \\ M_{t} & \text { otherwise }\end{cases}
$$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

Old Algo: $\operatorname{Pr}[u, v$ free $]=\left(1-\frac{1}{\Delta+q}\right)$
Uses same scaling factor

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

Old Algo: $\operatorname{Pr}[u, v$ free $]=\left(1-\frac{1}{\Delta+q}\right)$
Uses same scaling factor

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: $p_{t}:=\frac{1 /(\Delta+q)}{\operatorname{Pr}[u, v \text { both free in current execution }]}$

Analysis Idea - Random Walk

Core of Analysis: Prove $P\left(e_{t}\right) \leq 1$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Core of Analysis: Prove $P\left(e_{t}\right) \leq \frac{10}{\sqrt{\Delta}}$
Previous work: Control Correlation
Our work: Embrace Correlations

Algorithm 1 (NaturalMatchingAlgorithm).
When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { ifu and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

Algorithm 1 (NaturalMatchingAlgorithm).

When an edge $e_{t}=(u, v)$ arrives, match it with probability

$$
P\left(e_{t}\right) \leftarrow \begin{cases}\frac{1}{\Delta+q} \cdot \frac{1}{\prod_{j=1}^{k}\left(1-P\left(e_{t_{j}}\right)\right)} & \text { if } u \text { and } v \text { are still unmatched, } \\ 0 & \text { otherwise },\end{cases}
$$

where $e_{t_{1}}, \ldots, e_{t_{k}}$ are those previously-arrived edges incident to the endpoints of e_{t}.

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

$$
\begin{aligned}
& e^{P\left(e_{t_{1}}\right)} \\
& P\left(e_{t_{7}}\right) e_{t}
\end{aligned}
$$

$\frac{f}{P(f)} \stackrel{\longrightarrow}{P\left(e_{t_{2}}\right)=\frac{1}{\Delta+q}}$
If f matched $\Longrightarrow P^{\text {new }}\left(e_{t_{2}}\right) \leftarrow 0 \quad \mathbb{E}\left[S_{u}^{\text {new }}\right]=S_{u}$
If f not matched $\Longrightarrow P^{n e w}\left(e_{t_{2}}\right) \leftarrow P\left(e_{t_{2}}\right) /(1-P(f))$

time

Analysis Idea - Random Walk

Scaling factor $S_{u}:=\left(1-\sum_{j} P\left(e_{t_{j}}\right)\right) \quad$ Goal: Show $S_{u} \gtrsim \sqrt[4]{\frac{1}{10 \Delta}}$

$$
\begin{aligned}
& e^{P\left(e_{t_{1}}\right)} \\
& P\left(e_{t_{7}}\right) e_{t}
\end{aligned}
$$

$\frac{f}{P(f)} \cdot \stackrel{P}{P\left(e_{t_{2}}\right)=\frac{1}{\Delta+q}}$
If f matched $\Longrightarrow P^{\text {new }}\left(e_{t_{2}}\right) \leftarrow 0 \quad \mathbb{E}\left[S_{u}^{n e w}\right]=S_{u}$
If f not matched $\Longrightarrow P^{\text {new }}\left(e_{t_{2}}\right) \leftarrow P\left(e_{t_{2}}\right) /(1-P(f))$

time

Martingale Process

$$
s_{u}^{(0)} \approx \sim \sim \sim S_{\sim}^{(t)} \approx q / \Delta
$$

Martingale Process

$$
\approx q /(3 \Delta)
$$

(If no correlations: Chernoff bound)

Martingale Process

Freedmans Inequality:

- Martingale $\mathbb{E}\left[Z_{t+1}-Z_{t} \mid Z_{1}, Z_{2}, \ldots, Z_{t}\right]=0$
- Step size $\left|Z_{t+1}-Z_{t}\right| \leq A$
- Observed variance $\sum_{t} \mathbb{E}\left[\left(Z_{t+1}-Z_{t}\right)^{2} \mid Z_{1}, \ldots, Z_{t}\right] \leq \sigma^{2}$

Martingale Process

Freedmans Inequality:

- Martingale $\mathbb{E}\left[Z_{t+1}-Z_{t} \mid Z_{1}, Z_{2}, \ldots, Z_{t}\right]=0$
- Step size $\left|Z_{t+1}-Z_{t}\right| \leq A$
- Observed variance $\sum_{t} \mathbb{E}\left[\left(Z_{t+1}-Z_{t}\right)^{2} \mid Z_{1}, \ldots, Z_{t}\right] \leq \sigma^{2}$

$$
\Longrightarrow \operatorname{Pr}\left[\left|Z_{t}-Z_{0}\right| \geq \varepsilon\right] \leq 2 \exp \left(-\frac{\varepsilon^{2}}{2\left(\sigma^{2}+A \varepsilon / 3\right)}\right)
$$

Fair Matching Result

Main Technical Result:

There is an online algorithm which outputs a random matching M so that

$$
\operatorname{Pr}[e \in M] \geq \frac{1}{\Delta+q} \quad \forall e \in E, \quad \text { where } \quad q=O\left(\Delta^{3 / 4} \sqrt{\log \Delta}\right)
$$

Summary and Open Problems

Summary

- For low-deg graphs ($2 \Delta-1$)-edge-coloring is optimal.

Summary

- For low-deg graphs ($2 \Delta-1$)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

Summary

- For low-deg graphs ($2 \Delta-1$)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

Summary

- For low-deg graphs ($2 \Delta-1$)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm
Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

List edge coloring
lists $L(e)$ of allowed colors

Summary

- For low-deg graphs (2s-1)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm
Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

List edge coloring lists $L(e)$ of allowed colors

Local edge coloring

$$
\operatorname{color}(u, v)
$$

$$
\begin{aligned}
\leq & (1+o(1)) \max (\operatorname{deg}(u), \operatorname{deg}(v)) \\
& +O(\log n)
\end{aligned}
$$

Summary

- For low-deg graphs (2s-1)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm
Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^{E}$ satisfying $x_{e} \leq \varepsilon^{5}$, output matching M so that $\operatorname{Pr}[e \in M] \geq(1-\varepsilon) x_{e}$.

Summary

- For low-deg graphs (2s-1)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online $(1+o(1))$-fair matching algorithm
Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^{E}$ satisfying $x_{e} \leq \varepsilon^{5}$, output matching M so that $\operatorname{Pr}[e \in M] \geq(1-\varepsilon) x_{e}$.

Also works in non-bipartite graphs depsite the integrality gap

Summary

- For low-deg graphs ($2 \Delta-1$)-edge-coloring is optimal.
- Otherwise, edge coloring is (nearly) "as easy as offline":

Main Theorem: online ($1+o(1)$)-fair matching algorithm
Corollary: online $(1+o(1)) \Delta$-edge-coloring algorithm when $\Delta=\omega(\log n)$

- Extensions / Generalizations:

Online Rounding of "Spread Out" Fractional Matchings: Given (online) fractional matching $x \in \mathbb{R}^{E}$ satisfying $x_{e} \leq \varepsilon^{5}$, output matching M so that $\operatorname{Pr}[e \in M] \geq(1-\varepsilon) x_{e}$.

Also works in non-bipartite graphs depsite the integrality gap

$$
x_{e}:=\frac{1}{\Delta} \text { recovers fair matching theorem }
$$

Open Problems

- Deterministic?
- (Or equiv. randomized vs adaptive aversary)
- Completely open if one can beat greedy

Open Problems

- Deterministic?
- (Or equiv. randomized vs adaptive aversary)
- Completely open if one can beat greedy
- Correct Asymptotics:
- Extra colors needed between

$$
\Omega(\sqrt{\Delta}+\log n) \quad \text { and } \quad O\left(\Delta^{3 / 4} \sqrt{\log \Delta}+\Delta^{2 / 3} \log ^{1 / 3} n\right)
$$

- Beat greedy, or improve LB for $\Delta \in[\sqrt{\log n}, \log n]$?

Open Problems

- Deterministic?
- (Or equiv. randomized vs adaptive aversary)
- Completely open if one can beat greedy
- Correct Asymptotics:
- Extra colors needed between

$$
\Omega(\sqrt{\Delta}+\log n) \quad \text { and } \quad O\left(\Delta^{3 / 4} \sqrt{\log \Delta}+\Delta^{2 / 3} \log ^{1 / 3} n\right)
$$

- Beat greedy, or improve LB for $\Delta \in[\sqrt{\log n}, \log n]$?
- Multigraphs?
- Offline: $\min \left(\frac{3}{2} \Delta, \Delta+\mu\right)$ colors
- Or even hypergraphs?

Open Problems

- Deterministic?
- (Or equiv. randomized vs adaptive aversary)
- Completely open if one can beat greedy
- Correct Asymptotics:
- Extra colors needed between

$$
\Omega(\sqrt{\Delta}+\log n) \quad \text { and } \quad O\left(\Delta^{3 / 4} \sqrt{\log \Delta}+\Delta^{2 / 3} \log ^{1 / 3} n\right)
$$

- Beat greedy, or improve LB for $\Delta \in[\sqrt{\log n}, \log n]$?
- Multigraphs?
- Offline: $\min \left(\frac{3}{2} \Delta, \Delta+\mu\right)$ colors
- Or even hypergraphs?

