Online Edge Coloring is
(Nearly) as Easy as Offline

Joakim Blikstad® Ola Svensson'

Radu Vintan' David Wajci
TTIC online seminar

===
-
i
-

May 2024 //’ — AW

*KTH, Sweden & MPI-INF, German y

i
TEPFL, Switzerland * /
——
JJL“Technion, Israel /

Edge Coloring

Given: Graph G = (V, FE)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

Not Okay!

et tE,
o
.. “

S 4 colors?
/ \7
x /

Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

A

4 colors?

Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?

AT =

Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?
% Optlmal7
= MaXyev deg(v)

Claim: #Colors = A

Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?

N % Optimal?
N
/ A 1= max,cy deg(v)
& Claim: #Colors =2 A
AN

Theorem: #Colors < A +1
[Vizing 1964]

Edge Coloring Algorithms

® Many algorithms computing (A + 1)-edge-colorings
[Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau’85,Misra/Gries'92,..]

® NP-Hard to A-edge-color.
[Holyer'81]

® Many algorithms computing A-edge-color in bipartite graphs
[Cole/Hopcroft'82,Cole/Ost /Schirra’01,Alon’03,Goel /Kapralov/Khanna'13,...]

®m Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi'98, ..]
PRAM [LevPippengerValiant'81,..]

NC & RNC [KarloffShmoys'87, MotwaniNaorNaor'94,..]

Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'l8, ..]

Edge Coloring Algorithms

® Many algorithms computing (A + 1)-edge-colorings
[Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau’85,Misra/Gries'92,..]

® NP-Hard to A-edge-color.
[Holyer'81]

® Many algorithms computing A-edge-color in bipartite graphs
[Cole/Hopcroft'82,Cole/Ost /Schirra’01,Alon’03,Goel /Kapralov/Khanna'13,...]

®m Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi'98, ..]
PRAM [LevPippengerValiant'81,..]

NC & RNC [KarloffShmoys'87, MotwaniNaorNaor'94,..]

Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'l8, ..]

This Talk: Online

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

<

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Variants:
or Vertex arrivals
N or Random order
Deterministic or or Adaptive

or Bipartite graphs

Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Variants:
or Vertex arrivals
N or Random order
Deterministic or or Adaptive

or Bipartite graphs

How many colors do we need? Still = A?

Warm-up: Greedy Algorithm

Greedy: Color edge with “lowest” avaliable color.
Colors = {1,2,3,...}

Warm-up: Greedy Algorithm

Greedy: Color edge with “lowest” avaliable color.
Colors = {1,2,3,...}

~ . =
= ‘

<A-1 <A-1

Warm-up: Greedy Algorithm

Greedy: Color edge with “lowest” avaliable color.
Colors = {1,2,3,...}

~ . _=
= ‘

<A-1 <A-1

Claim: < 2(A — 1) blocked colors

Claim: Greedy uses < 2A — 1 colors

Can we do better?
Can we beat 2A — 1 colors?

Can we do better?
Can we beat 2A — 1 colors?

NO!

Theorem: No online algorithm can (2A — 2)-edge-color every graph.
[Bar-Noy/Motwani/Naor 1992]

Lower Bound

Theorem: No online algorithm can (2A — 2)-edge-color every graph.

[Bar-Noy /Motwani/Naor 1992]

Idea: Create lots of (A — 1)-stars

11W]\W/\W/\ W/ N

Lower Bound

Theorem: No online algorithm can (2A — 2)-edge-color every graph.
[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of (A — 1)-stars

Eventually have A stars colored the same (pigeonhole principle)

- -
- ~
......
.* .~

e
~ .’
.....

Lower Bound

Theorem: No online algorithm can (2A — 2)-edge-color every graph.
[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of (A — 1)-stars
Eventually have A stars colored the same (pigeonhole principle)

Need A+ (A —1) =2A -1 colors

.......
...
.
by
~

-~
~ -
.....

Lower Bound

Theorem: No online algorithm can (2A — 2)-edge-color every graph.
[Bar-Noy/Motwani/Naor 1992]

Idea: Create lots of (A — 1)-stars
Eventually have A stars colored the same (pigeonhole principle)

Need A+ (A —1) =2A -1 colors

.......
...
.
by
~

-~
~ -
.....

Can we do better?
Can we beat 2A — 1 colors?

NO!

Can we do better?
Can we beat 2A — 1 colors?

NO!

Can we do better?
Can we beat 2A — 1 colors?

NO!

Can we do better when A = w(logn)?

Can we do better?
Can we beat 2A — 1 colors?

NO!

Can we do better when A = w(logn)?
YES = A colors :)

Conjecture: (1 + o(1))A-colors sufficent when A = w(logn).
[Bar-Noy/Motwani/Naor 1992]

Progress

Conjecture: (1 + o(1))A-colors sufficent when A = w(logn).
[Bar-Noy/Motwani/Naor 1992]

* Random order edge arrivals:
* [Aggarwal/Motwani/Shah/Zhu’03]: = A-coloringif A = w(nz) (multigraphs)
* [Bahmani/Mehta/Motwani’10]: 1.27A-coloringif A = w(logn)
* [Bhattacharya/Grandoni/Wajc’21]: = A-coloringif A = w(logn)

 Adversarial vertex arrivals:

* [Cohen/Peng/Wajc’19] (simplified [B./Svensson/Vintan/Wajc’24]:
~ A-coloring bipartite graphs

For unknown A: =~ e%A-coloring bipartite graphs (optimal)
* [Saberi/Wajc’21]: ~ 1.9A-coloring general graphs

* Adversarial edge arrivals
e [Kulkarni/Liu/Sah/Sawhney/Tarnawski’22] =~ ——A-coloring

e—1

Progress

Conjecture: (1 + o(1))A-colors sufficent when A = w(logn).
[Bar-Noy/Motwani/Naor 1992]

* Random order edge arrivals:
* [Aggarwal/Motwani/Shah/Zhu’03]: ~ A-coloring if A = w(nz) (multigraphs)
* [Bahmani/Mehta/Motwani’10]: 1.27A-coloringif A = w(logn)
* [Bhattacharya/Grandoni/Wajc’21]: = A-coloringif A = w(logn)

 Adversarial vertex arrivals:

* [Cohen/Peng/Wajc’19] (simplified [B./Svensson/Vintan/Wajc’24]:
~ A-coloring bipartite graphs

For unknown A: =~ e%A-coloring bipartite graphs (optimal)
* [Saberi/Wajc’21]: ~ 1.9A-coloring general graphs
* Adversarial edge arrivals
e [Kulkarni/Liu/Sah/Sawhney/Tarnawski’22] =~ ——A-coloring

e—1

This Talk: = A colors, most general setting of advesarial edge arrivals

Progress

Theorem:

M (1 + o(1))A-colors sufficent when A = w(logn).
[Bar-Noy/Motwani/Naor 1992]

* Random order edge arrivals:
* [Aggarwal/Motwani/Shah/Zhu’03]: ~ A-coloring if A = w(nz) (multigraphs)
* [Bahmani/Mehta/Motwani’10]: 1.27A-coloringif A = w(logn)
* [Bhattacharya/Grandoni/Wajc’21]: = A-coloringif A = w(logn)

 Adversarial vertex arrivals:

* [Cohen/Peng/Wajc’19] (simplified [B./Svensson/Vintan/Wajc’24]:
~ A-coloring bipartite graphs

For unknown A: =~ e%A-coloring bipartite graphs (optimal)
* [Saberi/Wajc’21]: ~ 1.9A-coloring general graphs
* Adversarial edge arrivals
e [Kulkarni/Liu/Sah/Sawhney/Tarnawski’22] =~ ——A-coloring

e—1

This Talk: = A colors, most general setting of advesarial edge arrivals

Techniques

Technical Part — Outline

®m Edge Coloring < Fair Matchings
®= Reduction

® Online Fair Matching Algorithm
m First Attempt
Il
]

Fair Matching Problem

Given: Graph G = (V, F)
Goal: Find a matching M
a-Fairness: Prle e M] > O%A for each edge e € E

Fair Matching Problem

Given: Graph G = (V, F)
Goal: Find a matching M
a-Fairness: Prle e M] > O%A for each edge e € E

Claim: aA-edge-coloring algorithm = «-fair matching algorithm
Proof: Pick random color as matching

Fair Matching Problem

Given: Graph G = (V, F)
Goal: Find a matching M
a-Fairness: Prle e M] > O%A for each edge e € E

Claim: aA-edge-coloring algorithm = «-fair matching algorithm
Proof: Pick random color as matching

Lemma: a-fair matching —
(1 + o(1))aA-edge-coloring

[Cohen /Peng/Wajc'19]

Fair Matching Problem

Given: Graph G = (V, F)
Goal: Find a matching M
a-Fairness: Prle e M] > O%A for each edge e € E

Claim: aA-edge-coloring algorithm = «-fair matching algorithm
Proof: Pick random color as matching

Lemma: a-fair matching —
(1 + o(1))aA-edge-coloring

[Cohen/Peng /Wajc'19]

New Objective: (1 + o(1))-fair matching algorithm

From Fair Matchings to Edge Coloring (conen/Peng/Wajc'19]

A : (1 + o(1))-fair matching algorithm

G - A G\Ml"A G\(]\41U]\42)._“4 | 4
v v v v \v
My Mo Mi Greedy
v

From Fair Matchings to Edge Coloring (conen/Peng/Wajc'19]

A : (1 + o(1))-fair matching algorithm

G =l A G\Ml..A G\(]\41U]\42)._“4 S \
M M M
: ’ ‘ Greedy
Each matching reduces max-degree by = 1
Fallback to greedy coloring when A < 100logn v

From Fair Matchings to Edge Coloring (conen/Peng/Wajc'19]

A : (1 + o(1))-fair matching algorithm

Lemma: o-fair matching = (1 + o(1))aA-edge-coloring

New Objective: (1 + o(1))-fair matching algorithm

G\ M, G\ (M; U M)

G+ A > A » A o A \
M M M
: ’ ‘ Greedy
Each matching reduces max-degree by = 1
Fallback to greedy coloring when A < 100logn v
Mk+1

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

A+q A+q

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

Cannot match e,

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= o(A%¥* logA) = o(A)

Cannot match ey Match e, with probability ﬁ?

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 7= q:=0(A""logA) = o(A)

€1
1 1
A+q - A+q
N N
Cannot match e, Match es Wlth probablllty %7

Must scale up: +— q/(—A+q

Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

€1
1 1 1
A+q A+q
€1 €1
N N
1 1
1 A+q—1 1 A+qg—-1
€1 €1 €1

Fair Matching — Natural First Attempt

When e; = (u,v) arrives:
1/(A+q)

Match e with probability p; :=

Pr[u, v both free when e; arrives]

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’

Potential Problem: p, > 1

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’

Example: GG is a tree Potential Problem: p, > 1

u

AN

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’

Example: GG is a tree Potential Problem: p, > 1

U (tree)

v &
/\\ Pr[both u,v free] = Pr[u free] - Pr[v free]

/\\
IAEAN

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’
Example: GG is a tree Potential Problem: p, > 1
U
v G (tree)
v \ Pr[both u,v free] = Pr[u free] - Pr[v free]

_ deg(w) o g

/ \\ Prlu free] = 1 - 25202 >
I\ s

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’
Example: GG is a tree Potential Problem: p, > 1
U
v G (tree)
v \ Pr[both u,v free] = Pr[u free] - Pr[v free]

_ deg(w) o g

/\
/\ \ [Pr[u free] =1 Ara 2 A
L

2

2\

< ==
Pt A+q (q)

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’
Example: GG is a tree Potential Problem: p, > 1
U
v G (tree)
v \ Pr[both u,v free] = Pr[u free] - Pr[v free]

_ 1 _ deg(u) q
r[u free] =1 e 234

A\ :
/\ \\ ‘ \i pos - (2)

<1ifq:=2J/A

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’
Example: GG is a tree Potential Problem: p, > 1
U
v G — (tree)
\ Pr[both u,v free] = Pr[u free] - Pr[v free]

| _ deg(w) o g

/N Prlu free] =
/\ \ [At+qg = 2A
\

2
1 2A
Pe= 1 (7)
<1ifq:=2VA
[Kulkarni/Liu/Sah /Sawhney/Tarnawski'22]

(== + o(1))A-coloring subsampling locally tree-like graphs

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’

Potential Problem: p, > 1

Open Problem: Does this “Natural Algorithm” work in general?

Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’

Potential Problem: p, > 1

Open Problem: Does this “Natural Algorithm” work in general?

1/(A+q)
Pr[u, v both free in]

Our Alternative Algorithm: p; :=

Alternative Natural Algorithm

1/(A+q)
Pr[u,v both free in]

Our Alternative Algorithm: p,; :=

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 1
Pley) « { 5F9 T, G—Pler,)

if u and v are still unmatched,

otherwise,

where ey, ..., e, arethose previously-arrived edges incident to the endpoints of e;.

P(@tl) Scale up P et) by l_[] 1— P(e)

tj P(etg)

P(€t4)§ e, /
P(€t7)' ‘P(€t5)
Ple,)/ \ P(ey,)

Alternative Natural Algorithm

1/(A+q)
Pr[u,v both free in]

Our Alternative Algorithm: p,; :=

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 1
Pley) « { 5F9 T, G—Pler,)

if u and v are still unmatched,

otherwise,

where ey, ..., e, arethose previously-arrived edges incident to the endpoints of e;.

P(@tl) Scale up P et) by l_[] 1— P(e)

tj P(etg)

P(€t4)§ e, /
P(€t7)' ‘P(€t5)
Ple,)/ \ P(ey,)

Alternative Natural Algorithm

1/(A+q)
Pr[u,v both free in]

Our Alternative Algorithm: p,; :=

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 1
Pley) « { 5F9 T, G—Pler,)

if u and v are still unmatched,

otherwise,

where ey, ..., e, arethose previously-arrived edges incident to the endpoints of e;.

P(@tl) Scale up P et) by l_[] 1— P(e)

tj P(etg)

P(€t4) x e, /
P(€t7)' ‘P(€t5)
Ple)/ Pr[u, v both free | R] \ P(e,)

R =randomness outside of incident edges.

Alternative Natural Algorithm

Algorithm 2 (MATCHINGALGORITHM).

dlnitialization: Set F'y (v) < 1 for every vertexv and My < ().

Algo] At the arrival of edge e; = (u, v) at time ¢:

When * Sample X; ~ Uni[0, 1].

 Define
1 1
P(Bt) _) A+q Fi(u)-Ft(v)
0 otherwise.
and
where
Ple)) =
I (e:) {0 otherwise.
P (o Set
P(~ Fyi1(u) + Fy(u) - (1 — Ples));

- Fiy1(v) « Fi(v) - (1 — Pler));
M, U{e;} ifX; < P(ey),

- My <
M; otherwise.

if u and v are unmatched in M,

P(e;) ifmin{Fi(u), Fy(v)} - (1 — P(er)) > q/(44)

nmatched,

boints of €.

)(etg)

)(€t5)

)(€t6)

A More Fine-Grained Bayesian Approach

1/(A+q)

Our Alternative Algorithm: p, := Brfu o both free in

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: p,; :=

€1

1/(A+q)
Pr[u,v both free in]

1
A+q

€1

%
1

€1

%

1
1 A+q
€1
N
1 1 N 1
A+g-1 A+qg-1

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: p,; :=

€1

1
A+q

€1

%
1

€1

%

1/(A+q)

Pr[wu,v both free in

- A+q—1
€1
N }

A More Fine-Grained Bayesian Approach

1/(A+q)
Pr[u, v both free in]

Our Alternative Algorithm: p,; :=

€1

1 1 — 1
A+q A+q

€1

%
1 A+qg—1 B A+qg—1

€1
N } €2 } N }

Old Algo: Pr[u,v free] = (1 — A1+q) Uses same scaling factor

A More Fine-Grained Bayesian Approach

1/(A+q)
Pr[u, v both free in]

Our Alternative Algorithm: p,; :=

€1

1 1 — 1
A+q A+q

€1

%
1 A+qg—1 B A+qg—1

€1
N } €2 } N }

Old Algo: Pr[u,v free] = (1 — A1+q) Uses same scaling factor

A More Fine-Grained Bayesian Approach

Our Alternative Algorithm: p,; :=

€1

1
A+q

€1

%
1

€1

%

1/(A+q)

Pr[wu,v both free in

- A+q—1
€1
N }

A More Fine-Grained Bayesian Approach

1/(A+q)
Pr[u, v both free in]

Our Alternative Algorithm: p,; :=

€1 Scaling factor depends
on execution path!

1 1 — 1
A+q A+q

€1

%
1 A+qg-1 A+qg-1

€1
N e €3 e N €3

Pr[u,v free | R] =1 Pr[u,v free | R] = (1 — A+1q_1)

A More Fine-Grained Bayesian Approach

1/(A+q)
Pr[u, v both free in]

Our Alternative Algorithm: p,; :=

€1 Scaling factor depends
on execution path!
1 1 _
Arg 1 - Arg R =randomness of e;

€1

%
1 A+qg-1 A+qg-1

€1
N e €3 e N €3

Pr[u,v free | R] =1 Pr[u,v free | R] = (1 — A+1q_1)

Analysis ldea — Random Walk

Core of Analysis: Prove P(e;) <1

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1]_ = .
- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis ldea — Random Walk

Core of Analysis: Prove P(e;) <

Sl

Previous work: Control Correlation
Our work: Embrace Correlations

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

]-]_ = .
- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 =) ; P(ey,)) Goal: Show S, 2 /1%
......... "P(€ 1)
P(et7) ’Ll, et o
“““““ P(et2) '~.,.....

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1]_ = .
- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 —) . P(es,))

J

......... -.E(etl)
P(et7) u et
“““““““ ~ 1
* P(etQ) - A+q

Algorithm 1 (NATURALMATCHINGALGORITHM).

Goal: Show S, 2 {/—x

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

llIlllllllllllllllllllllllllll

‘
‘
‘e
‘e
e
‘e
‘e
‘
L]
"
'.
L]
Y.
Y.
a

When an edge e; = (u,v) arrives, match it with probability

1

1
Pler) « { 571 A0
0

D if u and v are still unmatched,
t 5
J

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 —) . P(es,))

J

........... P(€t1)
P (€t7)\ et Ct e
Foo e 1
pry > Plen) = 55

Algorithm 1 (NATURALMATCHINGALGORITHM).

Goal: Show S, 2 {/—x

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
.

lllllllllllllllllllllllllllll

‘
‘
‘e
‘e
e
‘e
‘e
‘
L]
"
'.
L]
Y.
Y.
a

When an edge e; = (u,v) arrives, match it with probability

1

1
Pler) « { 571 A0
0

D if u and v are still unmatched,
t 5
J

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 — Zj P(ey,)) Goal: Show S, 2 \4/10%
......... "P(€ 1)
P(et7) """','_'_':3 u et o
f “““““““““““““““““ 1
Py Do) = x

If f matched = P"""(e,) « 0
If f not matched = P"""(et,) « P(es,)/(1 - P(f))

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1]_ = .
- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 — Zj P(ey,)) Goal: Show 5, 2 \4/10%
......... "P(€ 1)
P(et7) """','_'_':3 u et o
f “““““““““““““““““ 1
Py Do) = x
If f matched = P"“(e;,) « 0 E[S,] =S,

If f not matched = P"“"(es,) « Ples,)/ (1= P(f))
Algorithm 1 (NATURALMATCHINGALGORITHM).
When an edge e; = (u,v) arrives, match it with probability

i 2 @ if u and v are still unmatched,

1
P(ey) + { 1 A=
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.

Analysis l[dea — Random Walk

Scaling factor S, := (1 — Zj P(ey,)) Goal: Show 5, 2 \4/10%
......... "P(€t 1)
P(6t7) .'.""','_'_'::(u et o
f ““““““““““““““““““ 1
Py Do) = x
If f matched — Pnew(etQ) «0 E[Szew] =5,

If f not matched = P"““(e.,) « P(es,)/ (1= P(f))

5(0)

time

Analysis l[dea — Random Walk

Scaling factor S, := (1 — Zj P(ey,)) Goal: Show 5, 2 \4/10%
......... "P(€t 1)
P(6t7) .'.""','_'_':3 u et o
f ““““““““““““““““““ 1
Py Do) = x
If f matched = P"""(e,) « 0 E[S;Lew] = S,

If f not matched = P"““(e.,) « P(es,)/ (1= P(f))

>

Martingale Process

Martingale Process

Martingale Process

(If no correlations: Chernoff bound) g~ A4
Freedmans Inequality:

e Martingale E| Z,.1 — Z, | Z1,7Z5,...,Z;] =0
® Step size |Zt+1 — Ztl < A

e Observed variance ZtE[(ZtH —Z) | Zy,. .. Zt] <o

Martingale Process

(If no correlations: Chernoff bound) g~ A4
Freedmans Inequality:

e Martingale E| Z,.1 — Z, | Z1,7Z5,...,Z;] =0
® Step size |Zt+1 — Ztl < A

e Observed variance ZtE[(ZtH —Z) | Zy,. .. Zt] <o

— Pr[|Z - Zol 2 €] < 2exp (5)

Fair Matching Result

Main Technical Result:
There is an online algorithm which outputs a random matching M so that

1
Prl[e e M] = Atq Vee E, where ¢-= O(A3/4\/10g A)

Summary and Open Problems

® For low-deg graphs (2A — 1)-edge-coloring is optimal.

Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:

Summary

® For low-deg graphs (2A — 1)-edge-coloring is optimal.

m Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:

List edge coloring

lists L(e) of allowed colors
|L(e)| = (1 +0(1))A

tece} /{000}

L— “{oee}

T er—

Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:

List edge coloring Local edge coloring
lists L(e) of allowed colors -
U v
|IL(e)| = (1 +0(1))A S~
{oce]
{e 00}
color(u, v)

L— “{oee} < (1+ o(1)) max(deg(u),deg(v))
e +O(log n)

Summary

For low-deg graphs (2A — 1)-edge-coloring is optimal.
Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)
Extensions / Generalizations:

Online Rounding of “Spread Out” Fractional Matchings:
Given (online) fractional matching = € R” satisfying . < e,
output matching M so that Prl[ee M] = (1 —¢)x,.

Summary

For low-deg graphs (2A — 1)-edge-coloring is optimal.
Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)
Extensions / Generalizations:

Online Rounding of “Spread Out” Fractional Matchings:
Given (online) fractional matching = € R” satisfying . < e,
output matching M so that Prl[ee M] = (1 —¢)x,.

Also works in non-bipartite graphs
depsite the integrality gap

Summary

For low-deg graphs (2A — 1)-edge-coloring is optimal.
Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)
Extensions / Generalizations:

Online Rounding of “Spread Out” Fractional Matchings:
Given (online) fractional matching = € R” satisfying . < e,
output matching M so that Prl[ee M] = (1 —¢)x,.

Also works in non-bipartite graphs
depsite the integrality gap

x. := - recovers fair matching theorem

1
A

Open Problems

® Deterministic?
» (Or equiv. randomized vs adaptive aversary)
» Completely open if one can beat greedy

Open Problems

® Deterministic?
» (Or equiv. randomized vs adaptive aversary)
» Completely open if one can beat greedy

m Correct Asymptotics:
m Extra colors needed between
Q(VA +logn) and O(ASMM + A3 logl/3 n)
» Beat greedy, or improve LB for A € [{/logn,logn]?

Open Problems

® Deterministic?
» (Or equiv. randomized vs adaptive aversary)
» Completely open if one can beat greedy

m Correct Asymptotics:
m Extra colors needed between
Q(VA +logn) and O(ASMM + A3 logl/3 n)
» Beat greedy, or improve LB for A € [{/logn,logn]?

® Multigraphs?
m Offline: min(%A,A + 1) colors
m Or even hypergraphs?

Open Problems

® Deterministic?
» (Or equiv. randomized vs adaptive aversary)
» Completely open if one can beat greedy

m Correct Asymptotics:
m Extra colors needed between
Q(VA +logn) and O(ASM\/@ + A3 logl/3 n)
» Beat greedy, or improve LB for A € [{/logn,logn]?

® Multigraphs?
m Offline: min(%A,A + 1) colors
m Or even hypergraphs?

Thanks!

