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Edge Coloring

Given: Graph G = (V, F)
Goal: Color edges with few colors
Constraint: No two incident edges get the same color

4 colors?

N % Optimal?
N
/ A 1= max,cy deg(v)
& Claim: #Colors =2 A
AN

Theorem: #Colors < A +1
[Vizing 1964]




Edge Coloring Algorithms

® Many algorithms computing (A + 1)-edge-colorings
[Vizing'64, Gabow/Nishizeki/Kariv/Leven/Osmau’85,Misra/Gries'92,..]

® NP-Hard to A-edge-color.
[Holyer'81]

® Many algorithms computing A-edge-color in bipartite graphs
[Cole/Hopcroft'82,Cole/Ost /Schirra’01,Alon’03,Goel /Kapralov/Khanna'13,...]

®m Studied in various computational models:

Distributed [PanconesiSrinivasan'97,DubhashiGrablePanconessi'98, .. ]
PRAM [LevPippengerValiant'81,..]

NC & RNC [KarloffShmoys'87, MotwaniNaorNaor'94,..]

Dynamic [Bhattacharya/Chakrabarty/Henzinger/Nanongkai'l8, .. ]
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This Talk: Online
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Online Edge Coloring

Online: Graph revealed over time. Max-degree A known.
Task: Color edge irrevocably when it is revealed.

Variants:
or Vertex arrivals
N or Random order
Deterministic or or Adaptive

or Bipartite graphs

How many colors do we need? Still = A?
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Warm-up: Greedy Algorithm

Greedy: Color edge with “lowest” avaliable color.
Colors = {1,2,3,...}
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Claim: < 2(A — 1) blocked colors

Claim: Greedy uses < 2A — 1 colors
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Can we beat 2A — 1 colors?

NO!

Can we do better when A = w(logn)?
YES = A colors :)
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Technical Part — Outline

®m Edge Coloring < Fair Matchings
®= Reduction

® Online Fair Matching Algorithm
m First Attempt
Il
]
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Fair Matching Problem

Given: Graph G = (V, F)
Goal: Find a matching M
a-Fairness: Prle e M ] > O%A for each edge e € E

Claim: aA-edge-coloring algorithm = «-fair matching algorithm
Proof: Pick random color as matching

Lemma: a-fair matching —
(1 + o(1))aA-edge-coloring

[Cohen/Peng /Wajc'19]

New Objective: (1 + o(1))-fair matching algorithm



From Fair Matchings to Edge Coloring (conen/Peng/Wajc'19]

A : (1 + o(1))-fair matching algorithm
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From Fair Matchings to Edge Coloring (conen/Peng/Wajc'19]

A : (1 + o(1))-fair matching algorithm

Lemma: o-fair matching = (1 + o(1))aA-edge-coloring

New Objective: (1 + o(1))-fair matching algorithm

G\ M, G\ (M; U M)

G+ A > A » A o A \
M M M
: ’ ‘ Greedy
Each matching reduces max-degree by = 1
Fallback to greedy coloring when A < 100logn v
Mk+1
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Cannot match ey Match e, with probability ﬁ?



Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 7= q:=0(A""logA) = o(A)

€1
1 1
A+q - A+q
N N
Cannot match e, Match es Wlth probablllty %7

Must scale up: +— q/( —A+q



Fair Matching Algorithm

Goal: Match each edge with probability Pr[e € /] = i

Prlee 1/]= 5= ¢:= O(AY* flog A) = o(A)

€1
1 1 1
A+q A+q
€1 €1
N N
1 1
1 A+q—1 1 A+qg—-1
€1 €1 €1
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Fair Matching — Natural First Attempt

When ¢e; = (u,v) arrives:
1/(A+q)
Pr[u, v both free when e; arrives]

Match e with probability p; :=
— Prl[ee M]=

A+q’
Example: GG is a tree Potential Problem: p, > 1
U
v G — (tree)
\ Pr[both u,v free] = Pr[u free] - Pr[v free]

| _ deg(w) o g

/N Prlu free] =
/\ \ [ At+qg = 2A
\

2
1 2A
Pe= 1 (7)
<1ifq:=2VA
[Kulkarni/Liu/Sah /Sawhney/Tarnawski'22]

(== + o(1))A-coloring subsampling locally tree-like graphs
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Our Alternative Algorithm: p,; :=

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 1
Pley) « { 5F9 T, G—Pler,)

if u and v are still unmatched,

otherwise,

where ey, ..., e, arethose previously-arrived edges incident to the endpoints of e;.

P(@tl) Scale up P et) by l_[] 1— P(e )

tj P(etg)

P(€t4)§ e, /
P(€t7)' ‘P(€t5)
Ple, )/ \ P(ey,)
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Alternative Natural Algorithm

1/(A+q)
Pr[u,v both free in ]

Our Alternative Algorithm: p,; :=

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 1
Pley) « { 5F9 T, G—Pler,)

if u and v are still unmatched,

otherwise,

where ey, ..., e, arethose previously-arrived edges incident to the endpoints of e;.

P(@tl) Scale up P et) by l_[] 1— P(e )

tj P(etg)

P(€t4) x e, /
P(€t7)' ‘P(€t5)
Ple )/ Pr[u, v both free | R] \ P(e,)

R =randomness outside of incident edges.




Alternative Natural Algorithm

Algorithm 2 (MATCHINGALGORITHM).

dlnitialization: Set F'y (v) < 1 for every vertexv and My < ().

Algo] At the arrival of edge e; = (u, v) at time ¢:

When  * Sample X; ~ Uni[0, 1].

 Define
1 1
P(Bt) _ ) A+q Fi(u)-Ft(v)
0 otherwise.
and
where
Ple)) =
I (e:) {0 otherwise.
P ( o Set
P( ~ Fyi1(u) + Fy(u) - (1 — Ples));

- Fiy1(v) « Fi(v) - (1 — Pler));
M, U{e;} ifX; < P(ey),

- My <
M; otherwise.

if u and v are unmatched in M,

P(e;) ifmin{Fi(u), Fy(v)} - (1 — P(er)) > q/(44)

nmatched,

boints of €.

)(etg)

)(€t5)

)(€t6)
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1/(A+q)
Pr[u, v both free in ]

Our Alternative Algorithm: p,; :=

€1 Scaling factor depends
on execution path!

1 1 — 1
A+q A+q
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%
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A More Fine-Grained Bayesian Approach

1/(A+q)
Pr[u, v both free in ]

Our Alternative Algorithm: p,; :=

€1 Scaling factor depends
on execution path!
1 1 _
Arg 1 - Arg R =randomness of e;

€1

%
1 A+qg-1 A+qg-1

€1
N e €3 e N €3

Pr[u,v free | R] =1 Pr[u,v free | R] = (1 — A+1q_1)




Analysis ldea — Random Walk

Core of Analysis: Prove P(e;) <1

Algorithm 1 (NATURALMATCHINGALGORITHM).

When an edge e; = (u,v) arrives, match it with probability

1 ]_ = .
- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.



Analysis ldea — Random Walk

Core of Analysis: Prove P(e;) <

Sl

Previous work: Control Correlation
Our work: Embrace Correlations

Algorithm 1 (NATURALMATCHINGALGORITHM).
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]- ]_ = .
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0
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where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.
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Analysis l[dea — Random Walk

Scaling factor S, := (1 —) . P(es,))

J

......... -.E(etl)
P(et7) ........... u et
“““““““ ~ 1
* P(etQ) - A+q

Algorithm 1 (NATURALMATCHINGALGORITHM).

Goal: Show S, 2 {/—x
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When an edge e; = (u,v) arrives, match it with probability

1

1
Pler) « { 571 A0
0

D if u and v are still unmatched,
t 5
J

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.
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When an edge e; = (u,v) arrives, match it with probability

1

1
Pler) « { 571 A0
0

D if u and v are still unmatched,
t 5
J

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.
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When an edge e; = (u,v) arrives, match it with probability
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- if u and v are still unmatched,
P(et) Atq QL1 (1=Ples;)) /
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.



Analysis l[dea — Random Walk

Scaling factor S, := (1 — Zj P(ey,)) Goal: Show 5, 2 \4/10%
......... "P( € 1 )
P(et7) """','_'_':3 u ........................... et o
f “““““““““““““““““ 1 ......
Py Do) = x
If f matched = P"“(e;,) « 0 E[S, ] =S,
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Algorithm 1 (NATURALMATCHINGALGORITHM).
When an edge e; = (u,v) arrives, match it with probability

i 2 @ if u and v are still unmatched,

1
P(ey) + { 1 A=
0

otherwise,

where ey, . .., et are those previously-arrived edges incident to the endpoints of e;.
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time
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Martingale Process

(If no correlations: Chernoff bound) g~ A4
Freedmans Inequality:

e Martingale E| Z,.1 — Z, | Z1,7Z5,...,Z;] =0
® Step size |Zt+1 — Ztl < A

e Observed variance ZtE[(ZtH —Z) | Zy,. .. Zt] <o

— Pr[|Z - Zol 2 €] < 2exp (5 )



Fair Matching Result

Main Technical Result:
There is an online algorithm which outputs a random matching M so that

1
Prl[e e M] = Atq Vee E, where ¢-= O(A3/4\/10g A)



Summary and Open Problems



® For low-deg graphs (2A — 1)-edge-coloring is optimal.



Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)



Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:



Summary

® For low-deg graphs (2A — 1)-edge-coloring is optimal.

m Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:

List edge coloring

lists L(e) of allowed colors
|L(e)| = (1 +0(1))A

tece} /{000}

L— “{oee}

T er—



Summary

m For low-deg graphs (2A — 1)-edge-coloring is optimal.
m Otherwise, edge coloring is (nearly) “as easy as offline":

Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)

m Extensions / Generalizations:

List edge coloring Local edge coloring
lists L(e) of allowed colors -
U v
|IL(e)| = (1 +0(1))A S~
{oce]
{e 00}
color(u, v)

L— “{oee} < (1+ o(1)) max(deg(u),deg(v))
e +O(log n)
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Summary

For low-deg graphs (2A — 1)-edge-coloring is optimal.
Otherwise, edge coloring is (nearly) “as easy as offline":
Main Theorem: online (1 + o(1))-fair matching algorithm
Corollary: online (1 + o(1))A-edge-coloring algorithm when A = w(logn)
Extensions / Generalizations:

Online Rounding of “Spread Out” Fractional Matchings:
Given (online) fractional matching = € R” satisfying . < e,
output matching M so that Prl[ee M ] = (1 —¢)x,.

Also works in non-bipartite graphs
depsite the integrality gap

x. := - recovers fair matching theorem

1
A
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Open Problems

® Deterministic?
» (Or equiv. randomized vs adaptive aversary)
» Completely open if one can beat greedy

m Correct Asymptotics:
m Extra colors needed between
Q(VA +logn)  and O(ASM\/@ + A3 logl/3 n)
» Beat greedy, or improve LB for A € [{/logn,logn]?

® Multigraphs?
m Offline: min(%A,A + 1) colors
m Or even hypergraphs?

Thanks!



