Nearly Optimal Communication and Query Complexity of Bipartite Matching

Joakim Blikstad

KTH Royal Institute of Technology
To appear in FOCS'22

Joint work with: Jan van den Brand, Yuval Efron, Danupon Nanongkai, and Sagnik Mukhopadhyay.

TCS+ talk, fall 2022

Biparite Matching

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find a maximum matching $M \subseteq E$ of G

Biparite Matching

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find a maximum matching $M \subseteq E$ of G

Biparite Matching

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find a maximum matching $M \subseteq E$ of G

Solve (sequentially) in:

- $\tilde{O}(m+n \sqrt{n})$ [vdBLNPSSSW'20]
- $O\left(m^{1+o(1)}\right)$ [CKLPGS'22]

Two-Party Communication Model

E_{A}
Bob

E_{B}

Two-Party Communication Model

E_{A}

$E=E_{A} \cup E_{B}$

Bob

E_{B}

Goal: Solve matching on the union of their graphs

Two-Party Communication Model

Goal: Solve matching on the union of their graphs

Two-Party Communication Model

Bob
Send messages

Goal: Solve matching on the union of their graphs With as few bits of communication!

Two-Party Communication Model

Goal: Solve matching on the union of their graphs With as few bits of communication!

Two-Party Communication Model

Goal: Solve matching on the union of their graphs With as few bits of communication!

Two-Party Communication Model

Goal: Solve matching on the union of their graphs With as few bits of communication!
Note: Do not care about internal running time

First tries - Upper Bounds

First tries - Upper Bounds
Sending an edge: $O(\log n)$ bits

First tries - Upper Bounds

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

- $O\left(m_{2} \log n\right)$
- $O\left(n^{2}\right)$

First tries - Upper Bounds

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

- $O(m \log n)$
- $O\left(n^{2}\right)$

Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m \sqrt{n})$ running time

First tries - Upper Bounds

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

- $O\left(m_{2} \log n\right)$
- $O\left(n^{2}\right)$

Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m \sqrt{n})$ running time
- Communication: $O(n \sqrt{n} \log n)$ bits

First tries — Upper Bounds

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

- $O(m \log n)$
- $O\left(n^{2}\right)$

Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m \sqrt{n})$ running time
- Communication: $O(n \sqrt{n} \log n)$ bits

Idea: BFS / DFS need only $O(n \log n)$ bits of communication

First tries - Upper Bounds

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

- $O(m \log n)$
- $O\left(n^{2}\right)$

Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m \sqrt{n})$ running time
- Communication: $O(n \sqrt{n} \log n)$ bits

Idea: BFS / DFS need only $O(n \log n)$ bits of communication
Converting $O\left(m^{1+o(1)}\right)$ sequential $\longrightarrow O\left(n^{1+o(1)}\right)$ communication seems difficult

Lower Bounds

Lower Bounds

If Bob needs to output the matching: $\Omega(n \log n)$ bits lower bound

Lower Bounds

Theorem: [HMT'88]

$\Omega(n \log n)$ bits are needed to output the size of the maximum matching
\uparrow only deterministic
$\Omega(n)$ randomized

$\Omega(n \log n)$
 $O(n \sqrt{n} \log n)$
 Major Question ${ }^{\dagger}$: What is the Communication Complexity of Bipartite Matching?

$\Omega(n \log n)$
 $O(n \sqrt{n} \log n)$
 Major Question ${ }^{\dagger}$: What is the Communication Complexity of Bipartite Matching?

Main Result:

One can solve bipartite matching in $O\left(n \log ^{2} n\right)$ bits of communication.
${ }^{\dagger}$ [Hajnal, Maass, Turan STOC'88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski,
Nisan, Oren STOC'14]; [Nisan SODA'21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP'04]

$\Omega(n \log n)$
 $O(n \sqrt{n} \log n)$

 Major Question ${ }^{\dagger}$: What is the Communication

 Major Question ${ }^{\dagger}$: What is the Communication Complexity of Bipartite Matching?

 Complexity of Bipartite Matching?}

Main Result:

One can solve bipartite matching in $O\left(n \log ^{2} n\right)$ bits of communication.

Highlights:

- Follow from simple applications of known techniques (cutting planes method)
- Very slow runtime, but efficient communication
- Only "finds" $O(n \log n)$ edges
${ }^{\dagger}$ [Hajnal, Maass, Turan STOC'88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski, Nisan, Oren STOC'14]; [Nisan SODA'21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP'04]

Query Models

- Hidden biparite graph $G=(L \cup R, E)$

Query Models

- Hidden biparite graph $G=(L \cup R, E)$

L

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- $\quad R$

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"

Query Models

$$
(S \subseteq L \times R)
$$

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \geq 1$?"

■ XOR-Query: "Is $|S \cap E|$ odd?"

- AND-Query: "Is $|S \cap E|=|S|$ "
"YES"
"NO"
"NO"

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \geq 1$?"
- XOR-Query: "Is $|S \cap E|$ odd?"
- AND-Query: "Is $|S \cap E|=|\mathrm{S}|$ "

$$
(S \subseteq L \times R)
$$

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \geq 1$?"
- XOR-Query: "Is $|S \cap E|$ odd?"
- AND-Query: "Is $|S \cap E|=|S|$ "
- Quantum-Edge-Query

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \geq 1$?"

■ XOR-Query: "Is $|S \cap E|$ odd?"

- AND-Query: "Is $|S \cap E|=|S|$ "
- Quantum-Edge-Query

Deterministic:
$\Theta\left(n^{2}\right)$
$\tilde{\Omega}(n), \tilde{O}(n \sqrt{n})$
$\Theta\left(n^{2}\right)$
$\Theta\left(n^{2}\right)$
-

Randomized:

$$
\begin{gathered}
\Theta\left(n^{2}\right) \\
\Omega(n), \tilde{O}(n \sqrt{n}) \\
\Omega(n), \tilde{O}(n \sqrt{n}) \\
\Omega(n), O\left(n^{2}\right) \\
\tilde{\Omega}(n \sqrt{n}), \tilde{O}\left(n^{7 / 4}\right)
\end{gathered}
$$

[Yao'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]

Query Models

- Hidden biparite graph $G=(L \cup R, E)$
- Query access:
- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \geq 1$?"

■ XOR-Query: "Is $|S \cap E|$ odd?"

- AND-Query: "Is $|S \cap E|=|S|$ "
- Quantum-Edge-Query

Deterministic:
$\Theta\left(n^{2}\right)$
$\tilde{\Theta}(n)$
$\Theta\left(n^{2}\right)$
$\Theta\left(n^{2}\right)$

Randomized:

$$
\begin{gathered}
\Theta\left(n^{2}\right) \\
\tilde{\Theta}(n) \\
\tilde{\Theta}(n) \\
\Theta\left(n^{2}\right) \\
\tilde{\Theta}(n \sqrt{n})
\end{gathered}
$$

Green: new tight upper-bound! Red: new tight lower-bound!
[Yao'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]

The Algorithms

Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.
Think "Ellipsoid Method"

Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.
Think "Ellipsoid Method"

- [Vempala, Wang, Woodruff SODA'20]: Solving general LPs in Communication Model with Cutting Planes: \tilde{O} (dimension ${ }^{3} \cdot \#$ bits per constraint) communication

Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.
Think "Ellipsoid Method"

- [Vempala, Wang, Woodruff SODA'20]: Solving general LPs in Communication Model with Cutting Planes: \tilde{O} (dimension ${ }^{3}$ •\#bits per constraint) communication
- Crucial properties of Dual Vertex Cover LP:
- Low dimension (n instead of m)
- Constraints are "short" (low support = cheap to send)
- Volume is small
- ... but not too small

Dual: Minimum Vertex Cover

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find smallest set C of vertices covering all edges

Dual: Minimum Vertex Cover

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find smallest set C of vertices covering all edges

Dual: Minimum Vertex Cover

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find smallest set C of vertices covering all edges

König's Theorem:

|max-matching| $=\mid$ min-vertex cover \mid (in bipartite graphs!)

Dual: Minimum Vertex Cover

Given: Graph $G=(L \cup R, E)$ with $|L|=|R|=n,|E|=m$
Goal: Find smallest set C of vertices covering all edges

Kőnig's Theorem:

|max-matching $|=|$ min-vertex cover \mid (in bipartite graphs!)

Def: Fractional vertex cover x :
$x_{u}+x_{v} \geq 1$ for all edges (u, v)

Dual Linear Program: Minimum Vertex Cover

$$
\begin{array}{ll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E \\
& 0 \leq x \leq 1
\end{array}
$$

Dual Linear Program: Minimum Vertex Cover

$$
\begin{array}{lll}
\min & \sum_{v \in V} x_{v} \\
\text { s.t. } & x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
& 0 \leq x \leq 1
\end{array}
$$

Dual Linear Program: Minimum Vertex Cover

$$
\begin{aligned}
& \sum_{v \in V} x_{v} \leq n-1 \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
& 0 \leq x \leq 1
\end{aligned}
$$

■ (P) feasible \Longleftrightarrow No perfect matching exists

$$
\begin{aligned}
& \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
& 0 \leq x \leq 1
\end{aligned}
$$

- (P) feasible \Longleftrightarrow No perfect matching exists
- (P) feasible $\Longrightarrow \operatorname{Vol}(P) \geq\left(\frac{1}{20 n}\right)^{5 n}$

Cutting Planes Method

Separation Oracle:

Given $y \in \mathbb{R}^{n}$, return either:

- " y is in (P)"
- Violated hyperplane: " c ${ }^{\top} x \leq d$ "
- valid for all $x \in(P)$
- not valid for y

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
(Q)

Given: (Q) containing (P)

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
(Q)

Given: (Q) containing (P)

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle

1. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P) Separation Oracle
$\# P$-hard to compute
We don't care!
$\longrightarrow 1$. Pick $y=\frac{\int_{Q} z \mathrm{~d} z}{\int_{Q} \mathrm{~d} z}=$ center-of-gravity of (Q)
2. Call separation oracle and update (Q)

Lemma: [Grünbaum]
$\operatorname{Vol}(Q)$ decreases by a $\left(1-\frac{1}{e}\right)$-fraction
3. Repeat!

Cutting Planes for Biparite Matching

$$
\begin{array}{ll:l}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} & (Q) & \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \tag{P}\\
0 \leq x \leq 1 & 0 \leq x \leq 1
\end{array}
$$

Cutting Planes for Biparite Matching

$\sum_{v \in V} x_{v} \leq n-\frac{1}{2}$
$0 \leq x \leq 1$
(Q)

$$
\begin{aligned}
& \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
& 0 \leq x \leq 1
\end{aligned}
$$

Cutting Planes for Biparite Matching

$$
\begin{array}{l:c}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} & (Q) \tag{P}\\
x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{\text {Common }} \\
0 \leq x \leq 1 & \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
0 \leq x \leq 1
\end{array}
$$

Cutting Planes for Biparite Matching

$$
\begin{array}{l:c}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} & (Q) \tag{P}\\
x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{\text {Common }} \\
0 \leq x \leq 1 & \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
0 \leq x \leq 1
\end{array}
$$

Cutting Planes for Biparite Matching

$$
\begin{array}{l:l}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} \tag{P}\\
x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{\text {Common }} \\
0 \leq x \leq 1 & (Q) \\
x_{v \in V} x_{v} \leq n-\frac{1}{2} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
0 \leq x \leq 1
\end{array}
$$

Cutting Planes for Biparite Matching

$$
\begin{array}{l:c}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} & (Q) \\
x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{\text {Common }} \tag{P}\\
0 \leq x \leq 1 & \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
0 \leq x \leq 1
\end{array}
$$

Cutting Planes for Biparite Matching

$$
\begin{array}{l:c}
\sum_{v \in V} x_{v} \leq n-\frac{1}{2} & (Q) \\
x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{\text {Common }} \tag{P}\\
0 \leq x \leq 1 & \sum_{v \in V} x_{v} \leq n-\frac{1}{2} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{A} \\
x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E_{B} \\
0 \leq x \leq 1
\end{array}
$$

Algorithm

- $E_{\text {common }}=\varnothing, \quad Q=\left\{x \in[0,1]^{V}: \sum x_{v} \leq n-\frac{1}{2}\right\}$
- While $\operatorname{vol}(Q)>0$:
- Let $c=$ center-of-gravity $(Q) \quad$ "fractional vertex cover"
- If either Alice or Bob have an edge (u, v) violating c : add it to $E_{\text {common }}$ and add " $x_{v}+x_{u} \geq 1$ " to (Q)
- If not, return c as a fractional vertex cover
- $E_{\text {common }}$ must now contain a perfect matching.

OR-Query Algorithm

- $E_{\text {common }}=\varnothing, \quad Q=\left\{x \in[0,1]^{V}: \sum x_{v} \leq n-\frac{1}{2}\right\}$
- While $\operatorname{vol}(Q)>0$:
- Let $c=$ center-of-gravity $(Q) \quad$ "fractional vertex cover"
- If either Alice or Bob have an edge (u, v) violating c : add it to $E_{\text {common }}$ and add " $x_{v}+x_{u} \geq 1$ " to (Q)
- If not, return c as a fractional vertex cover
- $E_{\text {common }}$ must now contain a perfect matching.

OR-Query Algorithm

- $E_{\text {common }}=\varnothing, \quad Q=\left\{x \in[0,1]^{V}: \sum x_{v} \leq n-\frac{1}{2}\right\}$
- While $\operatorname{vol}(Q)>0$:
- Let $c=$ center-of-gravity $(Q) \quad$ "fractional vertex cover"
- If either Alice or Bob have an edge (u, v) violating c : add it to $E_{\text {common }}$ and add " $x_{v}+x_{u} \geq 1$ " to (Q)
- If not, return c as a fractional vertex cover
- $E_{\text {common }}$ must now contain a perfect matching.

OR-Query Algorithm

- $E_{\text {common }}=\varnothing, \quad Q=\left\{x \in[0,1]^{V}: \sum x_{v} \leq n-\frac{1}{2}\right\}$
- While $\operatorname{vol}(Q)>0$:
- Let $c=$ center-of-gravity $(Q) \quad$ "fractional vertex cover"
- Binary search with OR-queries to find violated edge in $S=\left\{(u, v) \in L \times R: c_{u}+c_{v}<1\right\}$
- If not, return c as a fractional vertex cover
- $E_{\text {common }}$ must now contain a perfect matching.

Analysis

- Violated constraint " $x_{v}+x_{u} \geq 1$ " corresponds to edges. $\Longrightarrow O(\log n)$ bits

Analysis

- Violated constraint " $x_{v}+x_{u} \geq 1$ " corresponds to edges. $\Longrightarrow O(\log n)$ bits
- Terminates when either:
- Fractional vertex cover of size $<n$ is found.
- (Q) becomes empty.
\Longrightarrow no perfect matching!
$\Longrightarrow \quad$ perfect matching!

Analysis

- Violated constraint " $x_{v}+x_{u} \geq 1$ " corresponds to edges. $\Longrightarrow O(\log n)$ bits
- Terminates when either:
- Fractional vertex cover of size $<n$ is found.
\Longrightarrow no perfect matching!
- (Q) becomes empty.
$\Longrightarrow \quad$ perfect matching!
- Volume:
- Initially ≤ 1 (contained in $[0,1]^{2 n}$).
$\Longrightarrow O(n \log n)$ iterations
- Always $\geq\left(\frac{1}{20 n}\right)^{5 n}$ whenever (Q) is non-empty.

Analysis

- Violated constraint " $x_{v}+x_{u} \geq 1$ " corresponds to edges. $\Longrightarrow O(\log n)$ bits
- Terminates when either:
- Fractional vertex cover of size $<n$ is found.
\Longrightarrow no perfect matching!
- (Q) becomes empty.
$\Longrightarrow \quad$ perfect matching!
- Volume:
- Initially ≤ 1 (contained in $[0,1]^{2 n}$).
- Always $\geq\left(\frac{1}{20 n}\right)^{5 n}$ whenever (Q) is non-empty.
$\Longrightarrow O(n \log n)$ iterations

Main Result:

One can solve bipartite matching in $O\left(n \log ^{2} n\right)$ bits of communication.

Extensions

$$
\begin{array}{lll}
\min & \sum_{v \in V} x_{v} & \\
\text { s.t. } & x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq 1 & \forall(u, v) \in E_{B} \\
& 0 \leq x \leq 1 &
\end{array}
$$

Weights and Demands!

$$
\begin{array}{lll}
\min & \sum_{v \in V} b_{v} x_{v} & \\
\text { s.t. } & x_{v}+x_{u} \geq c_{u v} & \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq c_{u v} & \forall(u, v) \in E_{B} \\
& 0 \leq x \leq W &
\end{array}
$$

- $W:=\max \left\{\left|c_{u v}\right|,\left|b_{v}\right|, 1\right\}$
- Maximum-cost b-matching

Weights and Demands!

$$
\begin{array}{lll}
\min & \sum_{v \in V} b_{v} x_{v} & \\
\text { s.t. } & x_{v}+x_{u} \geq c_{u v} & \forall(u, v) \in E_{A} \\
& x_{v}+x_{u} \geq c_{u v} & \forall(u, v) \in E_{B} \\
& 0 \leq x \leq W &
\end{array}
$$

- $W:=\max \left\{\left|c_{u v}\right|,\left|b_{v}\right|, 1\right\}$
- Maximum-cost b-matching

Other (Equivalent \& Weaker) Problems

Theorem:

If weights/costs/capacities/demands are poly (n), then we can solve the following using $O\left(n \log ^{2} n\right)$ communication:

- Maximum-cost bipartite perfect b-matching
- Maximum-cost bipartite b-matching
- Vertex-capacitated minimum-cost (s, t)-flow
- Transshipment
- Negative-weight single source shortest path
- Minimum mean cycle

Other (Equivalent \& Weaker) Problems

Theorem:

If weights/costs/capacities/demands are poly (n), then we can solve the following using $O\left(n \log ^{2} n\right)$ communication:

- Maximum-cost bipartite perfect b-matching
- Maximum-cost bipartite b-matching
- Vertex-capacitated minimum-cost (s, t)-flow
- Transshipment
- Negative-weight single source shortest path
- Minimum mean cycle

Note: All these have $O(n)$ edges in their answer!

Query Lower-Bounds

- AND-query $S=\{(u, v) \in L \times R\}$:
"Is $|S \cap E|=|S|$?"

Query Lower-Bounds

- AND-query $S=\{(u, v) \in L \times R\}$: "Is $|S \cap E|=|S|$?"

E_{A}

$E=E_{A} \cup E_{B}$

Bob

E_{B}

Query Lower-Bounds

- AND-query $S=\{(u, v) \in L \times R\}$: "Is $|S \cap E|=|S|$?"
- AND-query algorithm \Longrightarrow communication protocol on intersection graph

E_{A}

$E=E_{A} \cap E_{B}$

E_{B}

Query Lower-Bounds

- AND-query $S=\{(u, v) \in L \times R\}$:
"Is $|S \cap E|=|S|$?"

Query Lower-Bounds

- AND-query $S=\{(u, v) \in L \times R\}$:
"Is $|S \cap E|=|S|$?"

- Perfect matching \Longleftrightarrow edges intersect
- Set-Intersection on $\approx n^{2}$ bits. Needs $\Omega\left(n^{2}\right)$ communication!

Summary - Results

Models	Previous papers		This paper
	Lower bounds	Upper bounds	
Two-party communication	$\Omega(n)$ Rand, $\Omega(n \log n)$ Det, Footnote 1 and 2	$\begin{gathered} \tilde{O}\left(n^{1.5}\right) \\ {\left[\text { DNO19, IKL }{ }^{+} 12\right]} \end{gathered}$	$\begin{gathered} O\left(n \log ^{2} n\right), \text { Det } \\ \text { Theorem 1.1 } \end{gathered}$
Quantum edge query	$\begin{gathered} \Omega\left(n^{1.5}\right) \\ {[\text { Zha04, Ben22b] }} \end{gathered}$	$\begin{gathered} O\left(n^{1.75}\right) \\ {[\text { LL15] }} \end{gathered}$	$\tilde{O}\left(n^{1.5}\right)$ Theorem 1.3
OR-query	$\Omega(n)$ Rand, $\Omega(n \log n)$ Det, [BN21]	$\begin{gathered} \tilde{O}\left(n^{1.5}\right) \text { Det, } \\ {[\text { Nis21] }} \end{gathered}$	$\begin{gathered} O\left(n \log ^{2} n\right), \text { Det } \\ \text { Theorem } 1.3 \end{gathered}$
XOR-query	$\Omega(n)$ Rand $\Omega\left(n^{2}\right)$ Det [BN21]	$\begin{gathered} \tilde{O}\left(n^{1.5}\right) \text { Rand } \\ \text { Lemma } 2.14 \text { and [Nis21] } \end{gathered}$	$\begin{gathered} O\left(n \log ^{2} n\right), \text { Rand } \\ \text { Theorem } 1.3 \end{gathered}$
AND-query	$\Omega(n)$ Rand, $\Omega\left(n^{2}\right)$ Det [BN21]	$\begin{aligned} & O\left(n^{2}\right) \\ & \text { Trivial } \end{aligned}$	$\Omega\left(n^{2}\right)$, Rand Theorem 1.3

Open Problems :)

Open Problem - Round vs Communication Tradeoff

- Restricting the \#rounds:
- Streaming
- Distributed
- MPC - ...

Rounds

trivial: $\quad 1$
?
cutting-planes: $\quad O(n \log n)$

Communication
$\Theta\left(n^{2}\right)$
?
$O\left(n \log ^{2} n\right)$

Open Problem - Approximation

- Finding an α-approximation instead? (size version)

Approximation
1
?
2

Communication
$O\left(n \log ^{2} n\right)$?
$O(\log n)$

Open Problems - General Matching

- Communication and Query complexity of General Matching?
- Interplay between general and bipartite matching unclear...
- Optimal fractional matching by same approach.
- Answer also has only $O(n)$ edges.
- Unwieldy Linear Program...

Open Problems - Max Flow

- Communication and Query complexity of s,t-(min-cost)-max-flow?
- Both the dual \& primal have $\approx n^{2}$ variables
- Answer may include all $\approx n^{2}$ edges
- Nondeterministic (certificate) complexity are still low: $\tilde{O}(n)$

Open Problems

- Rounds vs Communication tradeoff
- Approximate bipartite matching
- Communication complexity of other problems?
- General Matching
- Max flow
- Matroid intersection
- Other query models, e.g. demand queries (one-sided OR)
- Multiparty communication

