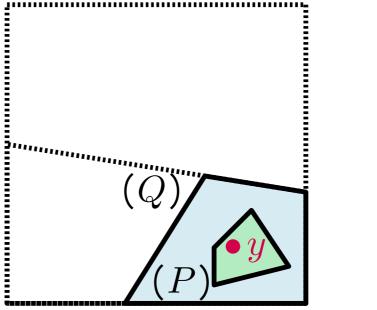
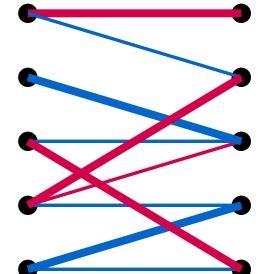
Nearly Optimal Communication and Query Complexity of Bipartite Matching

Joakim Blikstad

KTH Royal Institute of Technology

To appear in FOCS'22

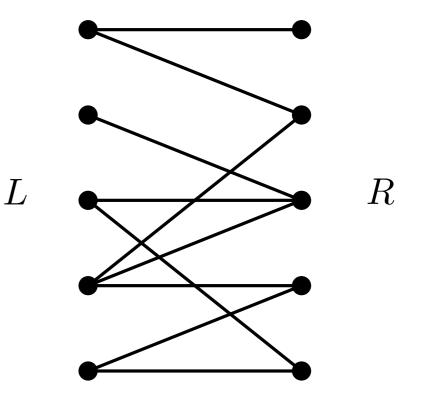




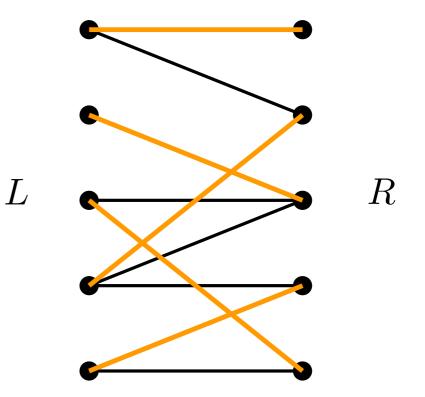
Joint work with: Jan van den Brand, Yuval Efron, Danupon Nanongkai, and Sagnik Mukhopadhyay.

TCS+ talk, fall 2022

Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m**Goal**: Find a maximum matching $M \subseteq E$ of G

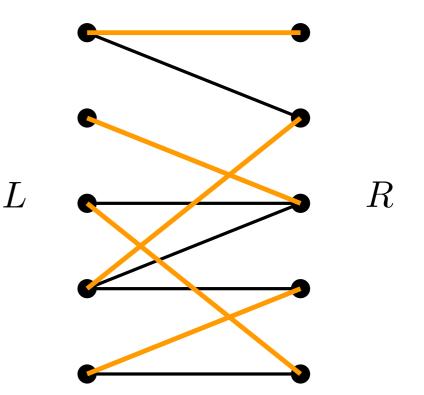


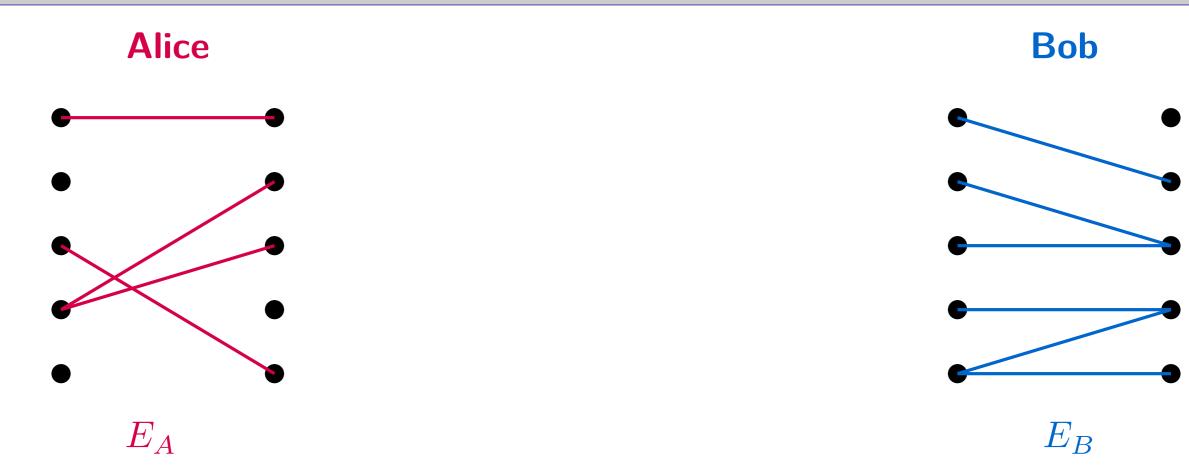
Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m**Goal**: Find a maximum matching $M \subseteq E$ of G



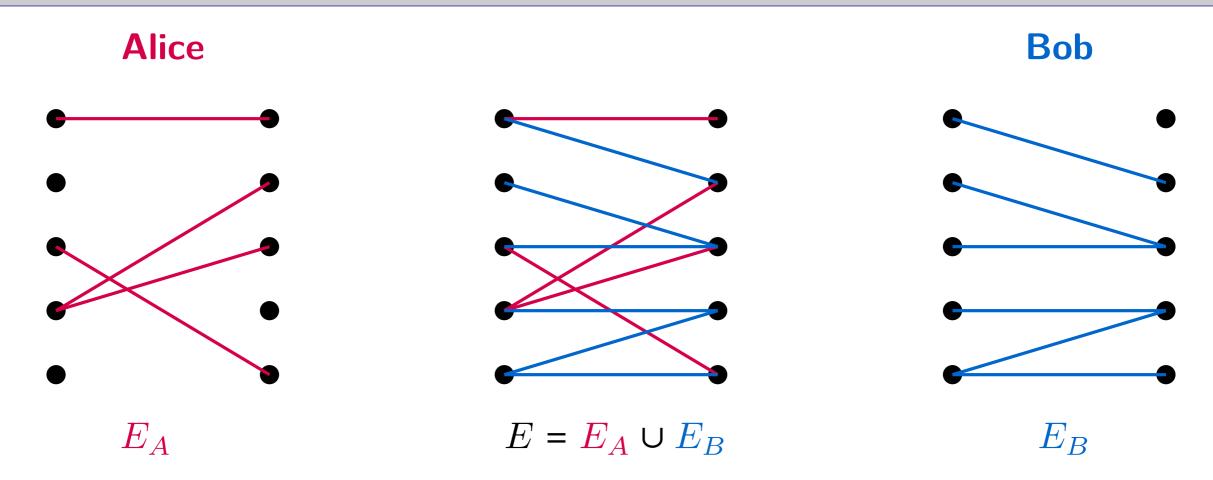
Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m**Goal**: Find a maximum matching $M \subseteq E$ of G

Solve (sequentially) in: $\tilde{O}(m + n\sqrt{n})$ [vdBLNPSSSW'20] $O(m^{1+o(1)})$ [CKLPGS'22]



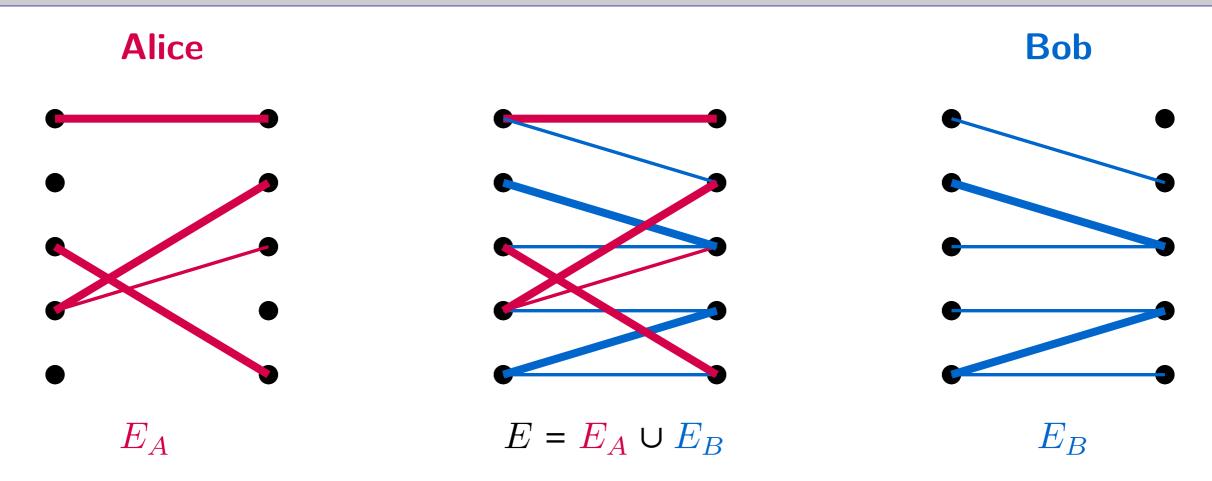


•



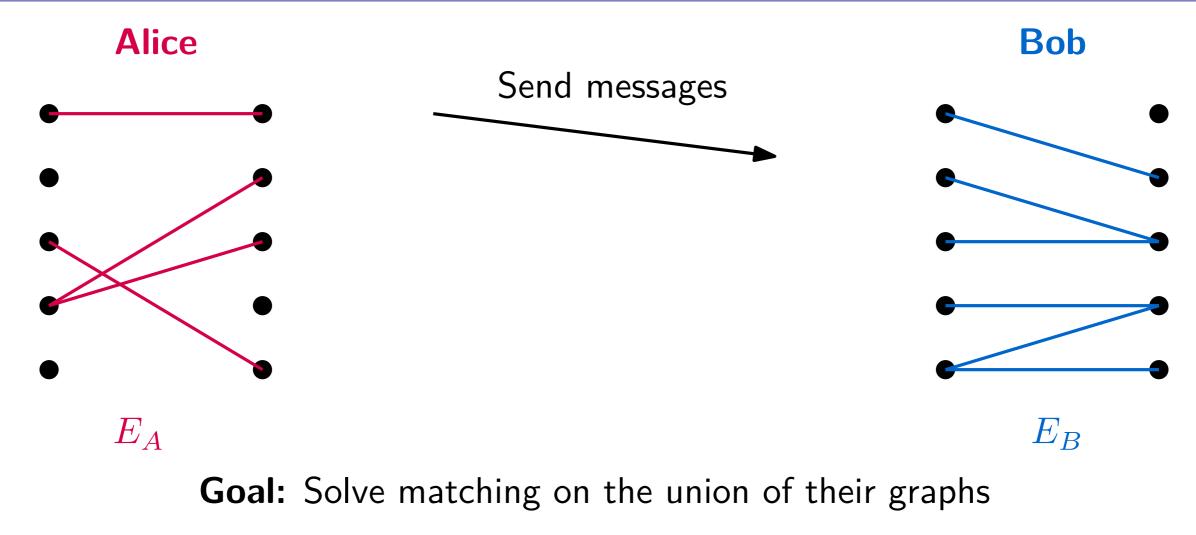
Goal: Solve matching on the union of their graphs

٠

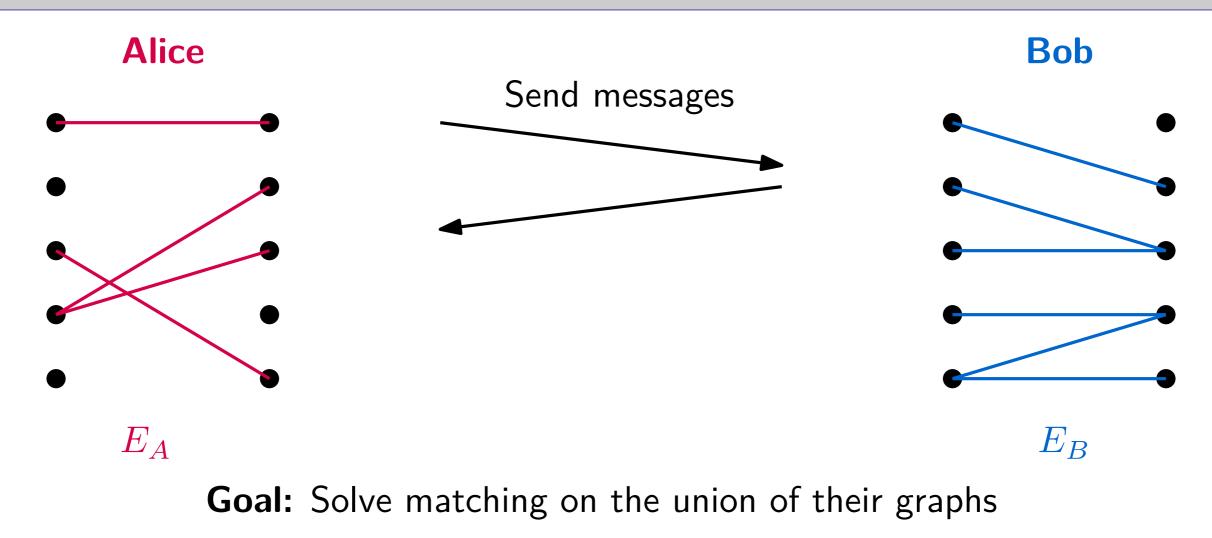


Goal: Solve matching on the union of their graphs

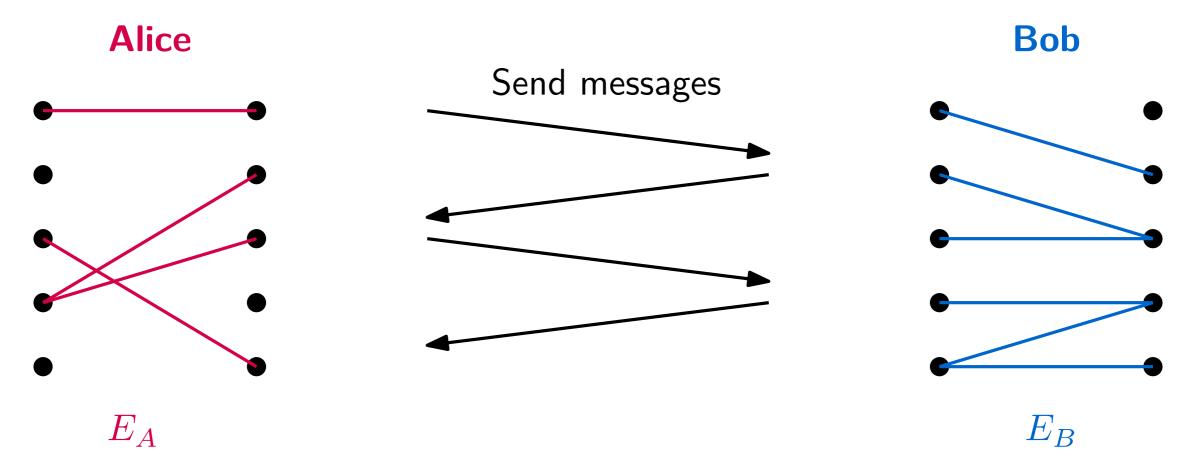
٠



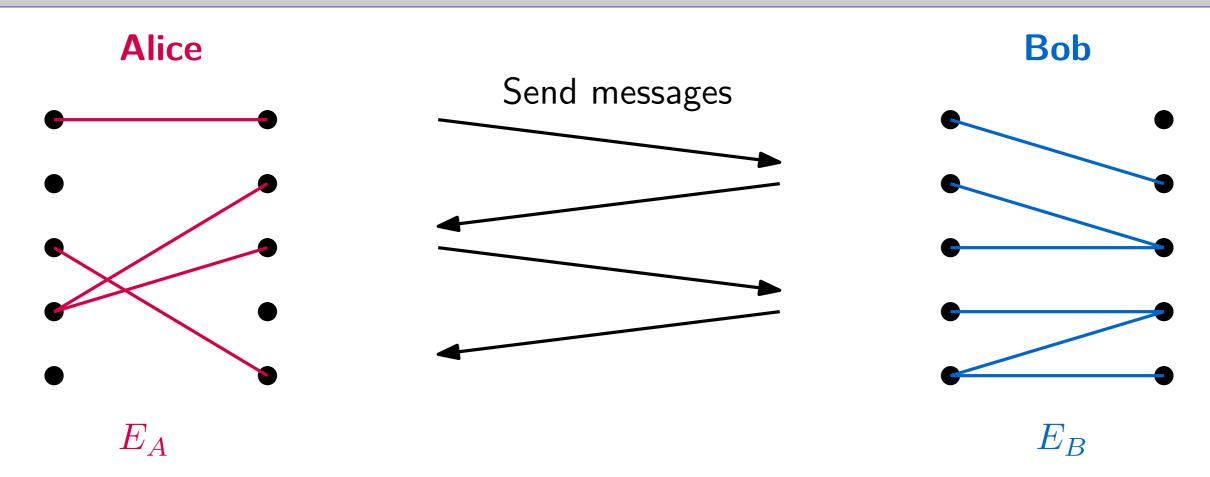
With as few bits of communication!



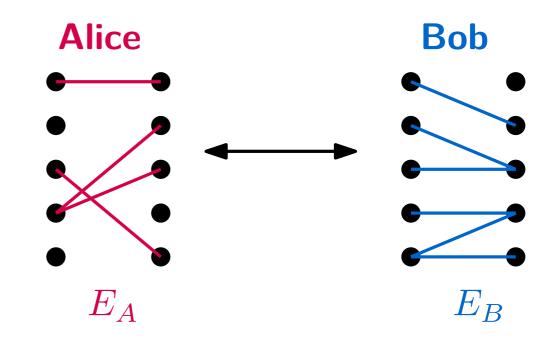
With as few bits of communication!



Goal: Solve matching on the union of their graphs *With as few bits of communication!*

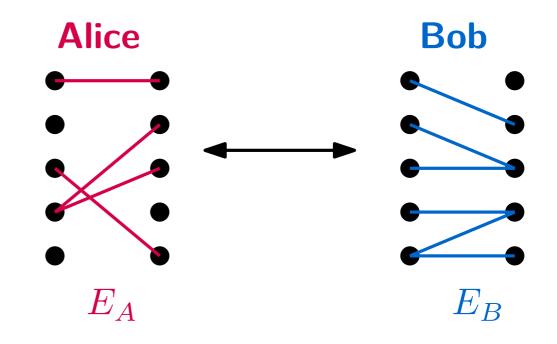


Goal: Solve matching on the union of their graphsWith as few bits of communication!Note: Do not care about internal running time



•

Sending an edge: $O(\log n)$ bits

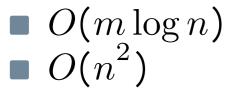


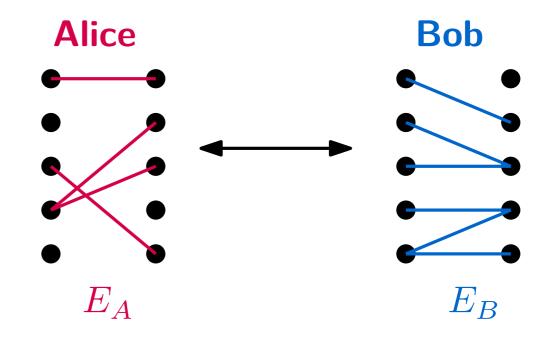
•

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:



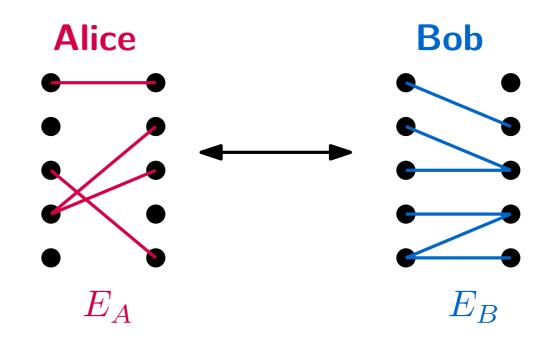


Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

 $O(m \log n)$ $O(n^2)$



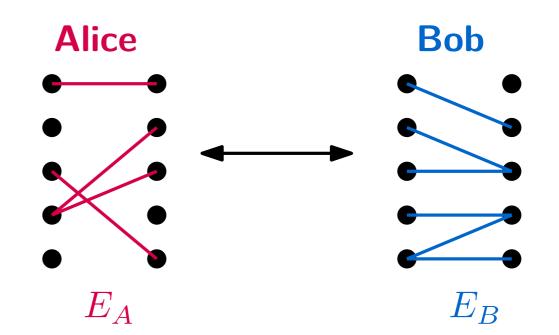
Hopcroft-Karp: (Blocking-Flow) Sequential: $O(m\sqrt{n})$ running time

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

 $O(m \log n)$ $O(n^2)$



Hopcroft-Karp: (Blocking-Flow)

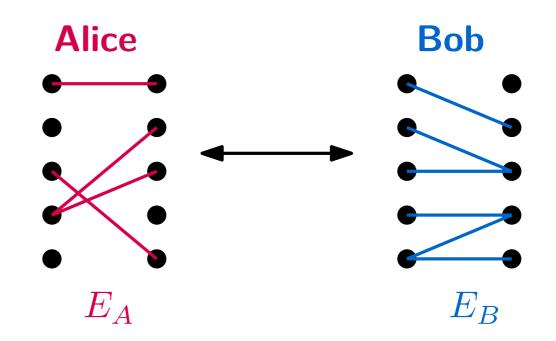
- Sequential: $O(m\sqrt{n})$ running time
- Communication: $O(n\sqrt{n}\log n)$ bits

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

O(m log n)
 O(n²)



Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m\sqrt{n})$ running time
- Communication: $O(n\sqrt{n}\log n)$ bits

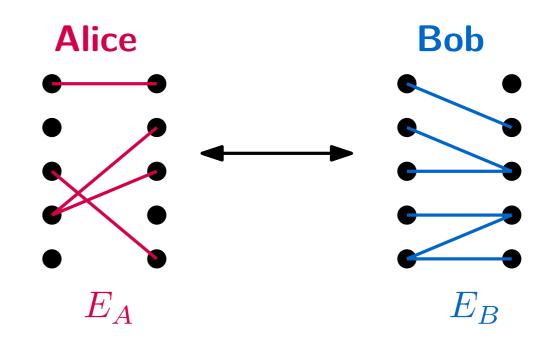
Idea: BFS / DFS need only $O(n \log n)$ bits of communication

Sending an edge: $O(\log n)$ bits

Trivial Protocol:

Alice sends all her edges to Bob:

O(m log n)
 O(n²)



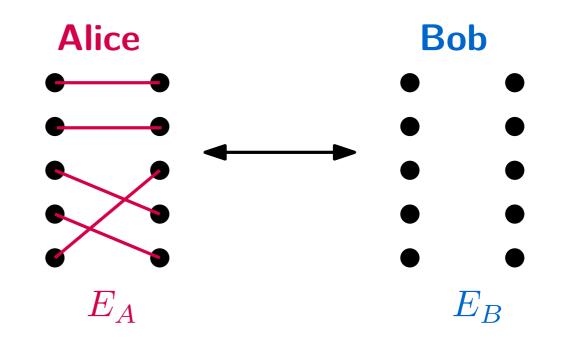
Hopcroft-Karp: (Blocking-Flow)

- Sequential: $O(m\sqrt{n})$ running time
- Communication: $O(n\sqrt{n}\log n)$ bits

Idea: BFS / DFS need only $O(n \log n)$ bits of communication

Converting $O(m^{1+o(1)})$ sequential $\longrightarrow O(n^{1+o(1)})$ communication seems difficult

Lower Bounds



•

Lower Bounds

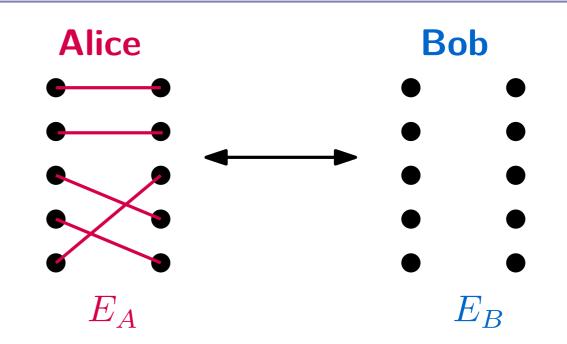
If Bob needs to output the matching: $\Omega(n \log n)$ bits lower bound



٠

Lower Bounds

If Bob needs to output the matching: $\Omega(n \log n)$ bits lower bound



Theorem: [HMT'88] $\Omega(n \log n)$ bits are needed to output the size of the maximum matching

↑ only deterministic

 $\Omega(n)$ randomized

$\Omega(n \log n) \qquad O(n \sqrt{n} \log n)$ **Major Question[†]:** What is the Communication Complexity of Bipartite Matching?

[†][Hajnal, Maass, Turan STOC'88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski, Nisan, Oren STOC'14]; [Nisan SODA'21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP'04]

$\Omega(n \log n) \qquad O(n \sqrt{n} \log n)$ **Major Question[†]:** What is the Communication Complexity of Bipartite Matching?

Main Result:

One can solve bipartite matching in $O(n \log^2 n)$ bits of communication.

[†][Hajnal, Maass, Turan STOC'88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski, Nisan, Oren STOC'14]; [Nisan SODA'21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP'04]

$\Omega(n \log n) \qquad O(n \sqrt{n} \log n)$ **Major Question[†]:** What is the Communication Complexity of Bipartite Matching?

Main Result:

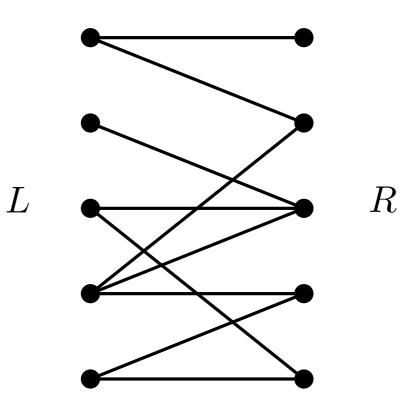
One can solve bipartite matching in $O(n \log^2 n)$ bits of communication.

Highlights:

- Follow from **simple** applications of known techniques (cutting planes method)
- Very slow runtime, but efficient communication
- Only "finds" $O(n \log n)$ edges

[†][Hajnal, Maass, Turan STOC'88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski, Nisan, Oren STOC'14]; [Nisan SODA'21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP'04]

• Hidden biparite graph $G = (L \cup R, E)$



٠

• Hidden biparite graph $G = (L \cup R, E)$

L

R

•

• Hidden biparite graph $G = (L \cup R, E)$

L

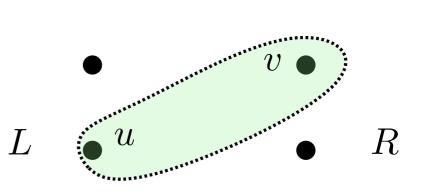
R

٠

Query access:

• Hidden biparite graph $G = (L \cup R, E)$

- Query access:
 - Edge-Query: "Is $(u, v) \in E$?"

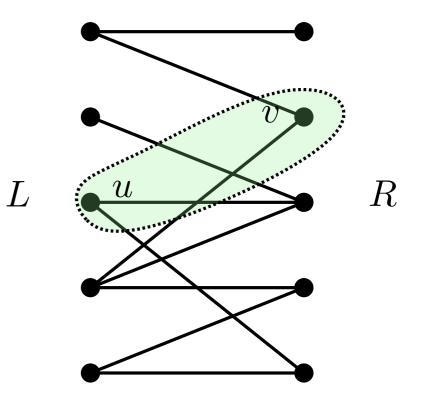


"NO"

• Hidden biparite graph $G = (L \cup R, E)$

Query access:

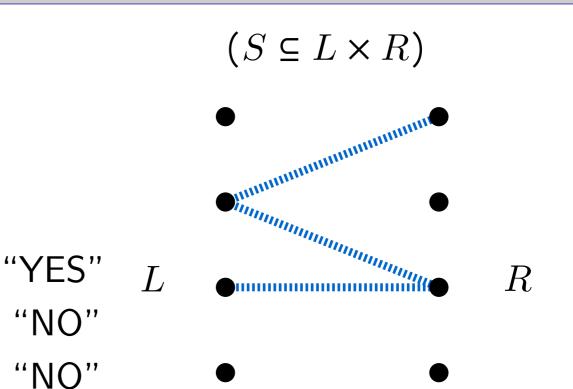
• Edge-Query: "Is
$$(u, v) \in E$$
?"



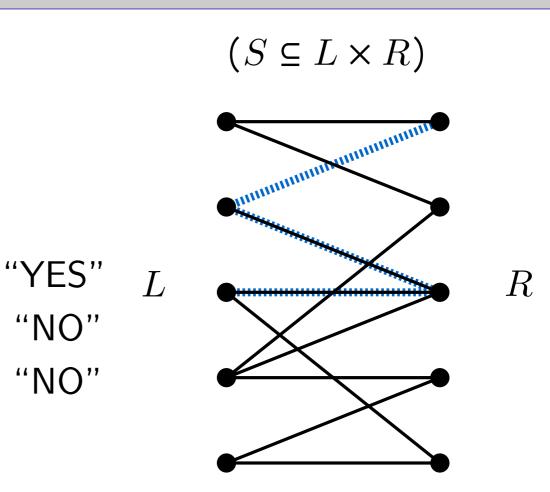
٠

"NO"

- Hidden biparite graph $G = (L \cup R, E)$
- Query access:
 - Edge-Query: "Is $(u, v) \in E$?"
 - OR-Query: "Is $|S \cap E| \ge 1$?"
 - XOR-Query: "Is $|S \cap E|$ odd?"
 - AND-Query: "Is $|S \cap E| = |S|$ "



- Hidden biparite graph $G = (L \cup R, E)$
- Query access:
 - Edge-Query: "Is $(u, v) \in E$?"
 - OR-Query: "Is $|S \cap E| \ge 1$?"
 - XOR-Query: "Is $|S \cap E|$ odd?"
 - AND-Query: "Is $|S \cap E| = |S|$ "



- Hidden biparite graph $G = (L \cup R, E)$
- Query access:
 - Edge-Query: "Is $(u, v) \in E$?"
 - OR-Query: "Is $|S \cap E| \ge 1$?"
 - XOR-Query: "Is $|S \cap E|$ odd?"

R

- AND-Query: "Is $|S \cap E| = |S|$ "
- Quantum-Edge-Query

• Hidden biparite graph $G = (L \cup R, E)$

Query access:

- Edge-Query: "Is $(u, v) \in E$?"
- OR-Query: "Is $|S \cap E| \ge 1$?"
- XOR-Query: "Is $|S \cap E|$ odd?"
- AND-Query: "Is $|S \cap E| = |S|$ "
- Quantum-Edge-Query

Deterministic: $\Theta(n^2)$ $\tilde{\Omega}(n), \tilde{O}(n\sqrt{n})$ $\Theta(n^2)$ $\Theta(n^2)$

Randomized: $\Theta(n^2)$ $\Omega(n), \tilde{O}(n\sqrt{n})$ $\Omega(n), \tilde{O}(n\sqrt{n})$ $\Omega(n), O(n^2)$ $\tilde{\Omega}(n\sqrt{n}), \tilde{O}(n^{7/4})$

[Yao'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]

• Hidden biparite graph $G = (L \cup R, E)$

- Query access:
 - Edge-Query: "Is $(u, v) \in E$?"
 - OR-Query: "Is $|S \cap E| \ge 1$?"
 - XOR-Query: "Is $|S \cap E|$ odd?"
 - AND-Query: "Is $|S \cap E| = |S|$ "
 - Quantum-Edge-Query

Deterministic:Randomized: $\Theta(n^2)$ $\Theta(n^2)$ $\tilde{\Theta}(n)$ $\tilde{\Theta}(n)$ $\Theta(n^2)$ $\tilde{\Theta}(n)$ $\Theta(n^2)$ $\Theta(n^2)$ $\Theta(n^2)$ $\Theta(n^2)$ $\tilde{\Theta}(n\sqrt{n})$

Green: new tight upper-bound! Red: new tight lower-bound!

[Yao'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]

The Algorithms

Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.

Think "Ellipsoid Method"

Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP. Think "Ellipsoid Method"

[Vempala, Wang, Woodruff SODA'20]:
 Solving general LPs in Communication Model with Cutting Planes:
 Õ(dimension³ · #bits per constraint) communication

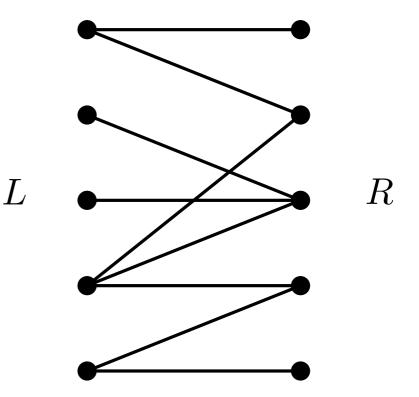
Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP. Think "Ellipsoid Method"

- [Vempala, Wang, Woodruff SODA'20]:
 Solving general LPs in Communication Model with Cutting Planes:
 Õ(dimension³ · #bits per constraint) communication
- Crucial properties of Dual Vertex Cover LP:
 - Low dimension (*n* instead of *m*)
 - Constraints are "short" (low support = cheap to send)
 - Volume is small
 - ... but not too small

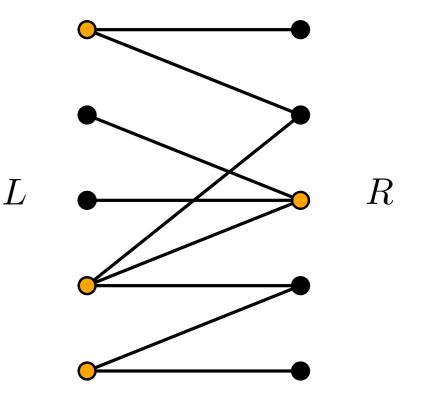
Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m

Goal: Find smallest set *C* of vertices covering all edges



Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m

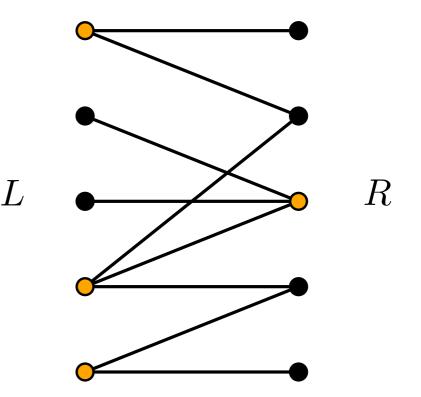
Goal: Find smallest set *C* of vertices covering all edges



Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m

Goal: Find smallest set *C* of vertices covering all edges

Kőnig's Theorem: |max-matching| = |min-vertex cover| (in bipartite graphs!)

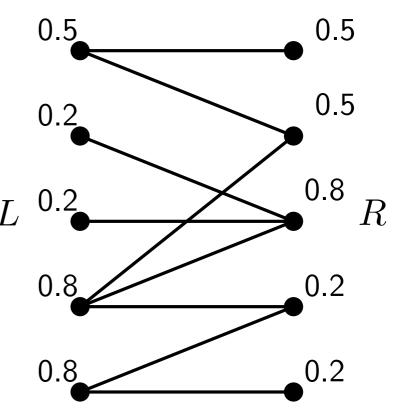


Given: Graph $G = (L \cup R, E)$ with |L| = |R| = n, |E| = m

Goal: Find smallest set *C* of vertices covering all edges

Kőnig's Theorem: |max-matching| = |min-vertex cover| (in bipartite graphs!)

Def: Fractional vertex cover x: $x_u + x_v \ge 1$ for all edges (u, v)



$$\min \sum_{v \in V} x_v$$
s.t. $x_v + x_u \ge 1 \quad \forall (u, v) \in E$

$$0 \le x \le 1$$

(*P*)

•

$$\min \sum_{v \in V} x_v$$
s.t. $x_v + x_u \ge 1 \quad \forall (u, v) \in E_A \qquad (P \quad x_v + x_u \ge 1 \quad \forall (u, v) \in E_B \quad 0 \le x \le 1$

•

$$\sum_{v \in V} x_v \le n - 1$$

$$x_v + x_u \ge 1 \quad \forall (u, v) \in E_A \quad (P)$$

$$x_v + x_u \ge 1 \quad \forall (u, v) \in E_B$$

$$0 \le x \le 1$$

•

• (P) feasible \iff No perfect matching exists

$$\sum_{v \in V} x_v \le n - \frac{1}{2}$$

$$x_v + x_u \ge 1 \quad \forall (u, v) \in E_A$$

$$x_v + x_u \ge 1 \quad \forall (u, v) \in E_B$$

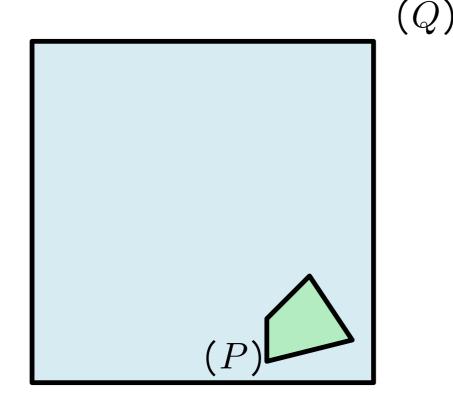
$$0 \le x \le 1$$

(P)

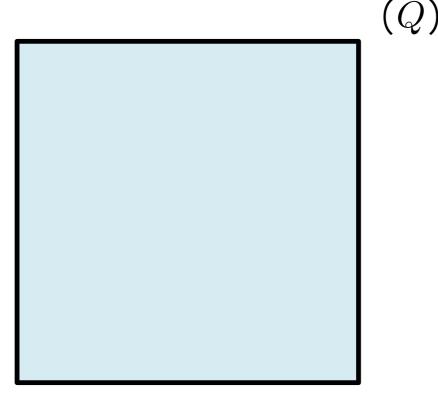
(P) feasible ⇔ No perfect matching exists
 (P) feasible ⇒ Vol(P) ≥ $\left(\frac{1}{20n}\right)^{5n}$

Separation Oracle:

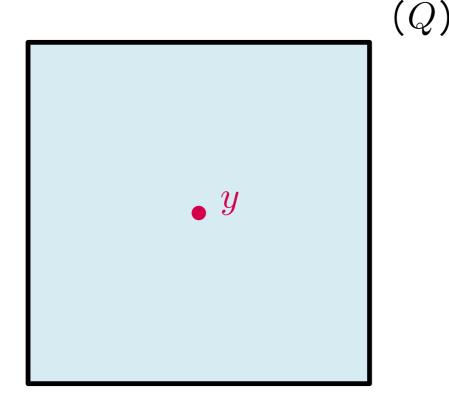
- Given $y \in \mathbb{R}^n$, return either:
- "*y* is in (*P*)"
- Violated hyperplane: " $c^{\top}x \leq d$ "
 - valid for all $x \in (P)$
 - $\hfill\blacksquare$ not valid for y



Goal: Find point in unknown polytope (P)Given: (Q) containing (P)Separation Oracle



Goal: Find point in unknown polytope (P)Given: (Q) containing (P)Separation Oracle

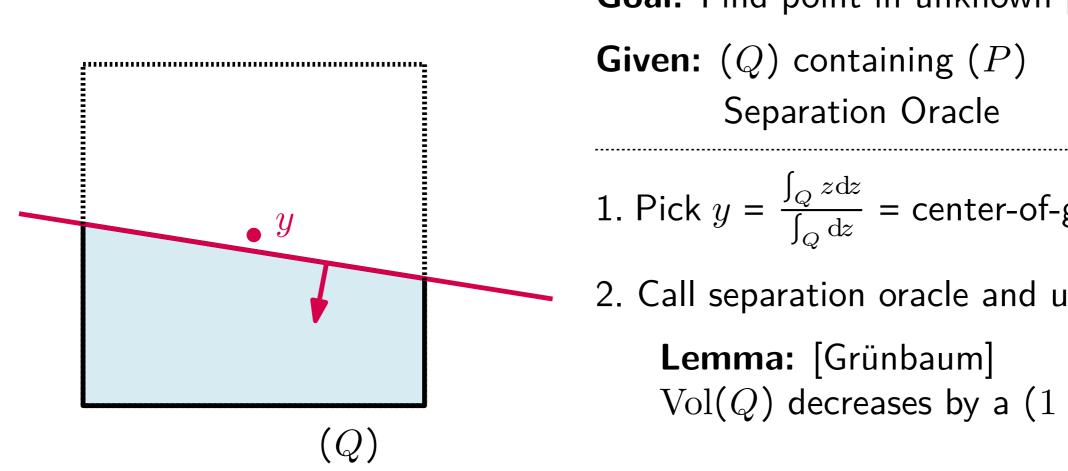


Goal: Find point in unknown polytope (P)Given: (Q) containing (P)Separation Oracle

1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

(Q) Given: (Q) conta Separatio 1. Pick $y = \frac{\int_Q z dz}{\int_Q dz}$ 2. Call separation

Goal: Find point in unknown polytope (P) Given: (Q) containing (P) Separation Oracle 1. Pick $y = \frac{\int_Q z dz}{\int_Q dz} = \text{center-of-gravity of }(Q)$ 2. Call separation oracle and update (Q)

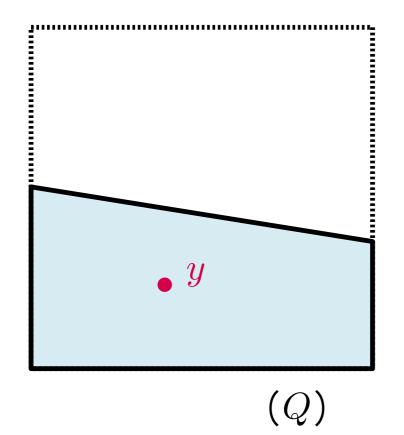


Goal: Find point in unknown polytope (P)

1. Pick $y = \frac{\int_Q z dz}{\int_Q dz}$ = center-of-gravity of (Q)

2. Call separation oracle and update (Q)

Vol(Q) decreases by a $(1 - \frac{1}{2})$ -fraction

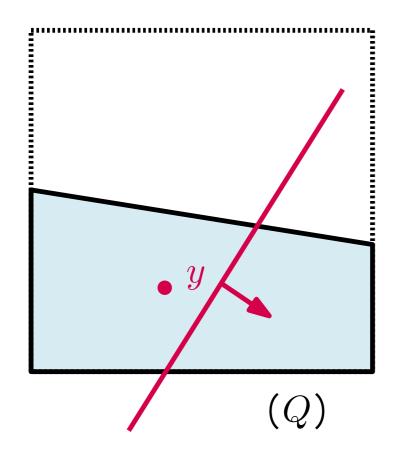


Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
Separation Oracle

1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

2. Call separation oracle and update (Q)

Lemma: [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{e})$ -fraction

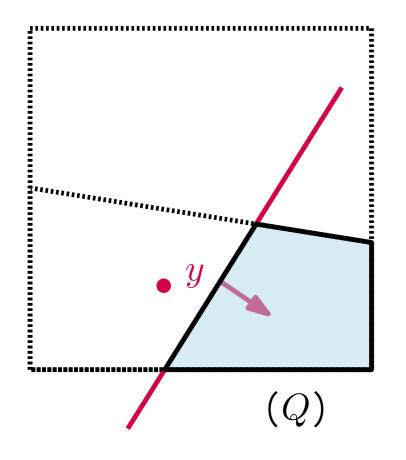


Goal: Find point in unknown polytope (P)**Given:** (Q) containing (P)Separation Oracle

1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

2. Call separation oracle and update (Q)

Lemma: [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{e})$ -fraction

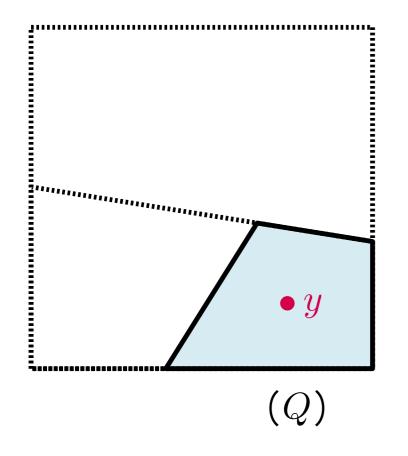


Goal: Find point in unknown polytope (P)**Given:** (Q) containing (P)Separation Oracle

1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

2. Call separation oracle and update (Q)

Lemma: [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{e})$ -fraction

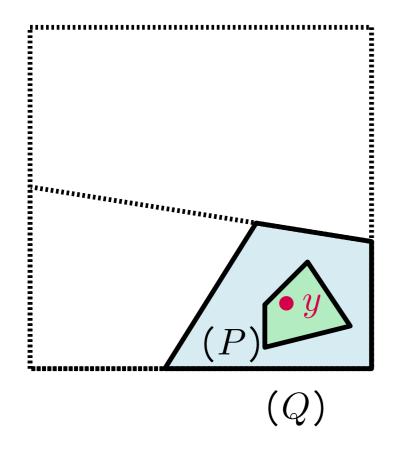


Goal: Find point in unknown polytope (P)**Given:** (Q) containing (P)Separation Oracle

1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

2. Call separation oracle and update (Q)

Lemma: [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{e})$ -fraction



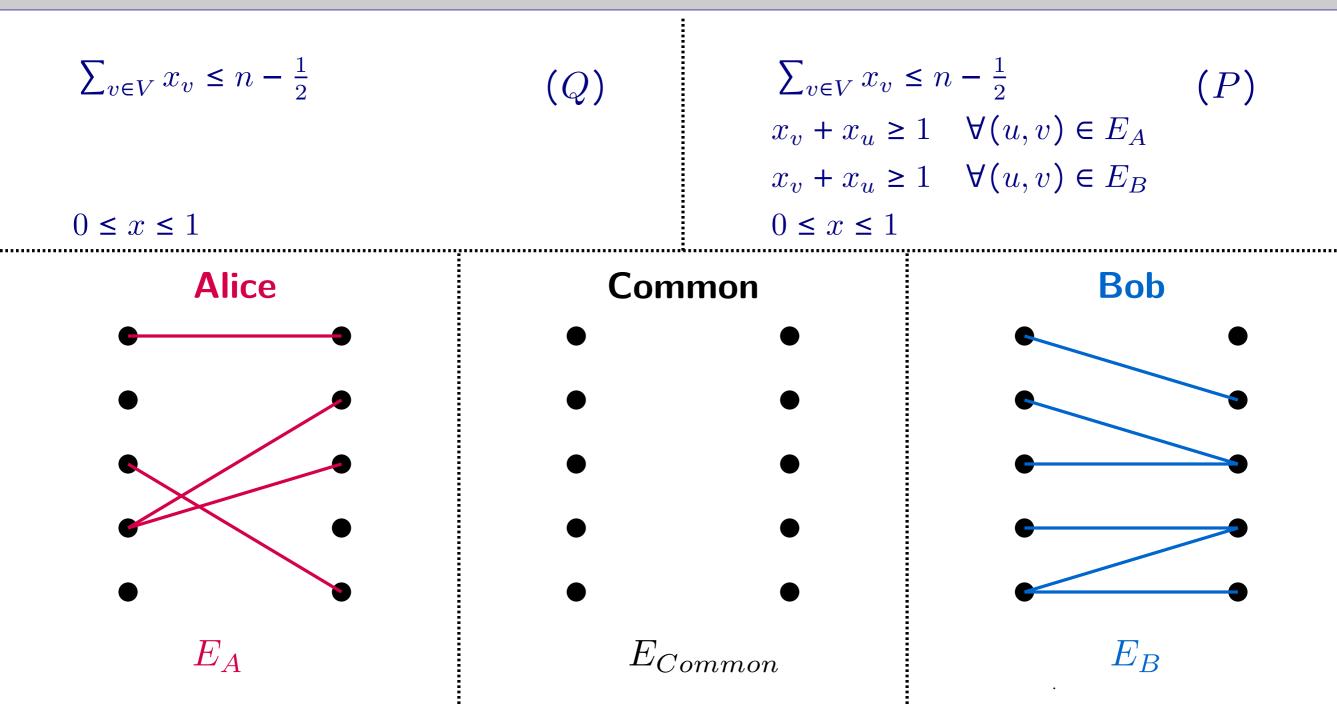
Goal: Find point in unknown polytope (P)**Given:** (Q) containing (P)Separation Oracle

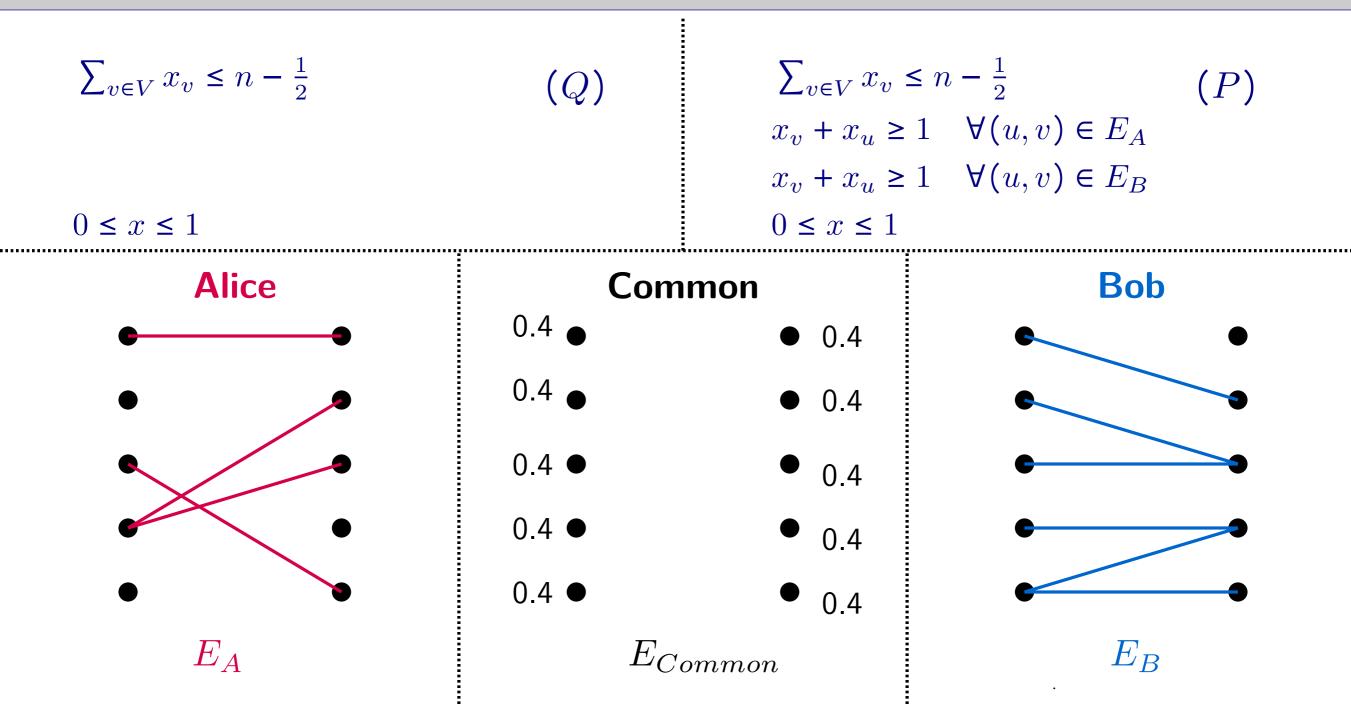
1. Pick
$$y = \frac{\int_Q z dz}{\int_Q dz}$$
 = center-of-gravity of (Q)

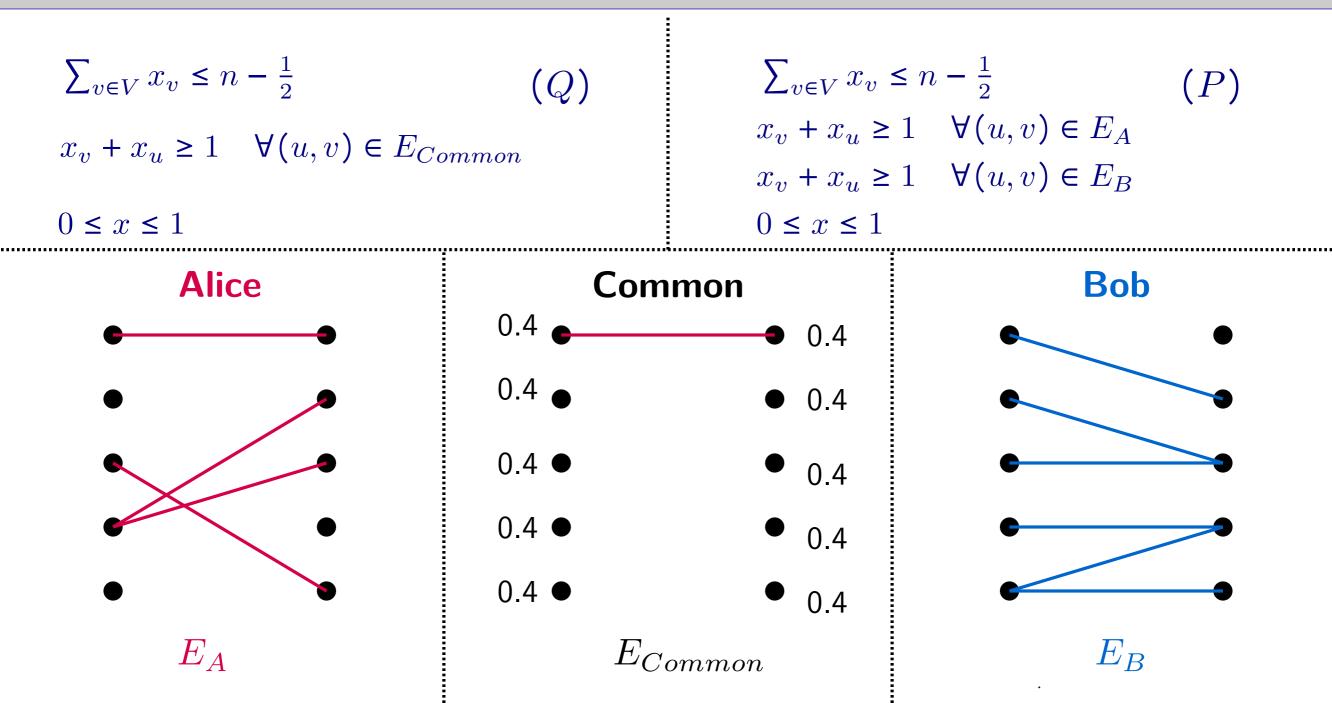
2. Call separation oracle and update (Q)

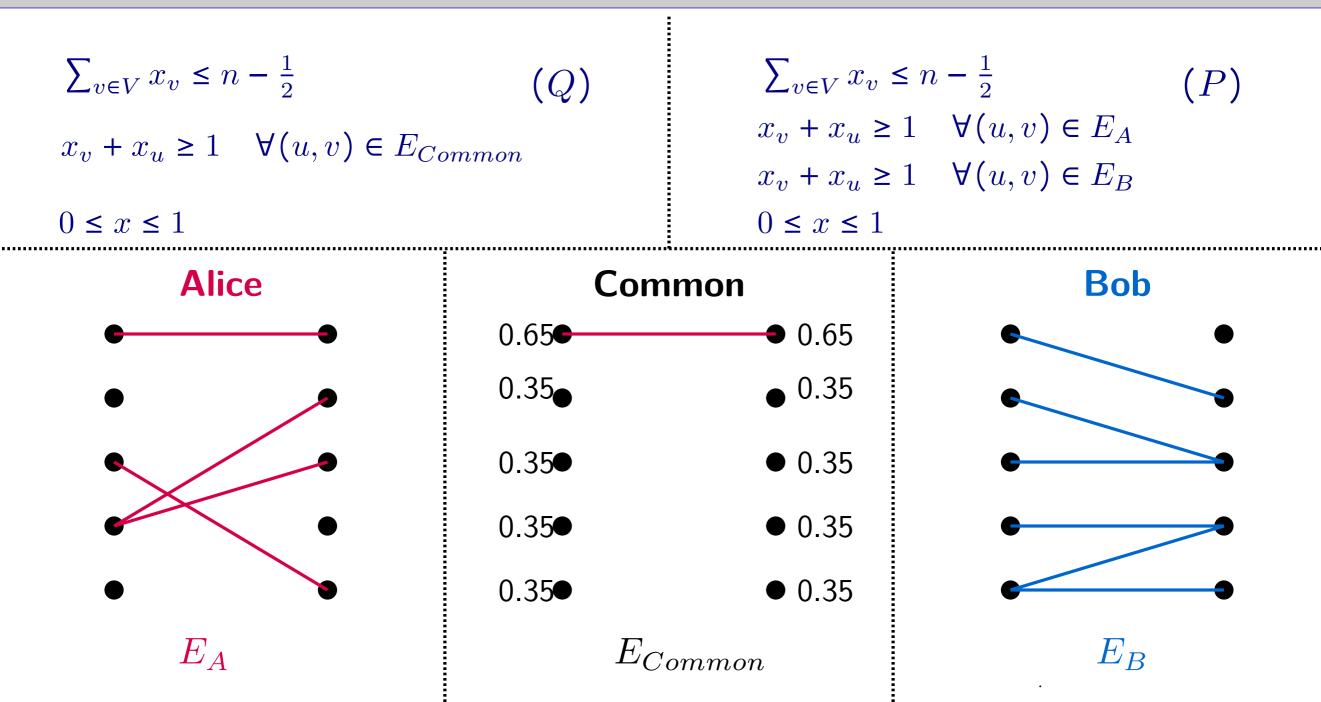
Lemma: [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{e})$ -fraction

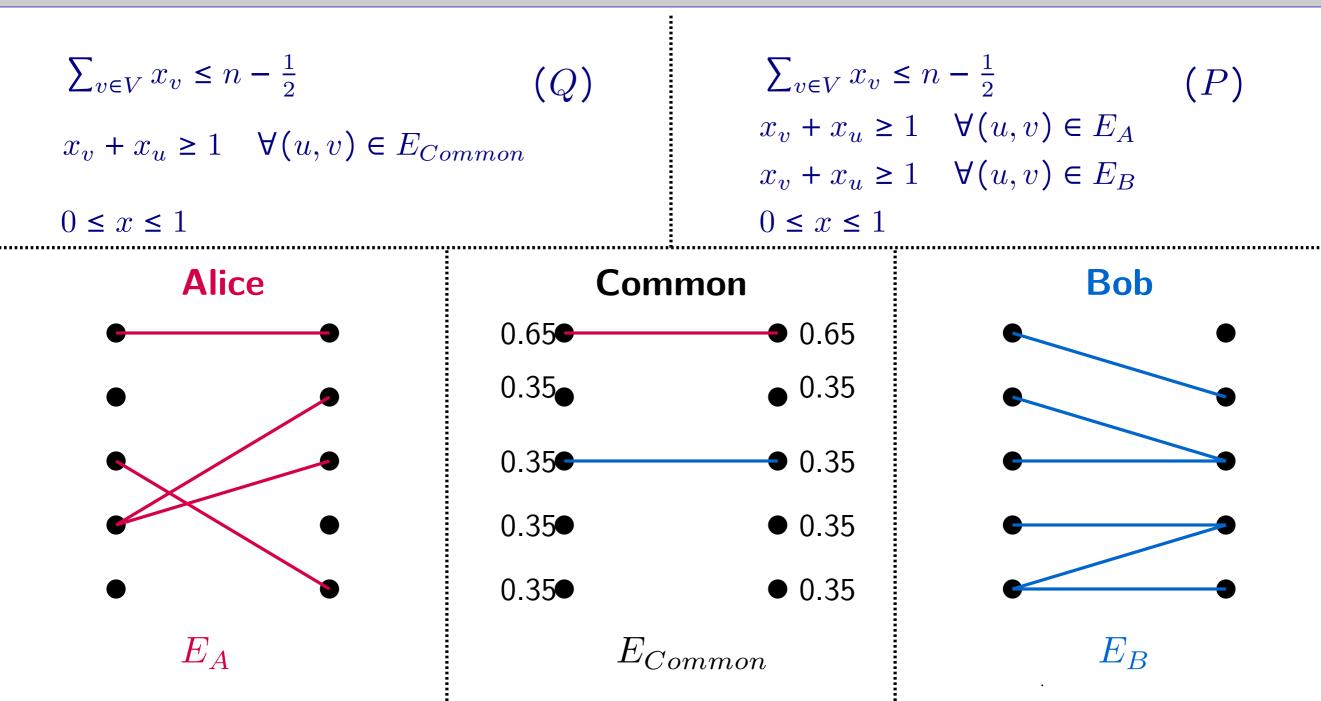
Goal: Find point in unknown polytope (P) **Given:** (Q) containing (P)Separation Oracle #P-hard to compute ► 1. Pick $y = \frac{\int_Q z dz}{\int_Q dz}$ = center-of-gravity of (Q) We don't care! 2. Call separation oracle and update (Q)**Lemma:** [Grünbaum] Vol(Q) decreases by a $(1 - \frac{1}{2})$ -fraction

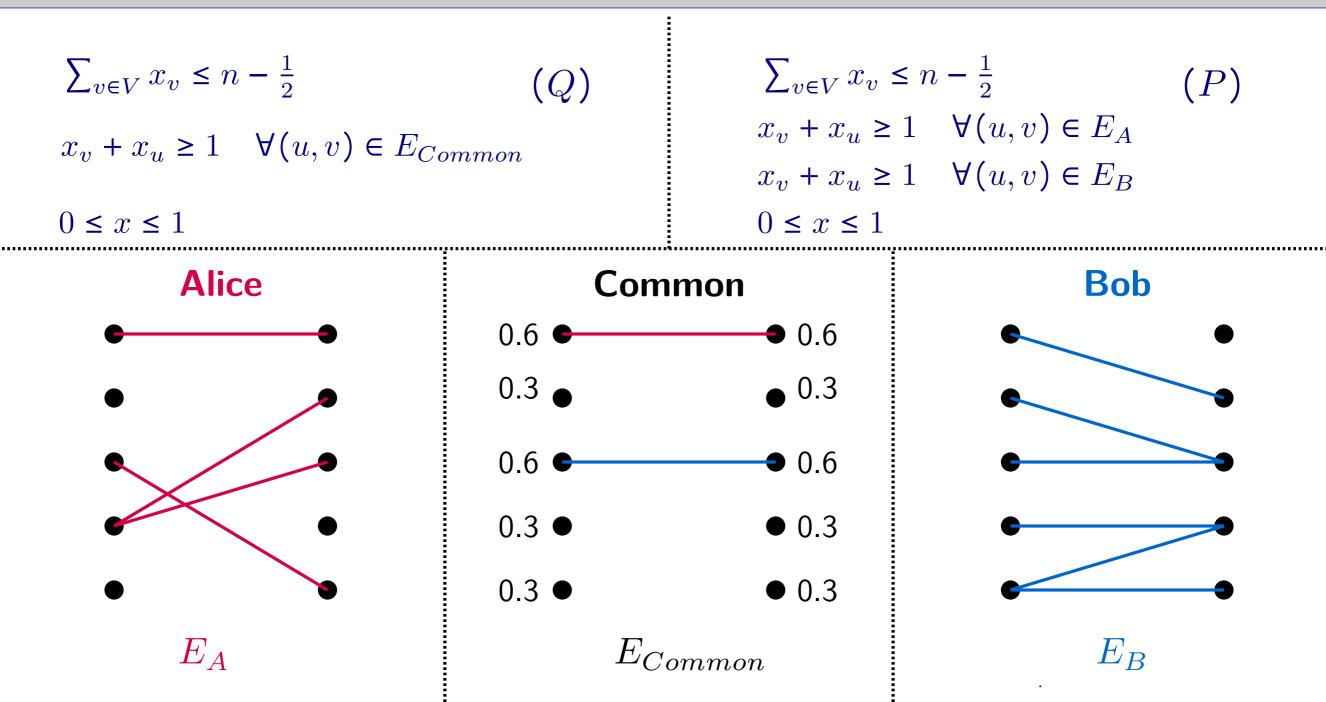


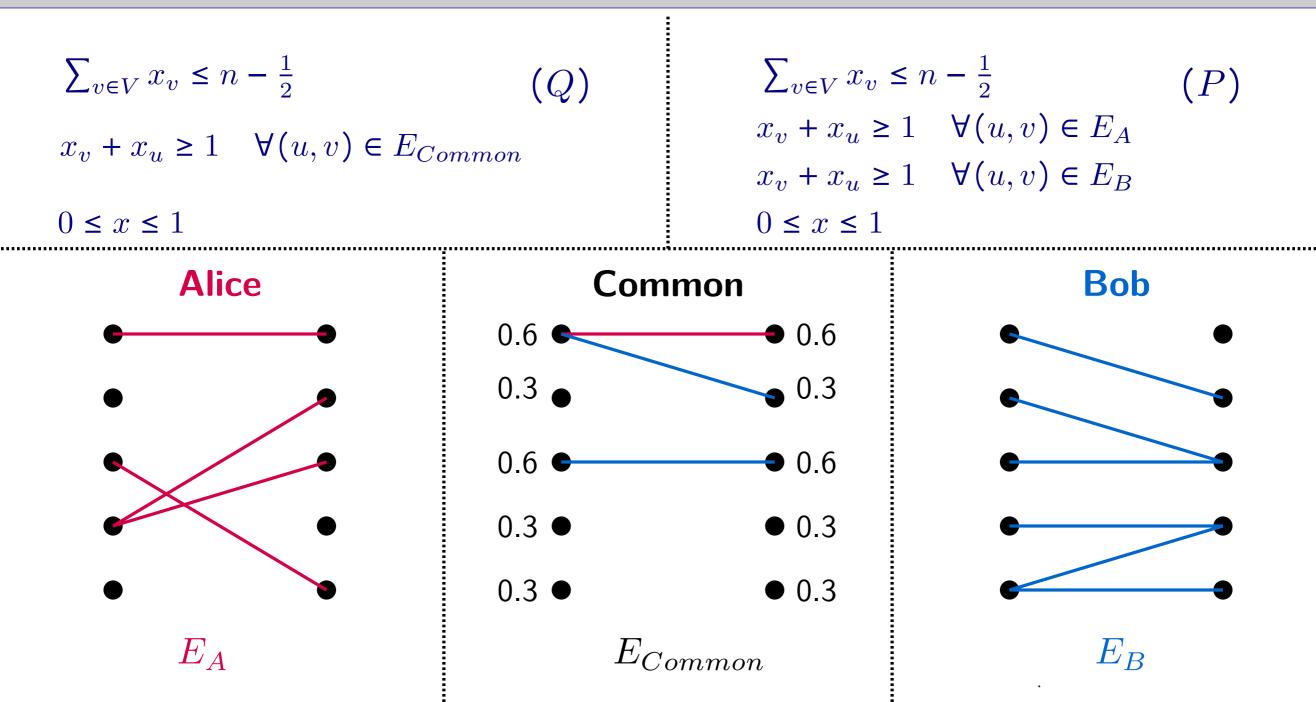












•
$$E_{common} = \emptyset$$
, $Q = \left\{ x \in [0,1]^V : \sum x_v \le n - \frac{1}{2} \right\}$

- While vol(Q) > 0:
 - Let c = center-of-gravity(Q) "fractional vertex cover"
 - If either Alice or Bob have an edge (u, v) violating c: add it to E_{common} and add " $x_v + x_u \ge 1$ " to (Q)
 - \blacksquare If not, return c as a fractional vertex cover
- E_{common} must now contain a perfect matching.

•
$$E_{common} = \emptyset$$
, $Q = \left\{ x \in [0,1]^V : \sum x_v \le n - \frac{1}{2} \right\}$

- While vol(Q) > 0:
 - Let c = center-of-gravity(Q) "fractional vertex cover"
 - If either Alice or Bob have an edge (u, v) violating c: add it to E_{common} and add " $x_v + x_u \ge 1$ " to (Q)
 - \blacksquare If not, return c as a fractional vertex cover
- E_{common} must now contain a perfect matching.

•
$$E_{common} = \emptyset$$
, $Q = \left\{ x \in [0,1]^V : \sum x_v \le n - \frac{1}{2} \right\}$

- While vol(Q) > 0:
 - Let c = center-of-gravity(Q) "fractional vertex cover"
 - If either Alice or Bob have an edge (u, v) violating c: add it to E_{common} and add " $x_v + x_u \ge 1$ " to (Q)
 - \blacksquare If not, return c as a fractional vertex cover
- E_{common} must now contain a perfect matching.

•
$$E_{common} = \emptyset$$
, $Q = \left\{ x \in [0,1]^V : \sum x_v \le n - \frac{1}{2} \right\}$

- While vol(Q) > 0:
 - Let c = center-of-gravity(Q) "fractional vertex cover"

Binary search with OR-queries to find violated edge in $S = \{(u, v) \in L \times R : c_u + c_v < 1\}$

- \blacksquare If not, return c as a fractional vertex cover
- E_{common} must now contain a perfect matching.

• Violated constraint " $x_v + x_u \ge 1$ " corresponds to edges. $\implies O(\log n)$ bits

٠

Analysis

- Violated constraint " $x_v + x_u \ge 1$ " corresponds to edges. $\implies O(\log n)$ bits
- Terminates when either:
 - Fractional vertex cover of size < n is found.</p>
 - (Q) becomes empty.

⇒ no perfect matching!⇒ perfect matching!

Analysis

- Violated constraint " $x_v + x_u \ge 1$ " corresponds to edges. $\implies O(\log n)$ bits
- Terminates when either:
 Fractional vertex cover of size < n is found.
 (Q) becomes empty.
 (Q) becomes empty.

Volume:

■ Initially ≤ 1 (contained in $[0,1]^{2n}$). ■ Always ≥ $\left(\frac{1}{20n}\right)^{5n}$ whenever (Q) is non-empty. $\implies O(n \log n)$ iterations

Analysis

- Violated constraint " $x_v + x_u \ge 1$ " corresponds to edges. $\implies O(\log n)$ bits
- Terminates when either:

 Fractional vertex cover of size < n is found.
 (Q) becomes empty.

 (Q) becomes empty.

 No perfect matching!
 perfect matching!
 Volume:

 Initially ≤ 1 (contained in [0,1]²ⁿ).
 Always ≥ (¹/_{20n})⁵ⁿ whenever (Q) is non-empty.
 O(n log n) iterations

Main Result:

One can solve bipartite matching in $O(n \log^2 n)$ bits of communication.

Extensions

Weights and Demands!

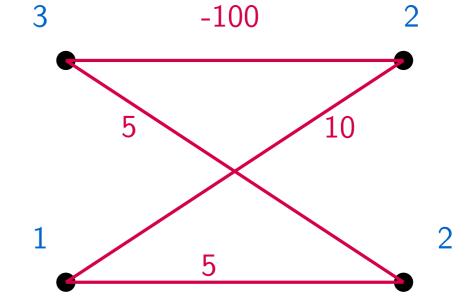
$$\min \sum_{v \in V} x_v$$
s.t. $x_v + x_u \ge 1 \quad \forall (u, v) \in E_A$
 $x_v + x_u \ge 1 \quad \forall (u, v) \in E_B$
 $0 \le x \le 1$

Weights and Demands!

$$\min \sum_{v \in V} b_v x_v$$
s.t. $x_v + x_u \ge c_{uv} \quad \forall (u, v) \in E_A$
 $x_v + x_u \ge c_{uv} \quad \forall (u, v) \in E_B$
 $0 \le x \le W$

• $W := \max\{|c_{uv}|, |b_v|, 1\}$

Maximum-cost *b*-matching



Weights and Demands!

Theorem:

If weights/costs/capacities/demands are poly(n), then we can solve the following using $O(n \log^2 n)$ communication:

- Maximum-cost bipartite perfect b-matching
- Maximum-cost bipartite b-matching
- Vertex-capacitated minimum-cost (s, t)-flow
- Transshipment
- Negative-weight single source shortest path
- Minimum mean cycle

Theorem:

If weights/costs/capacities/demands are poly(n), then we can solve the following using $O(n \log^2 n)$ communication:

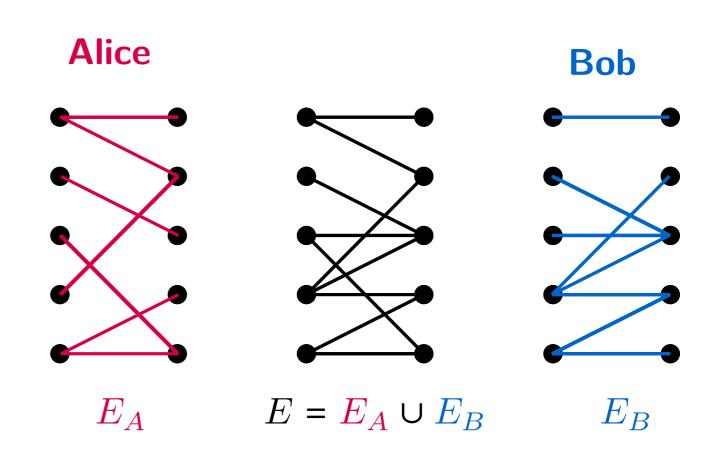
- Maximum-cost bipartite perfect b-matching
- Maximum-cost bipartite b-matching
- Vertex-capacitated minimum-cost (s, t)-flow
- Transshipment
- Negative-weight single source shortest path
- Minimum mean cycle

Note: All these have O(n) edges in their answer!

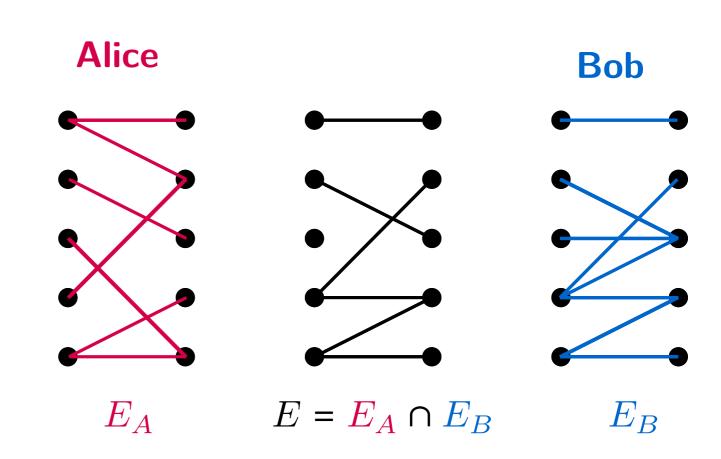
• AND-query $S = \{(u, v) \in L \times R\}$: "Is $|S \cap E| = |S|$?"

٠

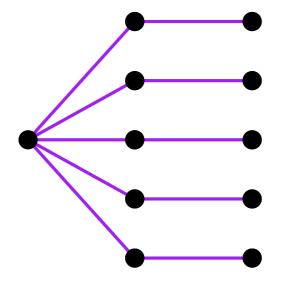
AND-query $S = \{(u, v) \in L \times R\}$: "Is $|S \cap E| = |S|$?"

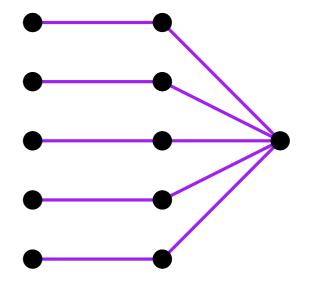


- AND-query $S = \{(u, v) \in L \times R\}$: "Is $|S \cap E| = |S|$?"
- AND-query algorithm ⇒ communication protocol on intersection graph



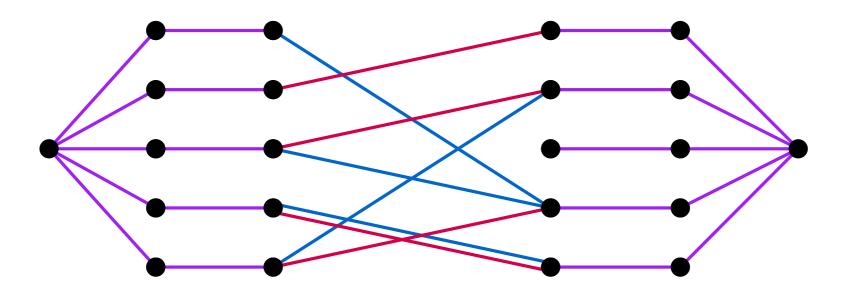
• AND-query $S = \{(u, v) \in L \times R\}$: "Is $|S \cap E| = |S|$?"





٠

AND-query $S = \{(u, v) \in L \times R\}$: "Is $|S \cap E| = |S|$?"



Perfect matching \iff edges intersect
 Set-Intersection on ≈ n² bits. Needs Ω(n²) communication!

Models	Previous papers		This paper
	Lower bounds	Upper bounds	
Two-party communication	$\begin{array}{c} \Omega(n) \text{ Rand,} \\ \Omega(n \log n) \text{ Det,} \\ \text{Footnote 1 and 2} \end{array}$	$ ilde{O}(n^{1.5}) \ [ext{DNO19}, ext{IKL}^+12] ext{}$	$O(n \log^2 n)$, Det Theorem 1.1
Quantum edge query	$\Omega(n^{1.5})$ [Zha04, Ben22b]	$O(n^{1.75}) \ [ext{LL15}]$	$ ilde{O}(n^{1.5})$ Theorem 1.3
OR-query	$egin{array}{c} \Omega(n) \ { m Rand}, \ \Omega(n\log n) \ { m Det}, \ [{ m BN21}] \end{array}$	$ ilde{O}(n^{1.5}) ext{ Det}, \ [ext{Nis21}]$	$O(n \log^2 n)$, Det Theorem 1.3
XOR-query	$\Omega(n)$ Rand $\Omega(n^2)$ Det [BN21]	$\tilde{O}(n^{1.5})$ Rand Lemma 2.14 and [Nis21]	$O(n \log^2 n)$, Rand Theorem 1.3
AND-query	$\Omega(n)$ Rand, $\Omega(n^2)$ Det [BN21]	$O(n^2)$ Trivial	$\Omega(n^2)$, Rand Theorem 1.3

Open Problems :)

Open Problem — Round vs Communication Tradeoff

- Restricting the #rounds:
 - Streaming
 - Distributed
 - MPC

• • • •		
	Rounds	Communication
trivial:	1	$\Theta(n^2)$
	?	?
cutting-planes:	$O(n \log n)$	$O(n\log^2 n)$

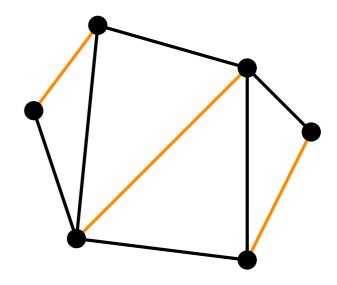
Open Problem — Approximation

Finding an α -approximation instead? (size version)

Approximation	Communication
1	$O(n \log^2 n)$
?	?
2	$O(\log n)$

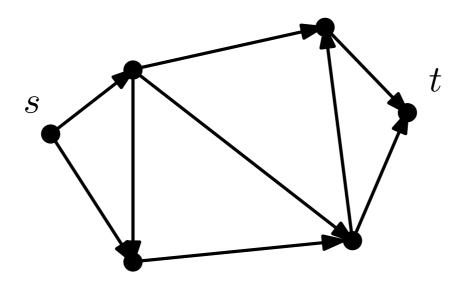
Open Problems — General Matching

- Communication and Query complexity of General Matching?
 - Interplay between general and bipartite matching unclear...
 - Optimal fractional matching by same approach.
 - Answer also has only O(n) edges.
 - Unwieldy Linear Program...



Open Problems — Max Flow

- Communication and Query complexity of s,t-(min-cost)-max-flow?
 - Both the dual & primal have $\approx n^2$ variables
 - Answer may include all $\approx n^2$ edges
 - Nondeterministic (certificate) complexity are still low: $\tilde{O}(n)$



Open Problems

- Rounds vs Communication tradeoff
- Approximate bipartite matching
- Communication complexity of other problems?
 - General Matching
 - Max flow
 - Matroid intersection
 - ••••

. . .

- Other query models, e.g. demand queries (one-sided OR)
- Multiparty communication

