Fast Algorithms via Dynamic-Oracle Matroids

Joakim Blikstad^{*} Danupon Nanongkai^{*†}

ETH Zürich A&C online seminar May 2023

To appear at STOC'23

*KTH Royal Institute of Technology, Sweden

 † Max-Planck Institute of Informatics, Germany

[‡]University of Sheffield, UK

Sagnik Mukhopadhyay[‡] Ta-Wei Tu[†]

$$k = 2$$

Given: Graph G = (V, E), integer $k \ge 1$; **Goal:** Find k disjoint spanning trees.

 $\tilde{O}_k(|V|\sqrt{|E|})$ [Gabow-Westerman STOC'88] $\tilde{O}_k(|E| + |V|\sqrt{|V|})$ **Ours**[†]

[†]Also concurrently by [Quanrud'23]

Want *Unified* way to design *Efficient* algorithms.

Want Unified way to design Efficient algorithms.

[†]Almost linear time,

Want *Unified* way to design *Efficient* algorithms.

 † Almost linear time,

Want Unified way to design Efficient algorithms.

[†]Almost linear time,

Matroid Problems

1. Ground set U of n elements

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$

Eg. Colourful Matroid "no duplicate colours"

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure

Eg. Colourful Matroid "no duplicate colours"

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure
 - Exchange property
 - "All maximal independent sets have the same size"

- 1. Ground set U of n elements
- 2. Notion of independence ${\mathcal I}$
 - Downward closure
 - Exchange property
 - "All maximal independent sets have the same size"

"no duplicate colours"

 $rk(S) = max\{|A| : A \subseteq S, A \in \mathcal{I}\}$

= size of a maximum independent set in ${\cal S}$

$rk(S) = max\{|A| : A \subseteq S, A \in \mathcal{I}\}$

- = size of a maximum independent set in ${\boldsymbol{S}}$
- = size of a maximal independent set in ${\cal S}$

 $rk(S) = max\{|A| : A \subseteq S, A \in \mathcal{I}\}$

= size of a maximum independent set in S= size of a maximal independent set in S

Properties:

$$\blacksquare S \in \mathcal{I} \iff \operatorname{rk}(S) = |S|$$

 $\operatorname{rk}(S) = \max\{|A| : A \subseteq S, A \in \mathcal{I}\}\$

= size of a maximum independent set in S= size of a maximal independent set in S

Properties:

 $\blacksquare S \in \mathcal{I} \iff \operatorname{rk}(S) = |S|$

Submodular (Diminishing returns) If $A \subseteq B$, and $x \notin B$ then: $\operatorname{rk}(A+x) - \operatorname{rk}(A) \ge \operatorname{rk}(B+x) - \operatorname{rk}(B)$

Colourful Matroid

 \mathcal{I} ="no duplicate colours" rk ="number of distinct colours"

 \mathcal{I} = "no duplicate colours" rk = "number of distinct colours" Graphic Matroid

U = edges $\mathcal{I} = "no cycles"$ rk = #vertices - #components"

 \mathcal{I} ="no duplicate colours" rk ="number of distinct colours"

Linear Matroid (2, 1, 4, 2, 3, 3) (1, 0, 1, 0, 1, 0) (3, 1, 5, 2, 4, 3) U = vectors $\mathcal{I} =$ "linear independence" rk = rank Graphic Matroid

U = edges $\mathcal{I} = "no cycles"$ rk = "#vertices - #components"

 \mathcal{I} ="no duplicate colours" rk ="number of distinct colours"

> Linear Matroid (2, 1, 4, 2, 3, 3) (1, 0, 1, 0, 1, 0) (3, 1, 5, 2, 4, 3) U = vectors $\mathcal{I} =$ "linear independence" rk = rank

Graphic Matroid

U = edges $\mathcal{I} = "no cycles"$ rk = #vertices - #components"

Vámos Matroid

Given two matroids $\mathcal{M}_1 = (U, \mathcal{I}_1)$ and $\mathcal{M}_2 = (U, \mathcal{I}_2)$, find a set S of maximum size in $\mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid Union: (a.k.a. matroid sum) Given k matroids $\mathcal{M}_i = (U, \mathcal{I}_i)$, find a set $S = S_1 \cup S_2 \cup \cdots \cup S_k$ of maximum size, where $S_i \in \mathcal{I}_i$.

k-Fold Matroid Union: (a.k.a. partitioning) Special case of matroid union where all k matroids are the same. Given two matroids:

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$
$$\mathcal{M}_2 = (V, \mathcal{I}_2)$$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

 $\mathcal{M}_1 = (V, \mathcal{I}_1)$ $\mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

 $\mathcal{M}_1 = (V, \mathcal{I}_1)$

 $\blacksquare \mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

$$\mathcal{M}_1 = (V, \mathcal{I}_1)$$
$$\mathcal{M}_2 = (V, \mathcal{I}_2)$$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

 $\mathcal{M}_1 = (V, \mathcal{I}_1)$ $\mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

■ $\mathcal{M}_1 = (V, \mathcal{I}_1)$ ■ $\mathcal{M}_2 = (V, \mathcal{I}_2)$ Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

■ $\mathcal{M}_1 = (V, \mathcal{I}_1)$ ■ $\mathcal{M}_2 = (V, \mathcal{I}_2)$ Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

• $\mathcal{M}_1 = (V, \mathcal{I}_1)$ • $\mathcal{M}_2 = (V, \mathcal{I}_2)$ Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given two matroids:

 $\mathcal{M}_1 = (V, \mathcal{I}_1)$ $\mathcal{M}_2 = (V, \mathcal{I}_2)$

Find a *common independent set* $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size.

Given: Matroid $\mathcal{M} = (U, \mathcal{I})$, integer k; **Goal:** Find $S = S_1 \cup \cdots \cup S_k$ (where $S_i \in \mathcal{I}$) of maximum size.

Given: Matroid $\mathcal{M} = (U, \mathcal{I})$, integer k; **Goal:** Find $S = S_1 \cup \cdots \cup S_k$ (where $S_i \in \mathcal{I}$) of maximum size.

k = 2 $\mathcal{M} = \text{graphic matroid}$ $S_i \subseteq E \text{ is in } \mathcal{I} \text{ iff no cycle.}$

Given: Matroid $\mathcal{M} = (U, \mathcal{I})$, integer k; **Goal:** Find $S = S_1 \cup \cdots \cup S_k$ (where $S_i \in \mathcal{I}$) of maximum size.

k = 2 $\mathcal{M} = \text{graphic matroid}$ $S_i \subseteq E \text{ is in } \mathcal{I} \text{ iff no cycle.}$

Given: Matroid $\mathcal{M} = (U, \mathcal{I})$, integer k; **Goal:** Find $S = S_1 \cup \cdots \cup S_k$ (where $S_i \in \mathcal{I}$) of maximum size.

k = 2 $\mathcal{M} = \text{graphic matroid}$ $S_i \subseteq E \text{ is in } \mathcal{I} \text{ iff no cycle.}$

Can solve using Matroid Intersection!

$k\text{-}\mathsf{fold}$ Matroid Union

Given: Matroid $\mathcal{M} = (U, \mathcal{I})$, integer k; **Goal:** Find $S = S_1 \cup \cdots \cup S_k$ (where $S_i \in \mathcal{I}$) of maximum size.

k = 2 $\mathcal{M} = \text{graphic matroid}$ $S_i \subseteq E \text{ is in } \mathcal{I} \text{ iff no cycle.}$

Can solve using Matroid Intersection!

 \mathcal{M}_1 = colorful matroid

 \mathcal{M}_2 = k independent copies of \mathcal{M}

Matroid Intersection & Union: Examples

- Bipartite matching
- k-disjoint spanning trees
- Arborescence (directed spanning tree)
- Colourful spanning tree
- Tree/Arborescence packing
- Some scheduling problems
- Some routing problems
- Some graph orientation problems

Also connections to Submodular Function Minimization

How to access a matroid?

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is rk(S)?"

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is rk(S)?"

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is rk(S)?"

Important:

We do not know the underlying structure of the matroids!

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

•
$$n = |U| = \text{number of elements } (= \# \text{edges})$$

• $r = |S| = \text{size of answer} (\leq \# \text{vertices})$

Traditional Model:

Minimize number of indep./rank queries measured in terms of: n = |U| = number of elements (= #edges) r = |S| = size of answer (\leq #vertices)

State-of-the-art: Matroid Intersection & Union

- $\tilde{O}(n\sqrt{r})$ rank-queries [CLSSW FOCS'19]
- $\tilde{O}(nr^{3/4})$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Traditional Model:

Minimize number of indep./rank queries measured in terms of: n = |U| = number of elements (= #edges) r = |S| = size of answer (\leq #vertices)

State-of-the-art: Matroid Intersection & Union $\tilde{O}(n\sqrt{r})$ rank-queries [CLSSW FOCS'19] $\tilde{O}(nr^{3/4})$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Traditional Model:

Minimize number of indep./rank queries measured in terms of: n = |U| = number of elements (= #edges) r = |S| = size of answer (\leq #vertices)

State-of-the-art: Matroid Intersection & Union $\tilde{O}(n\sqrt{r})$ rank-queries [CLSSW FOCS'19] $\tilde{O}(nr^{3/4})$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Caveat:

Does not imply *Efficient* algorithms. Query "rk(Q)?" takes O(|Q|) time to specify, let alone answer.

Traditional Model:

Minimize number of indep./rank queries measured in terms of: n = |U| = number of elements (= #edges) $r = |S| = size of answer (\le #vertices)$

State-of-the-art: Matroid Intersection & Union $\tilde{O}(n\sqrt{r})$ rank-queries [CLSSW FOCS'19] $\tilde{O}(nr^{3/4})$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Caveat:

Does not imply *Efficient* algorithms. Query "rk(Q)?" takes O(|Q|) time to specify, let alone answer.

Many papers in the 80s/90s specialize matroid intersection/union framework to specific problems

Main Motivation:

Cost to answer a query \approx how different it is to previous queries.

Main Motivation:

Cost to answer a query \approx how different it is to previous queries.

New Dynamic Oracle Model: Cost to issue the k'th query Q_k is $\min_{i < k} |Q_k \oplus Q_i|$. \iff Query $Q_k = Q_i \pm \{e\}$.

- Colourful/partition matroid: Count colors in O(1) update time.
- Graphic matroid:

Count components in O(polylogn) (or $O(n^{o(1)})$) update time.

[KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

- Colourful/partition matroid: Count colors in O(1) update time.
- Graphic matroid:

Count components in O(polylogn) (or $O(n^{o(1)})$) update time.

[KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

Our Results

Dynamic-oracle algorithms matching previous query-bounds:

- $O(n\sqrt{r})$ -dynamic-rank-query.
- $\tilde{O}(nr^{3/4})$ -dynamic-indep.-query.
- Improved Matroid Union:
 - $\tilde{O}(n + r\sqrt{r})$ -dynamic-rank-query.
 - Concurrently & independently shown[†] by [Quanrud'23]
 - Compare $O(|E|\sqrt{|V|})$ vs $O(|E| + |V|^{1.5})$ for graph problems.
- First super-linear lower-bounds:
 - $\Omega(n \log n)$ dynamic-rank-queries needed
 - $\Omega(n \log n)$ traditional-indep.-queries needed
 - Improves $\log_2(3)n o(n) \approx 1.58n$ lower-bound by [Harvey SODA'08]

Applications

problems	our bounds	state-of-the-art results
(Via k-fold matroid union)		
$k ext{-forest}^8$	$ ilde{O}(E +(k V)^{3/2})$ 🗸	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
k-pseudoforest	$ ilde{O}(E +(k V)^{3/2})$ 🗡	$ E ^{1+o(1)}$ [CKL+22]
k-disjoint spanning trees	$\tilde{O}(E + (k V)^{3/2})$ 🗸	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
arboricity ⁹	$ \tilde{O}(E V) \times$	$\tilde{O}(E ^{3/2})$ [Gab95]
tree packing	$ ilde{O}(E ^{3/2})$	$\tilde{O}(E ^{3/2})$ [GW88]
Shannon Switching Game	$\tilde{O}(E + V ^{3/2})$ 🗸	$\tilde{O}(V \sqrt{ E })$ [GW88]
graph k -irreducibility	$\tilde{O}(E + (k V)^{3/2} + k^2 V)$	$\tilde{O}(k^{3/2} V \sqrt{ E })$ [GW88]
(Via matroid union)		
(f, p)-mixed forest-pseudoforest	$ \widetilde{O}_{f,p}(E + V \sqrt{ V }) \checkmark$	$\tilde{O}((f+p) V \sqrt{f E })$ [GW88]
(Via matroid intersection)	~	
bipartite matching (combinatorial ¹²)	$O(E \sqrt{ V })$	$O(E \sqrt{ V })$ [HK73]
bipartite matching (continuous)	$ \tilde{O}(E \sqrt{ V }) $ X	$ E ^{1+o(1)}$ [CKL ⁺ 22]
graphic matroid intersection	$\mid ilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GX89]
simple job scheduling matroid intersection	$ \tilde{O}(n\sqrt{r})$	$\tilde{O}(n\sqrt{r})$ [XG94]
convex transversal matroid [EF65] intersection	$ \tilde{O}(V \sqrt{\mu})$	$\tilde{O}(V \sqrt{\mu})$ [XG94]
linear matroid intersection ^{10}	$\tilde{O}(n^{2.529}\sqrt{r})$ X	$\tilde{O}(nr^{\omega-1})$ [Har09]
colorful spanning tree	$ \tilde{O}(E \sqrt{ V })$	$\tilde{O}(E \sqrt{ V })$ [GS85]
maximum forest with deadlines	$\tilde{O}(E \sqrt{ V })$	(no prior work)

٠

Techniques

- 1. Exchange Graph & Augmenting Paths
- 2. Matroid Intersection
 - Matching previous algorithms with Dynamic Oracle
 - Main Idea: "Exchange-Binary-Search-Tree"
- 3. Matroid Union
 - Improving $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n + r\sqrt{r})$
 - Main Idea: Sparsifying the Exchange Graph
- 4. Lower Bound
 - $\Omega(n \log n)$
 - Main Idea: Communication Complexity of Reachability

Definition:

Definition:

Definition:

Definition:

Definition:

•
Exchange Graph & Augmenting Paths [Edmonds'60s]

•

Exchange Graph & Augmenting Paths [Edmonds'60s]

 $\implies S + b_1 - a_2 + b_3 - a_4 + b_5 \in \mathcal{I}_1$

Exchange Graph & Augmenting Paths [Edmonds'60s]

 $\implies S + b_1 - a_2 + b_3 - a_4 + b_5 \in \mathcal{I}_1$

Common independent set $S' := S + b_1 - a_2 + b_3 - a_4 + b_5$ of size |S'| = |S| + 1

• $\Theta(nr)$ edges — expensive to compute

Disjoint paths not necessarily "compatible"

Need recompute to handle inserted and deleted edges.

$$"rk_1(S + v - X) = |S + v - X| ?"$$

$$"rk_2(S - v + X) = |S| ?"$$

$$"rk_1(S + v - X) = |S + v - X| ?"$$

$$"rk_2(S - v + X) = |S| ?"$$

$$"rk_1(S + v - X) = |S + v - X| ?"$$

$$"rk_2(S - v + X) = |S| ?"$$

Binary-Search! [CLSSW, Nguyễn]

- 1. Exchange Graph & Augmenting Paths
- 2. Matroid Intersection
 - Matching previous algorithms with Dynamic Oracle
 - Main Idea: "Exchange-Binary-Search-Tree"
- 3. Matroid Union
 - Improving $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n+r\sqrt{r})$
 - Main Idea: Sparsifying the Exchange Graph
- 4. Lower Bound
 - $\Omega(n \log n)$
 - Main Idea: Communication Complexity of Reachability

"
$$rk_2(S - v + X) = |S|$$
?"

$$"rk_2(S - v + X) = |S| ?"$$

Challenge: Query sets far apart in binary search.

"
$$\operatorname{rk}_2(S - v + X) = |S|$$
?"

Challenge: Query sets far apart in binary search.

Solution: Prebuild sets:

X

"
$$\operatorname{rk}_2(S - v + X) = |S|$$
?"

Challenge: Query sets far apart in binary search.

Solution: Prebuild sets:

Challenge: S changes when augmenting path found.

"
$$\operatorname{rk}_2(S - v + X) = |S|$$
?"

Challenge: Query sets far apart in binary search.

Solution: Prebuild sets:

Challenge: *S* changes when augmenting path found. **Solution:**

Lazily rebuild in batched + "Augmenting Sets" Lemma [CLSSW]

- 1. Exchange Graph & Augmenting Paths
- 2. Matroid Intersection
 - Matching previous algorithms with Dynamic Oracle
 - Main Idea: "Exchange-Binary-Search-Tree"
- 3. Matroid Union
 - Improving $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n+r\sqrt{r})$
 - Main Idea: Sparsifying the Exchange Graph
- 4. Lower Bound
 - $\Omega(n \log n)$
 - Main Idea: Communication Complexity of Reachability

Going from $O(n\sqrt{r})$ to $O(n + r\sqrt{r})$.

•

Going from $O(n\sqrt{r})$ to $O(n + r\sqrt{r})$.

•

Going from $O(n\sqrt{r})$ to $O(n + r\sqrt{r})$.

Going from $O(n\sqrt{r})$ to $O(n + r\sqrt{r})$.

- 1. Exchange Graph & Augmenting Paths
- 2. Matroid Intersection
 - Matching previous algorithms with Dynamic Oracle
 - Main Idea: "Exchange-Binary-Search-Tree"
- 3. Matroid Union
 - Improving $\tilde{O}(n\sqrt{r})$ to $\tilde{O}(n + r\sqrt{r})$
 - Main Idea: Sparsifying the Exchange Graph
- 4. Lower Bound
 - $\Omega(n \log n)$
 - Main Idea: Communication Complexity of Reachability

Lower Bound — Main Idea

Communication game

How many bits of communication necessary?

Lower Bound — Main Idea

Communication game

How many bits of communication necessary?

indep. queries $\leq \begin{cases} \text{rank queries } / \log(n) \\ \text{dynamic rank queries} \end{cases}$

Lower Bound — Main Idea

Communication game

How many bits of communication necessary?

$$\leq \begin{cases} \text{indep. queries} \\ \text{rank queries} / \log(n) \\ \text{dynamic rank queries} \end{cases}$$

Carefully choose matroids (gammoids) to model **Graph Reachability** $\Omega(n \log n)$ bit lower-bound[†] [Hajnal-Maass-Turán STOC'88]

[†](unconditionally for deterministic, and conjectured to hold for randomized algorithms)

• k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
 - Dynamic or traditional query model; or communication.
 - Or any $n^{1+\Omega(1)}$ lower-bounds?

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
 - Dynamic or traditional query model; or communication.
 - Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
 - Currently slower than unweighted.
 - Match using the dynamic oracle model?

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
 - Dynamic or traditional query model; or communication.
 - Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
 - Currently slower than unweighted.
 - Match using the dynamic oracle model?
- Other problems where a "Dynamic Oracle" model is relevant?
 - Submodular function minimization/maximization?
 - Cut-queries in graphs?

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
 - Dynamic or traditional query model; or communication.
 - Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
 - Currently slower than unweighted.
 - Match using the dynamic oracle model?
- Other problems where a "Dynamic Oracle" model is relevant?
 - Submodular function minimization/maximization?
 - Cut-queries in graphs?

Thanks!