Fast Algorithms via Dynamic-Oracle Matroids

Joakim Blikstad*
 Danupon Nanongkai* ${ }^{* \dagger}$

Sagnik Mukhopadhyay ${ }^{\ddagger}$ Ta-Wei Tu ${ }^{\dagger}$

ETH Zürich A\&C online seminar May 2023

To appear at STOC'23

[^0]

k-Disjoint Spanning Tree

Given: Graph $G=(V, E)$, integer $k \geq 1$;
Goal: Find k disjoint spanning trees.

k-Disjoint Spanning Tree

Given: Graph $G=(V, E)$, integer $k \geq 1$;
Goal: Find k disjoint spanning trees.

$$
k=1
$$

k-Disjoint Spanning Tree

Given: Graph $G=(V, E)$, integer $k \geq 1$;
Goal: Find k disjoint spanning trees.

$$
k=2
$$

k-Disjoint Spanning Tree

Given: Graph $G=(V, E)$, integer $k \geq 1$;
Goal: Find k disjoint spanning trees.

$$
k=2
$$

Open: $\tilde{O}(|E|)$ time even for $k=2$?

k-Disjoint Spanning Tree

Given: Graph $G=(V, E)$, integer $k \geq 1$;
Goal: Find k disjoint spanning trees.

$$
k=2
$$

$\tilde{O}_{k}(|V| \sqrt{|E|})$ [Gabow-Westerman STOC'88]
$\tilde{O}_{k}(|E|+|V| \sqrt{|V|})$ Ours †

Open: $\tilde{O}(|E|)$ time even for $k=2$?

Graph Problems \& Reductions

Want Unified way to design Efficient algorithms.

Graph Problems \& Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow ${ }^{\dagger}$

Airline Scheduling
${ }^{\dagger}$ Almost linear time,

Graph Problems \& Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow ${ }^{\dagger}$

Airline Scheduling

Arboricity
Tree Packing
Colorful Spanning Trees
k-Disjoint Spanning Trees

Graphic Matroid Intersection
Job Scheduling Matroid Intersection
${ }^{\dagger}$ Almost linear time,
[Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS'22]

Graph Problems \& Reductions

Want Unified way to design Efficient algorithms.

${ }^{\dagger}$ Almost linear time,

Matroid Problems

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

Eg. Colourful Matroid
"no duplicate colours"

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

- Downward closure

Eg. Colourful Matroid
"no duplicate colours"

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

- Downward closure
- Exchange property
"All maximal independent sets have the same size"

Eg. Colourful Matroid "no duplicate colours"

Matroids

Matroid $\mathcal{M}=(U, \mathcal{I})$

1. Ground set U of n elements
2. Notion of independence \mathcal{I}

- Downward closure
- Exchange property
"All maximal independent sets have the same size"

Eg. Colourful Matroid "no duplicate colours"

Matroid Rank

$$
\operatorname{rk}(S)=\max \{|A|: A \subseteq S, A \in \mathcal{I}\}
$$

Matroid Rank

$$
\begin{aligned}
\operatorname{rk}(S) & =\max \{|A|: A \subseteq S, A \in \mathcal{I}\} \\
& =\text { size of a maximum independent set in } S
\end{aligned}
$$

$$
\operatorname{rk}(S)=3
$$

Matroid Rank

$$
\begin{aligned}
\operatorname{rk}(S) & =\max \{|A|: A \subseteq S, A \in \mathcal{I}\} \\
& =\text { size of a maximum independent set in } S \\
& =\text { size of a maximal independent set in } S
\end{aligned}
$$

$$
\quad \operatorname{rk}(S)=3
$$

Matroid Rank

$$
\operatorname{rk}(S)=\max \{|A|: A \subseteq S, A \in \mathcal{I}\}
$$

= size of a maximum independent set in S

$$
\operatorname{rk}(S)=3
$$

$$
=\text { size of a maximal independent set in } S
$$

Properties:

■ $S \in \mathcal{I} \Longleftrightarrow \operatorname{rk}(S)=|S|$

Matroid Rank

$$
\operatorname{rk}(S)=\max \{|A|: A \subseteq S, A \in \mathcal{I}\}
$$

= size of a maximum independent set in S

$$
\operatorname{rk}(S)=3
$$

$$
=\text { size of a maximal independent set in } S
$$

Properties:

- $S \in \mathcal{I} \Longleftrightarrow \operatorname{rk}(S)=|S|$
- Submodular (Diminishing returns) If $A \subseteq B$, and $x \notin B$ then: $\operatorname{rk}(A+x)-\operatorname{rk}(A) \geq \operatorname{rk}(B+x)-\operatorname{rk}(B)$

Matroids: Examples

Colourful Matroid

$\mathcal{I}=$ "no duplicate colours"
rk ="number of distinct colours"

Matroids: Examples

Colourful Matroid

Graphic Matroid

$U=$ edges
$\mathcal{I}=$ "no cycles"
rk ="\#vertices - \#components"

Matroids: Examples

Colourful Matroid

$\mathcal{I}=$ "no duplicate colours"
rk ="number of distinct colours"

Graphic Matroid

$U=$ edges
$\mathcal{I}=$ "no cycles"
rk ="\#vertices - \#components"

Linear Matroid
(2, 1, 4, 2, 3, 3)
(1, 0, 1, 0, 1, 0)
(3, 1, 5, 2, 4, 3)
$U=$ vectors
$\mathcal{I}=$ "linear independence"
rk $=$ rank

Matroids: Examples

Colourful Matroid

$\mathcal{I}=$ "no duplicate colours" rk ="number of distinct colours"

Linear Matroid
(2, 1, 4, 2, 3, 3)
(1, 0, 1, 0, 1, 0)
(3, 1, 5, 2, 4, 3)
$U=$ vectors
$\mathcal{I}=$ "linear independence" rk $=$ rank

Graphic Matroid

$U=$ edges
$\mathcal{I}=$ "no cycles"
rk ="\#vertices - \#components"
Vámos Matroid

Matroid Problems

Matroid Intersection:

Given two matroids $\mathcal{M}_{1}=\left(U, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)$, find a set S of maximum size in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Matroid Union:

(a.k.a. matroid sum)

Given k matroids $\mathcal{M}_{i}=\left(U, \mathcal{I}_{i}\right)$,
find a set $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ of maximum size, where $S_{i} \in \mathcal{I}_{i}$.
k-Fold Matroid Union:
(a.k.a. partitioning)

Special case of matroid union where all k matroids are the same.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

$\mathcal{M}_{1}=$ "distinct suits"
$\mathcal{M}_{2}=$ "distinct colours"

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

Matroid Intersection

Given two matroids:

- $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$
- $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$

Find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size.

$$
\begin{aligned}
& \mathcal{M}_{1}=\text { "distinct suits" } \\
& \mathcal{M}_{2}=\text { "distinct colours" }
\end{aligned}
$$

k-fold Matroid Union

Given: Matroid $\mathcal{M}=(U, \mathcal{I})$, integer k;
Goal: Find $S=S_{1} \cup \cdots \cup S_{k}$ (where $S_{i} \in \mathcal{I}$) of maximum size.

k-fold Matroid Union

Given: Matroid $\mathcal{M}=(U, \mathcal{I})$, integer k;
Goal: Find $S=S_{1} \cup \cdots \cup S_{k}$ (where $S_{i} \in \mathcal{I}$) of maximum size.

$$
\begin{aligned}
& k=2 \\
& \mathcal{M}=\text { graphic matroid } \\
& S_{i} \subseteq E \text { is in } \mathcal{I} \text { iff no cycle. }
\end{aligned}
$$

k-fold Matroid Union

Given: Matroid $\mathcal{M}=(U, \mathcal{I})$, integer k;
Goal: Find $S=S_{1} \cup \cdots \cup S_{k}$ (where $S_{i} \in \mathcal{I}$) of maximum size.

$$
\begin{aligned}
& k=2 \\
& \mathcal{M}=\text { graphic matroid } \\
& S_{i} \subseteq E \text { is in } \mathcal{I} \text { iff no cycle. }
\end{aligned}
$$

k-fold Matroid Union

Given: Matroid $\mathcal{M}=(U, \mathcal{I})$, integer k;
Goal: Find $S=S_{1} \cup \cdots \cup S_{k}$ (where $S_{i} \in \mathcal{I}$) of maximum size.

$$
\begin{aligned}
& k=2 \\
& \mathcal{M}=\text { graphic matroid } \\
& S_{i} \subseteq E \text { is in } \mathcal{I} \text { iff no cycle. }
\end{aligned}
$$

Can solve using Matroid Intersection!

k-fold Matroid Union

Given: Matroid $\mathcal{M}=(U, \mathcal{I})$, integer k;
Goal: Find $S=S_{1} \cup \cdots \cup S_{k}$ (where $S_{i} \in \mathcal{I}$) of maximum size.

$$
\begin{aligned}
& k=2 \\
& \mathcal{M}=\text { graphic matroid } \\
& S_{i} \subseteq E \text { is in } \mathcal{I} \text { iff no cycle. }
\end{aligned}
$$

Can solve using Matroid Intersection!

$\mathcal{M}_{1}=$ colorful matroid
$\mathcal{M}_{2}=k$ independent copies of \mathcal{M}

Matroid Intersection \& Union: Examples

- Bipartite matching
- k-disjoint spanning trees
- Arborescence (directed spanning tree)
- Colourful spanning tree
- Tree/Arborescence packing
- Some scheduling problems
- Some routing problems
- Some graph orientation problems

Also connections to Submodular Function Minimization

Query Access

How to access a matroid?

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is $\operatorname{rk}(S)$?"

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is $\operatorname{rk}(S)$?"

Query Access

How to access a matroid?

Oracle Access

- Independence query: "Is $S \in \mathcal{I}$?"
- Rank query: "What is $\operatorname{rk}(S)$?"

Important:

We do not know the underlying structure of the matroids!

Traditional Model

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

- $n=|U|=$ number of elements (= \#edges)
- $r=|S|=$ size of answer (\leq \#vertices)

Traditional Model

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

- $n=|U|=$ number of elements (= \#edges)
- $r=|S|=$ size of answer (\leq \#vertices)

State-of-the-art: Matroid Intersection \& Union

- $\tilde{O}(n \sqrt{r})$ rank-queries [CLSSW FOCS'19]
- $\tilde{O}\left(n r^{3 / 4}\right)$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Traditional Model

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

- $n=|U|=$ number of elements (= \#edges)
- $r=|S|=$ size of answer (\leq \#vertices)

State-of-the-art: Matroid Intersection \& Union

- $\tilde{O}(n \sqrt{r})$ rank-queries [CLSSW FOCS'19]

Open: $\tilde{O}(n)$ possible?

- $\tilde{O}\left(n r^{3 / 4}\right)$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Traditional Model

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

- $n=|U|=$ number of elements (= \#edges)
- $r=|S|=$ size of answer ($\leq \#$ vertices)

State-of-the-art: Matroid Intersection \& Union

- $\tilde{O}(n \sqrt{r})$ rank-queries [CLSSW FOCS'19]

Open: $\tilde{O}(n)$ possible?

- $\tilde{O}\left(n r^{3 / 4}\right)$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Caveat:

Does not imply Efficient algorithms.
Query "rk (Q) ?" takes $O(|Q|)$ time to specify, let alone answer.

Traditional Model

Traditional Model:

Minimize number of indep./rank queries measured in terms of:

- $n=|U|=$ number of elements (= \#edges)
- $r=|S|=$ size of answer ($\leq \#$ vertices)

State-of-the-art: Matroid Intersection \& Union

- $\tilde{O}(n \sqrt{r})$ rank-queries [CLSSW FOCS'19]

Open: $\tilde{O}(n)$ possible?

- $\tilde{O}\left(n r^{3 / 4}\right)$ indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Caveat:

Does not imply Efficient algorithms.
Query "rk (Q) ?" takes $O(|Q|)$ time to specify, let alone answer.

Many papers in the 80s/90s specialize matroid intersection/union framework to specific problems

Dynamic Oracle

Main Motivation:
Cost to answer a query \approx how different it is to previous queries.

Dynamic Oracle

Main Motivation:
Cost to answer a query \approx how different it is to previous queries.

New Dynamic Oracle Model:
Cost to issue the k 'th query Q_{k} is $\min _{i<k}\left|Q_{k} \oplus Q_{i}\right|$.
Query $Q_{k}=Q_{i} \pm\{e\}$.

Data Structures for Dynamic Rank Oracle

- Colourful/partition matroid:

Count colors in $O(1)$ update time.

- Graphic matroid:

Count components in $O($ polylog $n)\left(\right.$ or $\left.O\left(n^{o(1)}\right)\right)$ update time. [KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

Data Structures for Dynamic Rank Oracle

- Colourful/partition matroid:

Count colors in $O(1)$ update time.

- Graphic matroid:

Count components in O (polylogn) (or $O\left(n^{o(1)}\right)$) update time. [KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

Data Structures for Dynamic Rank Oracle

- Colourful/partition matroid:

Count colors in $O(1)$ update time.

- Graphic matroid:

Count components in O (polylogn) (or $\left.O\left(n^{o(1)}\right)\right)$ update time. [KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

$O(f(n, r))$ dynamic query matroid intersection/union algorithm $+$
fast data structures
$=$
$\tilde{O}(f(n, r))$ time algorithm

Data Structures for Dynamic Rank Oracle

- Colourful/partition matroid:

Count colors in $O(1)$ update time.

- Graphic matroid:

Count components in O (polylogn) (or $\left.O\left(n^{o(1)}\right)\right)$ update time. [KKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

$O(f(n, r))$ dynamic query matroid intersection/union algorithm $+$
fast data structures
< Need to be worst-case. Oblivious advesary is okay.
$\tilde{O}(f(n, r))$ time algorithm

Our Results

- Dynamic-oracle algorithms matching previous query-bounds:
- $\tilde{O}(n \sqrt{r})$-dynamic-rank-query.
- $\tilde{O}\left(n r^{3 / 4}\right)$-dynamic-indep.-query.
- Improved Matroid Union:
- $\tilde{O}(n+r \sqrt{r})$-dynamic-rank-query.
- Concurrently \& independently shown ${ }^{\dagger}$ by [Quanrud'23]
- Compare $O(|E| \sqrt{|V|})$ vs $O\left(|E|+|V|^{1.5}\right)$ for graph problems.
- First super-linear lower-bounds:
- $\Omega(n \log n)$ dynamic-rank-queries needed
- $\Omega(n \log n)$ traditional-indep.-queries needed
- Improves $\log _{2}(3) n-o(n) \approx 1.58 n$ lower-bound by [Harvey SODA'08]

Applications

problems	our bounds	state-of-the-art results
(Via k-fold matroid union) k-forest ${ }^{8}$ k-pseudoforest k-disjoint spanning trees arboricity tree packing Shannon Switching Game graph k-irreducibility	$\begin{aligned} & \tilde{O}\left(\|E\|+(k\|V\|)^{3 / 2}\right) \swarrow \\ & \tilde{O}\left(\|E\|+(k\|V\|)^{3 / 2}\right) \times \\ & \tilde{O}\left(\|E\|+(k\|V\|)^{3 / 2}\right) \\ & \tilde{O}(\|E\|\|V\|) \times \\ & \tilde{O}\left(\|E\|^{3 / 2}\right) \\ & \tilde{O}\left(\|E\|+\|V\|^{3 / 2}\right) \downarrow \\ & \tilde{O}\left(\|E\|+(k\|V\|)^{3 / 2}+k^{2}\|V\|\right) \end{aligned}$	$\begin{aligned} & \tilde{O}\left(k^{3 / 2}\|V\| \sqrt{\|E\|}\right) \text { [GW88] } \\ & \|E\|^{1+o(1)}[\mathrm{CKL}+22] \\ & \tilde{O}\left(k^{3 / 2}\|V\| \sqrt{\|E\|}\right) \text { [GW88] } \\ & \tilde{O}\left(\|E\|^{3 / 2}\right) \text { [Gab95] } \\ & \tilde{O}\left(\|E\|^{3 / 2}\right)[\mathrm{GW} 88] \\ & \tilde{O}(\|V\| \sqrt{\|E\|}) \text { [GW88] } \\ & \tilde{O}\left(k^{3 / 2}\|V\| \sqrt{\|E\|}\right) \text { [GW88] } \end{aligned}$
(Via matroid union) (f, p)-mixed forest-pseudoforest	$\tilde{O}_{f, p}(\|E\|+\|V\| \sqrt{\|V\|})$	$\tilde{O}((f+p)\|V\| \sqrt{f\|E\|})[\mathrm{GW} 88]$
(Via matroid intersection) bipartite matching (combinatorial ${ }^{12}$) bipartite matching (continuous) graphic matroid intersection simple job scheduling matroid intersection convex transversal matroid [EF65] intersection linear matroid intersection ${ }^{10}$ colorful spanning tree maximum forest with deadlines	$\begin{aligned} & \tilde{O}(\|E\| \sqrt{\|V\|}) \\ & \tilde{O}(\|E\| \sqrt{\|V\|}) \\ & \tilde{O}(\|E\| \sqrt{\|V\|}) \\ & \tilde{O}(n \sqrt{r}) \\ & \tilde{O}(\|V\| \sqrt{\mu}) \\ & \tilde{O}\left(n^{2.529} \sqrt{r}\right) \\ & \tilde{O}(\|E\| \sqrt{\|V\|}) \\ & \tilde{O}(\|E\| \sqrt{\|V\|}) \end{aligned}$	$O(\|E\| \sqrt{\|V\|})$ [HK73] $\|E\|^{1+o(1)}\left[\mathrm{CKL}^{+} 22\right]$ $\tilde{O}(\|E\| \sqrt{\|V\|})$ [GX89] $\tilde{O}(n \sqrt{r})$ [XG94] $\tilde{O}(\|V\| \sqrt{\mu})$ [XG94] $\tilde{O}\left(n r^{\omega-1}\right)$ [Har09] $\tilde{O}(\|E\| \sqrt{\|V\|})$ [GS85] (no prior work)

Techniques

Technical part - Overview

1. Exchange Graph \& Augmenting Paths
2. Matroid Intersection

- Matching previous algorithms with Dynamic Oracle
- Main Idea: "Exchange-Binary-Search-Tree"

3. Matroid Union

- Improving $\tilde{O}(n \sqrt{r})$ to $\tilde{O}(n+r \sqrt{r})$
- Main Idea: Sparsifying the Exchange Graph

4. Lower Bound

- $\Omega(n \log n)$
- Main Idea: Communication Complexity of Reachability

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Definition:

The Exchange Graph $G(S)$ for a common independent set $S \in$ $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ looks as follows:

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Definition:

The Exchange Graph $G(S)$ for a common independent set $S \in$ $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ looks as follows:

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Definition:

The Exchange Graph $G(S)$ for a common independent set $S \in$ $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ looks as follows:

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Definition:

The Exchange Graph $G(S)$ for a common independent set $S \in$ $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ looks as follows:

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Definition:

The Exchange Graph $G(S)$ for a common independent set $S \in$ $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ looks as follows:

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Exchange Graph \& Augmenting Paths [Edmonds'60s]

Exchange Graph \& Augmenting Paths [Edmonds'60s]

$$
\Longrightarrow S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5} \in \mathcal{I}_{2}
$$

$$
\Longrightarrow S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5} \in \mathcal{I}_{1}
$$

Exchange Graph \& Augmenting Paths [Edmonds'60s]

$$
\Longrightarrow S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5} \in \mathcal{I}_{2}
$$

Common independent set $S^{\prime}:=S+b_{1}-a_{2}+b_{3}-a_{4}+b_{5}$ of size $\left|S^{\prime}\right|=|S|+1$

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

Exchange graph $G(S)$ behaves weirdly...

- $\Theta(n r)$ edges - expensive to compute

- Disjoint paths not necessarily "compatible"
- Need recompute to handle inserted and deleted edges.

Graph Exploration - Exchange Pairs

Graph Exploration - Exchange Pairs

$$
\begin{aligned}
& \text { "rk } \mathrm{rk}_{1}(S+v-X)=|S+v-X| \text { ?" } \\
& \text { "rk } 2(S-v+X)=|S| ? "
\end{aligned}
$$

Graph Exploration - Exchange Pairs

$$
\begin{aligned}
\text { "rk } \mathrm{rk}_{1}(S+v-X) & =|S+v-X| \text { ?" } \\
\text { "rk } 2(S-v+X) & =|S| ? "
\end{aligned}
$$

Graph Exploration - Exchange Pairs

$$
\begin{aligned}
" \mathrm{rk}_{1}(S+v-X) & =|S+v-X| ? " \\
" \mathrm{rk}_{2}(S-v+X) & =|S| ? "
\end{aligned}
$$

Binary-Search! [CLSSW, Nguyễn]

Technical part - Overview

1. Exchange Graph \& Augmenting Paths
2. Matroid Intersection

■ Matching previous algorithms with Dynamic Oracle ■ Main Idea: "Exchange-Binary-Search-Tree"
3. Matroid Union

- Improving $\tilde{O}(n \sqrt{r})$ to $\tilde{O}(n+r \sqrt{r})$
- Main Idea: Sparsifying the Exchange Graph

4. Lower Bound

- $\Omega(n \log n)$
- Main Idea: Communication Complexity of Reachability

Matroid Intersection - Main Idea

$$
" \mathrm{rk}_{2}(S-v+X)=|S| ? "
$$

Matroid Intersection - Main Idea

$$
" \mathrm{rk}_{2}(S-v+X)=|S| ? "
$$

Challenge: Query sets far apart in binary search.

Matroid Intersection - Main Idea

$$
" \mathrm{rk}_{2}(S-v+X)=|S| ? "
$$

Challenge: Query sets far apart in binary search.
Solution: Prebuild sets:

$$
\begin{gathered}
S+\left\{x_{1}, \ldots, x_{m}\right\} \\
S+\left\{x_{1}, \ldots, x_{m / 2}\right\} \quad S+\left\{x_{m / 2+1}, \ldots, x_{m}\right\}
\end{gathered}
$$

Matroid Intersection — Main Idea

$$
" \mathrm{rk}_{2}(S-v+X)=|S| ? "
$$

Challenge: Query sets far apart in binary search.
Solution: Prebuild sets:

$$
\begin{gathered}
S+\left\{x_{1}, \ldots, x_{m}\right\} \\
S+\left\{x_{1}, \ldots, \widehat{x_{m / 2}}\right\} \quad S+\underbrace{\left\{x_{m / 2+1}, \ldots, x_{m}\right\}}
\end{gathered}
$$

Challenge: S changes when augmenting path found.

Matroid Intersection - Main Idea

$$
" \mathrm{rk}_{2}(S-v+X)=|S| ? "
$$

Challenge: Query sets far apart in binary search.
Solution: Prebuild sets:

$$
\begin{gathered}
S+\left\{x_{1}, \ldots, x_{m}\right\} \\
S+\left\{x_{1}, \ldots, \widehat{x_{m / 2}}\right\} \quad S+\underbrace{\left\{x_{m / 2+1}, \ldots, x_{m}\right\}}
\end{gathered}
$$

Challenge: S changes when augmenting path found.

Solution:

Lazily rebuild in batched + "Augmenting Sets" Lemma [CLSSW]

Technical part - Overview

1. Exchange Graph \& Augmenting Paths
2. Matroid Intersection

- Matching previous algorithms with Dynamic Oracle
- Main Idea: "Exchange-Binary-Search-Tree"

3. Matroid Union

- Improving $\tilde{O}(n \sqrt{r})$ to $\tilde{O}(n+r \sqrt{r})$
- Main Idea: Sparsifying the Exchange Graph

4. Lower Bound

- $\Omega(n \log n)$
- Main Idea: Communication Complexity of Reachability

Matroid Union - Main Idea

Going from $O(n \sqrt{r})$ to $O(n+r \sqrt{r})$.

Matroid Union - Main Idea

Going from $O(n \sqrt{r})$ to $O(n+r \sqrt{r})$.

Matroid Union - Main Idea

Going from $O(n \sqrt{r})$ to $O(n+r \sqrt{r})$.

Matroid Union - Main Idea

Going from $O(n \sqrt{r})$ to $O(n+r \sqrt{r})$.

Binary tree of sqrt-decomposition similar to early dynamic MST [Fre85, EGIN97]

Technical part - Overview

1. Exchange Graph \& Augmenting Paths
2. Matroid Intersection

- Matching previous algorithms with Dynamic Oracle - Main Idea: "Exchange-Binary-Search-Tree"

3. Matroid Union

- Improving $\tilde{O}(n \sqrt{r})$ to $\tilde{O}(n+r \sqrt{r})$
- Main Idea: Sparsifying the Exchange Graph

4. Lower Bound

- $\Omega(n \log n)$
- Main Idea: Communication Complexity of Reachability

Lower Bound - Main Idea

Communication game

$$
\begin{gathered}
\text { Alice } \\
\mathcal{M}_{1}=\left(U, \mathcal{I}_{1}\right)
\end{gathered}
$$

Bob

$$
\mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)
$$

How many bits of communication necessary?

Lower Bound - Main Idea

Communication game

$$
\begin{array}{cl}
\text { Alice } & \rightleftarrows \mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)
\end{array}
$$

How many bits of communication necessary?

$$
\leq\left\{\begin{array}{l}
\text { indep. queries } \\
\text { rank queries } / \log (n) \\
\text { dynamic rank queries }
\end{array}\right.
$$

Lower Bound - Main Idea

Communication game

How many bits of communication necessary?

$$
\leq\left\{\begin{array}{l}
\text { indep. queries } \\
\text { rank queries } / \log (n) \\
\text { dynamic rank queries }
\end{array}\right.
$$

Carefully choose matroids (gammoids) to model Graph Reachability

$$
\Omega(n \log n) \text { bit lower-bound }^{\dagger} \text { [Hajnal-Maass-Turán STOC'88] }
$$

Open Problems

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?

Open Problems

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
- Dynamic or traditional query model; or communication.
- Or any $n^{1+\Omega(1)}$ lower-bounds?

Open Problems

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
- Dynamic or traditional query model; or communication.
- Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
- Currently slower than unweighted.
- Match using the dynamic oracle model?

Open Problems

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
- Dynamic or traditional query model; or communication.
- Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
- Currently slower than unweighted.
- Match using the dynamic oracle model?
- Other problems where a "Dynamic Oracle" model is relevant?
- Submodular function minimization/maximization?
- Cut-queries in graphs?

Open Problems

- k-Disjoint Spanning Trees in $\tilde{O}(|E|)$ time?
- Matroid Intersection / Union in $\tilde{O}(n)$ time?
- Dynamic or traditional query model; or communication.
- Or any $n^{1+\Omega(1)}$ lower-bounds?
- What about weighted matroid intersection?
- Currently slower than unweighted.
- Match using the dynamic oracle model?
- Other problems where a "Dynamic Oracle" model is relevant?
- Submodular function minimization/maximization?
- Cut-queries in graphs?

[^0]: * KTH Royal Institute of Technology, Sweden
 ${ }^{\dagger}$ Max-Planck Institute of Informatics, Germany
 \ddagger University of Sheffield, UK

