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SUMMARY

Result:
First subquadratic independence-query matroid intersection algorithm.

• Previous best: Õ(n2) queries.
• Ours: Õ(n9/5) randomized and Õ(n11/6) deterministic.

Technique:
Previous work + a new simple subquadratic reachability algorithm.

• Previous best: O(n2) queries.
• Ours: Õ(n3/2) randomized and Õ(n5/3) deterministic.
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WHAT IS A MATROID?

• Set of elements V. n = |V|.
• Notion of independence I ⊆ 2V.

S ∈ I

S′⊆ S

S ∈ I S′ ∈ I
|S′| < |S|

Downward Closure Exchange Property

x

⇒ ∃x ∈ S\S′ such that S′ ∪ {x} ∈ I⇒ S′ ∈ I
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MATROIDS — EXAMPLES

Graphic Matroid Linear Matroid


0 1 2 0 1
1 0 1 2 0
2 0 2 4 0
1 1 3 2 1
0 0 1 0 5



V = edges V = row vectors
I = forests I = linearly independent
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MATROID INTERSECTION

Matroid Intersection
Given: two matroidM1 = (V, I1) andM2 = (V, I2)
Goal: find a common independent set S ∈ I1 ∩ I2 of maximum size.

How do we access the matroids?

Independence oracle queries: Is X ∈ I1? Is X ∈ I2?

Intersection of three matroids is NP-hard.
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MATROID INTERSECTION — EXAMPLES

Models many combinatorial optimization problems

• Bipartite matching
• M1 = “≤ 1 edge per vertex on the left”
• M2 = “≤ 1 edge per vertex on the right”

• Arborescence (directed spanning tree)
• Colorful spanning trees
• Tree packing
• Graph orientation problems
• . . .

Also connections to Submodular Function Minimization
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PREVIOUS WORK

1960s-70s Edmonds, Lawler and Aigner-Downling: O(n3) queries
• Finding augmenting paths in the exchange graph.

1986 Cunningham: O(n2.5) queries
• Blocking-flow ideas from Hopcroft-Karp algorithm.

2015 Lee-Sidford-Wong: Õ(n2) queries
• Cutting plane method.

2019 Chakrabarty-Lee-Sidford-Singla-Wong and Nguyễn: Õ(n2)
• Efficient implementations of Cunningham’s algorithm.
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• Efficient implementations of Cunningham’s algorithm.

6



PREVIOUS WORK

1960s-70s Edmonds, Lawler and Aigner-Downling: O(n3) queries
• Finding augmenting paths in the exchange graph.

1986 Cunningham: O(n2.5) queries
• Blocking-flow ideas from Hopcroft-Karp algorithm.

2015 Lee-Sidford-Wong: Õ(n2) queries
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MAJOR OPEN PROBLEM:
CAN WE BREAK THIS QUADRATIC BARRIER?
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CAN WE BREAK THIS QUADRATIC BARRIER?

YES, with a more powerful rank-oracle.

• Algorithm using Õ(n1.5) rank-queries. [CLSSW 2019]

Our contribution: YES!
For the classic independence-query and with exact solution.

• Randomized: Õ(n9/5) independence-queries.
• Deterministic: Õ(n11/6) independence-queries.
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• Algorithm using Õ(n1.5) rank-queries. [CLSSW 2019]

Queries
Independence: Is X ∈ I?

Rank: What is maxY⊆X, Y∈I |Y|?

Our contribution: YES!
For the classic independence-query and with exact solution.
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PROOF OUTLINE



REACHABILITY PROBLEM

Given: Directed bipartite graph G with bipartition (L,R);
Two vertices s, t ∈ L.

Goal: Find an (s, t)-path, or determine none exist.

Queries: Specify v ∈ R and X ⊆ L and ask:
• Does v have an in-neighbor from X?
• Does v have an out-neighbor to X?

Theorem: Subquadratic Reachability Problem
=⇒ Subquadratic Matroid Intersection.

Idea: Many short paths — CLSSW approximation algorithm
Few long paths — Reachability problem.

L R

s

t
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FIRST TRY: BREADTH FIRST SEARCH — FROM R TO L

Allowed Queries: Does v ∈ R have an {out/in}-neighbor from X∈ L?

⊆ L⊆ R

s
· · ·

⊆ R Rest of L

X?

v

Binary-search: O(log n)
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CAN WE DO BETTER?
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HEAVY AND LIGHT VERTICES

⊆ L⊆ R

s
· · ·

Rest of R⊆ L Rest of L

Heavy: v ∈ R has large out-degree
(
>
√
n
)

Light: v ∈ R has small out-degree
(
≤
√
n
)

Discovering an heavy vertex is good! Only happens n√
n =
√
n times.

But what if next layer consists of only light vertices?
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Our main insight: We can still efficiently find a heavy vertex!
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REVERSE BFS

• Light vertices have only O(
√
n) outgoing edges. Find all of them!

• BFS starting from all heavy vertices in the reverse graph.

s

⊆ R ⊆ L

Heavy

⊆ L⊆ R

Light

⊆ L ⊆ R

LightAlready reachable from s

Binary-searchLight-edges
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REACHABILITY PROBLEM — ALGORITHM

Run in O(
√
n) phases:

• Categorize heavy / light

• Random sampling ← only place we use randomization
• Carefully keeping track of small lists of neighbors ← less efficient

• Find all outgoing edges of newly light vertices
• Use the reverse BFS to find a heavy vertex reachable from s

Total Query Complexity: Õ(n
√
n) randomized or Õ(n5/3) deterministic.
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SUMMARY

• Reachability Problem: subquadratic number of queries.
• Previous best: O(n2) queries.
• Ours: Õ(n3/2) randomized and Õ(n5/3) deterministic.

Previous work + subquadratic Reachability Problem =⇒

• Matroid Intersection: subquadratic number of independence-queries.
• Previous best: Õ(n2) queries.
• Ours: Õ(n9/5) randomized and Õ(n11/6) deterministic.
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OPEN PROBLEMS

• Gap between lower and upper bounds for matroid intersection.
• No Ω(n1+ϵ) lower-bound is known for ϵ > 0.

• Tight bounds for the reachability problem.
We conjecture that our Õ(n

√
n) bound is tight.

• Can one also solve weighted matroid intersection with subquadratic
number of queries?

• Investigating the gap between independence and rank oracle models.
• Reachability Problem: O(n

√
n) vs O(n).

• Approximate Matroid Intersection: O(n
√
n/poly(ε)) vs O(n/ε).
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