Breaking $O(n r)$ for Matroid Intersection

Joakim Blikstad
ICALP 2021
KTH Royal Institute of Technology, Sweden

What is a Matroid?

- Set of elements V. $n=|V|$.
- Notion of independence $\mathcal{I} \subseteq 2^{V}$.

Graphic Matroid
Linear Matroid
$\left[\begin{array}{lllll}0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 2 & 0 \\ 2 & 0 & 2 & 4 & 0 \\ 1 & 1 & 3 & 2 & 1 \\ 0 & 0 & 1 & 0 & 5\end{array}\right]$

Exact definition is not important for this presentation.

$$
\begin{aligned}
& V=\text { edges } \\
& \mathcal{I}=\text { forests }
\end{aligned}
$$

$V=$ row vectors
$\mathcal{I}=$ linearly independent

Matroid Intersection

Given: two matroid $\mathcal{M}_{1}=\left(V, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(V, \mathcal{I}_{2}\right)$
Goal: find a common independent set $S \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ of maximum size Queries: independence-oracle Is $X \in \mathcal{I}_{1}$? Is $X \in \mathcal{I}_{2}$?

Matroid Intersection models many combinatorial optimization problems.
E.g. Bipartite Matching:

- $\mathcal{M}_{1}=$ " ≤ 1 edge per vertex on the left"
- $\mathcal{M}_{2}=$ " ≤ 1 edge per vertex on the right"

Augmenting Paths \& The Exchange Graph

- Special case: Bipartite Matching
- Augmenting Path algorithms
- Similar idea works for matroid intersection too!
- Find augmenting paths in the Exchange Graph.

[Edmonds 60s]

The Õ(nr) query bound

$$
\text { (} n=\text { \#elements, } r=\text { size of answer) }
$$

- $\tilde{O}(n r)$ bound \approx "find each of the r augmenting path in $O(n)$ queries".
[Nguyen, CLSSW 2019]

The Õ(nr) query bound

$$
\text { (} n=\text { \#elements, } r \text { = size of answer) }
$$

- $\tilde{O}(n r)$ bound \approx "find each of the r augmenting path in $O(n)$ queries".
[Nguyen, CLSSW 2019]
- To beat this we need to find several paths "in parallel".

The Õ(nr) query bound

$$
\text { (} n=\text { \#elements, } r \text { = size of answer) }
$$

- $\tilde{O}(n r)$ bound \approx "find each of the r augmenting path in $O(n)$ queries". [Nguyen, CLSSW 2019]
- To beat this we need to find several paths "in parallel".
- Challenge: Exchange Graph changes after each augmentation:
- Some edges added, some removed.
- Set of vertex disjoint paths \nRightarrow augment along all of them.
\uparrow unlike for bipartite matching / max-flow (Hopcroft-Karp / Dinitz)

The Õ($n r$) query bound (cont.)

$$
\text { (} n=\text { \#elements, } r=\text { size of answer })
$$

Breaking Õ(nr):

- Previous: large $r=\omega(\sqrt{n})$:
- (1- ε)-Approx.: $\quad \tilde{o}\left(\frac{n \sqrt{n}}{\varepsilon \sqrt{\varepsilon}}\right)$ queries
- Exact: $\quad \tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$ queries
[CLSSW 2019]
[BvdBMN 2021]

The Õ($n r$) query bound (cont.)

$$
\text { (} n=\text { \#elements, } r=\text { size of answer })
$$

Breaking Õ(nr):

- Previous: large $r=\omega(\sqrt{n})$:
- (1- ε)-Approx.: $\quad \tilde{o}\left(\frac{n \sqrt{n}}{\varepsilon \sqrt{\varepsilon}}\right)$ queries
- Exact: $\quad \tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$ queries
- This paper: full range of r :
- ($1-\varepsilon$)-Approx.: $\tilde{O}\left(\frac{n \sqrt{r}}{\varepsilon}\right)$ queries
- Exact: Õ(n³/4) queries

Technique

Approximation

Improve algorithm of [CLSSW] with two new ideas.

RefineABA

Exact

Plug in the approximation algorithm in the framework of [BvdBMN].

Open Problems

- Gap between lower and upper bounds for matroid intersection.
- No $\Omega\left(n^{1+\delta}\right)$ lower-bound is known for $\delta>0$.
- Can one also solve weighted matroid intersection in o(nr) queries?

Thanks!

Extra Slides

Summary

Result:

$$
\text { (} n=\text { \#elements, } r \text { = size of answer) }
$$

First independence-query matroid intersection algorithms breaking Õ(nr).

- $(1-\varepsilon)$-approximation
- Previous best: $O(n r / \varepsilon)$ and $O\left(n^{1.5} / \varepsilon^{1.5}\right)$.
- Ours: Õ $(n \sqrt{r} / \varepsilon)$ queries.
- Exact:
- Previous best: Õ(nr) and $\tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$
- Ours: $\tilde{O}\left(n r^{3 / 4}\right)$ queries

Technique:

- ($1-\varepsilon$)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: $(1-\varepsilon)$-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: $(1-\varepsilon)$-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$
Bottleneck: $\tilde{O}\left(\frac{n \sqrt{n}}{\varepsilon \sqrt{\varepsilon}}\right)$ approximation algorithm by [CLSSW].

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: $(1-\varepsilon)$-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$
Bottleneck: $\tilde{O}\left(\frac{n \sqrt{n}}{\varepsilon \sqrt{\varepsilon}}\right)$ approximation algorithm by [CLSSW].
Replace with our improved $\tilde{O}\left(\frac{n \sqrt{r}}{\varepsilon}\right)$ approximation algorithm:
New Query Complexity: Õ($n r^{3 / 4}$)

Approximation Algorithm

We improve the $\tilde{O}\left(\frac{n \sqrt{n}}{\varepsilon \sqrt{\varepsilon}}\right)$ approx-algorithm [CLSSW]:
Algorithm [CLSSW]
Run in $O(1 / \varepsilon)$ phases and find "blocking-flow":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.
Blocking-Flow: (think Hopcroft-Karp / Dinitz's)
Find a maximal set of "compatible" augmenting paths of the same length.

Approximation Algorithm - Improvements

Algorithm [CLSSW]
Run in $O(1 / \varepsilon)$ phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.
This Paper: Two new improvements:

Approximation Algorithm - Improvements

Algorithm [CLSSW]
Run in $O(1 / \varepsilon)$ phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.
This Paper: Two new improvements:

- In stage 1: We refine on three consecutive layers instead of two.
- Guarantees we make "progress" on "even" layers \subseteq S. $|S| \leq r$.
- Replaces \sqrt{n} term with \sqrt{r}.

Approximation Algorithm - Improvements

Algorithm [CLSSW]
Run in $O(1 / \varepsilon)$ phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.
This Paper: Two new improvements:

- In stage 1: We refine on three consecutive layers instead of two.
- Guarantees we make "progress" on "even" layers \subseteq S. $|S| \leq r$.
- Replaces \sqrt{n} term with \sqrt{r}.
- In stage 2: We find paths directly on top of the output of stage 1.
- Fewer path need to be found.
- Shaves of $1 / \sqrt{\varepsilon}$-factor.

Augmenting Sets

Augmenting Sets \approx Collection of "compatible" augmenting paths.
Only local constraints:
" $S-A+B \in \mathcal{I}^{\prime}$ where A and B are in adjacent distance-layers.

Augmenting Sets

Augmenting Sets \approx Collection of "compatible" augmenting paths.
Only local constraints:
" $S-A+B \in \mathcal{I}^{\prime \prime}$ where A and B are in adjacent distance-layers.

Finding a maximal augmenting set ("Blocking-Flow")

Keep track of a partial augmenting set.

Finding a maximal augmenting set ("Blocking-Flow")

Keep track of a partial augmenting set.

Refining

Locally improve two consecutive layers.

Refining

Locally improve two consecutive layers.

1. Extend A_{i} while it can be "matched" from B_{i}.

Refining

Locally improve two consecutive layers.

1. Extend A_{i} while it can be "matched" from B_{i}.
2. Throw away "unmatched" elements of B_{i}.

Refining

Locally improve two consecutive layers.

1. Extend A_{i} while it can be "matched" from B_{i}.
2. Throw away "unmatched" elements of B_{i}.
3. Now $\left|A_{i}\right|=\left|B_{i}\right|$.

New Idea 1: Refining 3 consecutive layers

Guarantees that we make progress on "even" layers \subseteq. $|S| \leq r$.
Replaces \sqrt{n} term with \sqrt{r}.
\longleftarrow allows us o(nr) algorithms.

New Idea 2: Finding Paths

When refining-progress stagnates:

- Fall back to finding augmenting paths individually.
- New Idea: Find them with respect to partial aug-set $\left(B_{1}, A_{1}, \ldots B_{\ell+1}\right)$.

Lowers dependence on ε from $O\left(1 / \varepsilon^{1.5}\right)$ to $O(1 / \varepsilon)$.

Summary

Result:

$$
\text { (} n=\text { \#elements, } r \text { = size of answer) }
$$

First independence-query matroid intersection algorithms breaking Õ(nr).

- ($1-\varepsilon$)-approximation
- Previous best: $O(n r / \varepsilon)$ and $O\left(n^{1.5} / \varepsilon^{1.5}\right)$.
- Ours: Õ $(n \sqrt{r} / \varepsilon)$ queries.
- Exact:
- Previous best: Õ(nr) and $\tilde{O}\left(n^{6 / 5} r^{3 / 5}\right)$
- Ours: Õ $\left(n r^{3 / 4}\right)$ queries

Technique:

- ($1-\varepsilon$)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.

