Breaking O(nr) for Matroid Intersection

Joakim Blikstad ICALP 2021

KTH Royal Institute of Technology, Sweden

What is a Matroid?

- Set of elements V. n = |V|.
- Notion of independence $\mathcal{I} \subseteq 2^{V}$.

Graphic Matroid

Linear Matroid

Exact definition is not important for this presentation.

 $\begin{bmatrix} 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 2 & 0 \\ 2 & 0 & 2 & 4 & 0 \\ 1 & 1 & 3 & 2 & 1 \\ 0 & 0 & 1 & 0 & 5 \end{bmatrix}$

V = edges $\mathcal{T} = forests$ V = row vectors

 $\mathcal{I} = \text{linearly independent}$

Given: two matroid $\mathcal{M}_1 = (V, \mathcal{I}_1)$ and $\mathcal{M}_2 = (V, \mathcal{I}_2)$ **Goal:** find a common independent set $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ of maximum size **Queries:** independence-oracle *Is* $X \in \mathcal{I}_1$? *Is* $X \in \mathcal{I}_2$?

Matroid Intersection models many combinatorial optimization problems.

E.g. Bipartite Matching:

- $\cdot \ \mathcal{M}_1 = `\leq 1$ edge per vertex on the left"
- $\cdot \mathcal{M}_2 =$ " \leq 1 edge per vertex on the right"

Augmenting Paths & The Exchange Graph

- Special case: Bipartite Matching
- Augmenting Path algorithms
 - · Similar idea works for matroid intersection too!
 - Find augmenting paths in the Exchange Graph.

[Edmonds 60s]

The $\tilde{O}(nr)$ query bound

(n = #elements, r = size of answer)

• $\tilde{O}(nr)$ bound \approx "find each of the *r* augmenting path in O(n) queries". [Nguyen, CLSSW 2019]

The $\tilde{O}(nr)$ query bound

(n = #elements, r = size of answer)

- $\tilde{O}(nr)$ bound \approx "find each of the *r* augmenting path in O(n) queries". [Nguyen, CLSSW 2019]
- To beat this we need to find several paths "in parallel".

The $\tilde{O}(nr)$ query bound

(n = #elements, r = size of answer)

- $\tilde{O}(nr)$ bound \approx "find each of the *r* augmenting path in O(n) queries". [Nguyen, CLSSW 2019]
- To beat this we need to find several paths "in parallel".
- Challenge: Exchange Graph changes after each augmentation:
 - Some edges added, some removed.
 - Set of vertex disjoint paths $\not\Rightarrow$ augment along all of them.

↑ unlike for bipartite matching / max-flow (Hopcroft-Karp / Dinitz)

(n = # elements, r = size of answer)

Breaking $\tilde{O}(nr)$:

- **Previous:** large $r = \omega(\sqrt{n})$:
 - (1ε) -Approx.: $\tilde{O}\left(rac{n\sqrt{n}}{\varepsilon\sqrt{\varepsilon}}\right)$ queries

 - Exact: $\tilde{O}(n^{6/5}r^{3/5})$ gueries

[CLSSW 2019] [BvdBMN 2021]

(n = #elements, r = size of answer)

Breaking Õ(nr):

- **Previous:** large $r = \omega(\sqrt{n})$:
 - (1ε) -Approx.: $\tilde{O}\left(\frac{n\sqrt{n}}{\varepsilon\sqrt{\varepsilon}}\right)$ queries
 - Exact: $\tilde{O}(n^{6/5}r^{3/5})$ queries

[CLSSW 2019] [BvdBMN 2021]

- This paper: full range of r:
 - (1ε) -Approx.: $\tilde{O}\left(\frac{n\sqrt{r}}{\varepsilon}\right)$ queries
 - Exact: $\tilde{O}(nr^{3/4})$ queries

Technique

Approximation Improve algorithm of [CLSSW] with two new ideas.

Exact Plug in the approximation algorithm in the framework of [BvdBMN].

- Gap between lower and upper bounds for matroid intersection.
 No Ω(n^{1+δ}) lower-bound is known for δ > 0.
- Can one also solve **weighted** matroid intersection in *o*(*nr*) queries?

Thanks!

Extra Slides

Summary

Result:

(n = #elements, r = size of answer)

First independence-query matroid intersection algorithms breaking $\tilde{O}(nr)$.

- (1 ε)-approximation
 - Previous best: $O(nr/\varepsilon)$ and $\tilde{O}(n^{1.5}/\varepsilon^{1.5})$.
 - **Ours:** $\tilde{O}(n\sqrt{r}/\varepsilon)$ queries.
- Exact:
 - Previous best: $\tilde{O}(nr)$ and $\tilde{O}(n^{6/5}r^{3/5})$
 - Ours: Õ(nr^{3/4}) queries

Technique:

- + (1 ε)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.

Exact Algorithm

Algorithm [BvdBMN]:

- 1. Many short paths: (1ε) -approximation algorithm
- 2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}(n^{6/5}r^{3/5})$

Algorithm [BvdBMN]:

- 1. Many short paths: (1ε) -approximation algorithm
- 2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}(n^{6/5}r^{3/5})$

Bottleneck: $\tilde{O}\left(\frac{n\sqrt{n}}{\varepsilon\sqrt{\varepsilon}}\right)$ approximation algorithm by [CLSSW].

Algorithm [BvdBMN]:

- 1. Many short paths: (1ε) -approximation algorithm
- 2. Few remaining long paths: find them one by one

Old Query Complexity: $\tilde{O}(n^{6/5}r^{3/5})$

Bottleneck: $\tilde{O}\left(\frac{n\sqrt{n}}{\varepsilon\sqrt{\varepsilon}}\right)$ approximation algorithm by [CLSSW].

Replace with our improved $\tilde{O}\left(\frac{n\sqrt{r}}{\varepsilon}\right)$ approximation algorithm: New Query Complexity: $\tilde{O}(nr^{3/4})$ We improve the $\tilde{O}\left(\frac{n\sqrt{n}}{\varepsilon\sqrt{\varepsilon}}\right)$ approx-algorithm [CLSSW]:

Algorithm [CLSSW] Run in $O(1/\varepsilon)$ phases and find "blocking-flow":

Stage 1: Keep refining a partial augmenting set.

Stage 2: When progress stagnates, find remaining paths one at a time.

Blocking-Flow: (think Hopcroft-Karp / Dinitz's) Find a maximal set of "compatible" augmenting paths of the same length.

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

- In stage 1: We refine on three consecutive layers instead of two.
 - Guarantees we make "progress" on "even" layers $\subseteq S$. $|S| \leq r$.
 - Replaces \sqrt{n} term with \sqrt{r} .

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find "blocking-flows":
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

- In stage 1: We refine on three consecutive layers instead of two.
 - Guarantees we make "progress" on "even" layers \subseteq S. $|S| \leq r$.
 - Replaces \sqrt{n} term with \sqrt{r} .
- In stage 2: We find paths directly on top of the output of stage 1.
 - Fewer path need to be found.
 - Shaves of 1/ $\sqrt{\varepsilon}$ -factor.

[CLSSW]

Augmenting Sets \approx Collection of "compatible" augmenting paths.

Only **local** constraints:

"S – A + B $\in \mathcal{I}$ " where A and B are in adjacent distance-layers.

[CLSSW]

Augmenting Sets \approx Collection of "compatible" augmenting paths.

Only **local** constraints:

"S – A + B $\in \mathcal{I}$ " where A and B are in adjacent distance-layers.

Keep track of a partial augmenting set.

Keep track of a partial augmenting set.

1. Extend A_i while it can be "matched" from B_i .

- 1. Extend A_i while it can be "matched" from B_i .
- 2. Throw away "unmatched" elements of B_i .

- 1. Extend A_i while it can be "matched" from B_i .
- 2. Throw away "unmatched" elements of B_i .
- 3. Now $|A_i| = |B_i|$.

New Idea 1: Refining 3 consecutive layers

Guarantees that we make progress on "even" layers $\subseteq S$. $|S| \leq r$. **Replaces** \sqrt{n} term with \sqrt{r} . \leftarrow allows us o(nr) algorithms.

New Idea 2: Finding Paths

When refining-progress stagnates:

- Fall back to finding augmenting paths individually.
- New Idea: Find them with respect to partial aug-set $(B_1, A_1, \ldots, B_{\ell+1})$.

Lowers dependence on ε from $O(1/\varepsilon^{1.5})$ to $O(1/\varepsilon)$.

Summary

Result:

(n = # elements, r = size of answer)

First independence-query matroid intersection algorithms breaking $\tilde{O}(nr)$.

- (1 ε)-approximation
 - Previous best: $O(nr/\varepsilon)$ and $\tilde{O}(n^{1.5}/\varepsilon^{1.5})$.
 - **Ours:** $\tilde{O}(n\sqrt{r}/\varepsilon)$ queries.
- Exact:
 - Previous best: $\tilde{O}(nr)$ and $\tilde{O}(n^{6/5}r^{3/5})$
 - Ours: Õ(nr^{3/4}) queries

Technique:

- + (1 ε)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.