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Abstract

Let Cn = {compositions of n}, C = ∪Cn. We define a
partial order making C into a ranked poset having 1 as its
bottom element and Cn as its (n − 1)-st rank level.

Let α = a1 + · · · + ak ∈ Cn. The interval [1, α] is shown
to have the following properties:

• The number of maximal chains in [1, α] equals the num-
ber of permutations of [n] with descent set {a1, a1 +
a2, . . .}.

• The interval [1, α] is CL-shellable.

• The Möbius function satisfies

µ(1, α) =

{
(−1)n−1 if α = x22 . . . 22y, x, y ∈ {1, 2},
0 otherwise.

Furthermore, there is a Pieri-type rule

Q1Qα =
∑

β�α

Qβ,

1Partially supported by NSF grant #DMS-9988459 and by the Institut
Mittag-Leffler.



for fundamental quasi-symmetric functions Qα, where the
summation runs over all β covering α in the poset. Thus,
the poset C plays a role for quasi-symmetric functions anal-
ogous to that of Young’s lattice for symmetric functions. We
also discuss some algebras that may play a role for C anal-
ogous to that played by the group algebra of the symmetric
group for Young’s lattice.

1 Introduction.

Let λ = (λ1, λ2, . . . ) be a partition of n ≥ 0 (denoted λ ⊢ n ), i.e.,
λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑
λi = n. Young’s lattice Y is the poset

(actually a distributive lattice) of all partitions of all integers n ≥ 0
ordered by inclusion of their Young diagrams. Thus λ ≤ µ in Y if and
only if λi ≤ µi for all i. The poset Y has a number of remarkable al-
gebraic and combinatorial properties related to symmetric functions
and the symmetric group. These properties include the following.
(Unexplained terminology on posets and symmetric functions may
be found e.g. in [20][21].)

1. Y is a graded poset, and the rank of a partition λ ⊢ n is n.

2. The number of saturated chains in Y from 0̂ (the bottom el-
ement of Y , i.e., the partition ∅ of 0) to a partition λ is the
number fλ of standard Young tableaux of shape λ.

3. The total number of saturated chains from 0̂ to rank n is the
number t(n) of involutions in the symmetric group Sn.

4. Let sλ denote a Schur function. Then by Pieri’s rule [21,
Thm. 7.15.7] we have

s1sλ =
∑

λ≺µ

sµ, (1)

where λ ≺ µ denotes that µ covers λ in Y .

5. Since Y is a distributive lattice, every interval [λ, µ] is EL-
shellable and hence Cohen-Macaulay [2].
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6. Y is the Bratteli diagram for the tower of algebras KS0 ⊂
KS1 ⊂ · · · , where KSn denotes the group algebra of Sn over
the field K of characteristic 0. (See Section 5.)

In this paper we define an analogue C of Y whose elements are the
compositions α of all integers n ≥ 1. Thus α = (α1, . . . , αk) ∈ Pk,
where P = {1, 2, . . .} and

∑
αi = n. Let Comp(n) denote the set of

all compositions of n, so by elementary enumerative combinatorics
#Comp(n) = 2n−1 for n ≥ 1. For each of the six properties of Y
above there is a corresponding property of C.

We take the analogue of property 4, a Pieri rule for fundamental
quasisymmetric functions, as our guiding principle. It leads to a
combinatorial definition of the partial order of C. Subsequently it
turns out that this partial order can also be described in terms of
subwords.

Composition analogues of Y have been given previously by Berg-
eron, Bousquet-Mélou and Dulucq [1], Snellman [17][18], and Sagan
and Vatter [16], but our definition is different. In [18] Snellman ob-
tains further properties of C after learning of this poset from us.

We now define C in terms of the cover relation α ≺ β. In Section 3
we explain how this definition arises naturally from the theory of
quasisymmetric functions. In a poset P , we say that t covers s,
denoted s ≺ t, if s < t and no u ∈ P satisfies s < u < t.

Definition 1.1. Let C =
⋃
n≥1 Comp(n). Define a partial ordering

on C by letting β cover α = (α1, . . . , αk) if β can be obtained from α
either by adding 1 to a part, or adding 1 to a part and then splitting
this part into two parts. More precisely, for some j we have either

β = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αk)

or
β = (α1, . . . , αj−1, h, αj + 1 − h, αj+1, . . . , αk)

for some 1 ≤ h ≤ αj.

It is clear that C is a graded poset for which Comp(n) is the set
of elements of rank n− 1. The bottom element 0̂ of C is the unique
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Figure 1: The composition poset C

composition α = (1) of 1. Figure 1 shows the first four levels (i.e.,
ranks 0, 1, 2, 3) of C.

In the following sections we develop some combinatorial, topologi-
cal, and algebraic properties of C. In Section 2 we derive elementary
properties of C that in Section 3 lead to a proof that Definition 1.1
of C gives the correct Pieri rule. In Section 4 we give the description
of C in terms of subword order on the free monoid on a two-letter
alphabet. From this we deduce that intervals in C are lexicograph-
ically shellable, and hence Cohen-Macaulay, and we determine its
Möbius function and some related generating functions. Section 5
concerns some speculations on the connection between C and a class
of algebras recently defined by Hivert and Thiéry.

We are grateful to Sergey Fomin for pointing out to us the connec-
tion between the composition poset C and subword order.

2 Descent sets.

Given a permutation w = w1w2 · · ·wn ∈ Sn, define the descent set
D(w) by

D(w) = {i : wi > wi+1}.
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Similarly the descent composition C(w) is the composition (α1, α2, . . . , αk)
defined by

C(w) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1}.

Of course D(w) and C(w) contain equivalent information; we will
use whichever is more convenient for the situation at hand.

If α ∈ Comp(n) then a saturated chain from 0̂ to α, or saturated
α-chain for short, is a chain

0̂ = α1 ≺ α2 ≺ · · · ≺ αn = α,

where ≺ denotes a covering relation in C. Thus αi ∈ Comp(i).
Let Sn denote the symmetric group of all permutations of [n] :=
{1, 2, . . . , n}. Given w ∈ Sn, write w[i] for the restriction of w to [i],
i.e., the subsequence of w (regarded as a word w1w2 · · ·wn) consisting
of 1, 2, . . . , i. For instance, if w = 5274613 then w[4] = 2413. Define
m(w) to be the sequence

C(w[1]), . . . , C(w[n])

of compositions C(w[i]) ∈ Comp(i). For instance, if w = 5274613,
then

m(w) = (1, 11, 12, 22, 122, 132, 1222).

Theorem 2.1. The map m is a bijection from Sn to saturated α-
chains in C, where α ranges over Comp(n).

Proof. Let w = w1 · · ·wn ∈ Sn, and for 0 ≤ i ≤ n define

w(i) = w1 · · · wi (n+ 1)wi+1 · · · wn ∈ Sn+1.

Thus w(0), w(1), . . . , w(n) are precisely the permutations u ∈ Sn+1

satisfying u[n] = w. It suffices to show that the compositions C(w(i)),
1 ≤ i ≤ n, are distinct and are precisely the compositions covering
C(w) in C.

The verification of this statement is straightforward. Let C(w) =
(α1, . . . , αk). Let bj = α1 + α2 + · · ·+ αj . Then

C(w(bj)) = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αk),
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which for 1 ≤ j ≤ k are distinct compositions covering C(w). On
the other hand, suppose that 0 ≤ i ≤ n and i is not of the form
α1+α2+· · ·+αj. Thus i = α1+· · ·+αj+h for some 0 ≤ j ≤ k−1 and
1 ≤ h < αj+1. (When j = 0 we set α1+· · ·+αj = 0.) Then C(w(i)) is
obtained from C(w) by replacing αj+1 with the pair (h, αj+1 +1−h).
These yield all the other (distinct) elements covering α, completing
the proof. 2

Note. Let α = (α1, . . . , αk). If we replace αi with the pair αi, 1,
then we obtain the same β ≻ α as when we replace αi+1 with 1, αi+1.
Nevertheless, in accordance with the proof of Theorem 2.1, if C(w) =
α then there is a unique j for which C(w(j)) = β, viz., j = α1 + · · ·+
αi − 1.

The following corollaries are an immediate consequence of Theo-
rem 2.1 and its proof.

Corollary 2.2. The number of saturated α-chains in C is equal to
the number fn(α) of permutations w ∈ Sn with descent composition
α.

Corollary 2.3. The total number of saturated chains in C from ∅ to
rank n− 1 is given by

∑

α∈Comp(n)

fn(α) = n!.

Corollary 2.4. If α ∈ Comp(n) then α is covered in C by exactly
n+ 1 compositions β.

A strengthening of Corollary 2.4 is given in Theorem 4.7, part (1)
of which can be stated as saying that the number of compositions in
Comp(p) that lie above α equals

p−n∑

i=0

(
p− 1

i

)
.

Corollary 2.4 is the case p = n+ 1.
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3 Quasisymmetric functions.

We have given a “naive” definition of the poset C. In this section we
give a more motivated definition based on quasisymmetric functions
which is completely analogous to the definition (1) of Young’s lattice
in terms of Schur functions. Let σ = (σ1, σ2, . . . ), where σi ∈ N =
{0, 1, 2, . . .} and

∑
σi < ∞, and write xσ = xσ1

1 x
σ2

2 · · · . Recall (e.g.,
[21, §7.19]) that a quasisymmetric function (say over Z) is a formal
power series y =

∑
σ cσx

σ of bounded degree, where cσ ∈ Z, satisfying
the following condition. Let τ1, . . . , τk > 0 and i1 < · · · < ik. Then

[xτ1i1 · · ·x
τk
ik

]y = [xτ11 · · ·xτkk ]y,

where [xσ]y denotes the coefficient cσ of xσ in y.
If α = (α1, . . . , αk) ∈ Comp(n) then define the fundamental qua-

sisymmetric function Lα by

Lα =
∑

xi1 · · ·xik ,

summed over all sequences 1 ≤ i1 ≤ · · · ≤ ik such that ij < ij+1 if
j = α1 + · · ·+ αh for some 1 ≤ h ≤ k − 1. For instance,

L212 =
∑

a≤b<c<d≤e

xaxbxcxdxe.

It is a standard result [21, Prop. 7.19.1] that {Lα : α ∈ Comp(n)} is
a Z-basis for all quasisymmetric functions that are homogeneous of
degree n.

Let w ∈ Sn, and let v be a permutation of {n+1, n+2, · · · , n+m}.
Let C(w) = α and C(v) = β. Another basic result on quasisymmetric
functions [21, Exer. 7.93] asserts that

LαLβ =
∑

u

LC(u),

where u runs over all shuffles of w and v, i.e., all permutations u ∈
Sn+m such that u[n] = w and the restriction of u to {n+1, . . . , n+m}
is v. Apply this result to the case m = 1. The shuffles of w and v are
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precisely the permutations w(i) appearing in the proof of Theorem 2.1.
Hence we obtain the formula

L1Lα =
∑

α≺β

Lβ. (2)

Equation (2) could therefore be taken as the definition of C (defined
by its cover relations α ≺ β). Note that Corollary 2.2 is equivalent
to the quasisymmetric function identity

Ln1 =
∑

α∈Comp(n)

fn(α)Lα.

This identity can be proved directly in a number of ways. It is anal-
ogous to the symmetric function identity [21, Cor. 7.12.5]

sn1 =
∑

λ⊢n

fλsλ.

4 Subword order: shellability and Möbius

function.

Let A∗ denote the set of all words in the two-letter alphabet A =
{a, b}. Similarly, let F ∗∗ denote the set of all words in the two-letter
alphabet F = {1,+}, beginning and ending with “1” and without
consecutive plusses. The substitutions

a
ϕ
7→ +1 (3)

b
ϕ
7→ 1 (4)

induce a bijection

A∗ ϕ
→ F ∗∗ (5)

a1 . . . ap 7→ 1ϕ(a1) . . . ϕ(ap) (6)

There is also a bijection

F ∗∗ ψ
→ C (7)
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obtained by replacing maximal strings of ones by their lengths. A
couple of examples should make the idea of the composite bijection

A∗ ψ◦ϕ
−→ C clear:

aaabbab
ϕ
→ 1 + 1 + 1 + 1 1 1 + 1 1

ψ
→ (1, 1, 1, 3, 2)

bbbaaba
ϕ
→ 1 1 1 1 + 1 + 1 1 + 1

ψ
→ (4, 1, 2, 1)

We say that a word u is a subword of a word w = a1 · · ·ap if
u = ai1 · · ·aik for some string 1 ≤ i1 < · · · < ik ≤ p. The subword
relation u ≤ w introduces a structure of a partial order on the set
A∗.

Theorem 4.1. The map ψ ◦ ϕ is an isomorphism of A∗ and C as
partially ordered sets.

Proof. We have seen that ψ ◦ ϕ gives a bijection between words
of length n− 1 and Comp(n) for all n ≥ 1. Thus, it remains only to
check that the covering relations agree.

Suppose that ψ ◦ ϕ (u) = (α1, . . . , αk), and that the word w is
obtained from u by inserting somewhere a single letter. If that letter
is b then

ψ ◦ ϕ (w) = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αk)

for some j. If the letter is a then

ψ ◦ ϕ (w) = (α1, . . . , αj−1, h, αj + 1 − h, αj+1, . . . , αk)

for some j and some 1 ≤ h ≤ αj . Thus

u ≺ w =⇒ ψ ◦ ϕ (u) ≺ ψ ◦ ϕ (w).

Conversely, every covering relation α ≺ β in C is obtained this way,
as is easily seen from Definition 1.1 and the construction. 2

Subword order (on alphabets of arbitrary size) has been previously
studied, see [3, 5] and the references given there. By Theorem 4.1 we
can transfer known results from A∗ to C. A basic such result is the
following.
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Theorem 4.2. Intervals in the composition poset C are dual CL-
shellable, and hence Cohen-Macaulay.

Proof. This is [3, Thm. 3] transferred to C. A direct proof is given
in Section 6, where an explicit dual CL-labeling of intervals in C is
constructed. This labeling is combinatorially equivalent to the one
obtained via transfer from [3]. However, it is described directly in
terms of compositions rather than words. 2

Next we determine the Möbius function of A∗. The length of a
word w = a1 · · ·ap is ℓ(w) = p, and its repetition set is R(w) =
{i : ai−1 = ai}. An embedding of a subword u in w is a sequence
1 ≤ i1 < · · · < ik ≤ p such that u = ai1 · · ·aik . It is a normal
embedding if also R(w) ⊆ {i1, . . . , ik}.

Theorem 4.3 ([3], Theorem 1).

µA∗(u, w) = (−1)ℓ(w)−ℓ(u) · number of normal embeddings of u in w

This result determines the Möbius function of C via the isomor-
phism ψ ◦ ϕ. For example,

µC(5, (3, 3, 3)) = µA∗(bbbb, bbabbabb)

= (−1)8−4 · number of normal embeddings

= 3.

Corollary 4.4. The Möbius function of lower intervals in C is

µC(1, α) =

{
(−1)|α|−1 if α = (x, 2, 2, . . . , 2, 2, y), x, y ∈ {1, 2},
0 otherwise.

In particular, for given n > 1 there are exactly two compositions
α ∈ Comp(n) such that µ(1, α) 6= 0, namely 22 · · ·22 and 122 · · ·221
if n is even, and 122 · · ·22 and 22 · · ·221 if n is odd.

Proof. Let w be the word corresponding to α. A normal embedding
of the empty word into w exists if and only if the repetition set of w
is empty, and the embedding is then unique. Therefore, µA∗(∅, w) 6=
0 ⇔ R(w) = ∅ ⇔ w = ababa · · · or w = babab · · · .
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Transferring this information to the poset C, we deduce that
µC(1, α) 6= 0 if and only if α is of the stated type, and that its value
is then ±1. 2

Let C̃n = (
⋃

1≤i≤n Comp(i))
⋃
{ω}, where ω is a new top element

and the order relation is otherwise as before. Thus, C̃n is graded and
of length n.

Corollary 4.5. The poset C̃n is shellable. Its Möbius function satis-
fies

µ(1, ω) = (−1)n.

Proof. Every composition (α1, . . . , αk) ∈ Comp(n) lies below the
composition (2, . . . , 2) ∈ Comp(2n) in C. To see this, first group the
parts (2+· · ·+2)+· · ·+(2+· · ·+2) so that the i-th parenthesis contains

αi 2’s, then reduce the i-th group to αi. Thus, C̃n is obtainable
via rank-selection from the interval [1, (2, . . . , 2)] of C, so shellability
follows by [2].

For the Möbius function we get, using the previously computed
expressions from Corollary 4.4:

µ(1, ω) = −
∑

|α|≤n

µ(1, α) = −(1 − 2 + 2 − 2 + · · · ) = (−1)n. 2

In the following we write |α| = n to mean α ∈ Comp(n).

Theorem 4.6. (1) Let β ∈ Comp(k). Then

∑

α∈C

µC(β, α)t|α|−k =
1 − t

(1 + t)k
.

(2) ∑

α,β∈C

µC(β, α)t|α|−1q|β|−1 =
1 − t

1 − (2q − 1)t
.

Proof. This is [3, Theorem 2] transferred to C. 2

There are similar rational expressions for the zeta function of C.
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Theorem 4.7. (1) Let β ∈ Comp(k). Then

∑

α∈C

ζC(β, α)t|α|−k =
1

(1 − 2k)(1 − t)k−1
.

(2) ∑

α,β∈C

ζC(β, α)t|α|−1q|β|−1 =
1 − t

(1 − 2t)(1 − (2q + 1)t)
.

Proof. This is [3, Remark 3] transferred to C. 2

An interesting feature of the series in part (1) of these theorems
is that the right-hand side does not depend on the combinatorial
structure of the composition β, only on its rank k − 1.

Similar expressions for the generating functions for powers µdC(β, α)
and ζdC(β, α) can be transferred from the results of [5, Section 4]. Here
“powers” are to be understood in the sense of the incidence algebra
of C.

A further consequence of Theorem 4.1 was pointed out to us by
Sergey Fomin. The poset A∗ (and hence C), together with the com-
plete binary tree T , form a pair of dual graded graphs [9, Exam-
ples 2.3.6, 2.4.1]. This means that all the algebraic and combinatorial
machinery of [9] and [10] can be applied to C. In particular, let C′

denote C with a new bottom element ∅ (the empty composition of
0) adjoined, and consider walks on the vertices of C′ with steps as
follows: (a) from α we can step to β ≻ α, and (b) from α we can step
to the composition obtained by subtracting one from the last part
of α. There are then explicit formulas for the cardinality of many
classes of such walks. We mention two such formulas to convey the
flavor of this topic.

• The number of walks from ∅ to ∅ in 2n steps beginning with
n steps of type (a) (and therefore ending with n steps of type
(b)) is n!. This result is equivalent to Corollary 2.3 since the
steps of type (b) are uniquely determined.

• The total number of walks from ∅ to ∅ in 2n steps is 1 · 3 ·
5 · · · (2n− 1).
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5 Representation theory.

Let K = A0 ⊂ A1 ⊂ · · · be a tower T of finite-dimensional semisim-
ple algebras over a field K. Let irr(An) denote the set of irreducible
representations of An. Define a poset PT , with each cover relation
x ≺ y weighted by a positive integer ω(x, y), on the set

⋃
n≥0 irr(An)

as follows. Let y ∈ irr(An). Let y↓n−1 denote the restriction of y to
An−1. If x ∈ An−1 appears with multiplicity m in y↓n−1, then define
x ≺ y and ω(x, y) = m.

The weighted poset (PT , ω) is called the Bratteli diagram of T [12,
§2.3]. If all the multiplicities m are equal to 1, then the Bratteli
diagram becomes an ordinary (unweighted) poset. Since A0 = K,
the Bratteli diagram has a unique minimal element 0̂. Let f(x) de-
note the weighted number of saturated chains from 0̂ to x, where
each chain is weighted by the product of the weights of its cover
relations. A fundamental property of the Bratteli diagram is that
f(x) = dim(x), the dimension of the representation x. In particular,
by elementary representation theory we have

∑

x∈irr(An)

f(x)2 = dimAn.

The prototypical example of a tower T of algebras is

K ⊂ KS1 ⊂ KS2 ⊂ · · · ,

where K is a field of characteristic 0, KSn denotes the group alge-
bra of the symmetric group Sn over K and the embedding KSn ⊂
KSn+1 is induced by the “obvious” embedding Sn ⊂ Sn+1 obtained
by identifying Sn with those w ∈ Sn+1 that fix n + 1. In this case
it is well-known that when char(K) = 0 the Bratteli diagram of T is
just Young’s lattice Y .

In view of the above remarks it is natural to ask whether the com-
position poset C is the Bratteli diagram of a “nice” tower T of alge-
bras. (Every graded weighted poset with 0̂ and with finitely many
elements at each rank is the Bratteli diagram of some tower T of al-
gebras An, but T may not have any desirable properties such as sim-
ple generators and relations or a direct combinatorial description.) A
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necessary condition on a candidate tower T is that the irreducible (or
perhaps indecomposable) representations of An are indexed by com-
positions α of n and have dimension fn(α), the number of w ∈ Sn

with descent composition α. We will point out three towers T with
this property as a direction for further investigation. We are grateful
to Arun Ram for explaining to us the first two towers and their close
relationship. We are also grateful to Florent Hivert for explaining the
third tower, which he is currently investigating with Nicolas Thiéry.
It seems plausible that the algebras in the third tower are a quotient
of the ones in the first tower T1, but this remains open. None of the
three towers are semisimple, so there is more than one way to define
what should be their Bratteli diagram. We will not discuss here the
possible definitions of Bratteli diagrams of non-semisimple towers.

1. Let H̃n denote the affine Hecke algebra of type GLn. The center
of H̃n is the ring of symmetric functions Λn = C[X±1

1 , . . . , X±1
n ]Sn ,

and on any finite-dimensional simple H̃n-module the center will
act by a central character γ : Λn → C. Given a central charac-
ter γ, the quotient

H̃ [γ]
n = H̃n/(f − γ(f) : f ∈ Λn)

is a finite-dimensional algebra of dimension n!2 [14, (1.9), Thm. 1.13,
Thm. 1.17].

Let γ be the central character defined by

γ(f) = f(1, q, q2, . . . , qn−1). (8)

The irreducible reprentations of H̃n are indexed by α ∈ Comp(n)
and have dimension fn(α) (a consequence of [15, Thm. 4.1] or
[14, Thm. 3.5, Thm. 5.9]), so the first tower T1 is given by

H̃
[γ]
0 ⊂ H̃

[γ]
1 ⊂ · · · ,

with an obvious embedding H̃
[γ]
n ⊂ H̃

[γ]
n+1 analogous to the em-

bedding KSn ⊂ KSn+1.
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2. Let Hn(0) denote the 0-Hecke algebra (of type A or GLn).
The simple Hn(0)-modules Lα are indexed by compositions
α ∈ Comp(n) and are all 1-dimensional. The projective in-
decomposable Hn(0)-modules Pα are therefore also indexed by
α ∈ Comp(n), but now dimPα = fn(α) [6]. Hence we can
define a second tower T2 by

H0(0) ⊂ H1(0) ⊂ · · · ,

again with an obvious embedding.

There is a close connection between the representation theory of
H̃

[γ]
n (with γ given by (8)) and Hn(0). Let M [γ] be the principal

series module for H̃
[γ]
n ; we have dimM [γ] = n!. By [15, Cor. 6.3]

the simple H̃n-modules H̃α
n which appear as composition factors

of M [γ] are indexed by compositions α ∈ Comp(n) and have
dimension fn(α). In fact, these simple H̃n-modules are precisely
the projective indecomposable Hn(0)-modules. The action of
H̃n(0) on M [γ] can be produced using the τ -operators of [14,
Prop. 2.14] or [15, Prop. 3.2].

3. The third tower T3 is a consequence of recent work of Hivert
and Thiéry [13], as mentioned above. Let V be the vector
space over a field K of characteristic 0 with basis Sn. Define
Γn to be the algebra generated by the following two classes of
operators: (1) ordinary right multiplication by w ∈ Sn, and
(2) the “sorting operators” [11, §3] πi defined by

wπi =

{
wsi, if w(i) > w(i+ 1)
w, if w(i) < w(i+ 1).

where wsi is the ordinary product of w with the adjacent trans-
position si = (i, i+ 1). Hivert and Thiéry show that dim Γn is
the number d(n) of pairs (u, v) ∈ Sn × Sn such that D(u) ∩
D(v) = ∅. It was shown by Carlitz, Scoville, and Vaughan [7][8]
(see also [19, (28)]) that

∑

n≥0

d(n)
xn

n!2
=

(
∑

n≥0

(−1)n
xn

n!2

)−1

.
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Hivert and Thiéry further show that the irreducible represen-
tations Iα of Γn can be indexed by compositions α ∈ Comp(n)
such that dim Iα = fn(α). Hence the third tower T3 is given by

Γ0 ⊂ Γ1 ⊂ · · · ,

once again with an obvious embedding.

6 Appendix: a CL-labeling

We refer to [4] for definitions and further details about the concepts
used here.

To define the chain labeling it is useful to first restate the definition
of the partial order of C. This will be done by describing the elements
covered by α = α1 + · · · + αk ∈ Comp(n).

Equivalent definition. Say that a part αj is legal if either j = 1,
or j > 1 and αj ≥ 2. The elements covered by α = α1 + · · · + αk in
C are, for legal αj (zero parts are suppressed)

• α1 + · · · + αj−1 + (αj − 1) + αj+1 + · · ·+ αk,

• α1 + · · · + αj−1 + (αj + αj+1 − 1) + αj+1 + · · · + αk.

Chain labeling. Given α = α1 + · · ·+αk ∈ Comp(n) we now define
a labeling of the downward maximal chains in the interval [1, α].
The ordered set of labels is 1 < 1′ < 2 < 2′ < · · · < (n − 1)′ < n.
We model the combinatorics of moving down a maximal chain by a
process of removing balls from urns. The starting position consists
of a sequence of urns U1, . . . , Uk, ordered from left to right, with αj
balls in urn Uj . There are two types of moves, each receiving a label
by the following rule. At each step of the procedure, say that an
urn is legal if either it is the first nonempty urn (left-to-right), or it
contains at least two balls.

• Move of type 1: Remove one ball from a legal urn Uj . Label
this move by j.
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• Move of type 2: If Uj is a legal urn with at least two balls and
Ui, i > j, is the first nonempty urn to its right, then move all
balls from Ui over into Uj , then remove one ball from Uj. Label
this move by j′.

It is clear that sequences of moves model downward maximal chains
in the interval [1, α], and thus their associated label sequences induce
a chain labeling, let us call it λ.

Theorem 6.1. The labeling λ is a dual CL-labeling.

Proof. The induced labeling on rooted intervals in [1, α] is of the
same kind. Thus it suffices to consider an interval [β, α] and check
that the labeling has the required properties there.

1. The lexicographically first chain m in [β, α] has a weakly increasing
label.

Note first that all edges down from an element in the poset C
receive distinct labels, so the lex-first chain m is well-defined.

Suppose that λ(m) has a descent. Then somewhere there is an
occurrence in consecutive positions in λ(m) of one of the following
six patterns:

(i) λ(m) = (. . . , j, i, . . .), i < j,

(ii) λ(m) = (. . . , j, i′, . . .), i < j,

(iii) λ(m) = (. . . , j′, i, . . .), i < j,

(iv) λ(m) = (. . . , j′, i′, . . .), i < j − 1,

(v) λ(m) = (. . . , j′, (j − 1)′, . . .),

(vi) λ(m) = (. . . , j′, j, . . .).

Considering the urn model of the combinatorial process it is in the
first five cases easy to see that, in each case, there exists a chain m′

in [β, α] such that, respectively,

(i) λ(m′) = (. . . , i, j . . .),
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(ii) λ(m′) = (. . . , i′, j, . . .), or λ(m′) = (. . . , i′, i, . . .),

(iii) λ(m′) = (. . . , i, j′, . . .),

(iv) λ(m′) = (. . . , i′, j′, . . .),

(v) λ(m′) = (. . . , (j − 1)′, (j − 1)′, . . .).

The sixth case requires a little more care, depending on whether
urn Uj has 2 balls, or more than 2 balls, at the moment of the j′-
labeled move.
Case (vi-1): |Uj| > 2, or Uj is the first non-empty urn.
Case (vi-2): |Uj| = 2 and there is a non-empty urn to its left. Let
Uc be the right-most such having more than one ball, if such an urn
exists; otherwise Uc is the first non-empty urn.
Then there exists m′ such that

(vi-1) λ(m′) = (. . . , j, j′, . . .),

(vi-2) λ(m′) = (. . . , j, c′, . . .).

Thus, in all six cases there is a chain m′ in [β, α] with λ(m′) <lex

λ(m), contradicting our assumption.

2. No other chain has weakly increasing label.
Say that the first move along m is to remove a ball from Uj . If

not taken, all moves with strictly greater labels will weakly increase
the number of balls in Uj, and will leave all urns to the left of Uj
untouched. Thus, we must eventually return to a move with label j
(or less) in order to reach a correct final distribution.

For a move of type 2 the reasoning is similar. Thus, in both cases
any deviation from the chain m will later be punished with a descent
in the label. 2
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