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Abstract. In 1992 Thomas Bier presented a strikingly simple method to produce a huge
number of simplicial (n−2)-spheres on 2n vertices, as deleted joins of a simplicial complex
on n vertices with its combinatorial Alexander dual.

Here we interpret his construction as giving the poset of all the intervals in a boolean
algebra that “cut across an ideal.” Thus we arrive at a substantial generalization of Bier’s
construction: the Bier posets Bier(P, I ) of an arbitrary bounded poset P of finite length.
In the case of face posets of PL spheres this yields cellular “generalized Bier spheres.” In
the case of Eulerian or Cohen–Macaulay posets P we show that the Bier posets Bier(P, I )
inherit these properties.

In the boolean case originally considered by Bier, we show that all the spheres produced
by his construction are shellable, which yields “many shellable spheres,” most of which
lack convex realization. Finally, we present simple explicit formulas for the g-vectors of
these simplicial spheres and verify that they satisfy a strong form of the g-conjecture for
spheres.
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Introduction

In unpublished notes from 1992, Thomas Bier [Bi] described a strikingly simple construc-
tion of a large number of simplicial PL spheres. His construction associates a simplicial
(n − 2)-sphere with 2n vertices to any simplicial complex � ⊂ 2[1,n] on n vertices
(here [1, n] := {1, 2, . . . , n}) by forming the “deleted join” of the complex � with its
combinatorial Alexander dual, �∗ := {F ⊂ [1, n] : [1, n]\F /∈ �}. Bier proved that
this does indeed yield PL spheres by verifying that any addition of a new face to �
amounts to a bistellar flip on the deleted join of � with its Alexander dual �∗. A short
published account of this proof is given in Section 5.6 of [Ma], to where we also refer
for the definition of deleted joins. See [deL] for a simple alternative proof.

In this paper we generalize and further analyze Bier’s construction:

• We define more general “Bier posets” Bier(P, I ), where P is an arbitrary bounded
poset of finite length and I ⊂ P is an order ideal.

• We show that in this generality, the order complex of Bier(P, I ) is PL homeo-
morphic to that of P: it may be obtained by a sequence of stellar subdivisions of
edges.

• If P is an Eulerian or Cohen–Macaulay poset or lattice, then Bier(P, I ) will have
that property as well.

• If P is the face lattice of a regular CW PL-sphere S, then the lattices Bier(P, I )
are again face lattices of regular CW PL-spheres, the “Bier spheres” of S.

• In the case of the (n − 1)-simplex, where P = Bn is a boolean algebra, and the
ideal in Bn may be interpreted as an abstract simplicial complex �, one obtains
the “original” Bier spheres as described in [Bi], with face lattice Bier(Bn,�). We
prove that all these simplicial spheres are shellable.

• The number of these spheres is so great that for large n most of the Bier spheres
Bier(Bn,�) are not realizable as polytopes. Thus Bier’s construction provides
“many shellable spheres” in the sense of Kalai [Ka] and Lee [Le]; see also p. 116
of [Ma]. Similarly, for special choices of the simplicial complex� in Bn , and even
n, we obtain many nearly neighborly centrally symmetric (n − 2)-spheres on 2n
vertices.

• The g-vector of a Bier sphere Bier(Bn,�) can be expressed explicitly in terms of
the f -vector of�. We show that these g-vectors are actually K -sequences, and thus
they satisfy a strong form of the g-conjecture for spheres. Also, the generalized
lower bound conjecture (characterizing the spheres for which gk = 0) is verified
for Bier spheres.

1. Basic Definitions and Properties

In this section we introduce our extension of Bier’s construction to bounded posets, and
present some simple properties. We refer to [St] for background, notation, and terminol-
ogy relating to posets and lattices. Abstract simplicial complexes, order complexes, and
shellability are reviewed in [Bj3]. See [Zi] for polytope theory.

All the posets we consider have finite length. A poset is bounded if it has a unique
minimal and maximal element; we usually denote these by 0̂ and 1̂, respectively. For
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x ≤ y, the length �(x, y) is the length of a longest chain in the interval [x, y] = {z ∈
P : x ≤ z ≤ y}. A bounded poset is graded if all maximal chains have the same length.
A graded poset is Eulerian if every interval [x, y] with x < y has the same number of
elements of odd rank and even rank. An ideal in P is a subset I ⊆ P such that x ≤ y
with x ∈ P and y ∈ I implies that x ∈ I . It is proper if neither I = P nor I = ∅. Our
notation in the following is set up in such a way that all elements of P named x, xi , x ′

i
are elements of the ideal I ⊂ P , while elements called y, yj , y′

j are in P\I .

Definition 1.1. Let P be a bounded poset of finite length and let I ⊂ P be a proper ideal.
Then the poset Bier(P, I ) is obtained as follows: it consists of all intervals [x, y] ⊆ P
such that x ∈ I and y /∈ I , ordered by reversed inclusion, together with an additional
top element 1̂.

Here reversed inclusion says that [x ′, y′] ≤ [x, y] amounts to x ′ ≤ x < y ≤ y′.
The interval I = [0̂, 1̂] is the unique minimal element of Bier(P, I ), so Bier(P, I ) is
bounded.

One may observe that the construction of Bier posets has a curious formal similarity
to the Et -construction of Paffenholz and Ziegler as defined in [PZ]. The study of posets
of intervals in a given poset, ordered by inclusion, goes back to a problem posed by
Lindström [Li]; see [Bj1] and [Bj4] for results on interval posets related to this problem.

Lemma 1.2. Let P be a poset and let I ⊂ P be a proper ideal.

(i) The posets P and Bier(P, I ) have the same length n.
(ii) Bier(P, I ) is graded if and only if P is graded.

In that case, rk[x, y] = rkP x + (n − rkP y).
(iii) The intervals of Bier(P, I ) are of the following two kinds:

[[x, y], 1̂] ∼= Bier([x, y], I ∩ [x, y]),

[[x ′, y′], [x, y]] = [x ′, x] × [y, y′]op,

where [y, y′]op denotes the interval [y, y′] with the opposite order.
(iv) If P is a lattice, then Bier(P, I ) is a lattice.

Proof. Bier(P, I ) is bounded. Thus for (iv) it suffices to show that meets exist in
Bier(P, I ). These are given by [x, y]∧ [x ′, y′] = [x ∧ x ′, y∨ y′] and [x, y]∧ 1̂ = [x, y].
The other parts are immediate from the definitions.

2. Bier Posets via Stellar Subdivisions

For any bounded poset P we denote by P := P\{0̂, 1̂} the proper part of P and by�(P)
the order complex of P , that is, the abstract simplicial complex of all chains in P (see
[Bj3]).

In this section we give a geometric interpretation of Bier(P, I ), by specifying how
its order complex may be derived from the order complex of P via stellar subdivisions.



OF4 A. Björner, A. Paffenholz, J. Sjöstrand, and G. M. Ziegler

For this, we need an explicit description of stellar subdivisions for abstract simplicial
complexes. (See, e.g., p. 15 of [RS] for the topological setting.)

Definition 2.1. The stellar subdivision sdF (�) of a finite-dimensional simplicial com-
plex� with respect to a nonempty face F is obtained by removing from� all faces that
contain F and adding new faces G ∪ {vF } (with a new apex vertex vF ) for all faces G
that do not contain F , but such that G ∪ F is in the original complex.

In the special case of a stellar subdivision of an edge E = {v1, v2}, this means that
each face G ∈ � that contains E is replaced by three new faces, namely (G\{v1})∪{vE },
(G\{v2})∪ {vE }, and (G\{v1, v2})∪ {vE }. Note that this replacement does not affect the
Euler characteristic.

Remark. The stellar subdivisions in faces F1, . . . , FN commute, and thus may be
performed in any order—or simultaneously—if and only if no two Fi , Fj are contained
in a common face G of the complex, that is, if Fi ∪ Fj is not a face for i �= j .

Theorem 2.2. Let P be a bounded poset of length �(P) = n <∞, and let I ⊂ P be a
proper ideal. Then the order complex of Bier(P, I ) is obtained from the order complex
of P by stellar subdivision on all edges of the form {x, y}, for x ∈ I , y ∈ P\I , x < y.
These stellar subdivisions of edges {x, y}must be performed in order of increasing length
�(x, y).

Proof. In the following the elements denoted by xi or x ′
i are vertices of P that are

contained in I := I\{0̂}, while elements denoted by yj or y′
j are from P\I . By (x ′

i , y′
i )

we denote the new vertex created by subdivision of the edge {x ′
i , y′

i }.
We have to verify that subdivision of all the edges of �(P) collected in the sets

Ek := {{x, y} : x < y, �(x, y) = k, x ∈ I , y ∈ P\I }

for k = 1, . . . , n −2 (in this order) results in�(Bier(P, I )). To prove this, we explicitly
describe the simplicial complexes 
k that we obtain at intermediate stages, after sub-
division of the edges in E1 ∪ · · · ∪ Ek . (The complexes 
k are not, in general, order
complexes for 0 < k < n − 2.)

Claim. After stellar subdivision of the edges of �(P) in the edge sets E1, . . . , Ek (in
this order), the resulting complex 
k has the faces

{x1, x2, . . . , xr , (x
′
1, y′

1), (x
′
2, y′

2), . . . , (x
′
t , y′

t ), y1, y2, . . . , ys}, (1)

where

(i) x1 < x2 < · · · < xr < y1 < y2 < · · · < ys (r, s ≥ 0)

must be a strict chain in P that may be empty, but has to satisfy �(xr , y1) ≥ k+1
if r ≥ 1 and s ≥ 1, while
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(ii) [x ′
t , y′

t ] < · · · < [x ′
2, y′

2] < [x ′
1, y′

1] (t ≥ 0)

must be a strict chain in Bier(P, I ) that may be empty, but has to satisfy
�(x ′

t , y′
t ) ≤ k if t ≥ 1, and finally

(iii) xr ≤ x ′
t and y′

t ≤ y1

must hold if both r and t are positive, resp. if both s and t are positive.

Conditions (i)–(ii) together imply that the chains of 
k are supported on (weak) chains
in P of the form

0̂ < x1 < x2 < · · · < xr ≤ x ′
t ≤ · · · ≤ x ′

2 ≤ x ′
1 <

y′
1 ≤ y′

2 ≤ · · · ≤ y′
t ≤ y1 < y2 · · · < ys < 1̂.

In condition (iii) the two inequalities cannot both hold with equality, because of the length
requirements for (i) and (ii), which for r, s, t ≥ 1 mandate that �(x ′

t , y′
t ) ≤ k < �(xr , y1),

and thus [x ′
t , y′

t ] ⊂ [xr , y1].
We verify immediately that for k = 0 the description of 
0 given in the claim yields


0 = �(P), since for k = 0 the length requirement for (ii) does not admit any subdivision
vertices.

For k = n − 2 the simplices of 
n−2 as given by the claim cannot contain both xr

and y1, that is, they all satisfy either r = 0 or s = 0 or both, since otherwise we would
get a contradiction between the length requirement for (i) and the fact that any interval
[xr , y1] ⊆ P can have length at most n − 2. Thus we obtain that 
n−2 = �(Bier(P, I )),
if we identify the subdivision vertices (x ′

i , y′
i )with the intervals [x ′

i , y′
i ] in P , the elements

xi with the intervals [xi , 1̂], and the elements yj ∈ P\I with the intervals [0̂, yj ].
Finally, we prove the claim by verifying the induction step from k to k + 1. It follows

from the description of the complex 
k that no two edges in Ek+1 lie in the same facet.
Thus we can stellarly subdivide the edges in Ek+1 in arbitrary order. Suppose the edge
(xr , y1) of the simplex

{x1, . . . , xr−1, xr , (x
′
1, y′

1), (x
′
2, y′

2), . . . , (x
′
t , y′

t ), y1, y2, . . . , ys}

is contained in Ek+1. Then stellar subdivision yields the three new simplices

{x1, . . . , xr−1, (xr , y1), (x ′
1, y′

1), (x
′
2, y′

2), . . . , (x
′
t , y′

t ), y1,y2, . . . , ys, },
{x1, . . . , xr−1, xr ,(xr , y1), (x ′

1, y′
1), (x

′
2, y′

2), . . . , (x
′
t , y′

t ), y2, . . . , ys, }, and
{x1, . . . , xr−1, (xr , y1), (x ′

1, y′
1), (x

′
2, y′

2), . . . , (x
′
t , y′

t ), y2, . . . , ys, }.

All three sets then are simplices of 
k+1, satisfying all the conditions specified in the
claim (with t replaced by t + 1 and r or s or both reduced by 1). Also all simplices of

k+1 arise this way. This completes the induction step.

We can write down the subdivision map of the previous proof explicitly: the map

π : ‖�(Bier(P, I ))‖ → ‖�(P)‖
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is given on the vertices of �(Bier(P, I )) by

[x, y] �→



1
2 x + 1

2 y, 0̂ < x < y < 1̂, x ∈ I, y /∈ I,
x, 0̂ < x < y = 1̂, x ∈ I, y /∈ I,
y, 0̂ = x < y < 1̂, x ∈ I, y /∈ I,

and extends linearly on the simplices of �(Bier(P, I )).

Corollary 2.3. ‖�(Bier(P, I ))‖ and ‖�(P)‖ are PL homeomorphic.

In the case where P is the face poset of a regular PL CW-sphere or -manifold, this
implies that the barycentric subdivision of Bier(P, I )may be derived from the barycentric
subdivision of P by stellar subdivisions. In particular, in this case Bier(P, I ) is again
the face poset of a PL-sphere or manifold.

Corollary 2.4. If P is the face lattice of a strongly regular PL CW-sphere, then so
is Bier(P, I ).

Corollary 2.5. If P is Cohen–Macaulay, then so is Bier(P, I ).

Proof. This follows from the fact that Cohen–Macaulayness (with respect to arbitrary
coefficients) is a topological property [Mu].

3. Eulerian Posets

From now on we assume that P is a graded poset of length n, and that I ⊂ P is a proper
order ideal, with 0̂P ∈ I and 1̂P /∈ I . First we compute the f -vector f (Bier(P, I )) :=
( f0, f1, . . . , fn), where fi denotes the elements of rank i in the poset Bier(P, I ). (This
notation is off by 1 from the usual convention in polytope theory, as in [Zi].) By definition
we have fn(Bier(P, I )) = 1 and

fi (Bier(P, I )) = #{[x, y] : x ∈ I, y /∈ I, rkP x + n − rkP y = i}

for 0 ≤ i ≤ n − 1. In particular, f0(Bier(P, I )) = 1.

Theorem 3.1. Let P be an Eulerian poset and let I ⊂ P be a proper ideal. Then
Bier(P, I ) is also an Eulerian poset.

Proof. Bier(P, I ) is a graded poset of the same length as P by Lemma 1.2. Thus it
remains to prove that all intervals of length ≥ 1 in Bier(P, I ) contain equally many odd
and even rank elements.

This can be done by induction. For length �(P) ≤ 1 the claim is true. Proper intervals
of the form [[x, y], 1̂] are, in view of Lemma 1.2, Eulerian by induction. Proper intervals
of the form [[x ′, y′], [x, y]] are Eulerian, since any product of Eulerian posets is Eulerian.
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Finally, the whole poset Bier(P, I ) contains the same number of odd and even rank
elements by the following computation:

n∑
i=0

(−1)n−i fi (Bier(P, I )) = 1 +
n−1∑
i=0

(−1)n−i fi (Bier(P, I ))

= 1 +
∑
y /∈I

∑
x∈I
x≤y

(−1)rk(y)−rk(x)

= 1 +
∑
y /∈I

∑
x≤y

(−1)rk(y)−rk(x) −
∑
y /∈I

∑
x /∈I
x≤y

(−1)rk(y)−rk(x) (2)

= 1 + 0 −
∑
x /∈I

∑
x≤y

(−1)rk(y)−rk(x) (3)

= 1 + 0 − 1 = 0,

where the first double sum in (2) is 0 as [0̂P , y] is Eulerian and rk(y) ≥ 1, and the double
sum in (3) is −1 as [x, 1̂P ] is Eulerian and trivial only for x = 1̂P .

Alternatively, the result of the computation in this proof also follows from the topo-
logical interpretation of Bier(P, I ) in the previous section.

4. Shellability of Bier Spheres

Now we specialize to Bier’s original setting, where P = Bn is the boolean lattice of all
subsets of the ground set [1, n] = {1, . . . , n} (which may be identified with the set of
atoms of Bn), ordered by inclusion. We use notation like [1, n] or (x, n] freely to denote
closed or half-open sets of integers.

Any nonempty ideal in the boolean algebra Bn can be interpreted as an abstract
simplicial complex with at most n vertices, so we denote it by �.

We get

Bier(Bn,�)\{1̂} = {(B,C) : ∅ ⊆ B ⊂ C ⊆ [1, n], B ∈ �,C /∈ �}
again ordered by reversed inclusion of intervals. We denote the facets of Bier(Bn,�) by
(A; x) := (A, A ∪ {x}) ∈ Bier(Bn,�) and the set of all facets by F(�).

The poset Bier(Bn,�) is the face lattice of a simplicial PL (n − 2)-sphere, by
Corollary 2.4. We will now prove a strengthening of this, namely that Bier(Bn,�)

is shellable. (As is known, see [Bj3], shellability implies the PL-sphericity for
pseudomanifolds.)

Theorem 4.1. For every proper ideal � ⊂ Bn , the (n − 2)-sphere Bier(Bn,�) is
shellable.

Proof. The shellability proof is in two steps. First we show that the rule

R: F(�) → Bier(Bn,�),

(A; x) �→ (A ∩ (x, n], A ∪ [x, n]) (4)
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defines a restriction operator in the sense of [Bj2]; that is, it induces a partition

Bier(Bn,�) =
⊎

(A;x)∈F(�)
[R(A; x), (A; x)].

Then we prove that the precedence relation forced by this restriction operator is acyclic.
Thus, any linear extension of the precedence relation yields a shelling order.

That the restriction operator indeed defines a partition can be seen as follows: Take
any element (B,C) ∈ Bier(Bn,�). Set

x := min {y ∈ C\B : B ∪ (C ∩ [1, y]) /∈ �}
= max {y ∈ C\B : B ∪ (C \[y, n]) ∈ �}

and A := B ∪ (C ∩ [1, x)). Then we have

A ∩ (x, n] ⊆ B ⊆ A ⊂ A ∪ {x} ⊆ C ⊆ A ∪ [x, n]

and thus (B,C) is contained in [R(A; x), (A; x)].
To see that the intervals in the partition do not intersect we have to show that if both

R(A; x) ≤ (A′; x ′) and R(A′; x ′) ≤ (A; x), then (A; x) = (A′; x ′). This is a special
case of a more general fact we establish next, so we do not give the argument here.

For any shelling order “≺” that would induce R as its “unique minimal new face”
restriction operator we are forced to require that if R(A; x) ≤ (A′; x ′) for two facets
(A; x) and (A′; x ′), then (A; x) � (A′; x ′). By definition, R(A; x) ≤ (A′; x ′) means
that

A ∩ (x, n] ⊆ A′ ⊂ A′ ∪ {x ′} ⊆ A ∪ [x, n], (5)

which may be reformulated as

(A ∪ {x})>x ⊆ A′ and (A′ ∪ {x ′})<x ⊆ A. (6)

We now define the relation (A; x) ≺ (A′; x ′) to hold if and only if (6) holds together
with

(A ∪ {x})≤x �⊆ A′ and (A′ ∪ {x ′})≥x �⊆ A. (7)

Note that our sets A, A′ belong to an ideal which does not contain A ∪ {x}, A′ ∪ {x ′}, so
(7) applies if (6) does.

By the support of (A; x) we mean the set A ∪ {x}. The element x of the support is
called its root element.

We interpret a relation (A; x) ≺ (A′; x ′) as a step from (A; x) to (A′; x ′). The first
conditions of (6) and (7) say that

In each step the elements that are deleted from the support are ≤ x ;
moreover, we must either lose some element ≤ x from the support, or
we must choose x ′ from (A ∪ {x})≤x , or both.

(8)
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Similarly, the second conditions of (6) and (7) say that

In each step the elements that are added to the support are > x ;
moreover, we must either add some element > x to the support, or
we must keep x in the support, or both.

(9)

Now we show that the transitive closure of the relation ≺ does not contain any cycles.
So, suppose that there is a cycle,

(A0; x0) ≺ (A1; x1) ≺ · · · ≺ (Ak; xk) = (A0; x0).

First assume that not all root elements xi in this cycle are equal. Then by cyclic permu-
tation we may assume that x0 is the smallest root element that appears in the cycle, and
that x1 > x0. Thus x1 is clearly not from (A ∪ {x0})≤x0 , so by condition (8) we lose an
element ≤ x0 from the support of (A0; x0) in this step. However, in all later steps the
elements we add to the support are> xi ≥ x0, so the lost element will never be retrieved.
Hence we cannot have a cycle.

The second possibility is that all root elements in the cycle are equal, that is, x0 =
x1 = · · · = xk = x . Then by conditions (8) and (9), in the whole cycle we lose only
elements < x from the support, and we add only elements > x . The only way this can
happen is that, when we traverse the cycle, no elements are lost and none are added, so
A0 = A1 = · · · = Ak . Consequently, there is no cycle.

The relation defined on the set of all pairs (A; x) with A ⊂ [1, n] and x ∈ [1, n]\A
by (6) alone does have cycles, such as

({1, 4}, 2) ≺ ({1, 4}, 3) ≺ ({4}, 1) ≺ ({1, 4}, 2).

This is the reason why we also require condition (7) in the definition of “≺”.
The shelling order implied by the proof of Theorem 4.1 may also be described in terms

of a linear ordering. For that we associate with each facet (A; x) a vector χ(A; x) ∈ Rn ,
defined as follows:

χ(A; x)a :=


−1 for a ∈ (A ∪ {x})≤x ,

0 for a /∈ A ∪ {x}, and
+1 for a ∈ (A ∪ {x})>x .

With this assignment, we get that (A; x) ≺ (A′; x ′), as characterized by conditions (8)
and (9), implies that χ(A; x) <lex χ(A′; x ′). Thus we have that lexicographic ordering
on the χ -vectors induces a shelling order for every “boolean Bier sphere.”

5. g-Vectors

The f -vectors of triangulated spheres are of great combinatorial interest. In this section
we derive the basic relationship between the f -vector of a Bier sphere Bier(Bn,�) and
the f -vector of the underlying simplicial complex �. (Such an investigation had been
begun in Bier’s note [Bi].)
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In an extension of the notation of Section 3 let fi (�) denote the number of sets
of cardinality i in a complex �. The f -vector of a proper subcomplex � ⊂ Bn is
f (�) = ( f0, f1, . . . , fn), with f0 = 1 and fn = 0.

Now let 
 be a finite simplicial complex that is pure of dimension d = n − 2,
that is, such that all maximal faces have cardinality n − 1. (Below we apply this to

 = Bier(Bn,�).) We define hi (
) by

hi (
) :=
n−1∑
j=0

(−1)i+ j

(
n − 1 − j

n − 1 − i

)
f j (
) (10)

for 0 ≤ i ≤ n − 1, and hi (
) := 0 outside this range. Then, conversely,

fi (
) =
n−1∑
j=0

(
n − 1 − j

n − 1 − i

)
hj (
).

Finally, for 0 ≤ i ≤  (n − 1)/2! let gi (
) := hi (
)− hi−1(
), with g0(
) = 1.
Now we consider the f -, h-, and g-vectors of the sphere 
 = Bier(Bn,�). It is an

(n − 2)-dimensional shellable sphere on f1(�) + n − fn−1(�) vertices. (So for the
usual case of f1 = n and fn−1 = 0, when � contains all the 1-element subsets but no
(n − 1)-element subset of [1, n], we get a sphere on 2n vertices.) In terms of the facets
(A; x) ∈ F(�) we have the following description of its h-vector:

hi (Bier(Bn,�)) = #{(A; x) ∈ F(�) : | A ∩ (x, n] | + | [1, x)\A | = i} (11)

for 0 ≤ i ≤ n − 1. This follows from the interpretation of the h-vector of a shellable
complex in terms of the restriction operator as

hi (Bier(Bn,�)) = #{(A; x) ∈ F(�) : rk(R(A; x)) = i},

see p. 229 of [Bj2], together with (4) and Lemma 1.2(ii).

Lemma 5.1 (Dehn–Sommerville Equations). For 0 ≤ i ≤ n − 1,

hn−1−i (Bier(Bn,�)) = hi (Bier(Bn,�)).

Proof. It is a nontrivial fact that this relation is true for any triangulated (n−2)-sphere.
However, in our situation it is a direct and elementary consequence of (11).

Namely, neither the definition of the h-vector nor the construction of the Bier sphere
depends on the ordering of the ground set. Thus we can reverse the order of the ground
set [1, n], to get that

hi (Bier(Bn,�)) = #{(A; x) ∈ F(�) : | A ∩ [1, x) | + | (x, n]\A | = i}. (12)

Thus a set A contributes to hi (Bier(Bn,�)) according to (11) if and only if the
complement of A with respect to the (n − 1)-element set [1, n]\{x} contributes to
hn−1−i (Bier(Bn,�)) according to (12).
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The g-vector of Bier(Bn,�) has the following nice form:

Theorem 5.2. For all i = 0, . . . ,  (n − 1)/2!,

gi (Bier(Bn,�)) = fi (�)− fn−i (�).

Proof. Let �aug be the same complex as �, but viewed as sitting inside the larger
boolean lattice Bn+1. We claim that

hi (Bier(Bn+1,�
aug)) = hi−1(Bier(Bn,�))+ fi (�) (13)

for 0 ≤ i ≤ n. This is seen from (12) as follows. The facets (A; x) of Bier(Bn+1,�
aug)

that contribute to hi (Bier(Bn+1,�
aug)) are of two kinds: either x �= n + 1 or x = n + 1.

There are hi−1(Bier(Bn,�)) of the first kind and fi (�) of the second.
Using both (13) and Lemma 5.1 twice we compute

gi (Bier(Bn,�)) = hi (Bier(Bn,�))− hi−1(Bier(Bn,�))

= hn−1−i (Bier(Bn,�))− hi−1(Bier(Bn,�))

= hn−i (Bier(Bn+1,�
aug))− fn−i (�)− hi−1(Bier(Bn,�))

= hi (Bier(Bn+1,�
aug))− fn−i (�)− hi−1(Bier(Bn,�))

= fi (�)− fn−i (�).

Corollary 5.3. The face numbers fi (Bier(Bn,�)) of the Bier sphere depend only on
n and the differences fi (�)− fn−i (�).

Proof. The g-vector determines the h-vector (via Lemma 5.1), which determines the
f -vector.

For example, if n = 4 and f (�) = (1, 3, 0, 0, 0) or f (�) = (1, 4, 3, 1, 0), then we
get g(Bier(B4,�)) = (1, 3) and f (Bier(B4,�)) = (1, 7, 15, 10).

Theorem 5.4. Every simplicial complex � ⊆ Bn has a subcomplex �′ such that

fi (�
′) = fi (�)− fn−i (�)

for 0 ≤ i ≤  n/2! and fi (�
′) = 0 for i >  n/2!.

Proof. For any simplicial complex � in Bn , define the d-vector by di (�) = fi (�) −
fn−i (�) for 0 ≤ i ≤  n/2! and di (�) = 0 for greater i . We shall find a subcomplex
�′ ⊆ � with fi (�

′) = di (�) for all i .
Choose�′ as a minimal subcomplex of�with the same d-vector. We must show that

fi (�
′) = 0 for all  n/2! < i ≤ n. Suppose that there is a set C ∈ �′ with |C | > n/2.

Then there is an involution π : [1, n] → [1, n], i.e., a permutation of the ground set of
order two, such that

π(C) ⊇ [1, n]\C, (14)
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where π(C) is the image of C . Now define ϕ: Bn → Bn by ϕ(B) = [1, n]\π(B) for all
B ⊆ [1, n]. Observe that ϕ satisfies the following for all B ⊆ [1, n]:

(a) ϕ(ϕ(B)) = B,
(b) B ′ ⊆ B ⇒ ϕ(B ′) ⊇ ϕ(B),
(c) |B| + |ϕ(B)| = n.

Let K := {B ∈ �′ : ϕ(B) ∈ �′}. We claim that �′\K is a simplicial complex with the
same d-vector as �′.

First, we show that �′\K is a complex. Let B ′ ⊆ B ∈ �′\K . Then B ′ ∈ �′ so we
must show that B ′ /∈ K . Property (b) gives ϕ(B ′) ⊇ ϕ(B), so we get B /∈ K ⇒ ϕ(B) /∈
�′ ⇒ ϕ(B ′) /∈ �′ ⇒ B ′ /∈ K .

Let Ki = {B ∈ K : |B| = i} for 0 ≤ i ≤ n. We have di (�
′\K ) = ( fi (�

′)− |Ki |)−
( fn−i (�

′)− |Kn−i |) = di (�
′)− (|Ki | − |Kn−i |) for 0 ≤ i ≤  n/2!. We must show that

|Ki | = |Kn−i | for all i . Property (a) gives that B ∈ K ⇔ ϕ(B) ∈ K . Finally, property
(c) gives that ϕ is a bijection between Ki and Kn−i for all i .

Fortunately, K �= ∅ since ϕ(C) = [1, n]\π(C) ⊆ C by (14), whence ϕ(C) ∈ �′

and C ∈ K . Thus we have found a strictly smaller subcomplex of �′ with the same
d-vector—a contradiction against our choice of �′.

Corollary 5.5. There is a subcomplex �′ of � such that

gi (Bier(Bn,�)) = fi (�
′)

for 0 ≤ i ≤  (n − 1)/2! and fi (�
′) = 0 for i >  (n − 1)/2!.

It is a consequence of Corollary 5.5 that the g-vector (g0, g1, . . . , g (n−1)/2!) of
Bier(Bn,�) is a K -sequence, i.e., it satisfies the Kruskal–Katona theorem. This is of
interest in connection with the so-called g-conjecture for spheres, which suggests that
g-vectors of spheres are M-sequences (satisfy Macaulay’s theorem). K -sequences are
a very special subclass of M-sequences, thus g-vectors (and hence f -vectors) of Bier
spheres are quite special among those of general triangulated (n − 2)-spheres on 2n ver-
tices. See Chapter 8 of [Zi] for details concerning K - and M-sequences and g-vectors.

What has been shown also implies the following:

Corollary 5.6. Every K -sequence (1, n, . . . , fk)with k ≤  (n − 1)/2! can be realized
as the g-vector of a Bier sphere with 2n vertices.

We need to review the definition of bistellar flips: Let 
 be a simplicial d-manifold.
If A is a (d − i)-dimensional face of 
, 0 ≤ i ≤ d, such that link
(A) is the boundary
Bd(B) of an i-simplex B that is not a face of 
, then the operation �A on 
 defined by

�A(
) := (
\(A ∗ Bd(B))) ∪ (Bd(A) ∗ B)

is called a bistellar i-flip. Then�A(
) is itself a simplicial d-manifold, homeomorphic
to 
, and if 0 ≤ i ≤  (d − 1)/2!, then

gi+1(�A(
)) = gi+1(
)+ 1,
(15)

gj (�A(
)) = gj (
) for all j �= i + 1.
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Furthermore, if d is even and i = d/2, then gj (�A(
)) = gj (
) for all j . See p. 83 of
[Pa].

It follows from Corollary 5.5 that gk(Bier(Bn,�)) ≥ 0. The case of equality is
characterized as follows:

Corollary 5.7. For 2 ≤ k ≤  (n − 1)/2!, the following are equivalent:

(1) gk(Bier(Bn,�)) = 0,
(2) fk(�) = 0 or fn−k(�) =

(n
i

)
,

(3) Bier(Bn,�) is obtained from the boundary complex of the (n − 1)-simplex via a
sequence of bistellar i-flips, with i ≤ k − 2 at every flip.

Proof. (1)⇒ (2) Consider the bipartite graph Gn,k whose edges are the pairs (A, B)
such that A is a k-element subset, B is an (n − k)-element subset of [1, n], and A ⊂ B,
where the inclusion is strict since k < n − k. Then Gn,k is a regular bipartite graph
(all vertices have the same degree), so by standard matching theory Gn,k has a complete
matching. The restriction of such a matching to the sets B in� gives an injective mapping
�n−k → �k from �’s faces of cardinality n − k to those of cardinality k.

Equality fn−k(�) = fk(�) implies that Gn,k consists of two connected components,
one of which is induced on �n−k ∪�k . A nontrivial such splitting cannot happen since
Gn,k is connected, so either�n−k and�k are both empty, or they are both the full families
of cardinality

(n
k

)
.

(2) ⇒ (3) As shown in [Bi] and Section 5.6 of [Ma], adding an i-dimensional face
to � produces a bistellar i-flip in Bier(Bn,�). Now, � can be obtained from the empty
complex by adding i-dimensional faces, and here all i ≤ k − 2 if fk(�) = 0 (meaning
that there are no faces of dimension k − 1 in �). The case when fn−k(�) =

(n
i

)
is the

same by symmetry.
(3)⇒ (1) This follows directly from (15), since the boundary of the (n − 1)-simplex

has g-vector (1, 0, . . . , 0).

A convex polytope whose boundary complex is obtained from the boundary complex
of the (n − 1)-simplex via a sequence of bistellar i-flips, with i ≤ k − 2 at every flip, is
called k-stacked. The generalized lower bound conjecture for polytopes maintains that
gk = 0 for a polytope if and only if it is k-stacked. This is still open for general polytopes.
See [Mc] for a recent discussion. Corollary 5.7 shows that it is valid for those polytopes
that arise via the Bier sphere construction.

6. Further Observations

6.1. Many Spheres

In the Introduction we remarked that the (isomorphism classes) of Bier spheres are
numerous, in fact so numerous that one concludes that most of them lack convex real-
ization. To show this, it suffices to consider Bier spheres Bier(Bn,�) for complexes �
that contain all sets A ⊂ [1, n] of size |A| ≤  (n − 1)/2!, a subcollection of the sets
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of size |A| =  (n − 1)/2! + 1 =  (n + 1)/2!, and no larger faces. Equivalently, � is a
complex of dimension at most  (n − 1)/2! with a complete ( (n − 1)/2!−1)-skeleton.
There are (

n

 (n + 1)/2!
)

=
(

n

 n/2!
)

elements in the  (n + 1)/2!-level of Bn; thus there are at least

2(
n

 n/2!)

(2n)!
∼ 22n/

√
n

(2n/e)2n

combinatorially nonisomorphic such Bier spheres (where our rough approximation ig-
nores polynomial factors). On the other hand, there are at most 28n3+O(n2) combinato-
rially nonisomorphic simplicial polytopes on 2n vertices (see [GP], and Theorem 5.1
of [Al]).

It is interesting to contrast this with all the ways in which these “numerous” spheres are
very special: they are shellable, their g-vectors are K -sequences, and for even n we even
get numerous “nearly neighborly” examples (as discussed below). Another construction
of “numerous” shellable spheres is known from the work of Kalai [Ka] and Lee [Le].

Though we have defined the construction of a Bier poset for arbitrary posets and
have shown that the construction produces sphere lattices from sphere lattices, it re-
mains an open problem of how to extend the Bier construction to obtain numerous
simplicial/shellable (n − 2)-spheres with more than 2n vertices.

6.2. Centrally Symmetric and Nearly Neighborly Spheres

Let
 be a triangulated (n−2)-sphere on 2m vertices. The sphere
 is centrally symmetric
if it has a symmetry of order two which fixes no face; that is, if there is a fixed-point-free
involution on its set V of vertices such that (i) for every face A of 
, α(A) is also a face,
and (ii) {x, α(x)} is not a face, for all x ∈ V . A subset A ⊆ V is antipode-free if it
contains no pair {x, α(x)}, for x ∈ V .

A centrally symmetric sphere 
 with involution α is k-nearly neighborly if all
antipode-free sets A ⊆ V of size |A| ≤ k are faces of 
. Equivalently, 
 must con-
tain the (k − 1)-skeleton of the m-dimensional hyperoctahedron (cross-polytope). 
 is
nearly neighborly if it is  (n − 1)/2!-nearly neighborly.

Thus k-nearly neighborliness is defined only for centrally symmetric spheres. In the
case k ≥ 2 the involution α is uniquely determined by the condition {x, α(x)} /∈ 
.

The concept of nearly neighborliness for centrally symmetric spheres has been studied
for centrally symmetric (n − 1)-polytopes, where α is of course the map x �→ −x . For
instance, work of Grünbaum, McMullen and Shephard, Schneider, and Burton shows
that there are severe restrictions to k-nearly neighborliness in the centrally symmetric
polytope case, while the existence of interesting classes of nearly neighborly spheres
was proved by Grünbaum, Jockusch, and Lutz; see p. 279 of [Zi] and Chapter 4 of [Lu].

Nearly neighborly Bier spheres arise as follows. (In the following, only the special
case m = n, of an (n − 2)-sphere with 2n vertices, occurs.)
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Proposition 6.1. If A ∈ � ⇐⇒ [1, n]\A /∈ �, then Bier(Bn,�) is centrally
symmetric.

Proof. The involution α is given by the pairing [{x}, 1̂] ←→ [0̂, [1, n]\{x}].

Proposition 6.2. Let 1 < k ≤  (n − 1)/2!. The Bier sphere Bier(Bn,�) is a k-nearly
neighborly (n − 2)-sphere with 2n vertices if and only if

(i) A ∈ �⇐⇒ [1, n]\A /∈ �, for all A ⊆ [1, n],
(ii) B ∈ �, for all B ⊆ [1, n], |B| ≤ k (and thus C /∈ � for all C ⊆ [1, n],

|C | ≥ n − k).

Proof. The Bier sphere Bier(Bn,�) has 2n vertices if and only if � ⊂ 2[1,n] is a
complex that contains all subsets of cardinality 1 and no subsets of cardinality n − 1.
The antipode-free vertex sets of cardinality k then correspond to intervals [B,C] ⊆ Bn

such that |B| + (n − |C |) = k. A set B is the minimal element of such an interval if and
only if |B| ≤ k, while C is a maximal element for |C | ≥ n − k.

Combining these two propositions we obtain a large number of even-dimensional
nearly neighborly centrally symmetric Bier spheres. Indeed, in the case of even n we get
at least

2
1
2 (

n
 n/2!)

(2n)!
nonisomorphic spheres, from the complexes � which contain all sets of size A < n/2,
and exactly one set from each pair of sets A and [1, n]\A of size |A| = n/2.

On the other hand, for odd n (that is, in the case of an odd-dimensional sphere, or an
even-dimensional polytope, where the “nearly neighborliness condition” is stronger and
hence more interesting) only one instance of a nearly neighborly centrally symmetric Bier
(n−2)-sphere with 2n vertices is obtained; namely, for� = {A ⊂ [1, n] : |A| ≤  n/2!}.
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[Mu] James R. Munkres, Topological results in combinatorics, Michigan Math. J. 31 (1984), 113–128.
[Pa] Udo Pachner, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangula-
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