Integration Theory / Mathematical Analysis (5B1452/MA429)

Solutions to homework assignment # 2

1. a. Not integrable. In fact, for any n one has f;f:“r f(z)dz = 2, so
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and f cannot be integrable.
b. Not integrable. By the Lebesgue monotone convergence Theorem,
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so the integral exists and is equal to +o00, but f is not integrable.
c. Integrable. Same reasoning shows, that
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so f(z) is integrable since it is measurable and non-negative.

2. a. By a classical inequality, 1 +nz < (1 + z)", so we deduce that sunctions f,(z) := ~12&

(I+z)"
have an integrable majorant on [0, 1], namely 0 < f,(z) < 1. Also f, converges pointwise to
f(z), which is 0 for non-zero = and 1 otherwise: f(0) = 1. Therefore by the Lebesgue bounded

convergence Theorem,
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b. Define functions f,,(z) on [0,00) by fu(z) := (1 + z/n)"e™2%, if x € [0,n], and f,(z) := 0
otherwise. By a classical ineqaulity (1 + %)y < e. Plugging in y = n/z, we obtain 0 < f,(z) =
(1+z/n)"e 2 = (14 z/n)M/®)2e =28 < e 2% — ¢~T_ the latter clearly integrable. Moreover,
by an equally classical limit, lim, ,(1 + z/n)" = €, and hence f,(z) conveges pointwise to
e "
Thus we can apply the Lebesgue bounded convergence Theorem, and write
n
lim 1+2z/n)" **dz = lim x)dx = / e Tdr=—e |32, =1.
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3. a. If g; is integrable, then we can apply the Lebsgue bounded convergence Theorem with
majorant g; (since 0 < g, < ¢1), and obtain integrability of g,, g, and desired convergence of
integrals.
b. On the real line with Lebesgue measure, take g, := X[5,c0), they clearly converge to g(z) = 0,
without convergence of integrals.



4. If we prove this statements for (non-negative) functions f* and f~, statements for f clearly
follow, so we can assume from the beginning that we deal with a non-negative function f.

Consider (biinfinite) sequence of functions {g,},;>° ., defined by g,,(z) := f(z +n). They
are clearly measurable, and denoting g := 3>, _ g,, we can apply the Theorem about integrals
of series (for the interval [0, 1]):
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Thus, function g is integrable on [0, 1], and part b. follows. Also it implies, that g is finite a.e..
Therefore the series in question converges for a.e. z in [0,1] and hence for a.e. = on the real
line (the sum of this series is periodic, g(z) = g(z + 1)).

5. a. Function f is equal to the function
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changed on the set of rational numbers to be equal to zero there. Since g is a some of measurable
functions (in fact, chracteristic functions of measurable sets), it is measurable. But f = g¢
almost everywhere, thus (Lebesgue measure is complete, so all nullsets are measurable) f is
also measurable.
b. Functions f and g have the same integrals (since f = g a.e.), so we can write
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