Integration Theory / Mathematical Analysis (5B1479/MA429)

Final Exam

You may use Friedman's book and class notes (no other books, please). Explain everything, mentioning appropriate theorems (from class or Friedman's book). Good luck!

1. Find the limit

$$\lim_{n\to\infty} \int_0^\infty \left(1+\frac{x}{n}\right)^{-n} \cdot \left(1-\sin\frac{x}{n}\right) dx .$$

2. Let (X, \mathcal{A}, μ) be a measure space, and let f be a measurable real valued function on X. Show that

$$\int_X \exp(f(x)) d\mu(x) \cdot \int_X \exp(-f(x)) d\mu(x) \ge \mu(X)^2.$$

- **3.** Suppose that function f is Lebesgue integrable on the real line. Define function f_h by $f_h(x) = \frac{1}{h} \int_x^{x+h} f(t) dt$. Show that for positive h function f_h is Lebesgue integrable on the real line, and $||f_h||_1 \leq ||f||_1$.
- **4.** Let (X, \mathcal{A}, μ) be a measure space, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions. Show that the set

$$E := \{x \in X : \text{ there is exactly one index } n \text{ such that } f_n(x) = 1\}$$
,

is measurable.

- **5. a.** Suppose that function F(x) is absolutely continuous on the interval [0,1]. Prove that function $G(x) := F(x)^2$ is also absolutely continuous on [0,1].
- **b.** Suppose that function f is Lebesgue-integrable on the interval [0,1]. Show that there exists a Lebesgue-integrable on [0,1] function g such that for every $x \in [0,1]$ one has

$$\int_0^x g(t)dt = \left(\int_0^x f(t)dt\right)^2.$$

Notation. In problems 3 and 5 $\int \dots dt$ denotes integral with respect to Lebesgue measure on the real line. In problem 3 $\| \dots \|_1$ denotes the usual norm in the space $L^1(\mathbb{R})$ of Lebesgue integrable functions on the real line.