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Supplementary material for SF2736, Discrete mathematics:

The RSA cryptosystem and

primality tests

Secret codes (i.e. codes used to make messages unreadable to ”outsiders”)
were formerly mainly something for diplomats, spies, and the military, but
nowadays they have become very important in connection with computer com-
munication.

By a cryptosystem
E

M −−−−−→
←−−−−− C

D

we shall mean two finite setsM (the possible messages, plaintexts) and C (con-
taining the corresponding possible ciphertexts) and two functions E :M→ C
for encryption and D : C →M for decryption, such that

D(E(m)) = m for all m ∈M.

We shall assume thatM = C = Zn = {0, 1, 2, . . . , n− 1} for some (large) n. If
the messages we want to encrypt are in some other form, for instance ordinary
text, they can be expressed as large integers using ASCII code for the symbols
involved (and breaking long messages into smaller pieces to stay within Zn).

In a classical cryptosystem (such as replacement ciphers (”change every a into
a k, every b into an s, and so on”) and many other, more sophisticated, ones)
knowing E implied knowing D. They therefore both had to be kept secret.
(”In principle” that is the case for any cryptosystem, since if you know E you could try all m ∈M
until E(m) is the ciphertext you want to read, but in practice that is not possible, because M is

very large).

In 1976 another kind of cryptosystem, now known as public-key cryptosys-
tems (Sw. kryptosystem med offentlig nyckel) was suggested by W.
Diffie och M. Hellman. In such a system every user, A say, would have his
own encryption function EA and his own decryption function DA. They are so
”complicated” that even if you know EA, it is very hard to find DA. All the
EA can be made public and every participant keeps his own DA secret. That
means that anybody can produce a ciphertext to A, but only A can read it.
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One of the first, and probably the best known, such system, is the RSA (so
named after the inventors, Ron Rivest, Adi Shamir, and Leonard Adleman)
system. Since it is based on primes and their mathematics, it deserves a place
in our course.

The RSA system

Let p and q be different (big) primes and n = p · q, m = φ(n) (φ is Euler’s

function). Since Zn ≈ Zp×Zq (by the Chinese remainder theorem) and (a, b) ∈ Zp×Zq

is invertible iff a, b 6= 0, we find the number of invertible elements in Zn to be
m = φ(n) = (p− 1)(q − 1).

Now let x ∈ Zn. By Euler’s theorem xm = 1 (in Zn) if(f) gcd(x, n) = 1, i.e. iff
p, q - x. Suppose that x ∈ Zn corresponds to (a, b) ∈ Zp × Zq (i.e. f(x) = (a, b)

with the notation in the material on the Chinese remainder theorem). Then for any k ∈ N,
f(xkm+1) = (akm+1, bkm+1). If a 6= 0, akm+1 = (ap−1)k(q−1) · a = 1k(q−1) · a = a
(in Zp) and 0km+1 = 0, so akm+1 = a for all a ∈ Zp. In the same way bkm+1 = b
(in Zq), so f(xkm+1) = (a, b) = f(x) for alla x ∈ Zn, since f is injective this
gives the

Theorem:

Let p and q be distinct primes, n = p · q, and m = (p− 1)(q − 1).

If x ∈ Zn and s ∈ N satisfies s ≡m 1, then

xs = x in Zn,

i.e., for all x ∈ Z, xs ≡ x (mod n).

That gives the following way to construct an RSA system:

1. Take two different primes p, q.

2. Let n = p · q and m = (p− 1)(q − 1).

3. Find e ∈ N with gcd(e,m) = 1, and d ∈ N with e · d ≡ 1 (mod m).

4. Let E,D : Zn → Zn be given by E(x) = xe and D(x) = xd.
so E(x) ≡ xe (mod n), D(x) ≡ xd (mod n)

5. Publish n and e, keep d secret (and throw away m).

Note that the modules are different. We calculate E, D using the module n
and find d with the module m.

To find e in step 3, try different values and check the condition gcd(e,m) = 1
with the Euclidean algorithm. That then also gives the corresponding d.

Since D(E(x)) = (xe)d = xed = xde = (xd)e = E(D(x)) = x, by the theorem
above, D = E−1 in this system.

D is hard to find (i.e., d is hard to find knowing n and e), because it is (we
believe) hard to factor large integers (in a reasonable time). In practice, around
150 digits (in base 10) in p and q seems to be considered sufficient.
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Example. Taking the (not-so-big) primes p = 17, q = 23, we find n = 17·23 =
391 and m = (17− 1)(23− 1) = 352.
With (for instance) e = 15 (gcd(352, 15) = 1, since 352 = 23 · 15 + 7, 15 = 2 · 7 + 1), we
get d = 47 (1 = 15− 2 · 7 = 15− 2(352− 23 · 15) = −2 · 352 + 47 · 15, so 15 · 47 ≡352 1).
To encrypt the very secret message x = 367, we compute E(367) = 36715 = 114
(in Z391). So the ciphertext is 114. Decrypting with D we get D(114) =
11447 = 367 (also in Z391).

In the example the computations involved 36715, which has 39 digits in base
10. In a real system one would have x with hundreds of digits and also e, so
xe would be far to big to compute even in a big computer.
Instead one can compute succesive squares, x, x2, x4, x8, . . . , in each step tak-
ing the result (mod n) (i.e. computing in Zn), so one never has to handle
numbers larger than n2, which is feasible in a computer. Then the correct xi

are multiplied (still (mod n) in each step) to get the result.

Example continued. We could compute D(114) = 11447 like this in Z391:
x = 114,
x2 = 12 996 = 93,
x4 = 932 = 8 649 = 47,
x8 = 472 = 2 209 = 254,
x16 = 2542 = 64 516 = 1, (That x16 = 1 is an ”accident”.)

x32 = 12 = 1.

Since 47 = (101111)2, we find x47 = x32 · x8 · x4 · x2 · x = 1 · 254 · 47 · 93 · 114 =
= 11 938 · 93 · 114 = 208 · 93 · 114 = 19 344 · 114 = 185 · 114 = 21 090 = 367 (in
Z391).

Electronic signatures

The fact that ”everybody” can encrypt messages for the user A, using the
public key EA, gives rise to a new problem. Namely, when B sends a message
to A, how can A be sure that it was really B who sent it and not an imposter?

That problem is solved by an electronic signature, using the fact that
D(E(x)) = E(D(x)) = x.

Suppose B wants to make sure that A will be certain that it was B who sent
the message x. She can then, instead of EA(x) send DB(EA(x)) (or EA(DB(x))).
Then A can use the public EB to find EB(DB(EA(x))) = EA(x) and using his
own secret DA find x. Only B could use DB, so only B could be the sender,
and only A could read the message, since DA was needed.

In a similar way, if A wants to make y publicly known, he can send DA(y) to
everybody. Only somebody who knows DA could be the sender.
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Primality tests

To implement the RSA system, every user must have two very large primes
of his own.

There are certainly enough primes. By the famous Prime number theorem,
proved in 1896, the density of primes around N is approximately 1

lnN
for large

N , so near N = 10150 about one number out of 350 is a prime. That means a
computer can find primes rather easily by testing several candidates, provided
it has a reasonably efficient way of testing if an integer with around 150 digits
(in base 10) is a prime. That is, we need a good primality test.

How do we test if a small number, for instance 389, is a prime? The most
direct method would be to search for factors, by checking all primes up to 19
(since the next prime, 23, has 232 > 389) (the check does not have to be a full division,

for instance 19 | 389 ⇔ 19 | (389 − 19) = 370 ⇔ 19 | 37, (since gcd(19, 10) = 1), so 19 - 389).
389 is a prime, but that method can not be used for really large numbers
(even if we assume that we already know the primes up to 1075 and can check
for divisibility in 10−12 seconds, the test of one number near 10150 could take
more than 1053 years). Checking for all possible factors would almost amount
to factorizing a large integer, and if we could do that, RSA wouldn’t be secure
anyway.

But we do know one way to check if N is a prime, without factorizing:

The Fermat test, base b, 1 < b < N :

Is bN−1 ≡ 1 (mod N)?

By Fermat’s (little) theorem, the answer will for all b be ”yes” if N is a prime,
so if the answer is ”no”, we are certain that N is not prime. But there are
numbers, so-called (Fermat) pseudoprimes to base b, which pass the Fermat
test to base b without being prime.

Example. Since 210 = 1024 = 3 · 341 + 1, 2340 ≡341 134 = 1, so 341 is a
Fermat pseudoprime to base 2. But 3340 ≡341 56 6= 1, so 341 is not a Fermat
pseudoprime to base 3 (and also not a prime).

As the example shows, the Fermat test would show that 341 is not prime, if
we tried it with both base 2 and base 3. A probabilistic test for primality
of N could then be to take a number of bases b1, b2, . . . , bk at random and
perform the test for all of them. If N is a prime, it would pass all the tests,
and it should be improbable that a non-prime would (in the sense that only a very

small fraction of all non-prime N of similar size, say, would pass all of them). If we increase
the number k of bases, the probability of a non-prime passing the test should
become ”practically zero”. Or should it?

In fact, there are non-primes N which pass all Fermat tests with bases b
satisfying gcd(b,N) = 1. Such numbers are called Carmichael numbers and
they are exactly the square-free (i.e., for all primes p, p2 - N) composite integers
such that if p is a prime with p | N , then (p − 1) | (N − 1). They all contain
at least three primes and there are infinitely many of them.

The smallest Carmichael numbers are

561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19, 2465 = 5 · 17 · 29,

2821 = 7 · 13 · 31, 6601 = 7 · 23 · 41, 8911 = 7 · 19 · 67.
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If the prime factors of a Carmichael number are very big, it is very improbable
that we should detect that it is not prime with the probabilistic test described
above.

The Miller-Rabin test with base b (from 1980) is a modification of the Fer-
mat test which, when performed with several bases, makes it highly improbable
that a non-prime should be judged prime.

If N is a prime and x ∈ ZN satisfies x2 = 1, then x = ±1 (if N is prime,

N | (x2 − 1)⇒ N | (x− 1) or N | (x+ 1)). That is the observation behind

The Miller-Rabin test, base b, 1 < b < N :

Let N − 1 = u · 2r, u odd, r ≥ 1 (if N is odd).

Is bu ≡N 1 or (bu)2
i ≡N −1 for some i, 0 ≤ i < r?

If N is prime, the answer will be ”yes” and one can show that if N is composite,
it will pass the Miller-Rabin test for at most N

4
of the bases b with 1 < b < N .

Example. For N = 561 and b = 2, we find N − 1 = 560 = 35 · 24 and
235 ≡561 263,
270 ≡561 2632 = 69 169 ≡561 166,
2140 ≡561 1662 = 27 556 ≡561 67,
2280 ≡561 672 = 4 489 ≡561 1.
Since 67 6≡561 −1, the Miller-Rabin test shows that 561 is not a prime.

Using the isomorphism (from the Chinese remainder theorem)

f : Z561 → Z3 × Z11 × Z17,

we can see what is happening here:
f(235) = f(263) = (2, 10, 8) = (−1,−1, 8),
f(270) = f(166) = (1, 1, 13),
f(2140) = f(67) = (1, 1,−1),
f(2280) = f(1) = (1, 1, 1),
f(2560) = f(12) = (1, 1, 1).
That 2560 ≡n 1 for n = 3, 11, 17, means that 561 passes the Fermat test
with base 2, but since 235·2i ≡n −1 doesn’t happen for the same i for all of
n = 3, 11, 13, 235·2i 6≡561 −1 for all i, so 561 does not pass the Miller-Rabin
test with base 2.

Exercises

1. A user in an RSA system has the public parameters (n, e) = (143, 17).
a. Encrypt the message x = 71.
b. Find the user’s secret decryption parameter d.
c. Check your d by using it to decrypt the result in a.

2. An RSA system uses n = 1147(= 31 · 37) and e ≥ 332.
What are the smallest possible value for e and the corresponding d?

3. An RSA user has the parameter n = p · q = 57 656 617.
What are the primes p and q, if m = (p− 1)(q − 1) = 57 641 220?

4. Show that if p, q are distinct primes, pq−1 + qp−1 ≡ 1 (mod pq).
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Answers

1a. E(x) = 80, b. d = 113.

2. e = 337, d = 673.

3. {p, q} = {6427, 8971}.


