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SUPPLEMENTARY MATERIAL FOR SF2736, DISCRETE MATHEMATICS:

Induction and recursion

On well-founded binary relations

Let R be a binary relation on a set D. As usual, we write aR3 to express that
a € D is related to 5 € D.

We already know the properties reflexivity, symmetry, and transitivity
for binary relations. We shall now introduce another important property, that

of well-foundedness.
o R-minimal in A:

Notation:
For o € D, let Rae = {¢ € D | £Ra}. all Roarrows aeA
to «

ey T
Definition:
The element & € A C D is R-minimal in A (‘/ °/, c v '\‘)
iff there is no £ € A with £Ra, Ra
i.e., FANRG = & none of these € A
Definition:

The relation R on D is well-founded (Sw. vilgrundad) iff
for all A C D, A # & there is a € A which is R-minimal in A.

A well-order is the same as a well-founded total order.

Examples of well-founded relations:
e D=N, aRf means =« + 1
e D=N, aRf means a < [
e D=N, aRf means « | f and a # 3
e D= me(N) (the set of all finite subsets of N), @R /3 means o C 3

R of the first two examples are well-founded because every non-empty subset
of N has a least element. In the third example, the least non-zero number of a
set A (if there is one) is R-minimal in A and if A = {0}, 0 is R-minimal in A. In
the final example, an o € A with a minimal number of elements is R-minimal
in A.

In the second example, there is exactly one R-minimal element in every A C D,
but in the others there are several such elements in some A C D.
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Examples of non-well-founded relations:
e D=7, RS means S =a+1
e D=7, a/RfS means a < f3
e D =N, aRp means o > [ (so R-minimal means maximal in the ordinary sense)
e D={rcQ|0<z}, aRP means a < f
e D="P(N), aRf means o C 3
D= {Oéaﬁﬁ}a R = {<a7ﬁ>7 <ﬁ>7>7 <77O‘>}
Examples of A C D, A # @, without R-minimal elements in these examples
are D, D, D, D~ {0}, {N~{0,1,...,n} | n €N} and D.

Proposition:

If the relation R on D is well-founded and the relation R; on D; C D is such
that R = aRp for all a, B € D; (ie, R1 € R), then Ry on D is also well-
founded.

Pf: If o # A C D; and « is R-minimal in A, « is Ri-minimal in A. O

So, if a relation is not well-founded, it is because ”there are too many arrows”.
If you take away arrows and/or elements from a well-founded relation, the
resulting relation is always well-founded.

Proposition:
A relation R on D is well-founded iff there is no sequence ag, aq, g, ... with
a1 Ra; foralli =0,1,2,....

This characterization of well-founded relations is often easier to verify than
the definition. The well-founded relations are exactly those without a cycle
(you can’t come back to an element by following arrows backwards from it) or
an infinite backward chain (if you follow arrows backwards it must come to a
stop in a finite number of steps). There may, however, exist infinite forward
chains, for instance any infinite ascending sequence in N with < as R.

Exercises
Wf1) Prove the second proposition above. (To prove "if” a so-called axiom of choice

is needed, i.e., one has to assume that infinitely many choices can be made to find the «;.)

Wf2) Let Ry, Ro be well-founded relations on Dy, Dy (with Dy N Dy = ).
The relation R on D = D; U D, is defined so that if a R then either oo € Dy
and 8 € Dy or «, 8 € D; and aR;3 for i =1 or 2.

Show that R is well-founded.

Wif3) Let Ri, Ry be well-founded relations on Dy, Ds.

The relation R on D = D; x Dy = {{ay,as) | a; € D;} is given by

(a1, ) R(B1, Po) iff either aaRofBy or both ay = P and ;R f;.

Show that R is well-founded.



R-induction and R-recursion

Now for the reason why well-foundedness is such an important property of
binary relations. We shall prove that the relation R can be used for proofs by
induction and definitions of functions by recursion iff R is well-founded.

Definition: M R-inductive:

The set M C D is called R-inductive iff /O‘ eifM

forala € D: RaC M = a € M. a‘{ﬁfrmwMe eM
C -

(o &+« 7))

Ra

That means that M C D is R-inductive iff
M:s complement M¢={(e€D|{¢ M}
has no R-minimal element.

So, the definition of well-foundedness can be formulated thus:

Theorem:
R is well-founded iff D is the only R-inductive subset of D.

By taking M as the set of a € D with a property F we get

. . R-induction:
Theorem (R-induction): If for all o € D:

If R is well-founded and for all o € D: Fa true o
F B for all 6 € Ra= Fa ifll}-htrUG for T all R-arrows

t t
then Fo is true for all o € D. an these 0

To prove Fa for all a € D, one can

Ra

always assume Ff for all g € Ra!l then Fa is true for all a € D.

Conversely, if R is not well-founded, there is a set M C D, M # @ without
an R-minimal element. If F is true iff « € M€, it is true for all a € D that
Fp forall f € Ra= Fa, but if « € M # &, then Fa is false.

So, R is well-founded iff R-induction works for all properties F on D.

Examples of R-induction:

e D=N, aRp means § =« + 1, gives "ordinary” induction over N.
To prove a statement one shows it to be true for 0 (since it certainly is true
for all a with oR0) and that it is true for k + 1 if it is true for k.

e D =N, aRp means o < f3, gives so-called ”"strong induction” over N.
To prove the statement for n one may assume it for all £ < n.

e D = Q, the rational numbers, R means a < 3.
R is not a well-ordered relation and the property Fa : o < 0 satisfies
that Fp for all 8 < a = Fa for all « € D, but Fa is not true for all
a e D.
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As usual induction (to prove statements) is closely related to recursion (to
define functions). To decide if statements are true or false is to define a func-
tion which takes truth values, so induction can be considered a special case of
recursion. On the other hand, induction is used to prove the theorem below
about recursion.

Let g(a, h) be defined for « € D and h: Raa — Y.

Definition: f R-recursive if for all a € D:
f:D —Y is R-recursive (with g) f here o
iff for all « € D is given by & and all R-arrows
f( ) ( f| ) f for all these 0
a) = g(a, flra)-
R C./\ d « « .\.)
Ra

flra : R — Y is the restriction of f to Ra, defined by
fIra(§) = f(£), all § € Rav.

Then for each g we have the important

Theorem (R-recursion):
If R is well-founded there is exactly one R-recursive (with g) function on D.

The idea of the proof is to use R-induction over « to prove that f(«) is deter-
mined uniquely by the reursion condition. To make that meaningfull, we need

Definition:
A C D is said to be R-hereditary (Sw. érftlig) iff for all & € A, Ra C A.

We note that:

e Arbitrary unions of R-hereditary sets are R-hereditary.
If « € J, A, where A, are all R-hereditary, a € A, for some &, so
Ra C A, and thus Ra C |, A.. O
e Arbitrary intersections of R-hereditary sets are R-hereditary.
If « € (), A, where A, are all R-hereditary, a € A, for all ¢, so Ra C
A,, all ¢, and thus Ra C (), A,. 0
o If for every 8 € Ra there is an R-hereditary set Ag with f € Ag,
Ao = {a} UlUgera Ap is an R-hereditary set with o € A,.
For all v € Aﬂ for some € Ra, Ry C A, (since Ag is R-hereditary) and
Ra C A, (by the construction of A, and since 8 € Ap). O

Proof of the theorem on R-recursion:

Given are a well-founded relation R on D and a function g(«, h).

1. Uniqueness: If A C D is R-hereditary and f; and f are functions A — Y
which for all a € A satisfy

f(Oé) - g(a7 f|RO¢)a (*)

then fl(a) = fg(oz) for all o € A. (() is meningfull, since A is R-hereditary.)

That is proved by R-induction (since R is well-founded on A): If & € A och fi(f) =
f2(B) for all § € Ra, we have fi(a) = g(a, filra) = 9(@, f2lra) = fo(a).

2. Amalgamation: If f, : A, — Y satisfy (x) on the R-hereditary A, C D,
then there is a function fy : |J, A, — Y which satisfies (x) for all o € |J, A..
Every pair of the functions take the same values in points where they are both
defined, because f,, and f,, both satisfy (*) on the R-hereditary A,, N A,,, so
by 1. f.(a) = f,(«a) for all « € A, N'A,,. Then for o € | J, A, we can define
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fu(a) = fﬁ(a) if « € A, (it will be independent of the choice of such a k). fu then
satisfies (%), since all the f, do so.

3. Local existence: We use R-induction to prove that for all a € D there
is an R-hereditary set A, C D, with a € A,, and a function f, : A, = Y
satisfying (x).

So suppose that such Az and f3 exist for all 8 € Ra. Then on the R-hereditary
Ao = {a} UUperqy Ap: define the function f, by 2. on szep, As and then
fala) = g(a, falra)- fo then satisfies (%) and the R-induction is done.

4. Existence: By 2. all f, can be amalgamated to f satisfying (%) on all
UaGD Aa =D. O

Answers and hints for the exercises

Wif1) If there is such a sequence ag, aq, ag, ..., the set {ap, as,as,...} has
no R-minimal element (since 1R, all i = 0,1,2,...), so R is not well-founded.
This proves "only if”.

If R is not well-founded, there is an A C D, A # & with no R-minimal
element. Take oy € A. Since ¢ is not R-minimal in A, there is oy € A with
a1Ray. But a4 is also not R-minimal in A, so there is as € A with asRayq and
so on. At every step we choose one «; in the sequence ag, aq, ag, ... (where
the elements do not all have to be distinct) with a;11Ray, all i = 0,1,2,...
This proves ”if”.

Wf2) Let ACD, A+# 2.

If Ay = AND; # @, A; has an Ri-minimal element ov € A; (since R, is well-
founded). « is then also R-minimal in A, since if fRa, § € A, (by the definition of
R) fRic, B € A;.

If ANDy =2, AC Dy, A+# D, S0 (Rsis well-founded) there is an o« € A which is
Ro-minimal in A. « is then also R-minimal in A, because SRa, 8 € A C D,
would imply fRoa, 5 € A.

In both cases A has an R-minimal element, so R is well-founded.

Wif3) Let ACD, A+# 2.

Also let Ay = {ag € Dy | (a1, 0) € A for some oy € Di}. Then Ay # &
(because A # @), so there is an Ro-minimal element a3 in As.

Let Ay = {ay € Dy | {(ay,0a5) € A}, Then Ay C Dy, Ay # O, so there is an
Ri-minimal element CYT € A;. Then (by the assumptions on R, Ri, R2) <C¥T, Oé§> is
an R-minimal element in A, so R is well-founded.



