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There may be misprints.

1) For how many z € Z4gs; is 2292 = 1967 [4851 =32 .72 . 11]

Solution:
By the Chinese remainder theorem, Zsgs1 = Zg X Z49 X Z11, isomorphism x — ([z]g, [z]49, [£]11)-
196 =9 7, =49 0,=11 9, 50 %9 =451 196 iff 229% =¢ 7,=49 0,=11 9.
For a € Zg, a* = 0if 3 | a and k > 2, a% = 1 otherwise (sgd(a,9) = 1; Euler’s theorem, ¢(9) = 6).
Since 292 =¢ 4 a?°2 = a* for all @ € Zy. That gives:
a [0 1 2 3 4 5 6
0 1 704 40

7 8
7 1’

s0 a?9?2 =7 for 2 a € Zg.

For a € Z4g, a* =0iff 7 ‘ a, k > 2 (other a’s are invertible), SO a*? =0for 7 a € Zag.

For a € le, ak = Oifa=0and k > 1, a'® = 1 otherwise (Fermat’s little theorem, 11 prime).
Since 292 =19 2, a?°? = a? if @ € Z1;. That gives for a € Z11:

a |01 23456789 10
2?0 1 495335 94 1
s0a*? =9for 2 a € Zq1.

As mentioned above, the elements of Zsg51 are given by elements of Zg X Z4g X Z11, so there
are 2-7-2 =28 x € Z4g51 which satisfy 2292 = 196.

Answer: The desired number is 28.

)

2) (3p) f: X 2 X is a bijection on a finite set X. We shall decide if the relation R on X,
for x,y € X given by 2Ry & y = f"(x) for some n € Z, is an equivalence relation.

Solution:

f is a permutation of X (a bijection of X onto X), so each x € X is in a cycle (since | X| < oo).

R is reflexive, i.e. 2Rz for all € X, since if x is in a k-cycle f*¥(z) = x,

R is symmetric, i.e. Ry = yRzx for all z,y € X, since if z is in a k-cycle and
Yy = fz(l'), i€ Z+, T = fj(y) for all J with & | (Z +]) (and such j exist in Z4),

R is transitive, i.e. (zRy and yRz) = aRz for all z,y,z € X, since if y = f"(x) and
z= fM(y) withm,n € Zy, z = f""(z) and m +n € Z,.

R is therefore reflexive, symmetric and transitive, thus (by definition) an equivalence relation.

Answer: Yes, R is an equivalence relation on X.

3)A={1,2,...,7}, B={1,2,...,13} and we want (a, 2p) the number of f: A — B which
take exactly 4 different values and (b, 1p) the number of them (i.e. the ones in a) which take
at least one odd value.

Solution:
a. The taken values can be chosen in (143) = WSE_M (the number of 4-subsets 1 1
of a 13-set) ways and for each such choice there are 4! - S(7,4) = 4!-350 ;- 6 1

(the Stirling number S(7,4) = 350 by the diagram) surjections of A onto the set of 15 00 25 . 10
. . . . . . . o
the four values. The multiplikation principle gives the desired number, 350

131-350

or -
b. By the addition principle, the desired number is obtained by subtracting the number of
such functions that only take even values ((6) -4 5(7,4) = (66!323)!) from the answer in a.

4
That gives (33 — &) - 350.

13!-350
9!

(= 6006 000), b: (1—3' — 6—!) -+ 350 (= 5880000).

Answer a: o1 a1




4) (3p) (G,-) is a group and ¢: G — G is given by ¢(g) =g~ 1, all g € G.
We shall show that ¢ is an isomorphism iff G is abelian.

Solution:

© is an isomorphism iff it is a bijection and ¢(g192) = ©(g91)p(ge) for all g1, 92 € G.

We first show ”if”, so suppose the group G is abelian (i.e. commutative).

¢ is a bijection, since it has the inverse ¢ ™! = ¢ (since (g=1)~! = g for all g € G).
G abelian

If 91,95 € G, 9(9192) = (9192) " = 95 91" = @g2)0(91) ~ “="" (1) (2)- O
To show ”only if”, suppose ¢ is an isomorphism and let g1, g2 be arbitrary in G. N
Since ¢ is a bijection, there are hy, he € G with g; = ¢(h;) 6 = 1,2) and g1 92 = gp(hl)ga(hg)wébo
= p(h1hg) = (hiho) ™t = hy'hit = o(ha)p(h1) = gagi. [0 We are done.

5) cs iven by i |1 2 3 4 5 6 7 8 9 10 11 12 13
o 13 are given by: x(@) | 9 8 12 7 2 6 11 4 1 13 5 3 10
2
n

We want (a, 1p) the parities of 7 o(i) | 11 12 3 5 1 4 8 13 9 6 7 10
and o and (b, 2p) all n € Z satisfying 77

" = g"r for some T € Si3.

Solution:

a. On cycle form, 7 = (1 9)(2 8 4 7 11 5)(3 12)(6)(10 13) (x(1) = 9, =(9) = 1,...) and
o=(1116)(2)(31274)(5)(8)(9 13 10). The types of 7 : [1236], o : [133%24].

The parities are m: even (4 (even) cycles of even length), O odd (1 (odd) cycle of even length).

b. 7" = 0”1 & o™ = "7, so we want n € Z making 7" and ¢” conjugate, i.e. of the
same type (by a well-known theorem).

The n-th power of a k-cycle is d g—cycles, d = sgd(k,n), but we only need the cases
k=1,2,3,4,6 to construct this table of the types:

n ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12
x| 1] [12%6) 1732  [12%] [173%] [12%¢] 13 [12%6) [173%] [12] [1737 [12%6] [1'3]
o™ | [1%3]  [1%324] [1%223%] [194] [173%] [1%3%4] [1°2%] [1%3%4] [173%] [1°4] [1%223%] [1%3%4] [1'9]

The table has period 12 in both directions (, 7! of the same type and o(r) = 6, o(c) = 12) and we
see that 7" and o™ are of the same type iff 4 | n.

Answer a: 7w is even and o is odd, b: All n = 4k, k € Z.

6) (4p) G = (V, E) is a plane, connected graph with d(z) > 3 for all x € V and the dual
graph G+ = (V+, E+4) has |V+| < 11. We shall show that 6+ (z) < 4 for some z € V.

Solution:

Suppose (for a contradiction) that 6+ (z) > 5 for all z € V+.

The sum of the degrees in a graph is (common notation) 2|E|, so 3v < >° ., 6(x) = 2e and
5’1)L < ZIGVJ_ 5L(CL‘) = 2(2L = 2e (e = e* by the definition of G1).

Euler’s polyhedron formula (plane, connected graph) and the number of regions r = v1 (definition
of GY): 2=v—e+r=v—e+vt SUL—g,so % >t 22—!—%. That gives % 22+§,

ie. (% — %)e =15 = 2,50 e > 30, and vt >24 £ > 12, contradiction. We are done.




7) (4p) We want the number of essentially different ways (i.e. so that they 4 6
1
remain different however all or part of the arrangement is rotated) Ways to colour 2 3

the beads with exactly two red beads and the rest in k other colours. d -
o]

Solution:

Numbering the beads as in the figure, the group of "allowed” permutations of them is

G ={(1),(45),(67), (45)(67), (23)(46)(57), (23)(47)(56), (23)(4657), (23)(4756) }, |G| = 8.
By Burnside’s lemma (Thm 21.4 in the book) the number of essentially different colourings
= the number of orbits of the action of the group on the colourings = |—Cl” >geac [F(9)]-

g type  number of g’s |F(g)]
id [17] 1 (0) - k®> =21K°
(45),(67) [1° 2] 2 B+ (5) kY =k° + 10k
(45)(67) 13 22] 1 () k4+(§) =2k + 3K
(23)(46)(57),(23)(47)(56) [12°] 2 () k3—3k;3
(23)(4657),(23)(4756) [124] 2

|F'(g)] is found using that all beads in the same cycle must have the same colour and the
two red beads can form two 1-cycles or one 2-cycle.

We find ﬁ > gec 1 F(9) = $(21K5 + 2(k° + 10k*) + (2k* + 3K3) + 2 - 3k3 4 2k?) =

= 1(23K° +22k* + 9% + 2k?)

Answer: The desired number is %(23 k® 4+ 22k* +9Kk3 + 2K?).

(k=1 gives 7, k = 2 gives 146, k = 3 gives 954, k = 4 gives 3724 etc.)

8) (4p) G = (V, E) is a connected graph.
We shall show that its edges can be directed so that at most one vertex has odd out-degree.

Solution:

A direction of the edges which minimizes |[{x € V' | §7(z) udda}| (one exists, since the number € N)
satisfies the condition. Namely, if x,y € V, x # y, 67 (z),d"(y) odd, change the direction
of all edges in a path between z and y. Then 67 (z),5%(y) become even and the parity of
all other out-degrees are unchanged, so the number of z € V with 67 (z) odd decreases,
contradiction. We are done.

9) (5p) We want the value of 2 27" . F,,, where the Fibonacci numbers {F, }22, are
defined by Fy =0, Fy =1 and Fqy2 = Fyp1 + F, forn e N={0,1,2,...}.
Solution:
We use the series obtained from substituting x = % in the generating function > - F,
(a formal power series) tO find its value and show that it converges.
Let ¢ = % (the golden ratio). It satisfies 1+¢ = (]52 and 1 < ¢ < 2 (since1 <5<9=1<V5<3),
so with induction we get F,, < ¢" for all n € N:

e Basis: Fp=0<1=¢", [, =1<¢=0¢',

o Step: If F), < ¢", Fruq < " Fryo = Fyp1 + F, < ¢"HL 4 9" = ¢n 2, O

Consider the partial sums of the generating function (N € Z):

(1—z—2a2) - 2N Fam = Fya® + (Fy — Fp)z' + 04 ... — (Fy_1 + Fx)aN 1 — Fy 2N +2)
giving, with = = 3, 2 277F, = 2 — 2-(W=1(Fy_, + Fy) — 27N Fy. This shows (since
27"F, < (£)" = 0 as n — oo) that 22[:0 27"F, - 2as N — oo.

n

Answer: The value of the series is 2.




10) We shall (a, 1p) show that = is odd if x,y € Z and y*> = 2% + 2, (b, 2p) show that
R =1Z[V2i] = {a+bv2i | a,b € Z} has unique factorization in ”primes” (apart from the order
of factors and factors +1) and (C, 2p) find all €T,y € 7 with yS = (Ez + 2.

Solution:

a. If z is even, 22 +2 =4 2, but y> =4 0,1 or 3. g
b. Let z,w € R, w # 0. We shall show that there are q,» € R with 2 = wq+, |r|? <
|w|?, i.e. division with remainder, so the remainder is (strictly) less than the divi-
sor, as measured by a quantity taking values in N (a well-ordered set).

That is enough to (like in Z, with the Euclidean algorithm, in a finite number of steps) show that there
is for all z,w € R a unique (apart from factors +1) sgd(z, w) = mz + nw for some m,n € R.

If you define p € R to be an ” R-prime” iff it only has divisors +1 and £p, you can show,
like in Z that every z € R is an (essentially) unique product of ” R-primes”.

(Since z | w = |2]? | |w|? for z,w € C, p = a + b\/21 is an ” R-prime” if |p|? = a? + 2b2 is an (ordinary) prim, e.g.
1+4++/214, 34+4+/2i. But ordinary primes are not always ” R-primes”, e.g. 2 = —v/2i-v/24, 3 = (1+v24)(1 —/214),
but 5 is an ” R-prime”.)

Now we shall show the result on division with remainder above, so let z,w € R, w # 0.

Division in C gives Z € Q[v2i] = {s +t\/2i | 5,t € Q} (since “H2V21 = agt2bd | beoad \/5;),
Take ¢ = u + vv/2i the number in R closest to Z (u € Z closest to e5t2% and v € Z closest
to 4=24). Then |Z — ¢]* < (2)2 + (%)2 = 3 < 1,500 z = wg + r with 7 € R and
r? = 1% — ql*lw]® < |wl*.

That finishes (the scetch of) the proof of (essentially) unique factorization in R. O

c. We want x,y € Z with y® = 22 + 2 = (v + v/2i)(x — v/2i) and know that z is odd.
sgd(z + V24,2 — v/2i) = d = (&)1, since sgd(z + v2i,2 — v/2i) = sgd(z — v/21,2v/21),
so d € R divides # 4+ v/2i and 2v/2i and thus |d|? | (#? +2) and |d|? | [2v2]> = 8, but
22+ 2is odd, so |d| = 1. (Or, with the Euclidean algorithm, (4k 1) — v2i = 2v/2i(—kv/2i) + (£1 — V2 1);
2v2i= (1 —V2i)(—-1£V2i)F1.)

That gives 2 4+ v/2i = (a + byv/21)? for some a,b € Z, since every ” R-prime” p in x + /21 is
in y, so p3* (some k € z,) is a factor of y3, thus of  + /24 (since it is not in = — ﬂz)

T+ V20 = (a+bv2i)? gives a(a®? — 6b?) = z and b(3a> — 2b%) = 1. From the second one,
b|1,s0b==+1and 3a® -2 =0b= =1, giving a? = b =1 and also a = &1, b = 1 which gives
x = a(a® — 6b?) = £(1 — 6) = F5. So, at last, y> =22 +2 =232,y = 3.

Answer a,b: See above, c: The only solutions are x = £+5, y = 3.




