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1) For how many x ∈ Z4851 is x292 = 196? [4851 = 32 · 72 · 11]

Solution:
By the Chinese remainder theorem, Z4851

∼= Z9×Z49×Z11, isomorphism x 7→ ([x]9, [x]49, [x]11).
196 ≡9 7,≡49 0,≡11 9, so x292 ≡4851 196 iff x292 ≡9 7,≡49 0,≡11 9.
For a ∈ Z9, ak = 0 if 3 | a and k ≥ 2, a6 = 1 otherwise (sgd(a, 9) = 1; Euler’s theorem, φ(9) = 6).
Since 292 ≡6 4 a292 = a4 for all a ∈ Z9. That gives:

a 0 1 2 3 4 5 6 7 8

a292 0 1 7 0 4 4 0 7 1
,

so a292 = 7 for 2 a ∈ Z9.
For a ∈ Z49, ak = 0 iff 7 | a, k ≥ 2 (other a’s are invertible), so a292 = 0 for 7 a ∈ Z49.
For a ∈ Z11, ak = 0 if a = 0 and k ≥ 1, a10 = 1 otherwise (Fermat’s little theorem, 11 prime).
Since 292 ≡10 2, a292 = a2 if a ∈ Z11. That gives for a ∈ Z11:

a 0 1 2 3 4 5 6 7 8 9 10

a292 0 1 4 9 5 3 3 5 9 4 1
,

so a292 = 9 for 2 a ∈ Z11.
As mentioned above, the elements of Z4851 are given by elements of Z9×Z49×Z11, so there
are 2 · 7 · 2 = 28 x ∈ Z4851 which satisfy x292 = 196.

Answer: The desired number is 28.

2) (3p) f : X � X is a bijection on a finite set X. We shall decide if the relation R on X,
for x, y ∈ X given by xRy ⇔ y = fn(x) for some n ∈ Z+, is an equivalence relation.

Solution:
f is a permutation of X (a bijection of X onto X), so each x ∈ X is in a cycle (since |X| <∞).
R is reflexive, i.e. xRx for all x ∈ X, since if x is in a k-cycle fk(x) = x,
R is symmetric, i.e. xRy ⇒ yRx for all x, y ∈ X, since if x is in a k-cycle and
y = f i(x), i ∈ Z+, x = f j(y) for all j with k | (i+ j) (and such j exist in Z+),
R is transitive, i.e. (xRy and yRz) ⇒ xRz for all x, y, z ∈ X, since if y = fn(x) and
z = fm(y) with m,n ∈ Z+, z = fm+n(x) and m+ n ∈ Z+.
R is therefore reflexive, symmetric and transitive, thus (by definition) an equivalence relation.

Answer: Yes, R is an equivalence relation on X.

3) A = {1, 2, . . . , 7}, B = {1, 2, . . . , 13} and we want (a, 2p) the number of f : A→ B which
take exactly 4 different values and (b, 1p) the number of them (i.e. the ones in a) which take
at least one odd value.

Solution:

a. The taken values can be chosen in
(

13
4

)
= 13!

4!·(13−4)! (the number of 4-subsets

of a 13-set) ways and for each such choice there are 4! · S(7, 4) = 4! · 350
(the Stirling number S(7, 4) = 350 by the diagram) surjections of A onto the set of
the four values. The multiplikation principle gives the desired number,
13!·350

9! .

1
1 1

1 3 1
1 7 6 1

15 25 10
90 65

350

b. By the addition principle, the desired number is obtained by subtracting the number of
such functions that only take even values (

(
6
4

)
· 4! · S(7, 4) = 6!·350

(6−4)! ) from the answer in a.

That gives ( 13!
9! −

6!
2! ) · 350.

Answer a: 13!·350
9!

(= 6 006 000), b:
(
13!
9!
− 6!

2!

)
· 350 (= 5 880 000).



4) (3p) (G, ·) is a group and ϕ : G→ G is given by ϕ(g) = g−1, all g ∈ G.
We shall show that ϕ is an isomorphism iff G is abelian.

Solution:
ϕ is an isomorphism iff it is a bijection and ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G.
We first show ”if”, so suppose the group G is abelian (i.e. commutative).
ϕ is a bijection, since it has the inverse ϕ−1 = ϕ (since (g−1)−1 = g for all g ∈ G).

If g1, g2 ∈ G, ϕ(g1g2) = (g1g2)−1 = g−1
2 g−1

1 = ϕ(g2)ϕ(g1)
G abelian

= ϕ(g1)ϕ(g2). �
To show ”only if”, suppose ϕ is an isomorphism and let g1, g2 be arbitrary in G.
Since ϕ is a bijection, there are h1, h2 ∈ G with gi = ϕ(hi) (i = 1, 2) and g1g2 = ϕ(h1)ϕ(h2)

ϕ iso
=

= ϕ(h1h2) = (h1h2)−1 = h−1
2 h−1

1 = ϕ(h2)ϕ(h1) = g2g1. � We are done.

5) π, σ ∈ S13 are given by:
We want (a, 1p) the parities of π

i 1 2 3 4 5 6 7 8 9 10 11 12 13
π(i) 9 8 12 7 2 6 11 4 1 13 5 3 10
σ(i) 11 2 12 3 5 1 4 8 13 9 6 7 10

.

and σ and (b, 2p) all n ∈ Z satisfying τπn = σnτ for some τ ∈ S13.

Solution:
a. On cycle form, π = (1 9)(2 8 4 7 11 5)(3 12)(6)(10 13) (π(1) = 9, π(9) = 1, . . .) and
σ = (1 11 6)(2)(3 12 7 4)(5)(8)(9 13 10). The types of π : [1 23 6], σ : [13 32 4].
The parities are π: even (4 (even) cycles of even length), σ: odd (1 (odd) cycle of even length).
b. τπn = σnτ ⇔ σn = τπnτ−1, so we want n ∈ Z making πn and σn conjugate, i.e. of the
same type (by a well-known theorem).
The n-th power of a k-cycle is d k

d -cycles, d = sgd(k, n), but we only need the cases
k = 1, 2, 3, 4, 6 to construct this table of the types:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

πn [113] [1236] [1732] [126] [1732] [1236] [113] [1236] [1732] [126] [1732] [1236] [113]

σn [113] [13324] [132232] [194] [1732] [13324] [1922] [13324] [1732] [194] [132232] [13324] [113]

The table has period 12 in both directions (π, π−1 of the same type and o(π) = 6, o(σ) = 12) and we
see that πn and σn are of the same type iff 4 | n.

Answer a: π is even and σ is odd, b: All n = 4k, k ∈ Z.

6) (4p) G = (V,E) is a plane, connected graph with δ(x) ≥ 3 for all x ∈ V and the dual
graph G⊥ = (V ⊥, E⊥) has |V ⊥| ≤ 11. We shall show that δ⊥(x) ≤ 4 for some x ∈ V ⊥.

Solution:
Suppose (for a contradiction) that δ⊥(x) ≥ 5 for all x ∈ V ⊥.
The sum of the degrees in a graph is (common notation) 2 |E|, so 3v ≤

∑
x∈V δ(x) = 2e and

5v⊥ ≤
∑
x∈V ⊥ δ

⊥(x) = 2e⊥ = 2e (e = e⊥ by the definition of G⊥).

Euler’s polyhedron formula (plane, connected graph) and the number of regions r = v⊥ (definition

of G⊥): 2 = v − e + r = v − e + v⊥ ≤ v⊥ − e
3 , so 2e

5 ≥ v⊥ ≥ 2 + e
3 . That gives 2e

5 ≥ 2 + e
3 ,

i.e. ( 2
5 −

1
3 )e = e

15 ≥ 2, so e ≥ 30, and v⊥ ≥ 2 + e
3 ≥ 12, contradiction. We are done.



7) (4p) We want the number of essentially different ways (i.e. so that they

remain different however all or part of the arrangement is rotated) ways to colour
the beads with exactly two red beads and the rest in k other colours.

Solution:

u4

u5

u2 u1 u3

u6

u7

@@

��

��

@@

Numbering the beads as in the figure, the group of ”allowed” permutations of them is
G = {(1), (45), (67), (45)(67), (23)(46)(57), (23)(47)(56), (23)(4657), (23)(4756)}, |G| = 8.
By Burnside’s lemma (Thm 21.4 in the book) the number of essentially different colourings
= the number of orbits of the action of the group on the colourings = 1

|G|
∑
g∈G |F (g)|.

g type number of g’s |F (g)|
id [17] 1

(
7
2

)
· k5 = 21 k5

(4 5), (6 7) [15 2] 2 1 · k5 +
(

5
2

)
· k4 = k5 + 10 k4

(4 5)(6 7) [13 22] 1
(

2
1

)
· k4 +

(
3
2

)
· k3 = 2 k4 + 3 k3

(2 3)(4 6)(5 7), (2 3)(4 7)(5 6) [1 23] 2
(

3
1

)
· k3 = 3 k3

(2 3)(4 6 5 7), (2 3)(4 7 5 6) [1 2 4] 2 k2

|F (g)| is found using that all beads in the same cycle must have the same colour and the
two red beads can form two 1-cycles or one 2-cycle.
We find 1

|G|
∑
g∈G |F (g)| = 1

8

(
21k5 + 2(k5 + 10k4) + (2k4 + 3k3) + 2 · 3k3 + 2k2

)
=

= 1
8 (23 k5 + 22 k4 + 9 k3 + 2 k2)

Answer: The desired number is 1
8
(23 k5 + 22 k4 + 9 k3 + 2 k2).

(k = 1 gives 7, k = 2 gives 146, k = 3 gives 954, k = 4 gives 3724 etc.)

8) (4p) G = (V,E) is a connected graph.
We shall show that its edges can be directed so that at most one vertex has odd out-degree.

Solution:
A direction of the edges which minimizes |{x ∈ V | δ+(x) udda}| (one exists, since the number∈ N)

satisfies the condition. Namely, if x, y ∈ V, x 6= y, δ+(x), δ+(y) odd, change the direction
of all edges in a path between x and y. Then δ+(x), δ+(y) become even and the parity of
all other out-degrees are unchanged, so the number of x ∈ V with δ+(x) odd decreases,
contradiction. We are done.

9) (5p) We want the value of
∑∞
n=0 2−n · Fn, where the Fibonacci numbers {Fn}∞n=0 are

defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ∈ N = {0, 1, 2, . . .}.
Solution:
We use the series obtained from substituting x = 1

2 in the generating function
∑∞
n=0 Fn x

n

(a formal power series) to find its value and show that it converges.

Let φ = 1+
√

5
2 (the golden ratio). It satisfies 1+φ = φ2 and 1 < φ < 2 (since 1 < 5 < 9⇒ 1 <

√
5 < 3),

so with induction we get Fn < φn for all n ∈ N:

• Basis: F0 = 0 < 1 = φ0, F1 = 1 < φ = φ1,
• Step: If Fn < φn, Fn+1 < φn+1, Fn+2 = Fn+1 + Fn < φn+1 + φn = φn+2. �

Consider the partial sums of the generating function (N ∈ Z+):

(1− x− x2) ·
∑N
n=0 Fn x

n = F0 x
0 + (F1 − F0)x1 + 0 + . . .− (FN−1 + FN )xN+1 − FN xN+2,

giving, with x = 1
2 ,
∑N
n=0 2−nFn = 2 − 2−(N−1)(FN−1 + FN ) − 2−NFN . This shows (since

2−nFn < (φ2 )n → 0 as n→∞) that
∑N
n=0 2−nFn → 2 as N →∞.

Answer: The value of the series is 2.



10) We shall (a, 1p) show that x is odd if x, y ∈ Z and y3 = x2 + 2, (b, 2p) show that

R = Z[
√

2 i] = {a+ b
√

2 i | a, b ∈ Z} has unique factorization in ”primes” (apart from the order

of factors and factors ±1) and (c, 2p) find all x, y ∈ Z with y3 = x2 + 2.

Solution:
a. If x is even, x2 + 2 ≡4 2, but y3 ≡4 0, 1 or 3. �
b. Let z, w ∈ R, w 6= 0. We shall show that there are q, r ∈ R with z = wq+ r, |r|2 <
|w|2, i.e. division with remainder, so the remainder is (strictly) less than the divi-
sor, as measured by a quantity taking values in N (a well-ordered set).
That is enough to (like in Z, with the Euclidean algorithm, in a finite number of steps) show that there
is for all z, w ∈ R a unique (apart from factors ±1) sgd(z, w) = mz + nw for some m,n ∈ R.
If you define p ∈ R to be an ”R-prime” iff it only has divisors ±1 and ±p, you can show,
like in Z that every z ∈ R is an (essentially) unique product of ”R-primes”.
(Since z | w ⇒ |z|2 | |w|2 for z, w ∈ C, p = a+ b

√
2 i is an ”R-prime” if |p|2 = a2 + 2b2 is an (ordinary) prim, e.g.

1 +
√

2 i, 3 + 4
√

2 i. But ordinary primes are not always ”R-primes”, e.g. 2 = −
√

2 i ·
√

2 i, 3 = (1 +
√

2 i)(1−
√

2 i),

but 5 is an ”R-prime”.)

Now we shall show the result on division with remainder above, so let z, w ∈ R, w 6= 0.
Division in C gives z

w ∈ Q[
√

2 i] = {s+ t
√

2 i | s, t ∈ Q} (since a+b
√

2 i

c+d
√

2 i
= ac+2bd

c2+2d2
+ bc−ad
c2+2d2

√
2 i).

Take q = u + v
√

2 i the number in R closest to z
w (u ∈ Z closest to ac+2bd

c2+2d2
and v ∈ Z closest

to bc−ad
c2+2d2

). Then | zw − q|2 ≤ ( 1
2 )2 + (

√
2

2 )2 = 3
4 < 1, soo z = wq + r with r ∈ R and

|r|2 = | zw − q|
2|w|2 < |w|2.

That finishes (the scetch of) the proof of (essentially) unique factorization in R. �
c. We want x, y ∈ Z with y3 = x2 + 2 = (x+

√
2 i)(x−

√
2 i) and know that x is odd.

sgd(x +
√

2 i, x −
√

2 i) = d = (±)1, since sgd(x +
√

2 i, x −
√

2 i) = sgd(x −
√

2 i, 2
√

2 i),

so d ∈ R divides x +
√

2 i and 2
√

2 i and thus |d|2 | (x2 + 2) and |d|2 | |2
√

2|2 = 8, but
x2 + 2 is odd, so |d| = 1. (Or, with the Euclidean algorithm, (4k± 1)−

√
2 i = 2

√
2 i(−k

√
2 i) + (±1−

√
2 i);

2
√

2 i = (±1−
√

2 i)(−1±
√

2 i)∓ 1.)

That gives x+
√

2 i = (a+ b
√

2 i)3 for some a, b ∈ Z, since every ”R-prime” p in x+
√

2 i is

in y, so p3k
(some k ∈ Z+) is a factor of y3, thus of x+

√
2 i (since it is not in x−

√
2 i).

x +
√

2 i = (a + b
√

2 i)3 gives a(a2 − 6b2) = x and b(3a2 − 2b2) = 1. From the second one,
b | 1, so b = ±1 and 3a2− 2 = b = ±1, giving a2 = b = 1 and also a = ±1, b = 1 which gives
x = a(a2 − 6b2) = ±(1− 6) = ∓5. So, at last, y3 = x2 + 2 = 33, y = 3.

Answer a,b: See above, c: The only solutions are x = ±5, y = 3.


