Mathematics, KTH

B.Ek

Suggested solutions exam TEN1 SF2736 DISCRETE MATHEMATICS

April 5 2018 There may be misprints.

1) (3p) We want all $x \in \mathbb{Z}$ that satisfy $x^{1682} + 22x \equiv 1652 \pmod{3599}$ [3599 = 59 · 61].

Solution:

By the Chinese remainder theorem $\mathbb{Z}_{3599} \cong \mathbb{Z}_{59} \times \mathbb{Z}_{61}$, with isomorphism $x \mapsto ([x]_{59}, [x]_{61})$, so we start by solving the equation mod 59 and mod 61 separately. \mathbb{Z}_{59} : 1682 = 58 · 29, 1652 = 59 · 28, so in \mathbb{Z}_{59} the equation is $(x^{58})^{29} + 22x = 0$ and since 59 is a prime, Fermat's little theorem gives $x^{58} = \begin{cases} 0, & \text{for } x = 0, \\ 1, & \text{otherwise.} \end{cases}$ Solutions are thus x = 0 and all solutions of 1 + 22x = 0, i.e. $x = -22^{-1}$. The Euclidean algorithm: $59 = 22 \cdot 2 + 15$, $22 = 15 \cdot 1 + 7$, $15 = 7 \cdot 2 + 1$, thus $1 = 15 - 2 \cdot (22 - 15) = -2 \cdot 22 + 3 \cdot (59 - 2 \cdot 22) = 3 \cdot 59 - 8 \cdot 22$ and $22^{-1} = -8$. So, mod 59 all solutions are given by $x \equiv_{59} 0$ and $x \equiv_{59} 8$. \mathbb{Z}_{61} : 1682 = 60 · 28 + 2, 1652 = 61 · 27 + 5, so in \mathbb{Z}_{61} the equation is $x^{60 \cdot 28 + 2} + 22x = 5$ and since 61 is a prime, Fermat's little theorem gives $x^{28\cdot 60+2} = x^2$ for all $x \in \mathbb{Z}_{61}$. Thus, the equation is here $x^2 + 22x = 5 \Leftrightarrow (x+11)^2 = 121 + 5 = 2^2 \Leftrightarrow (x+9)(x+13) = 0.$ So, mod 61 all solutions are $x \equiv_{61} -9$ and $x \equiv_{61} -13$ (61 is prime, so 61 | $a \cdot b \Leftrightarrow 61$ | a or 61 | b). We find the solutions in \mathbb{Z} using $y_1 \equiv_{59} 1$, $\equiv_{61} 0$ and $y_2 \equiv_{59} 0$, $\equiv_{61} 1$, $y_1 = 61s \equiv_{59} 1 \Leftrightarrow 2s \equiv_{59} 1$ and we choose s = 30, so $y_1 = 61 \cdot 30 = 1830$ and $y_2 = 59t \equiv_{61} 1 \Leftrightarrow 2t \equiv_{61} -1$ and we choose t = 30, so $y_2 = 59 \cdot 30 = 1770$. All solutions (Chinese remainder theorem): $x \equiv_{3599} 0.1830 - 9.1770 = -15\,930 \equiv_{3599} 2065$, $x \equiv_{3599} 0 \cdot 1830 - 13 \cdot 1770 = \ldots \equiv_{3599} 2183, x \equiv_{3599} 8 \cdot 1830 - 9 \cdot 1770 = \ldots \equiv_{3599} 2309,$ $x \equiv_{3599} 8 \cdot 1830 - 13 \cdot 1770 = \dots \equiv_{3599} 2427.$ Answer: All such $x = y + 3599 \cdot n$, $n \in \mathbb{Z}$, where y = 2065, 2183, 2309 or 2427.

2) For $f: X \to Y$, we let $f^{"}: \mathcal{P}(X) \to \mathcal{P}(Y)$ be given by $f^{"}(A) = \{f(a) \mid a \in A\}$. We shall decide which of '=', ' \subseteq ', ' \supseteq ' necessarily hold between (a, 1p) $f^{"}(A \cup B)$ and $f^{"}(A) \cup f^{"}(B)$, (b, 1p) $f^{"}(A \cap B)$ and $f^{"}(A) \cap f^{"}(B)$, (c, 1p) $f^{"}(A \setminus B)$ and $f^{"}(A) \setminus f^{"}(B)$.

Solution:

a. $y \in f^{"}(A \cup B) \Leftrightarrow y = f(x)$ for some $x \in A \cup B \Leftrightarrow y = f(x)$ for some $x \in A$ and/or y = f(x) for some $x \in B \Leftrightarrow y \in f^{"}(A)$ and/or $y \in f^{"}(B) \Leftrightarrow y \in f^{"}(A) \cup f^{"}(B)$, so '=' (and thus also ' \subseteq ', ' \supseteq ') hold in a. b. $y \in f^{"}(A \cap B) \Leftrightarrow y = f(x)$ for some $x \in A \cap B \Rightarrow y \in f^{"}(A) \cap f^{"}(B)$, but $X = Y = \{a, b\}, A = \{a\}, B = \{b\}, f(a) = f(b) = a$ give $f^{"}(A \cap B) = f^{"}(\emptyset) = \emptyset$ and $f^{"}(A) \cap f^{"}(B) = A \cap A = A \neq \emptyset$, so ' \subseteq ', but neither '=' nor ' \supseteq ', necessarily holds in b. c. $y \in f^{"}(A) \smallsetminus f^{"}(B) \Leftrightarrow y \in f^{"}(A), y \notin f^{"}(B) \Leftrightarrow y = f(x)$ for some $x \in A$, but not for any $x \in B$ (so for an $x \in A \smallsetminus B$) $\Rightarrow y \in f^{"}(A \setminus B)$, but X, Y, f as in b. give $f^{"}(A \smallsetminus B) = f^{"}(A) = A$ and $f^{"}(A) \smallsetminus f^{"}(B) = A \setminus A = \emptyset \neq A$, so ' \supseteq ', but neither '=' nor ' \subseteq ', necessarily holds in c.

Answer a: =, \subseteq , \supseteq , b: \subseteq , c: \supseteq must hold, the others not.

3) (3p) We want the number of ways to place four girls and five boys on three red and six white chairs, so that at least one girl sits on a red chair (children and chairs distinguishable).

Solution:

The number we want is the total number of ways to place the children minus the number of ways with all girls on white chairs (the addition principle), i.e. $9! - (6)_4 \cdot 5! = 9! - \frac{6!}{2!} \cdot 5!$ ways (the number of bijections 9-set \rightarrow 9-set and (multiplication principle) the number of injections 4-set (the girls) \rightarrow 6-set (the white chairs) \cdot the number of bijections 5-set (the boys) \rightarrow 5-set (the chairs without girls)).

Answer: In 9! $-\frac{6! \cdot 5!}{2}$ (= 319680) ways.

4) $\pi, \sigma \in S_9$ are given by the table on the right. We want (a, 1p) π, σ and $\pi\sigma$ on cycle form and shall (b, 2p) show that if the group G contains π and σ , G's order must be divisible by 180.

i		1	2	3	4	5	6	7	8	9
$\pi(i$)	2	3	1	5	6	7	4	9	8
$\sigma(i$)	4	8	1	9	2	3	7	5	6

Solution:

a. $\pi(1) = 2, \pi(2) = 3, \pi(3) = 1$ etc. give $\pi = (123)(4567)(89)$ and $\sigma = (14963)(285)$. Composition (first σ then π) gives $(\pi\sigma)(1) = \pi(\sigma(1)) = \pi(4) = 5$ etc, so $\pi\sigma = (153297486)$. b. *G* is a group containing π and σ and thus also $\pi\sigma$. The order of a group is a multiple of the order of each element (from Lagrange's theorem) and the order of a permutation is the least common multiple of the lengths of the cycles. The orders of $\pi, \sigma, \pi\sigma$ are then $\operatorname{lcm}(3, 4, 2) = 12, \operatorname{lcm}(5, 3, 1) = 15, \operatorname{lcm}(9) = 9.$ |G| is divisible by all three, therefore also by $\operatorname{lcm}(12, 15, 9) = 180$. We are done.

Answer a: $\pi = (1\,2\,3)(4\,5\,6\,7)(8\,9), \ \sigma = (1\,4\,9\,6\,3)(2\,8\,5), \ \pi\sigma = (1\,5\,3\,2\,9\,7\,4\,8\,6),$ b: Shown above.

5) An RSA system has public (n, e), where n = 4331 [= 61 · 71]. We want (a, 1p) those of 205,..., 209 that are possible for e and (b, 2p) a corresponding d-value for one of those e's.

Solution:

a. The condition for e is that gcd(m, e) = 1, where (for $n = p \cdot q$ with p, q distinct primes) $m = \phi(n) = (p-1)(q-1) = 60 \cdot 70 = 4200 = 2^3 \cdot 3 \cdot 5^2 \cdot 7.$

Since 2 | 206, 208 and 3 | 207 and 5 | 205 and 2, 3, 5, 7 \nmid 209 the only possibility is e = 209. b. A corresponding d is determined by $e \cdot d \equiv_m 1$.

The Euclidean algorithm: $4200 = 209 \cdot 20 + 20$, $209 = 20 \cdot 10 + 9$, $20 = 9 \cdot 2 + 2$, $9 = 2 \cdot 4 + 1$, so $1 = 9 - 4 \cdot 2 = 9 - 4(20 - 2 \cdot 9) = -4 \cdot 20 + 9 \cdot 9 = -4 \cdot 20 + 9(209 - 10 \cdot 20) = 9 \cdot 209 - 94 \cdot 20 = 9 \cdot 209 - 94(4200 - 20 \cdot 209) = -94 \cdot 4200 + 1889 \cdot 209$ and we can take d = 1889.

Answer a: The only possible e = 209, b: A corresponding d = 1889. (It is in fact enough that $e \cdot d \equiv_{\text{lcm}(p-1,q-1)} 1$, so all d = 209 + 420k, $k \in \mathbb{Z}_+$ can be used.)

6) (4p) $G = (V, E), G_i = (V_i, E_i), V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$ and $E_i = \{\{x, y\} \in E \mid x, y \in V_i\}$. We shall show that for the chromatic polynomials $P_G(\lambda) \leq P_{G_1}(\lambda) \cdot P_{G_2}(\lambda)$ holds for $\lambda \in \mathbb{N}$.

Solution:

Let $G' = (V, E_1 \cup E_2)$ (i.e., G with all edges with vertices in both V_1 and V_2 removed, so G' "is" G_1 and G_2 without edges between them). Then colourings of the parts G_1 and G_2 are independent, so $P_{G'}(\lambda) = P_{G_1}(\lambda) \cdot P_{G_2}(\lambda)$ for $\lambda \in \mathbb{N}$ (for each colouring of G_1 there are $P_{G_2}(\lambda)$ colourings of G_2). But the colourings of G are a subset of those of G', so $P_G(\lambda) \leq P_{G'}(\lambda)$. We are done.

7) X is an infinite set and $G = \{f : X \rightleftharpoons X\}$. We shall show that (a, 1p) (G, \circ) is a group (\circ composition), with (b, 2p) $H = \{f \in G \mid |\{x \in X \mid f(x) \neq x\}| < \infty\}$ a subgroup, and (c, 1p) decide if H is a normal subgroup.

Solution:

a. (G, \circ) is a group, because (by the definition of a group)

- $f,g \in G \Rightarrow f \circ g \in G$ (closure, the composition of two bijections is a bijection),
- $f, g, h \in G \Rightarrow f \circ (g \circ h) = (f \circ g) \circ h$ (associativity, for all functions (if both sides are defined)),
- $f \in G \Rightarrow f \circ id = id \circ f = f$, where $id \in G$ is the identity function $(id(x) = x, all x \in X)$ (identity) and

• $f \in G \Rightarrow f^{-1} \in G$ and $f \circ f^{-1} = f^{-1} \circ f = id$ (inverse, f^{-1} exists since f is a bijection). \Box b. H is a subgroup of G, because (well-known theorem)

• $H \subseteq G$ (by the definition of H), $H \neq \emptyset$ ($id \in H$),

• $f, g \in H \Rightarrow f \circ g \in H$ (since $\{x \in X \mid (f \circ g)(x) \neq x\} \subseteq \{x \in X \mid f(x) \neq x\} \cup \{x \in X \mid g(x) \neq x\}$ and A, B finite, $C \subseteq A \cup B \Rightarrow C$ finite) and

•
$$f \in H \Rightarrow f^{-1} \in H$$
 (since $\{x \in X \mid f^{-1}(x) \neq x\} = \{x \in X \mid f(x) \neq x\}$).

c. *H* is a normal subgroup since $f \in G$, $h \in H \Rightarrow f \circ h \circ f^{-1} \in H$ $(\{x \in X \mid f(h(f^{-1}(x))) \neq x\} = \{f(x) \mid x \in X, h(x) \neq x\})$ and $fHf^{-1} \subseteq H$, $f^{-1}Hf \subseteq H \Rightarrow fH = Hf$.

Answer a,b: Shown above, c: H is a normal subgroup.

8) (4p) G = (V, E) is a graph, $\mu(x)$, for $x \in V$, the average of the degrees of x's neighbours $(=0 \text{ if } \delta(x) = 0)$. We shall show that $\sum_{x \in V} \mu(x) \ge \sum_{x \in V} \delta(x)$.

Solution:

For all $x \in V$, $\mu(x) = \sum_{y \in V_x} \frac{1}{\delta(x)} \delta(y)$, where $V_x = \{y \in V \mid \{x, y\} \in E\}$, x's neighbours, so $\sum_{x \in V} \mu(x) = \sum_{x \in V, \ y \in V_x} \frac{\delta(y)}{\delta(x)} = \sum_{\{x,y\} \in E} \left(\frac{\delta(y)}{\delta(x)} + \frac{\delta(x)}{\delta(y)}\right) \ge \sum_{\{x,y\} \in E} 2 = 2|E| = \sum_{x \in V} \delta(x),$ where we used that $a^2 + \frac{1}{a^2} \ge 2$ for all $a \in \mathbb{R} \setminus \{0\}$ (since $(a - \frac{1}{a})^2 \ge 0$). We are done.

9) We shall (a, 1p) with $D: F[x] \to F[x]$ (F a field) given by $D(A(x)) = \sum na_n x^{n-1}$ for $A(x) = \sum a_n x^n \in F[x]$ show that D(A(x)B(x)) = D(A(x))B(x) + A(x)D(B(x)), for all $A(x), B(x) \in F[x],$ (b, 2p) find the coefficients of $p_n(x)$ when $E(x) = \sum \frac{1}{n!} x^n \in \mathbb{R}[x]$ and $p_0(x) = 1, \ p_{n+1}(x)E(x) = x D(p_n(x)E(x))$ for $n \in \mathbb{N}$, and (c, 2p) express the Bell number B_n (the number of equivalence relations on an *n*-set) as a convergent infinite series.

Solution:

a. If $A(x) = \sum a_n x^n$, $B(x) = \sum b_n x^n$ the coefficient of x^n in A(x)B(x) is $\sum_{k=0}^n a_k b_{n-k}$. The coefficient of x^{n-1} in the LHS is $n \sum_{k=0}^n a_k b_{n-k}$ and in the RHS: $\sum_{k=0}^n k a_k b_{n-k} + \sum_{k=0}^n a_k (n-k)b_{n-k} = \sum_{k=0}^n (k+(n-k))a_k b_{n-k} =$ that of the LHS, so LHS=RHS. b. Let $p_n(x) = \sum p_{n,k} x^k$. Then $p_{0,0} = 1$, $p_{0,k} = 0$ for k > 0 and a. gives $p_{n+1}(x)E(x) = x(\sum k p_{n,k} x^{k-1} + \sum p_{n,k} x^k)E(x) = (\sum_{k=1}^\infty (k p_{n,k} + p_{n,k-1})x^k)E(x)$ (since D(E(x)) = E(x)). So for all $n \in \mathbb{N}$, $p_{n+1,0} = 0$, $p_{n+1,k} = p_{n,k-1} + kp_{n,k}$ for k > 0.

With $p_{0,k}$ as above we get $p_{n+1,k} = 0$ for k = 0 and k > n+1, $p_{n+1,1} = p_{n+1,n+1} = 1$ and $p_{n+1,k} = p_{n,k-1} + kp_{n,k}$ for 1 < k < n+1, so $p_{n,k} = S(n,k)$, the Stirling number (of the second kind). $p_n(x)$ is for $n \in \mathbb{Z}_+$ therefore the polynomial $\sum_{k=1}^n S(n,k)x^k$ (the generating polynomial of the Stirling numbers).

c. The equivalence relations on a set correspond bijectively to the partitions of the set (into

equivalence classes), so $B_n = \sum_{k=1}^n S(n,k) = p_n(1)$, the number of partitions of an *n*-set. By b. $p_n(x)E(x) = (xD)^n E(x) = (xD)^{n-1} \sum_{k=1}^{\infty} \frac{k}{k!} x^k = \ldots = \sum_{k=1}^{\infty} \frac{k^n}{k!} x^k$. x = 1 gives $p_n(1) \cdot E(1)(=B_n \cdot e) = \sum_{k=1}^{\infty} \frac{k^n}{k!}$ (the RHs is convergent since the LHS is).

Answer a: Shown above, b: $p_n(x)$'s x^k -coefficient is S(n,k) (= 0 if k = 0 or > n),

c: $B_n = \frac{1}{e} \sum_{k=1}^{\infty} \frac{k^n}{k!}$ (Dobiński's formula). (One can show that $\sum_{k=2n+1}^{\infty} \frac{k^n}{k!} < e$, so $B_n = \lceil \frac{1}{e} \sum_{k=1}^{2n} \frac{k^n}{k!} \rceil$ (Comtet's formula) ($\lceil a \rceil$ = the least integer $\ge a$). Writing $x = e^t$ one finds for $n \in \mathbb{Z}_+$ that $\sum_{k=1}^n S(n, k)e^{kt} \cdot e^{e^t} = \frac{d^n}{dt^n}e^{e^t}$.)

10) The graph $G = (X \cup Y, E)$ is bipartite and r(A) is (for $A \subseteq X$) the greatest number of elements of A that can be simultaneously matched with elements of Y. We shall (a, 3p) show that $r(A \cup B) + r(A \cap B) \leq r(A) + r(B)$ holds for all $A, B \subseteq X$ and (b, 2p) give an exemple with < in the inequality.

Solution:

a. Let M, N be matchings between $A \cup B$, $A \cap B$ respectively and Y with $|M| = r(A \cup B)$, $|N| = r(A \cap B)$. Then there is a matching M' between $A \cup B$ and Y with |M'| = |M| and $N \subseteq M'$, because

if $x \in A \cap B$ and $\{x, y\} \in N \smallsetminus M$,

- add $\{x, y\}$ to M and exclude other edges of M that contain x or y,
- if $\{x, y'\}, \{x', y\} \in M$, also add $\{x', y'\}$ to M.

This gives a new matching of $A \cup B$ of the same size as $M (\not \ge |M| (|M| \text{ is of maximal size})$, so at least one edge is excluded in the first step; iff two are excluded, one more is added in the second), containing $\{x, y\}$, and if this is repeated for all edges in $N \smallsetminus M$ the desired M' is obtained (already added *N*-edges won't be affected again).

Let matchings M_A , M_B between A, B and Y consist of the edges in M' containing vertices in A, B, respectively. Then $M_A \cup M_B = M'$ and $M_A \cap M_B = N$ ($|N| = r(A \cap B)$), so (sieve principle) $r(A \cup B) + r(A \cap B) = |M| + |N| = |M'| + |N| = |M_A| + |M_B| \le r(A) + r(B)$. \Box

b. With $G = K_{3,2}$ as in the figure, and $A = \{1, 2\}, B = \{2, 3\}$ we find $r(A \cup B) = 2, r(A \cap B) = 1, r(A) = r(B) = 2$, so $r(A \cup B) + r(A \cap B) = 2 + 1 < 2 + 2 = r(A) + r(B)$.

 $\Box \qquad \begin{array}{c} 1\\ 2\\ 3\\ X \qquad Y \end{array}$

Answer a: Shown above, b: Example above.

 $(G = K_{2,1} \text{ and } A = \{1\}, B = \{2\} \text{ works as well.})$

(A finite set $X \neq \emptyset$ with a function $r: \mathcal{P}(X) \to \mathbb{N}$, for alla $A, B \in \mathcal{P}(X)$ satisfying (like r above) the three conditions 1. $r(A) \leq |A|$, 2. $A \subseteq B \Rightarrow r(A) \leq r(B)$, and 3. the inequality in the problem, is called **a matroid**. Other examples of matroids:

1. X a subset of a vector space, with r(A) = the dimension of the subspace spanned by A,

2. X = E for a graph G = (V, E), with r(A) = the maximal number of edges in A not containing a cycle. An $A \in \mathcal{P}(X)$ satisfying r(A) = |A| is called an **independent set**.)