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1) (3p) We want all x ∈ Z that satisfy x1682 + 22x ≡ 1652 (mod 3599) [3599 = 59 · 61].

Solution:
By the Chinese remainder theorem Z3599

∼= Z59 × Z61, with isomorphism x 7→ ([x]59, [x]61),
so we start by solving the equation mod 59 and mod 61 separately.
Z59: 1682 = 58 · 29, 1652 = 59 · 28, so in Z59 the equation is (x58)29 + 22x = 0 and since 59

is a prime, Fermat’s little theorem gives x58 =
{

0, for x = 0,
1, otherwise.

Solutions are thus x = 0 and all solutions of 1 + 22x = 0, i.e. x = −22−1.
The Euclidean algorithm: 59 = 22 · 2 + 15, 22 = 15 · 1 + 7, 15 = 7 · 2 + 1,
thus 1 = 15− 2 · (22− 15) = −2 · 22 + 3 · (59− 2 · 22) = 3 · 59− 8 · 22 and 22−1 = −8.
So, mod 59 all solutions are given by x ≡59 0 and x ≡59 8.
Z61: 1682 = 60 · 28 + 2, 1652 = 61 · 27 + 5, so in Z61 the equation is x60·28+2 + 22x = 5 and
since 61 is a prime, Fermat’s little theorem gives x28·60+2 = x2 for all x ∈ Z61.
Thus, the equation is here x2 + 22x = 5⇔ (x+ 11)2 = 121 + 5 = 22 ⇔ (x+ 9)(x+ 13) = 0.
So, mod 61 all solutions are x ≡61 −9 and x ≡61 −13 (61 is prime, so 61 | a ·b⇔ 61 | a or 61 | b).
We find the solutions in Z using y1 ≡59 1, ≡61 0 and y2 ≡59 0, ≡61 1,
y1 = 61s ≡59 1⇔ 2s ≡59 1 and we choose s = 30, so y1 = 61 · 30 = 1830 and
y2 = 59t ≡61 1⇔ 2t ≡61 −1 and we choose t = 30, so y2 = 59 · 30 = 1770.
All solutions (Chinese remainder theorem): x ≡3599 0 · 1830− 9 · 1770 = −15 930 ≡3599 2065,
x ≡3599 0 · 1830− 13 · 1770 = . . . ≡3599 2183, x ≡3599 8 · 1830− 9 · 1770 = . . . ≡3599 2309,
x ≡3599 8 · 1830− 13 · 1770 = . . . ≡3599 2427.

Answer: All such x = y + 3599 · n, n ∈ Z, where y = 2065, 2183, 2309 or 2427.

2) For f : X → Y , we let f“: P(X)→ P(Y ) be given by f“(A) = {f(a) | a ∈ A}. We shall
decide which of ’=’, ’⊆’, ’⊇’ necessarily hold between (a, 1p) f“(A∪B) and f“(A)∪ f“(B),
(b, 1p) f“(A ∩B) and f“(A) ∩ f“(B), (c, 1p) f“(ArB) and f“(A) r f“(B).

Solution:
a. y ∈ f“(A ∪ B) ⇔ y = f(x) for some x ∈ A ∪ B ⇔ y = f(x) for some x ∈ A and/or
y = f(x) for some x ∈ B ⇔ y ∈ f“(A) and/or y ∈ f“(B)⇔ y ∈ f“(A) ∪ f“(B),
so ’=’ (and thus also ’⊆’, ’⊇’) hold in a.
b. y ∈ f“(A ∩B)⇔ y = f(x) for some x ∈ A ∩B ⇒ y ∈ f“(A) ∩ f“(B),
but X = Y = {a, b}, A = {a}, B = {b}, f(a) = f(b) = a give f“(A ∩ B) = f“(∅) = ∅ and
f“(A) ∩ f“(B) = A ∩A = A 6= ∅, so ’⊆’, but neither ’=’ nor ’⊇’, necessarily holds in b.
c. y ∈ f“(A)r f“(B)⇔ y ∈ f“(A), y /∈ f“(B)⇔ y = f(x) for some x ∈ A, but not for any
x ∈ B (so for an x ∈ Ar B) ⇒ y ∈ f“(ArB),
but X, Y, f as in b. give f“(ArB) = f“(A) = A and f“(A) r f“(B) = ArA = ∅ 6= A,
so ’⊇’, but neither ’=’ nor ’⊆’, necessarily holds in c.

Answer a: =, ⊆, ⊇, b: ⊆, c: ⊇ must hold, the others not.

3) (3p) We want the number of ways to place four girls and five boys on three red and six
white chairs, so that at least one girl sits on a red chair (children and chairs distinguishable).

Solution:
The number we want is the total number of ways to place the children minus the number of
ways with all girls on white chairs (the addition principle), i.e. 9!− (6)4 ·5! = 9!− 6!

2! ·5! ways (the

number of bijections 9-set→ 9-set and (multiplication principle) the number of injections 4-set (the girls)→ 6-set

(the white chairs) · the number of bijections 5-set (the boys)→ 5-set (the chairs without girls)).

Answer: In 9!− 6!·5!
2

(= 319 680) ways.



4) π, σ ∈ S9 are given by the table on the right.
We want (a, 1p) π, σ and πσ on cycle form and
shall (b, 2p) show that if the group G contains π
and σ, G’s order must be divisible by 180.

i 1 2 3 4 5 6 7 8 9

π(i) 2 3 1 5 6 7 4 9 8
σ(i) 4 8 1 9 2 3 7 5 6

.

Solution:
a. π(1) = 2, π(2) = 3, π(3) = 1 etc. give π = (1 2 3)(4 5 6 7)(8 9) and σ = (1 4 9 6 3)(2 8 5).
Composition (first σ then π) gives (πσ)(1) = π(σ(1)) = π(4) = 5 etc, so πσ = (1 5 3 2 9 7 4 8 6).
b. G is a group containing π and σ and thus also πσ. The order of a group is a multi-
ple of the order of each element (from Lagrange’s theorem) and the order of a permutation is
the least common multiple of the lengths of the cycles. The orders of π, σ, πσ are then
lcm(3, 4, 2) = 12, lcm(5, 3, 1) = 15, lcm(9) = 9. |G| is divisible by all three, therefore also
by lcm(12, 15, 9) = 180. We are done.

Answer a: π = (1 2 3)(4 5 6 7)(8 9), σ = (1 4 9 6 3)(2 8 5), πσ = (1 5 3 2 9 7 4 8 6),
b: Shown above.

5) An RSA system has public (n, e), where n = 4331 [= 61 · 71]. We want (a, 1p) those of
205, . . . , 209 that are possible for e and (b, 2p) a corresponding d-value for one of those e’s.

Solution:
a. The condition for e is that gcd(m, e) = 1, where (for n = p · q with p, q distinct primes)

m = φ(n) = (p− 1)(q − 1) = 60 · 70 = 4200 = 23 · 3 · 52 · 7.
Since 2 | 206, 208 and 3 | 207 and 5 | 205 and 2, 3, 5, 7 - 209 the only possibility is e = 209.
b. A corresponding d is determined by e · d ≡m 1.
The Euclidean algorithm: 4200 = 209 ·20 + 20, 209 = 20 ·10 + 9, 20 = 9 ·2 + 2, 9 = 2 ·4 + 1,
so 1 = 9−4 ·2 = 9−4(20−2 ·9) = −4 ·20+9 ·9 = −4 ·20+9(209−10 ·20) = 9 ·209−94 ·20 =
= 9 · 209− 94(4200− 20 · 209) = −94 · 4200 + 1889 · 209 and we can take d = 1889.

Answer a: The only possible e = 209, b: A corresponding d = 1889.
(It is in fact enough that e · d ≡lcm(p−1,q−1) 1, so all d = 209 + 420k, k ∈ Z+ can be used.)

6) (4p)G = (V,E), Gi = (Vi, Ei), V = V1∪V2, V1∩V2 = ∅ and Ei = {{x, y} ∈ E | x, y ∈ Vi}.
We shall show that for the chromatic polynomials PG(λ) ≤ PG1

(λ) ·PG2
(λ) holds for λ ∈ N.

Solution:
Let G′ = (V,E1 ∪ E2) (i.e., G with all edges with vertices in both V1 and V2 removed, so G′ ”is” G1 and

G2 without edges between them). Then colourings of the parts G1 and G2 are independent, so
PG′(λ) = PG1

(λ) · PG2
(λ) for λ ∈ N (for each colouring of G1 there are PG2

(λ) colourings of G2). But
the colourings of G are a subset of those of G′, so PG(λ) ≤ PG′(λ). We are done.

7) X is an infinite set and G = {f : X � X}. We shall show that (a, 1p) (G, ◦) is a group (◦

composition), with (b, 2p) H = {f ∈ G
∣∣ |{x ∈ X | f(x) 6= x}| <∞} a subgroup, and (c, 1p)

decide if H is a normal subgroup.

Solution:
a. (G, ◦) is a group, because (by the definition of a group)

• f, g ∈ G⇒ f ◦ g ∈ G (closure, the composition of two bijections is a bijection),
• f, g, h ∈ G⇒ f ◦ (g ◦ h) = (f ◦ g) ◦ h (associativity, for all functions (if both sides are defined)),
• f ∈ G ⇒ f ◦ id = id ◦ f = f , where id ∈ G is the identity function (id(x) = x, all
x ∈ X) (identity) and

• f ∈ G⇒ f−1 ∈ G and f ◦f−1 = f−1 ◦f = id (inverse, f−1 exists since f is a bijection). �

b. H is a subgroup of G, because (well-known theorem)

• H ⊆ G (by the definition of H), H 6= ∅ (id ∈ H),
• f, g ∈ H ⇒ f ◦ g ∈ H (since {x ∈ X | (f ◦ g)(x) 6= x} ⊆ {x ∈ X | f(x) 6= x} ∪ {x ∈ X | g(x) 6= x}

and A,B finite, C ⊆ A ∪ B ⇒ C finite) and
• f ∈ H ⇒ f−1 ∈ H (since {x ∈ X | f−1(x) 6= x} = {x ∈ X | f(x) 6= x}). �

c. H is a normal subgroup since f ∈ G, h ∈ H ⇒ f ◦ h ◦ f−1 ∈ H ({x ∈ X | f(h(f−1(x))) 6= x} =

= {f(x) | x ∈ X, h(x) 6= x}) and fHf−1 ⊆ H, f−1Hf ⊆ H ⇒ fH = Hf .

Answer a,b: Shown above, c: H is a normal subgroup.



8) (4p) G = (V,E) is a graph, µ(x), for x ∈ V , the average of the degrees of x’s neighbours
(= 0 if δ(x) = 0). We shall show that

∑
x∈V µ(x) ≥

∑
x∈V δ(x).

Solution:
For all x ∈ V , µ(x) =

∑
y∈Vx

1
δ(x) δ(y), where Vx = {y ∈ V | {x, y} ∈ E}, x’s neighbours, so∑

x∈V µ(x) =
∑
x∈V, y∈Vx

δ(y)
δ(x) =

∑
{x,y}∈E( δ(y)

δ(x) + δ(x)
δ(y) ) ≥

∑
{x,y}∈E 2 = 2|E| =

∑
x∈V δ(x),

where we used that a2 + 1
a2 ≥ 2 for all a ∈ Rr {0} (since (a− 1

a )2 ≥ 0). We are done.

9) We shall (a, 1p) with D : F [[x]] → F [[x]] (F a field) given by D(A(x)) =
∑
nan x

n−1 for
A(x) =

∑
an x

n ∈ F [[x]] show that D(A(x)B(x)) = D(A(x))B(x) + A(x)D(B(x)), for all
A(x), B(x) ∈ F [[x]], (b, 2p) find the coefficients of pn(x) when E(x) =

∑
1
n! x

n ∈ R[[x]] and
p0(x) = 1, pn+1(x)E(x) = xD(pn(x)E(x)) for n ∈ N, and (c, 2p) express the Bell number
Bn (the number of equivalence relations on an n-set) as a convergent infinite series.

Solution:
a. If A(x) =

∑
an x

n, B(x) =
∑
bn x

n the coefficient of xn in A(x)B(x) is
∑n
k=0 akbn−k.

The coefficient of xn−1 in the lhs is n
∑n
k=0 akbn−k and in the rhs:

∑n
k=0 k akbn−k+

+
∑n
k=0 ak(n− k)bn−k =

∑n
k=0(k + (n− k))akbn−k = that of the lhs, so lhs=rhs. �

b. Let pn(x) =
∑
pn,kx

k. Then p0,0 = 1, p0,k = 0 for k > 0 and a. gives pn+1(x)E(x) =
= x(

∑
kpn,kx

k−1 +
∑
pn,kx

k)E(x) = (
∑∞
k=1(kpn,k + pn,k−1)xk)E(x) (since D(E(x)) = E(x)).

So for all n ∈ N, pn+1,0 = 0, pn+1,k = pn,k−1 + kpn,k for k > 0.
With p0,k as above we get pn+1,k = 0 for k = 0 and k > n + 1, pn+1,1 = pn+1,n+1 = 1 and
pn+1,k = pn,k−1 +kpn,k for 1 < k < n+1, so pn,k = S(n, k), the Stirling number (of the second

kind). pn(x) is for n ∈ Z+ therefore the polynomial
∑n
k=1 S(n, k)xk (the generating polynomial of

the Stirling numbers).
c. The equivalence relations on a set correspond bijectively to the partitions of the set (into

equivalence classes), so Bn =
∑n
k=1 S(n, k) = pn(1), the number of partitions of an n-set.

By b. pn(x)E(x) = (xD)nE(x) = (xD)n−1
∑∞
k=1

k
k!x

k = . . . =
∑∞
k=1

kn

k! x
k.

x = 1 gives pn(1) · E(1)(= Bn · e) =
∑∞
k=1

kn

k! (the rhs is convergent since the lhs is).

Answer a: Shown above, b: pn(x)’s xk-coefficient is S(n, k) (= 0 if k = 0 or > n),

c: Bn = 1
e

∑∞
k=1

kn

k!
(Dobiński’s formula).

(One can show that
∑∞

k=2n+1
kn

k! < e, so Bn = d 1e
∑2n

k=1
kn

k! e (Comtet’s formula) (dae = the least integer ≥ a).

Writing x = et one finds for n ∈ Z+ that
∑n

k=1 S(n, k)ekt · ee
t

= dn

dtn e
et .)



10) The graph G = (X ∪ Y,E) is bipartite and r(A) is (for A ⊆ X) the greatest number
of elements of A that can be simultaneously matched with elements of Y . We shall (a, 3p)
show that r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) holds for all A,B ⊆ X and (b, 2p) give an
exemple with < in the inequality.

Solution:
a. Let M, N be matchings between A∪B, A∩B respectively and Y with |M | = r(A∪B),
|N | = r(A ∩ B). Then there is a matching M ′ between A ∪ B and Y with |M ′| = |M | and
N ⊆M ′, because

if x ∈ A ∩B and {x, y} ∈ N rM ,

• add {x, y} to M and exclude other edges of M that contain x or y,
• if {x, y′}, {x′, y} ∈M , also add {x′, y′} to M .

This gives a new matching of A∪B of the same size as M (6> |M | (|M | is of maximal size),

so at least one edge is excluded in the first step; iff two are excluded, one more is added in the second),
containing {x, y}, and if this is repeated for all edges in N rM the desired M ′ is
obtained (already added N-edges won’t be affected again). �

Let matchings MA, MB between A, B and Y consist of the edges in M ′ containing ver-
tices in A, B, respectively. Then MA ∪MB = M ′ and MA ∩MB = N (|N | = r(A ∩ B)), so
(sieve principle) r(A∪B)+r(A∩B) = |M |+|N | = |M ′|+|N | = |MA|+|MB | ≤ r(A)+r(B). �
b. With G = K3,2 as in the figure, and A = {1, 2}, B = {2, 3} we find
r(A ∪B) = 2, r(A ∩B) = 1, r(A) = r(B) = 2, so
r(A ∪B) + r(A ∩B) = 2 + 1 < 2 + 2 = r(A) + r(B). �
(G = K2,1 and A = {1}, B = {2} works as well.)
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Answer a: Shown above, b: Example above.
(A finite set X 6= ∅ with a function r : P(X)→ N, for alla A,B ∈ P(X) satisfying (like r above) the three conditions

1. r(A) ≤ |A|, 2. A ⊆ B ⇒ r(A) ≤ r(B), and 3. the inequality in the problem, is called a matroid.

Other examples of matroids:

1. X a subset of a vector space, with r(A) = the dimension of the subspace spanned by A,

2. X = E for a graph G = (V,E), with r(A) = the maximal number of edges in A not containing a cycle.

An A ∈ P(X) satisfying r(A) = |A| is called an independent set.)


