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There may be misprints.

1) We want (a, 1p) the least (if there is one) k € Zy with 28 =989 1 and (b, 2p) the largest
k € Z, which is for some z € Z the least with z* =19g9 1, and a corresponding z.

Solution:
By the Chinese remainder theorem x* =19g9 1 iff 2% = 1 in Zg, Z3, and Z;7.
a. Powers of [2]g, [2]13, [2]17:

k|1 23 4 5 6 7 8 9 10 11 12 13

k12 4 8 7 5 1 ... in Zg
212 4 8 3 6 12 11 9 5 10 7 1 ... inZs
212 4 8 16 15 13 9 1 ... in Zy7

This shows that 2 =j9g9 1iff &k | 6,12,8, i.e. iff k | lem(6, 12, 8) = 24.

The least such k € Z is thus k = 24.

b. Z‘k = 1 in Zyggo iff x € Uiggg =~ Ug x U1z X Uy7 (Uyy = U(Zwm), the invertible elements of Z,,)
and o,,(x) | k for m = 9,13,17 (om: the multiplicative order in U,,). The least such k is therefore
lCm(Og(I)7013(I),017(1’)).

We saw in a) that 2 has maximal order in Zg and Zi3 (namely |Us| = 6 and |U1s| = 12), but
017(2) = 8 < |Uy7| = 16. Testing shows that 017(3) = 16.

So, the wanted maximal k = lem(6,12,16) = 48 and = =9 2,=13 2,=17 3 gives a cor-
responding x. The first two give x = 24+ 9-13¢, t € Z. Also the last is satisfied
if(f) 9-13t =17 1, ie. t =17 2-4 = 8 (9" = 2,137 = 4in Z7) and t = 8 + 17u,
r=2+9-13-84+9-13-17u =938 + 1989 u, u € Z arbitrary.

Answer a: k = 24, b: k = 48, one possible x is 938 (others are 5, 7, and 10).
(Shorter: 017(3™) = 16 if ged(n, 16) = 1. If z =17 3™ and x € Uy, U1z and further 3 | og(z) or 3 | 013(x) then z is

?corresponding”. n =5 gives 3" =17 5 and 09(5) = 6, 013(5) = 4 etc.)

2) (3p) A binary linear code C has |C| = 8 and 101010, 111001, 110111 € C.
We want a check matrix H for C and to decide if C corrects one error.

Solution:
Length 6 and |C| = 8 = 23 give rank H = 6 — 3 = 3, so all H with 3 linearly independent
rows satisfying He! for ¢ 9,3 the given words of C is a check matrix for C. The rows of H

are therefore any linearly independent solutions of the homogeneous system with coefficients

1010101 1t023[7101010]72tc3[101010]3tc1 100100
01 ~ 010011 ~ 010011 ~ 010011|[.
111 0 1 110 00

110 1110 001 1110
By taking the last bits to be 100, 010, 001 we find the rows 101100, 011010, 010001, so H =
é ? é 0 g §] . It has identical columns, so C does not correct one error, eg. 000000,100100 € C
oth give 100000 with one error.

Answer: H = [ (1)] is a check matrix for C, C doesn’t correct one error.

3) (3p) We want the number of ways to spend 31 days on maths, novels, and gaming,.
There are to be 9 days of gaming, never two in a row, and more days maths than novels.

Solution:

The number of days without gaming is 31 — 9 = 22. They can be distributed between on

maths and novels in 222 ways, (ﬁ) of them having the same number of days of each. Half

of the rest, %(222 — (ﬁ)), are the distributions with more days maths than novels.

The 23 slots between and before/after them can be filled by 9 days gaming in (293) ways.
The multiplication principle gives the wanted number of distributions,

(5) - 2(2% = (1) = otim - 2% = oiie)-

23! (921 22!

Answer: Didrik can spend the days in g

- W)(: 1425 535 654 840) Ways.




4) (G,-) is a group and we are given the equations a = b?, b = c?, ¢ = a? for a,b,c € G.
We want (a, 1p) all solutions with at least two of a,b,c equal and (b, 2p) to show that if
|G| = 1467 there are no solutions with all a, b, ¢ distinct.

Solution:

a. Let a,b,c satisfy the equations and b = @ (c = b and a = ¢ similar). Then a = b = a?, so
a = 1, the identity of G (multiply by a='). Then also b=a =1 and ¢ = a? = 1.

b. The equations give a = b = (c?)? = ¢* = (a?)* = a® so a” = 1. Therefore o(a) | 7
and o(a) =1 or 7. o(a) =1 means a = 1 and then b = ¢ = 1 (i.c. they are not distinct), while
o(a) = 7 is impossible since o(a) | |G| and 71 1467. We are done.

Answer a: The only such solution is a = b = ¢ = 1, b: Shown above.

5) (3p) A plane, connected graph has 2 vertices of degree 3, the rest of degree 4. 4 regions
are bounded by 4 edges, the rest by 3. We want the numbers of vertices, edges and regions.

Solution:

Let (as usual) v, e, r be the numbers of vertices, edges and regions of the graph.

Euler’s formula gives v — e + 7 = 2. The sum of the degrees is 2e, so 3 -2 4+ 4(v — 2) = 2e.
The same for the dual graph (v* =r, »+ = v) gives 4 -4+ 3(r — 4) = 2e, leading to the system

v—e+r=2 v=29
2v—e=1 with the solution e=17
2e —3r =4 r = 10.

Answer: The graph has 9 vertices, 17 edges, and 10 regions.

6) (G, x) is a group and A C G, A # @. We want to (a, 2p) show that |G| < |A| when
Ga={g€eGlac A= gxac A}, (b, 1p) show that G4 is a subgroup of G if A is finite,
and (c, 1p) find G and A where G4 is not a group.

Solution:

a. follows from the fact that g € G4 is determined by its action on a single a € A:

Take an ag € A (exists since A # ). If g1,g2 € G and g1 * a9 = g2 * ag, then g1 = go (since
ao € G, multiply by a; ! from the right). That means that fo: G4 — A given by fo(g) = g * ag is
an injection, SO ‘GAl < ‘A| (the pigeonhole principle; the definition of < if G4 is infinite).
b.acA=1xa€ A, sol € Gy and Gy # 2.

91,92 € Ga= (a€A=gaxa€ A= g1 *(ga*xa)=(g1%g2) xa € A) = g1 %92 € Ga.

A finite gives G 4 finite, so (known theorem) G 4 is a subgroup of G.

c. With (G, *) = (Z,+) and A =N, G4 = N, which is not a group under addition.

Answer a,b: Shown above, c: (G, *) = (Z,+) and A = N form such an example.

7) (4p) For m,n € Z, we want to show that ¢(d)p(mn) = dp(m)¢(n), where d = ged(m,n)
and ¢ is Euler’s function.

Solution:

Let, for k € Z, P, = {p: p prime, p | k}. Then ¢(k) =k - HpePk(l — %) (known fact).

Thus (for m,n € 1) ¢(d)p(mn) = dmn - [],cp, (1 — %) [lep,, (1- %) and

dp(m)p(n) = dmn - TTep, (1 3 Tep, (1 1).

Since P, = P U Py, Py = P, N P, both expressions are dmn times factors (1 — %)2 for p
in both P, and P, and factors (1 — %) for p in exactly one of P,, and P,. Therefore they
are equal. We are done.




i |1 2345 6 7 8 9 10 11 12 13
o) |11 8 1 9 4 12 5 13 7 6 3 10 2
We want the number of 7 € S;3 with 7o = o~ 7.

8) (4p) o € Si3 is given by:

Solution:

In cycle notation o = (1 11 3)(28 13)(4 9 7 5)(6 12 10) (since (1) = 11, 0(11) = 3, ¢(3) = 1,...).
ro=creron =01 071 =(3111)(1382)(5794)(10 12 6) and

rort = (r(1) (1) 7(3))(7(2) 7(8) m(13))(x(4) 7(9) 7(7) 7(3))(w(6) (12) 7(10)).
They are equal iff the 3-cycles in one correspond to the 3-cycles in the other and the 4-cycles
correspond to each other.

7(1) can be any element of the 9 ones in the 3-cycles of 0=1, it determines 7(11), m(3),
7m(2) can then be chosen among 6 elements (2 3-cycles remain), it determines 7 (8), 7(13),
7(6) can then be chosen among 3 elements, it determines 7(12), 7(10) and at last

7(4) can be chosen as any element in the 4-cycle of o~1, it determines 7(9), 7(7), 7(5).
In all, this gives (the multiplication principle) 9 - 6 - 3 - 4 = 648 possible .

Answer: There are 648 different such .

9) (5p) If G = (Vig, E¢) is a graph, R an equivalence relation on Vi with equivalence classes
Vi, i € I, the quotient graph G/R = (Vg/r, Eq/r) is given by Vg = {Vi | i € I} and
EG/R = {{VZ,V]} ‘ there are v; € V;, v; € Vj with {’Ui,ﬂj} S EG}

We want to show that if H = (Vp, Epr) is a connected graph, there is a tree T' = (Vr, E7)
and an equivalence relation R on Vp, such that H ~ T/R and |Ey| = |E7|.

Solution:

Induction on |Vg|.

Base: If |Vg| =0 or 1 we can take T' = (Vi, @), R the equality relation.

Step: Assume that the statement is true for all connected graphs with less vertices than H.
Let |Vg| > 2. Then there is an & € Vi such that H' = (Vg+, Ep/), formed by removing «
and its edges from H, is connected (z can be a leaf of a spanning tree of H). By the assumption
there is a tree T' = (Vpv, E7/) with |Eg/| = |E7/|, an equivalence relation R’ on Vr and an
isomorphism ¢': Vir — Vi .

Let x have neighbours y1,¥y2,...,yx, ¥ = 6(x) in H. We form T = (Vp, Er) from T’ by
adding a vertex z; and an edge {y;,x;} for each y;. T is then a tree (connected and without
cycles) and |Eg| = |Eg/| +k = |Er/|+k = |E7|. Let R be R’ with an extra new equivalence
class V, = {z; | i=1,2,...,k}. R is an equivalence relation on Vp and ¢ = ¢' U {(z,V,)}
is an isomorphism H — T/R (if u,v € Vgr: {u,v} € By & {u,v} € Egy & {¢'(u),¢' (v)} € Bgr s &
< {¢(u), ¢(v)} € Eryr and {u,z} € Eg < u =y;, for some i € {1,...,k} & {¢(u),Vo} € Ep,r &

< {d(u), ¢(z)} € Er/r)- By the principle of induction we are done.

10) (5p) We want the number of essentially different ways to colour the sides of a cube with
as many red as blue sides, when there are also k other colours that may be used.

Solution:
To use Burnside’s lemma we need |F(g)| for each (type of) symmetry rotation g.

g’s permutation
of the cube’s

type of number
g sides of g |F(g)|
id [19] 1 k® + 30k* + 90k? + 20
rot vo + 2° [32] 8 k2 +2
rot ee [23] 6 k3 + 6k
rot ss+ % [12 4] 6 k3 + 2k
rot ssm [1222] 3 kY + 4k% + 4k + 4

("rot zx a”: rotation by an angle a with axis through cube’s and sides’(s), edges’(k) or vertices’(h) centers.)
‘F(g)| the number of g—invariant (i.e. the same colour on all sides in the same cycle) COIOUI’ngS.
|F(id)|: no red/blue, one each ((, §,) = 30), two each ((,§,) = 90) or three each ((,§ ) = 20),
in the other rows the cycles can be red/blue/other in a similar way,

4k in the last row: the 1-cycles can be red and a 2-cycle blue or the other way around.

By the lemma, the number of ways: I—é‘ > gec | F(9)] = 2 ((K5+30k*+90k?+20)+8- (k2 +2)+
+6- (k3 +6k)+6- (k*+2k)+3- (k' +4k> +4k+4)) = 35 (K +33k*+12 k3 +110 k> +60 k+48).

Answer: The desired number is i(k6 +33k* +12k% + 110k? + 60 k + 48).




