Mathematics, KTH

B.Ek

Suggested solutions exam TEN1 SF2736 DISCRETE MATHEMATICS January 12 2017

There may be misprints.

1) We want (a, 1p) the least (if there is one) $k \in \mathbb{Z}_+$ with $2^k \equiv_{1989} 1$ and (b, 2p) the largest $k \in \mathbb{Z}_+$ which is for some $x \in \mathbb{Z}$ the least with $x^k \equiv_{1989} 1$, and a corresponding x.

Solution:

By the Chinese remainder theorem $x^k \equiv_{1989} 1$ iff $x^k = 1$ in \mathbb{Z}_9 , \mathbb{Z}_{13} , and \mathbb{Z}_{17} . a. Powers of $[2]_9$, $[2]_{13}$, $[2]_{17}$:

k	1	2	3	4	5	6	7	8	9	10	11	12	13	
2^k	2	4	8	7	5	1								in \mathbb{Z}_9
2^k	2	4	8	3	6	12	11	9	5	10	7	1		in \mathbb{Z}_{13}
2^k	2	4	8	16	15	13	9	1						in \mathbb{Z}_{17}

This shows that $2^k \equiv_{1989} 1$ iff $k \mid 6, 12, 8$, i.e. iff $k \mid \text{lcm}(6, 12, 8) = 24$. The least such $k \in \mathbb{Z}_+$ is thus k = 24.

b. $x^k = 1$ in \mathbb{Z}_{1989} iff $x \in U_{1989} \approx U_9 \times U_{13} \times U_{17}$ $(U_m = U(\mathbb{Z}_m))$, the invertible elements of \mathbb{Z}_m) and $o_m(x) \mid k$ for m = 9, 13, 17 $(o_m$: the multiplicative order in U_m). The least such k is therefore $\operatorname{lcm}(o_9(x), o_{13}(x), o_{17}(x))$.

We saw in a) that 2 has maximal order in \mathbb{Z}_9 and \mathbb{Z}_{13} (namely $|U_9| = 6$ and $|U_{13}| = 12$), but $o_{17}(2) = 8 < |U_{17}| = 16$. Testing shows that $o_{17}(3) = 16$.

So, the wanted maximal k = lcm(6, 12, 16) = 48 and $x \equiv_9 2, \equiv_{13} 2, \equiv_{17} 3$ gives a corresponding x. The first two give $x = 2 + 9 \cdot 13t$, $t \in \mathbb{Z}$. Also the last is satisfied if(f) $9 \cdot 13t \equiv_{17} 1$, i.e. $t \equiv_{17} 2 \cdot 4 = 8 (9^{-1} = 2, 13^{-1} = 4 \text{ in } \mathbb{Z}_{17})$ and t = 8 + 17u, $x = 2 + 9 \cdot 13 \cdot 8 + 9 \cdot 13 \cdot 17u = 938 + 1989u$, $u \in \mathbb{Z}$ arbitrary.

Answer a: k = 24, b: k = 48, one possible x is 938 (others are 5, 7, and 10). (Shorter: $o_{17}(3^n) = 16$ if gcd(n, 16) = 1. If $x \equiv_{17} 3^n$ and $x \in U_9$, U_{13} and further $3 \mid o_9(x)$ or $3 \mid o_{13}(x)$ then x is "corresponding". n = 5 gives $3^n \equiv_{17} 5$ and $o_9(5) = 6$, $o_{13}(5) = 4$ etc.)

2) (3p) A binary linear code C has |C| = 8 and 101010, 111001, 110111 $\in C$. We want a check matrix H for C and to decide if C corrects one error.

Solution:

Length 6 and $|\mathcal{C}| = 8 = 2^3$ give rank H = 6 - 3 = 3, so all H with 3 linearly independent rows satisfying Hc_i^T for $c_{1,2,3}$ the given words of \mathcal{C} is a check matrix for \mathcal{C} . The rows of Hare therefore any linearly independent solutions of the homogeneous system with coefficients $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}^{-1} \stackrel{\text{to } 2,3}{\sim} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}^{-2} \stackrel{\text{to } 3}{\sim} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}^3 \stackrel{\text{to } 1}{\sim} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}^3$. By taking the last bits to be 100, 010, 001 we find the rows 101100, 011010, 010001, so H =

 $\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$ By taking the last bits to be 100, 010, 001 we find the rows 101100, 011010, 010001, so $H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$. It has identical columns, so C does not correct one error, eg. 000000, 100100 $\in C$ both give 100000 with one error.

Answer: $H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ is a check matrix for \mathcal{C}, \mathcal{C} doesn't correct one error.

3) (3p) We want the number of ways to spend 31 days on maths, novels, and gaming. There are to be 9 days of gaming, never two in a row, and more days maths than novels.

Solution:

The number of days without gaming is 31 - 9 = 22. They can be distributed between on maths and novels in 2^{22} ways, $\binom{22}{11}$ of them having the same number of days of each. Half of the rest, $\frac{1}{2}(2^{22} - \binom{22}{11})$, are the distributions with more days maths than novels. The 23 slots between and before/after them can be filled by 9 days gaming in $\binom{23}{9}$ ways. The multiplication principle gives the wanted number of distributions, $\binom{23}{9} \cdot \frac{1}{2}(2^{22} - \binom{22}{11}) = \frac{23!}{9! \cdot 14!} \cdot (2^{21} - \frac{22!}{2 \cdot (11!)^2})$.

Answer: Didrik can spend the days in $\frac{23!}{9! \cdot 14!} \cdot \left(2^{21} - \frac{22!}{2 \cdot (11!)^2}\right) (= 1\,425\,535\,654\,840)$ ways.

4) (G, \cdot) is a group and we are given the equations $a = b^2$, $b = c^2$, $c = a^2$ for $a, b, c \in G$. We want (a, 1p) all solutions with at least two of a, b, c equal and (b, 2p) to show that if |G| = 1467 there are no solutions with all a, b, c distinct.

Solution:

a. Let a, b, c satisfy the equations and b = a (c = b and a = c similar). Then $a = b^2 = a^2$, so a = 1, the identity of G (multiply by a^{-1}). Then also b = a = 1 and $c = a^2 = 1$.

b. The equations give $a = b^2 = (c^2)^2 = c^4 = (a^2)^4 = a^8$, so $a^7 = 1$. Therefore $o(a) \mid 7$ and o(a) = 1 or 7. o(a) = 1 means a = 1 and then b = c = 1 (i.e. they are not distinct), while o(a) = 7 is impossible since $o(a) \mid |G|$ and $7 \nmid 1467$. We are done.

Answer a: The only such solution is a = b = c = 1, b: Shown above.

5) (3p) A plane, connected graph has 2 vertices of degree 3, the rest of degree 4. 4 regions are bounded by 4 edges, the rest by 3. We want the numbers of vertices, edges and regions.

Solution:

Let (as usual) v, e, r be the numbers of vertices, edges and regions of the graph.

Euler's formula gives v - e + r = 2. The sum of the degrees is 2e, so $3 \cdot 2 + 4(v - 2) = 2e$. The same for the dual graph $(v^{\perp} = r, r^{\perp} = v)$ gives $4 \cdot 4 + 3(r - 4) = 2e$, leading to the system

 $\begin{cases} v-e+r=2\\ 2v-e=1\\ 2e-3r=4 \end{cases} \text{ with the solution } \begin{cases} v=9\\ e=17\\ r=10. \end{cases}$

Answer: The graph has 9 vertices, 17 edges, and 10 regions.

6) (G, *) is a group and $A \subseteq G$, $A \neq \emptyset$. We want to (a, 2p) show that $|G_A| \leq |A|$ when $G_A = \{g \in G \mid a \in A \Rightarrow g * a \in A\}$, (b, 1p) show that G_A is a subgroup of G if A is finite, and (c, 1p) find G and A where G_A is not a group.

Solution:

a. follows from the fact that $g \in G_A$ is determined by its action on a single $a \in A$: Take an $a_0 \in A$ (exists since $A \neq \emptyset$). If $g_1, g_2 \in G$ and $g_1 * a_0 = g_2 * a_0$, then $g_1 = g_2$ (since $a_0 \in G$, multiply by a_0^{-1} from the right). That means that $f_0: G_A \to A$ given by $f_0(g) = g * a_0$ is an injection, so $|G_A| \leq |A|$ (the pigeonhole principle; the definition of \leq if G_A is infinite). b. $a \in A \Rightarrow 1 * a \in A$, so $1 \in G_A$ and $G_A \neq \emptyset$. $g_1, g_2 \in G_A \Rightarrow (a \in A \Rightarrow g_2 * a \in A \Rightarrow g_1 * (g_2 * a) = (g_1 * g_2) * a \in A) \Rightarrow g_1 * g_2 \in G_A$.

A finite gives G_A finite, so (known theorem) G_A is a subgroup of G.

c. With $(G, *) = (\mathbb{Z}, +)$ and $A = \mathbb{N}, G_A = \mathbb{N}$, which is not a group under addition.

Answer a,b: Shown above, c: $(G, *) = (\mathbb{Z}, +)$ and $A = \mathbb{N}$ form such an example.

7) (4p) For $m, n \in \mathbb{Z}_+$ we want to show that $\phi(d)\phi(mn) = d\phi(m)\phi(n)$, where $d = \gcd(m, n)$ and ϕ is Euler's function.

Solution:

Let, for $k \in \mathbb{Z}_+$, $P_k = \{p : p \text{ prime}, p \mid k\}$. Then $\phi(k) = k \cdot \prod_{p \in P_k} (1 - \frac{1}{p})$ (known fact). Thus (for $m, n \in \mathbb{Z}_+$) $\phi(d)\phi(mn) = dmn \cdot \prod_{p \in P_d} (1 - \frac{1}{p}) \prod_{p \in P_{mn}} (1 - \frac{1}{p})$ and $d\phi(m)\phi(n) = dmn \cdot \prod_{p \in P_m} (1 - \frac{1}{p}) \prod_{p \in P_n} (1 - \frac{1}{p})$. Since $P_{mn} = P_m \cup P_m$, $P_d = P_m \cap P_n$ both expressions are dmn times factors $(1 - \frac{1}{p})^2$

Since $P_{mn} = P_m \cup P_n$, $P_d = P_m \cap P_n$ both expressions are dmn times factors $(1 - \frac{1}{p})^2$ for p in both P_m and P_n and factors $(1 - \frac{1}{p})$ for p in exactly one of P_m and P_n . Therefore they are equal. We are done.

8)	$(4n) \sigma \in S_{1n}$ is given b	i.	1	2	3	4	5	6	7	8	9	10	11	12	13
0)	$(4p) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	y. $\sigma(i)$	11	8	1	9	4	12	5	13	7	6	3	10	2
***	1 1 C	- 0				_1									

We want the number of $\pi \in S_{13}$ with $\pi \sigma = \sigma^{-1} \pi$.

Solution:

In cycle notation $\sigma = (1\ 11\ 3)(2\ 8\ 13)(4\ 9\ 7\ 5)(6\ 12\ 10)$ (since $\sigma(1) = 11$, $\sigma(11) = 3$, $\sigma(3) = 1, \ldots$). $\pi\sigma = \sigma^{-1}\pi \Leftrightarrow \pi\sigma\pi^{-1} = \sigma^{-1}$. $\sigma^{-1} = (3\ 11\ 1)(13\ 8\ 2)(5\ 7\ 9\ 4)(10\ 12\ 6)$ and

 $\pi \sigma \pi^{-1} = (\pi(1) \ \pi(11) \ \pi(3))(\pi(2) \ \pi(8) \ \pi(13))(\pi(4) \ \pi(9) \ \pi(7) \ \pi(5))(\pi(6) \ \pi(12) \ \pi(10)).$

They are equal iff the 3-cycles in one correspond to the 3-cycles in the other and the 4-cycles correspond to each other.

 $\pi(1)$ can be any element of the 9 ones in the 3-cycles of σ^{-1} , it determines $\pi(11)$, $\pi(3)$,

 $\pi(2)$ can then be chosen among 6 elements (2 3-cycles remain), it determines $\pi(8)$, $\pi(13)$,

 $\pi(6)$ can then be chosen among 3 elements, it determines $\pi(12)$, $\pi(10)$ and at last

 $\pi(4)$ can be chosen as any element in the 4-cycle of σ^{-1} , it determines $\pi(9)$, $\pi(7)$, $\pi(5)$.

In all, this gives (the multiplication principle) $9 \cdot 6 \cdot 3 \cdot 4 = 648$ possible π .

Answer: There are 648 different such π .

9) (5p) If $G = (V_G, E_G)$ is a graph, \mathcal{R} an equivalence relation on V_G with equivalence classes $\mathcal{V}_i, i \in I$, the quotient graph $G/\mathcal{R} = (V_{G/\mathcal{R}}, E_{G/\mathcal{R}})$ is given by $V_{G/\mathcal{R}} = \{\mathcal{V}_i \mid i \in I\}$ and $E_{G/\mathcal{R}} = \{\{\mathcal{V}_i, \mathcal{V}_j\} \mid \text{ there are } v_i \in \mathcal{V}_i, v_j \in \mathcal{V}_j \text{ with } \{v_i, v_j\} \in E_G\}.$

We want to show that if $H = (V_H, E_H)$ is a connected graph, there is a tree $T = (V_T, E_T)$ and an equivalence relation \mathcal{R} on V_T , such that $H \approx T/\mathcal{R}$ and $|E_H| = |E_T|$.

Solution:

Induction on $|V_H|$.

Base: If $|V_H| = 0$ or 1 we can take $T = (V_H, \emptyset)$, \mathcal{R} the equality relation.

Step: Assume that the statement is true for all connected graphs with less vertices than H. Let $|V_H| \ge 2$. Then there is an $x \in V_H$ such that $H' = (V_{H'}, E_{H'})$, formed by removing x and its edges from H, is connected (x can be a leaf of a spanning tree of H). By the assumption there is a tree $T' = (V_{T'}, E_{T'})$ with $|E_{H'}| = |E_{T'}|$, an equivalence relation \mathcal{R}' on $V_{T'}$ and an isomorphism $\phi' \colon V_{H'} \to V_{T'/\mathcal{R}'}$.

Let x have neighbours $y_1, y_2, \ldots, y_k, k = \delta(x)$ in H. We form $T = (V_T, E_T)$ from T' by adding a vertex x_i and an edge $\{y_i, x_i\}$ for each y_i . T is then a tree (connected and without cycles) and $|E_H| = |E_{H'}| + k = |E_{T'}| + k = |E_T|$. Let \mathcal{R} be \mathcal{R}' with an extra new equivalence class $\mathcal{V}_x = \{x_i \mid i = 1, 2, \ldots, k\}$. \mathcal{R} is an equivalence relation on V_T and $\phi = \phi' \cup \{(x, \mathcal{V}_x)\}$ is an isomorphism $H \to T/\mathcal{R}$ (if $u, v \in V_{H'}$: $\{u, v\} \in E_H \Leftrightarrow \{u, v\} \in E_{H'} \Leftrightarrow \{\phi'(u), \phi'(v)\} \in E_{T'/\mathcal{R}'} \Leftrightarrow$ $\Leftrightarrow \{\phi(u), \phi(v)\} \in E_{T/\mathcal{R}}$ and $\{u, x\} \in E_H \Leftrightarrow u = y_i$, for some $i \in \{1, \ldots, k\} \Leftrightarrow \{\phi(u), \mathcal{V}_x\} \in E_{T/\mathcal{R}} \Leftrightarrow$ $\Leftrightarrow \{\phi(u), \phi(x)\} \in E_{T/\mathcal{R}}$). By the principle of induction we are done.

10) (5p) We want the number of essentially different ways to colour the sides of a cube with as many red as blue sides, when there are also k other colours that may be used.

Solution:

To use Burnside's lemma we need |F(g)| for each (type of) symmetry rotation g.

$\overset{\text{type of}}{g}$	g's permutation of the cube's sides	$ \substack{ \text{number} \\ \text{of } g } $	F(g)					
id	$[1^{6}]$	1	$k^6 + 30k^4 + 90k^2 + 20$					
rot $vv \pm \frac{2\pi}{3}$	$[3^2]$	8	$k^{2} + 2$					
rot $ee \pi$	$[2^3]$	6	$k^{3} + 6k$					
rot $ss \pm \frac{\pi}{2}$	$[1^2 4]$	6	$k^{3} + 2k$					
rot $ss\pi$	$[1^2 2^2]$	3	$k^4 + 4k^2 + 4k + 4$					

("rot xx a": rotation by an angle a with axis through cube's and sides'(s), edges'(k) or vertices'(h) centers.) |F(g)|: the number of g-invariant (i.e. the same colour on all sides in the same cycle) colourings. |F(id)|: no red/blue, one each $(\binom{6}{1,1,4}) = 30$, two each $(\binom{6}{2,2,2}) = 90$ or three each $(\binom{6}{3,3,0}) = 20$, in the other rows the cycles can be red/blue/other in a similar way, 4k in the last row: the 1-cycles can be red and a 2-cycle blue or the other way around. By the lemma, the number of ways: $\frac{1}{|G|} \sum_{g \in G} |F(g)| = \frac{1}{24}((k^6+30k^4+90k^2+20)+8\cdot(k^2+2)+$ $+6\cdot(k^3+6k)+6\cdot(k^3+2k)+3\cdot(k^4+4k^2+4k+4)) = \frac{1}{24}(k^6+33k^4+12k^3+110k^2+60k+48).$ Answer: The desired number is $\frac{1}{24}(k^6+33k^4+12k^3+110k^2+60k+48).$