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There may be misprints.
1) (3p) We want all z € Z with 23! + 158z = 191 (mod 385).

Solution:

385=5-7-11,5, 7, 11 primes, so a =385 b < (a =5 b, a =7 b and a =11 b), if a,b € Z.
By Fermat’s theorem a” =, a if p is prime, giving

1. 281 + 1582 =5 191 © 23 + 3z =5 1 © =5 3 or 4 (test all « € Zs),

2. 23 + 158 = 191 @ x+4r =22 =76 (51.2=3.2=6in Z;) and

3.2 +158r =1 19l o +4dr =14 2=136G"4=9-4=31inZ1).

3. gives x = 3 4+ 11s, some s € Z, which by 2. satisfies
3+1ls=r64s=73<s=76 47! =2inZ;), SO

x =3+ 11(6+ 7t) = 69 4 77t, some t € Z, which by 1. satisfies one of the following two
694+ TMt=532t=54t=52,s0x=069+ 77(2 + 5n) = 223 + 385n, n € Z (arbitrary)
69+ TMt=542t=50&t=50,s0 =069+ 77(0+ 5n) = 69 + 385n, n € Z (arbitrary).

Answer: x = 69 + 385n or x = 223 4+ 385n, n € Z arbitrary.

2) 3p) Forne N, A, ={BC{l,2,...,n} |z,y € B=y #x£1} and (with [[,cpz=1)
f(n) = gea [iesk* We want to find and prove an expression for f(n).

Solution:

Some tests (Ao = {@}, f(0) =1, A ={@,{1}}, f(1) =1+ 12 =2, Ay = {@, {1}, {2}},
f(2) =1+12+22 =6 and f(4) = 120 given) seem to indicate that f(n) = (n + 1)

We prove it by induction.

Base: f(0)=1=(0+1)!, f(1) =2 = (1+ 1)!, the assertion is true for n =0, 1.

Step: Assume the assertion true for n =k, k + 1.

Each element of Ay, is of exactly one of the types 1. no k + 2, i.e. an element of A1,
and 2. with £+ 2, i.e. BU {k + 2} for a (unique) B € Ay (k+ 1 is not allowed if k + 2 is included).
So Agyo = Apr1 U{BU{k+ 2} | B € A} (disjoint union), giving f(k +2) =

= flk+ 1)+ (k+2)2 f(k) ™S (k+2)1+ (k+2)2(k+ 1) = (k+2) + (k+2)?)(k+1)! =
= (k+3)! = (k+2+41)!. Thus, the assertion is true for k + 2 if it is true for k& and for k+ 1.
By the principle of induction the assertion is true for all n € N.

Answer: f(n) = (n + 1)! for all n € N, as proved above.

3) (3p) We want the number of ways to distribute 9 different books and 17 identical donuts
among 6 (different) children, so that each child has at least one book and one donut.

Solution:
The books can be given in 6!-.5(9,6) = 6! - 2646 ways 1

(surjections {books} — {children}, the Stirling number
S(9,6) = 2646 from ”Stirlings triangle” on the right). 1 7 6 1

The donuts can be distributed in (11+5671) = 5,1,?!1, ways 15 25 10 1

(one donut for each child, then unordered selection with repetition of 11 350 140 21

among 6 children, choose 5 walls of 16 positions). 1050 266

The multiplication principle gives the total number of distributions, 2646

. _ 16! __ 6-2646-16!
612646 - 53y = >y

Answer: The distribution can be made in

6-2646-16!

e (= 8321564 160) ways.




4) (G,-) is a group and H, K are finite subgroups of G. We want all possible values (with
|H|, | K| given) of (a, 1p) |H N K| and (b, 2p) |aH NbK]|, when a,b € G.

Solution:

a. HNK is a subgroup of H and of K, so |H N K| | ged(|H|,|K|). For groups A, B, D with
|Al =a, |B| =b, |D| = dthe example G = AxDxB, H=AxDx{1p}, K ={14}xDxB
(with |H| = ad, |K| = bd, |H n K| = d) shows that all divisors of ged(|H|, |K|) are possible.

b. aH NbK can be & (eg. it H=K ={1}, a #b) and if c € aH NbK, cH = aH, cK = bK (left
cosets are identical or disjoint), SO aHNbK = C(H n K) and |aH N bK| = |H N K|

Answer: Possible are a: all divisors of gcd(|H|, |K]|), b: the same, and also 0.

5) (3p) We want to order 1,2,...,9 around a circle, so that the sum of two neighbouring
elements is never a multiple of 3, 5 or 7.

Solution:

The problem is solved by a Hamiltonian cycle in a graph with vertices numbered 1-9 and
edges between allowed neighbours (i.e. {i,} is an edge iff 3,5,7 1 (i+3)). 1, 2 and 4 have only two
neighbours in the graph, so their edges must be in the cycle. That gives the sequence 6, 2,
9,4, 7,1, 3. The remaining 8, 5 can only be added in that order (6 and 8 are not adjacent).

Answer: One order (essentially the only one) is 1, 3, 8, 5, 6, 2, 9, 4, 7.

6) We want (a, 2p) the number of essentially different bracelets with 6 coloured (k colours
available) beads on a loop and (b, 2p) the number with at least one red and one blue bead.

Solution:

a. We use Burnside’s lemma. Placing the bracelet with the beads in the vertices of a regular
hexagon, we see that the group G acting on the set of configurations corresponds to the
identity id, the elements r,7%, ..., r% (where r is rotation 2F = Z around an axis through
the center of the hexagon and perpendicular to its plane) and three rotations 7 each of type
s1, 2 (s1 being rotation around an axis in the plane of the hexagon, through centres of two
opposing edges and sy around an axis through two opposing vertices). |F(g)|, the number
of configurations held fixed by g, are found to be as in the table:

number of | ¢’s permutation

type of g such g of the beads 1F(9)l
id 1 [1] kS
r,7o 2 6] k
r2, ré 2 [32] k2
73 1 [23] k3
S1 3 [23] k‘g
S 3 [1222] k4

The number of essentially different bracelets = the number of orbits under G’s action =

S e ()] = (1K 2k 242 + 03 319 4+ 308) = (K + K1+ 48° + 20 + 21,

b. Let X be all colourings in a) and B those with no blue bead, R those with no red bead.

Then we now want |[X \ (BUR)| = |X|—|B|—|R|+|BNR|=f(k)—=2-f(k—1)+ f(k—2),

where f(k) is the answer in a). It turns out to be %(5k* — 20k + 41k2 — 38k + 14).

Answer a: The number of such bracelets is f(k) = %(Izz6 + 3k* + 4k3 + 2k2 4 2k),
b: Now the number is %(51@4 — 20k3 + 41k2 — 38k + 14).

(It is also ok to answer in b) without simplifying, e.g. starting 1—12(k6 —2k-=1)%+(k-2°+..))
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7) (4p) w € Sy is given by the table A9 7 10 48 1 25 6 3
We want the number of functions f: Nm — Nyg with f(w(2)) = w(f(4)) for all ¢ € Nyp.

Solution:

In cycle notation 7 = (19 6)(2 7)(3 10)(4)(5 8) (x(1) =9, 7(9) = 6, 7(6) = 1,...).

A function with the desired property is completely determined by its values for one element
in each one of 7’s cycles (f(r(:)) = n(f(3)) etc.) and f has the property iff f(7) is in an m-cycle,
with m | k, if ¢ is from a k-cycle () = f(=*(3)) = =*(f(3)))-

The number of such f i84-7-7-1-7=1372 (possible choices of f(1), £(2), £(3), f(4), f(5)).

Answer: There are 1372 such functions.

8) (4p) We want A C Z, such that (using Biggs’ notation):

p(n | for all k € Z+ . if 3 | k: an arbitrary numbe}r of parts of size k, ) —
else: at most two parts of size k

= p(n | the size of every part is in A).

Solution:
The generating function of the numders in the LHS is

k k 1
[Tiso, 301+ 2 +2%%) T2 o Hk:>0 3k (1 Z:k T = =

1 1
- Hk:>0 3tk (1— xk Hk>0 3|k 1—x3F Hk>0, ged(k,9)#3 1—zk
the generating function of the numders in the RHS iff A is the set of & in the last product.

(No problems of convergence, remember. Only a finite number of factors # 1 contribute to any specific z".)

Svar: A ={k € Z4 | ged(k,9) # 3}.

9) (G, *) and (A, o) with identities I and e are groups (A abelian). G acts on the set A with
glaob) =g(a)og(b) (for g€ G, a,b € A). We shall (a, 3p) show that (K, ®) is a group, where
K =G x A and © is given by (g1,a1) ® (g2,a2) = (g1 * g2, 91(a2) o a1) and (b, 2p) decide if
H, =G x {e}, Hy = {I} x A are subgroups and normal subgroups of (K, ®).

Solution:

a. That (K, ®) is a group follows if the axioms for a group (G1-G4) are satisfied.

G1 (Closure): g1 % g2 € G and gl(ag) oa; € A for all 91,92 € G, ai,az € A (G, A closed under
*, o and g1(az) € A). G1 \/
G2 (associativity): ((g1,a1) ® (g2,a2)) ® (g3, a3) = (91 * g2, 91(az) 0 a1) ® (g3, a3) =

= ((g1 % g2) * g3, (91 * g2)(a3) 0 (g1(az) © a1)) should equal (g1,a1) © ((g2,a2) © (g3, a3)) =
= (g1,a1) © (92 * g3, 92(a3) 0 az) = (g1 * (92 * g3), 91(92(a3) © az) o aq).

(91 * gg) * g3 = g1 * (92 * g3) (* associative),

(91 * gg)(ag,) o (gl(ag) ¢} al) = (91 (gg(ag)) o g1 (ag)) O a1 (G acts on A, o associative) and

g1 (gg(ag) o ag) ocay = (91 (gg(ag)) ° g1 (a2)> O (1 (given property of G’s action) G2 \/
G3 (identity): (I,e) ® (g,a) = (I *xg,1(a)oe) = (g,ace) = (g,a) and (g,a) ® (I,e) =

= (g * I,g(e) o (1) = (g,e o CL) = (g, CL) (I, e identities, I(a) = a (all a € A), g(e) = e (all g € G) (from

eog(e) =g(e) =gleoce) = g(e) og(e))), SO (I 6) is an 1dent1ty G3 \/
G4 (inverse): (g,a) ® (g o “Ha™h) = (g9xg7g(g7 (@7 ))oa) = (I, (gxg ) (@ )oa) =
= (I,I(a_l)oa) = ( ) ( ) 1 inverse in G or in A, G acts on A, I(b) =b, all b € A),

(97" 97 (@) @ (g, ) (97 % 9,9 1( Jog Ha™h) =(I,g7(aca™t))=(I,g " (e)) =
= (I,e),s0 (g7, g7 (a™1)) is an inverse of (g,a). G4 /. Thus, (K,@®) is a group.
b. H; and Hy are subgroups of K (the bijections ¢1((g,€)) = g, ¢2((I,a)) = a are isomorphisms with G
and A, since (g1,¢e) ®(g2,€) = (g1 *g2,91(e)oe) = (g1 *g2,€) and (I,a1)©(I,a2) = (IxI,I(az)oa1) = (I,a10a2).
(I,a)® Hy ={(g,a) | g€ G} and H1 © (I,a) = {(g,9(a)) | g € G} are not equal if g(a) # a
for some g € G, so H; is not necessarily a normal subgroup.

(9,a) © Hy = {(g9,9(a')oa) | ' € A} and Hs ® (g,a) = {(g,aoa’) | ' € A}. Both are
{g} x A (g acts as a bijection on A), SO Hs is normal.

Answer b: H; and H; are subgroups. H> is normal, but H; is not, in general.
(K is called a semidirect product of the groups G and A. The condition that A be abelian is not necessary (not

used above). A more natural definition is (g1, a1) ® (g2, a2) = (g1 * g2, a1 0 g1(az2)).)




10) (5p) G = (V, E) is an infinite graph, E countable. We shall show that i) < i), when
1): For every finite X C V, the number of edges with exactly one vertex in X is infinite or
even,

11): There exists a set of cycles and (two-way) infinite paths, with every e € F in exactly one
of them.

Solution:

i) = i1): Let {ex}ren be an enumeration of E, e = {v,v'}. By i), with X = {v}, there
is a least k > 0 with v € e, and similarly for v’. These edges are combined with eg and
this is repeated at each end of the successively formed paths. In that way we obtain a cycle
containing eg (if some end vertex gets an edge to the other) or a doubly infinite path containing eq.
If all edges in the so formed cycle/path are taken from G, a new graph G’ = (V,E') is
obtained, also satisfying Z) (fOI‘ every finite X C V (but maybe not for some infinite ones) there is
an even number of edges in the cycle/path that contain exactly one vertex from X (those at
the ends of connected stretches of X-vertices), S0 an even number of edges is taken from the corre-
sponding edge set in G). Starting from ej, € E’ with minimal k, create a new cycle/path as
above. Repeat.

The set of all thus created cycles/paths (finite or infinite) shows that i7) is fulfilled.

1) = i): As we saw, every cycle or doubly infinite path has, for finite X C V an even
number of edges with exactly one vertex from X. If i7) is fulfilled the set of all such edges
in E is a union of sets, each with an even number of elements, giving ). That’s it.




