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1) (3p) We want all x ∈ Z with x31 + 158x ≡ 191 (mod 385).

Solution:
385 = 5 · 7 · 11, 5, 7, 11 primes, so a ≡385 b⇔ (a ≡5 b, a ≡7 b and a ≡11 b), if a, b ∈ Z.
By Fermat’s theorem ap ≡p a if p is prime, giving
1. x31 + 158x ≡5 191⇔ x3 + 3x ≡5 1⇔ x ≡5 3 or 4 (test all x ∈ Z5),
2. x31 + 158x ≡7 191⇔ x+ 4x ≡7 2⇔ x ≡7 6 (5−1 · 2 = 3 · 2 = 6 in Z7) and
3. x31 + 158x ≡11 191⇔ x+ 4x ≡11 4⇔ x ≡11 3 (5−1 · 4 = 9 · 4 = 3 in Z11).
3. gives x = 3 + 11s, some s ∈ Z, which by 2. satisfies
3 + 11s ≡7 6⇔ 4s ≡7 3⇔ s ≡7 6 (4−1 = 2 in Z7), so
x = 3 + 11(6 + 7t) = 69 + 77t, some t ∈ Z, which by 1. satisfies one of the following two
69 + 77t ≡5 3⇔ 2t ≡5 4⇔ t ≡5 2, so x = 69 + 77(2 + 5n) = 223 + 385n, n ∈ Z (arbitrary)

69 + 77t ≡5 4⇔ 2t ≡5 0⇔ t ≡5 0, so x = 69 + 77(0 + 5n) = 69 + 385n, n ∈ Z (arbitrary).

Answer: x = 69 + 385n or x = 223 + 385n, n ∈ Z arbitrary.

2) (3p) For n ∈ N, An = {B ⊆ {1, 2, . . . , n} | x, y ∈ B ⇒ y 6= x ± 1} and (with
∏

x∈∅ x = 1)

f(n) =
∑
B∈An

∏
k∈B k

2. We want to find and prove an expression for f(n).

Solution:
Some tests (A0 = {∅}, f(0) = 1, A1 = {∅, {1}}, f(1) = 1 + 12 = 2, A2 = {∅, {1}, {2}},
f(2) = 1 + 12 + 22 = 6 and f(4) = 120 given) seem to indicate that f(n) = (n+ 1)!.
We prove it by induction.
Base: f(0) = 1 = (0 + 1)!, f(1) = 2 = (1 + 1)!, the assertion is true for n = 0, 1.
Step: Assume the assertion true for n = k, k + 1.
Each element of Ak+2 is of exactly one of the types 1. no k + 2, i.e. an element of Ak+1,
and 2. with k + 2, i.e. B ∪ {k + 2} for a (unique) B ∈ Ak (k + 1 is not allowed if k + 2 is included).
So Ak+2 = Ak+1 ∪ {B ∪ {k + 2} | B ∈ Ak} (disjoint union), giving f(k + 2) =
= f(k+ 1) + (k+ 2)2 · f(k)

ind.ass.
= (k+ 2)! + (k+ 2)2(k+ 1)! = ((k+ 2) + (k+ 2)2)(k+ 1)! =

= (k+ 3)! = (k+ 2 + 1)!. Thus, the assertion is true for k+ 2 if it is true for k and for k+ 1.
By the principle of induction the assertion is true for all n ∈ N.

Answer: f(n) = (n + 1)! for all n ∈ N, as proved above.

3) (3p) We want the number of ways to distribute 9 different books and 17 identical donuts
among 6 (different) children, so that each child has at least one book and one donut.

Solution:
The books can be given in 6! · S(9, 6) = 6! · 2646 ways
(surjections {books} → {children}, the Stirling number

S(9, 6) = 2646 from ”Stirlings triangle” on the right).

1
1 1

1 3 1
1 7 6 1

15 25 10 1
90 65 15 1

350 140 21
1050 266

2646

The donuts can be distributed in
(

11+6−1
5

)
= 16!

5!·11! ways
(one donut for each child, then unordered selection with repetition of 11

among 6 children, choose 5 walls of 16 positions).
The multiplication principle gives the total number of distributions,
6! · 2646 · 16!

5!·11! = 6·2646·16!
11! .

Answer: The distribution can be made in 6·2646·16!
11!

(= 8 321 564 160) ways.



4) (G, ·) is a group and H, K are finite subgroups of G. We want all possible values (with
|H|, |K| given) of (a, 1p) |H ∩K| and (b, 2p) |aH ∩ bK|, when a, b ∈ G.

Solution:
a. H ∩K is a subgroup of H and of K, so |H ∩K|

∣∣ gcd(|H|, |K|). For groups A, B, D with
|A| = a, |B| = b, |D| = d the example G = A×D×B, H = A×D×{1B}, K = {1A}×D×B
(with |H| = ad, |K| = bd, |H ∩K| = d) shows that all divisors of gcd(|H|, |K|) are possible.
b. aH ∩ bK can be ∅ (e.g. if H = K = {1}, a 6= b) and if c ∈ aH ∩ bK, cH = aH, cK = bK (left

cosets are identical or disjoint), so aH ∩ bK = c(H ∩K) and |aH ∩ bK| = |H ∩K|.
Answer: Possible are a: all divisors of gcd(|H|, |K|), b: the same, and also 0.

5) (3p) We want to order 1, 2, . . . , 9 around a circle, so that the sum of two neighbouring
elements is never a multiple of 3, 5 or 7.

Solution:
The problem is solved by a Hamiltonian cycle in a graph with vertices numbered 1–9 and
edges between allowed neighbours (i.e. {i, j} is an edge iff 3, 5, 7 - (i+ j)). 1, 2 and 4 have only two
neighbours in the graph, so their edges must be in the cycle. That gives the sequence 6, 2,
9, 4, 7, 1, 3. The remaining 8, 5 can only be added in that order (6 and 8 are not adjacent).

Answer: One order (essentially the only one) is 1, 3, 8, 5, 6, 2, 9, 4, 7.

6) We want (a, 2p) the number of essentially different bracelets with 6 coloured (k colours
available) beads on a loop and (b, 2p) the number with at least one red and one blue bead.

Solution:
a. We use Burnside’s lemma. Placing the bracelet with the beads in the vertices of a regular
hexagon, we see that the group G acting on the set of configurations corresponds to the
identity id, the elements r, r2, . . . , r5 (where r is rotation 2π

6 = π
3 around an axis through

the center of the hexagon and perpendicular to its plane) and three rotations π each of type
s1, s2 (s1 being rotation around an axis in the plane of the hexagon, through centres of two
opposing edges and s2 around an axis through two opposing vertices). |F (g)|, the number
of configurations held fixed by g, are found to be as in the table:

type of g number of
such g

g’s permutation
of the beads

|F (g)|

id 1 [16] k6

r, r5 2 [6] k
r2, r4 2 [32] k2

r3 1 [23] k3

s1 3 [23] k3

s2 3 [1222] k4

The number of essentially different bracelets = the number of orbits under G’s action =
1
|G|
∑
g∈G |F (g)| = 1

12 (1 · k6 + 2k + 2k2 + k3 + 3k3 + 3k4) = 1
12 (k6 + 3k4 + 4k3 + 2k2 + 2k).

b. Let X be all colourings in a) and B those with no blue bead, R those with no red bead.
Then we now want |Xr (B∪R)| = |X|− |B|− |R|+ |B∩R| = f(k)−2 ·f(k−1) +f(k−2),
where f(k) is the answer in a). It turns out to be 1

2 (5k4 − 20k3 + 41k2 − 38k + 14).

Answer a: The number of such bracelets is f(k) = 1
12

(k6+3k4+4k3+2k2+2k),

b: Now the number is 1
2
(5k4 − 20k3 + 41k2 − 38k + 14).

(It is also ok to answer in b) without simplifying, e.g. starting 1
12 (k6 − 2(k − 1)6 + (k − 2)6 + . . .))



7) (4p) π ∈ S10 is given by the table
i 1 2 3 4 5 6 7 8 9 10

π(i) 9 7 10 4 8 1 2 5 6 3
.

We want the number of functions f : N10 → N10 with f(π(i)) = π(f(i)) for all i ∈ N10.

Solution:
In cycle notation π = (1 9 6)(2 7)(3 10)(4)(5 8) (π(1) = 9, π(9) = 6, π(6) = 1, . . .).
A function with the desired property is completely determined by its values for one element
in each one of π’s cycles (f(π(i)) = π(f(i)) etc.) and f has the property iff f(i) is in an m-cycle,
with m | k, if i is from a k-cycle (f(i) = f(πk(i)) = πk(f(i))).
The number of such f is 4 · 7 · 7 · 1 · 7 = 1372 (possible choices of f(1), f(2), f(3), f(4), f(5)).

Answer: There are 1372 such functions.

8) (4p) We want A ⊆ Z+, such that (using Biggs’ notation):

p
(
n | for all k ∈ Z+ :

{
if 3 | k: an arbitrary number of parts of size k,

else: at most two parts of size k

)
=

= p(n | the size of every part is in A).

Solution:
The generating function of the numders in the lhs is∏
k>0, 3-k(1 + xk + x2k) ·

∏∞
k=1

1
1−x3k =

∏
k>0, 3-k

(1−x3k)
(1−xk)

·
∏∞
k=1

1
1−x3k =

=
∏
k>0, 3-k

1
(1−xk)

·
∏
k>0, 3|k

1
1−x3k =

∏
k>0, gcd(k,9) 6=3

1
1−xk ,

the generating function of the numders in the rhs iff A is the set of k in the last product.
(No problems of convergence, remember. Only a finite number of factors 6= 1 contribute to any specific xn.)

Svar: A = {k ∈ Z+ | gcd(k, 9) 6= 3}.

9) (G, ∗) and (A, ◦) with identities I and e are groups (A abelian). G acts on the set A with
g(a ◦ b) = g(a) ◦ g(b) (for g ∈ G, a, b ∈ A). We shall (a, 3p) show that (K,�) is a group, where
K = G×A and � is given by (g1, a1)� (g2, a2) = (g1 ∗ g2, g1(a2) ◦ a1) and (b, 2p) decide if
H1 = G× {e}, H2 = {I} ×A are subgroups and normal subgroups of (K,�).

Solution:
a. That (K,�) is a group follows if the axioms for a group (G1–G4) are satisfied.
G1 (closure): g1 ∗ g2 ∈ G and g1(a2) ◦ a1 ∈ A for all g1, g2 ∈ G, a1, a2 ∈ A (G,A closed under

∗, ◦ and g1(a2) ∈ A). G1
√

.
G2 (associativity):

(
(g1, a1)� (g2, a2)

)
� (g3, a3) = (g1 ∗ g2, g1(a2) ◦ a1)� (g3, a3) =

= ((g1 ∗ g2) ∗ g3, (g1 ∗ g2)(a3) ◦ (g1(a2) ◦ a1)) should equal (g1, a1)�
(
(g2, a2)� (g3, a3)

)
=

= (g1, a1)� (g2 ∗ g3, g2(a3) ◦ a2) = (g1 ∗ (g2 ∗ g3), g1(g2(a3) ◦ a2) ◦ a1).
(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) (∗ associative),
(g1 ∗ g2)(a3) ◦ (g1(a2) ◦ a1) =

(
g1(g2(a3)) ◦ g1(a2)

)
◦ a1 (G acts on A, ◦ associative) and

g1(g2(a3) ◦ a2) ◦ a1 =
(
g1(g2(a3)) ◦ g1(a2)

)
◦ a1 (given property of G’s action) G2

√
.

G3 (identity): (I, e)� (g, a) = (I ∗ g, I(a) ◦ e) = (g, a ◦ e) = (g, a) and (g, a)� (I, e) =
= (g ∗ I, g(e) ◦ a) = (g, e ◦ a) = (g, a) (I, e identities, I(a) = a (all a ∈ A), g(e) = e (all g ∈ G) (from

e ◦ g(e) = g(e) = g(e ◦ e) = g(e) ◦ g(e))), so (I, e) is an identity. G3
√

.
G4 (inverse): (g, a)� (g−1, g−1(a−1)) = (g ∗ g−1, g(g−1(a−1)) ◦ a) = (I, (g ∗ g−1)(a−1) ◦ a) =
= (I, I(a−1) ◦ a) = (I, a−1 ◦ a) = (I, e) (−1 inverse in G or in A, G acts on A, I(b) = b, all b ∈ A),
(g−1, g−1(a−1))� (g, a) = (g−1 ∗ g, g−1(a) ◦ g−1(a−1)) = (I, g−1(a ◦ a−1)) = (I, g−1(e)) =
= (I, e), so (g−1, g−1(a−1)) is an inverse of (g, a). G4

√
. Thus, (K,�) is a group.

b. H1 and H2 are subgroups of K (the bijections φ1((g, e)) = g, φ2((I, a)) = a are isomorphisms with G

and A, since (g1, e)�(g2, e) = (g1 ∗g2, g1(e)◦e) = (g1 ∗g2, e) and (I, a1)�(I, a2) = (I ∗I, I(a2)◦a1) = (I, a1 ◦a2).

(I, a)�H1 = {(g, a) | g ∈ G} and H1 � (I, a) = {(g, g(a)) | g ∈ G} are not equal if g(a) 6= a
for some g ∈ G, so H1 is not necessarily a normal subgroup.
(g, a) � H2 = {(g, g(a′) ◦ a) | a′ ∈ A} and H2 � (g, a) = {(g, a ◦ a′) | a′ ∈ A}. Both are
{g} ×A (g acts as a bijection on A), so H2 is normal.

Answer b: H1 and H2 are subgroups. H2 is normal, but H1 is not, in general.
(K is called a semidirect product of the groups G and A. The condition that A be abelian is not necessary (not

used above). A more natural definition is (g1, a1)� (g2, a2) = (g1 ∗ g2, a1 ◦ g1(a2)).)



10) (5p) G = (V,E) is an infinite graph, E countable. We shall show that i)⇔ ii), when
i): For every finite X ⊂ V , the number of edges with exactly one vertex in X is infinite or
even,
ii): There exists a set of cycles and (two-way) infinite paths, with every e ∈ E in exactly one
of them.

Solution:
i) ⇒ ii): Let {ek}k∈N be an enumeration of E, e0 = {v, v′}. By i), with X = {v}, there
is a least k > 0 with v ∈ ek and similarly for v′. These edges are combined with e0 and
this is repeated at each end of the successively formed paths. In that way we obtain a cycle
containing e0 (if some end vertex gets an edge to the other) or a doubly infinite path containing e0.
If all edges in the so formed cycle/path are taken from G, a new graph G′ = (V,E′) is
obtained, also satisfying i) (for every finite X ⊂ V (but maybe not for some infinite ones) there is
an even number of edges in the cycle/path that contain exactly one vertex from X (those at

the ends of connected stretches of X-vertices), so an even number of edges is taken from the corre-
sponding edge set in G). Starting from ek ∈ E′ with minimal k, create a new cycle/path as
above. Repeat.
The set of all thus created cycles/paths (finite or infinite) shows that ii) is fulfilled.
ii) ⇒ i): As we saw, every cycle or doubly infinite path has, for finite X ⊂ V an even
number of edges with exactly one vertex from X. If ii) is fulfilled the set of all such edges
in E is a union of sets, each with an even number of elements, giving i). That’s it.


