(SF2736, Discrete maths, ht15: L20, Thu 3 Dec 2015)

Graph colourings

A vertex colouring of the graph G = (V, E):
a function c: V — N
such that xy € E = c(x) # c(y)

The chromatic number y(G) of G: °
the least number of colours with which one can vertex colour G

A greedy algorithm to find upper bounds of x(G):

1. order the vertices: vy, vo, ..., v,

2. choose in order ¢(v1), ¢(v3), ... as the least number ("colour”) possible, given
the c(v;) already chosen

Theorem: G has maximum degree k =
X(G) <k+1
- if G is connected and not regular, x(G) < k

(In fact the stronger Brooks’ theorem (1941) (not in Biggs’ book) holds:
If G is connected and not isomorphic to K, for some m or to C,, for some odd n,

x(G) < k, the maximum degree of G.)

The chromatic polynomial Pg(A) of a graph G

The number of ways to vertex colour the graph G = (V, E) with (at most)
A colours is given by the chromatic polynomial Pg(\).
The chromatic number x(G) is the least A =0,1,2,... with Pg(X) # 0.
Pg()) is, as the name suggests, a polynomial.
Its highest degree term is \"!.
The next to highest degree term is —|E|AVI7L,
The coefficients are alternating > 0 and < 0.
The constant term is 0 (if V' # @).
Recursion:

Pc(A) = Pa—c(X) — Pgre(A),
where G — e is the graph G with the edge e removed and G/e is G with the
edge e contracted (i.e. the vertices in e are merged). Since the graphs in the
right hand side have strictly fewer edges than G, this together with the base
P,z (A) = AV gives the polynomial Pg(A) uniquely for all (finite) graphs.
With induction corresponding to the recursion the properties for Pg(A) men-
tioned above are shown.
Using the recursion we found for the cycle graph C,

Po, M) =OA-1)"+(-1)"(A—1).

As an application of the sieve principle, it can be shown that the number of
ways to vertex colour G with exactly A colours (i.e. using all A colours) is

Z;\:X(G) (=1 (?) Pe(j)-



Planar graphs

A plane graph (or a plane drawing of a graph): A ”concrete graph” in the plane
(equivalently: on a sphere) without crossing edges
A planar graph: A graph which is isomorphic to a plane graph,

i.e., it can be drawn in the plane without crossing edges

The dual graph (not necessarily a simple graph, even if G is) Gt of a plane graph G-
(isomorphic plane graphs can have non-isomorphic dual graphs.)
one vertex in each of the regions of G (the regions formed by the G-edges)

one edge through each of G'’s edges (connecting the G*-vertices on either side)

Then vt = T, et =e (with v, e, r as below).

If G is (plane and) connected, (G*)* is isomorphic to G and 7+ = v.

Theorem: (Euler’s polyhedron formula): If a connected plane graph has
v vertices, e edges and r regions,
v—e+r=2
More generally: If a plane graph has ¢ components,
v—e+r—c=1
It gives (since every region (if e > 2) has at least 3 edges)
Theorem: For a connected planar graph with e > 2, 3v > e+ 6
If the graph is also bipartite, 2v > e 4+ 4
Theorem: A planar graph has vertices with degree < 5.

The complete graphs K,,, n > 5 and K, 4, p,q > 3 are not planar
If a graph is non-planar, it ”contains” (at least) one of K5 and Kj 3:
Kuratowski’s (1930) and Wagner’s (1937) theorems:
The graph G is non-planar iff a graph which is isomorphic to K5 or K33 can be
obtained from G by a sequence (0 or more) of the operations:
e delete a vertex (and its edges)
o delete an edge
e — Kuratowski: "erase” a vertex of degree 2
(keeping an edge between its neighbours)
— Wagner: contract an edge

(merging the vertices in the edge to a new vertex)
(The condition in Wagner’s theorem is expressed by saying that K5 or K3 3 is a minor of G.)

The four colour theorem: G planar = x(G) <4

In the lecture the six and five colour theorems were proved.

Not treated in the lectures (will not be needed for the exam):
A regular polyhedron (a platonic solid):
all sides regular m-gons, all vertices congruent, degree n.
That corresponds to a ”"doubly regular” plane, connected graph:
all regions have m edges (i.e. G* is m-regular), all vertices have degree n.
The only such graphs:

m n|v e 1 corresponding polyhedron

3 512 30 20 icosahedron (dual to the dodecahedron)

3 416 12 8 octahedron (dual to the hexahedron)

3 34 6 4 tetrahedron (self-dual)

4 3|8 12 6 hexahedron (cube) (dual to the octahedron)
5 3120 30 12 dodecahedron (dual to the icosahedron)




