
(SF2736, Discrete maths, ht15: L20, Thu 3 Dec 2015)

Graph colourings

A vertex colouring of the graph G = (V,E):
a function c : V → N

such that xy ∈ E ⇒ c(x) 6= c(y)
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The chromatic number χ(G) of G:
the least number of colours with which one can vertex colour G

A greedy algorithm to find upper bounds of χ(G):
1. order the vertices: v1, v2, . . . , vn
2. choose in order c(v1), c(v2), . . . as the least number (”colour”) possible, given

the c(vi) already chosen

Theorem: G has maximum degree k ⇒
· χ(G) ≤ k + 1
· if G is connected and not regular, χ(G) ≤ k

(In fact the stronger Brooks’ theorem (1941) (not in Biggs’ book) holds:

If G is connected and not isomorphic to Km for some m or to Cn for some odd n,

χ(G) ≤ k, the maximum degree of G.)

The chromatic polynomial PG(λ) of a graph G

The number of ways to vertex colour the graph G = (V,E) with (at most)
λ colours is given by the chromatic polynomial PG(λ).
The chromatic number χ(G) is the least λ = 0, 1, 2, . . . with PG(λ) 6= 0.

PG(λ) is, as the name suggests, a polynomial.
Its highest degree term is λ|V |.
The next to highest degree term is −|E|λ|V |−1.
The coefficients are alternating ≥ 0 and ≤ 0.
The constant term is 0 (if V 6= ∅).

Recursion:
PG(λ) = PG−e(λ)− PG/e(λ),

where G− e is the graph G with the edge e removed and G/e is G with the
edge e contracted (i.e. the vertices in e are merged). Since the graphs in the
right hand side have strictly fewer edges than G, this together with the base
P(V,∅)(λ) = λ|V | gives the polynomial PG(λ) uniquely for all (finite) graphs.

With induction corresponding to the recursion the properties for PG(λ) men-
tioned above are shown.

Using the recursion we found for the cycle graph Cn
PCn(λ) = (λ− 1)n + (−1)n(λ− 1).

As an application of the sieve principle, it can be shown that the number of
ways to vertex colour G with exactly λ colours (i.e. using all λ colours) is∑λ

j=χ(G)(−1)λ−j
(
λ
j

)
PG(j).



Planar graphs

A plane graph (or a plane drawing of a graph): A ”concrete graph” in the plane
(equivalently: on a sphere) without crossing edges

A planar graph: A graph which is isomorphic to a plane graph,
i.e., it can be drawn in the plane without crossing edges

The dual graph (not necessarily a simple graph, even if G is) G⊥ of a plane graph G:
(isomorphic plane graphs can have non-isomorphic dual graphs.)

one vertex in each of the regions of G (the regions formed by the G-edges)

one edge through each of G’s edges (connecting the G⊥-vertices on either side)

Then v⊥ = r, e⊥ = e (with v, e, r as below).

If G is (plane and) connected, (G⊥)⊥ is isomorphic to G and r⊥ = v.

Theorem: (Euler’s polyhedron formula): If a connected plane graph has
v vertices, e edges and r regions,

v − e+ r = 2

More generally: If a plane graph has c components,
v − e+ r − c = 1

It gives (since every region (if e ≥ 2) has at least 3 edges)

Theorem: For a connected planar graph with e ≥ 2, 3v ≥ e+ 6
If the graph is also bipartite, 2v ≥ e+ 4

Theorem: A planar graph has vertices with degree ≤ 5.

The complete graphs Kn, n ≥ 5 and Kp,q, p, q ≥ 3 are not planar

If a graph is non-planar, it ”contains” (at least) one of K5 and K3,3:

Kuratowski’s (1930) and Wagner’s (1937) theorems:
The graph G is non-planar iff a graph which is isomorphic to K5 or K3,3 can be
obtained from G by a sequence (0 or more) of the operations:

• delete a vertex (and its edges)
• delete an edge
• – Kuratowski: ”erase” a vertex of degree 2

(keeping an edge between its neighbours)
– Wagner: contract an edge

(merging the vertices in the edge to a new vertex)
(The condition in Wagner’s theorem is expressed by saying that K5 or K3,3 is a minor of G.)

The four colour theorem: G planar ⇒ χ(G) ≤ 4

In the lecture the six and five colour theorems were proved.

Not treated in the lectures (will not be needed for the exam):
A regular polyhedron (a platonic solid):

all sides regular m-gons, all vertices congruent, degree n.

That corresponds to a ”doubly regular” plane, connected graph:

all regions have m edges (i.e. G⊥ is m-regular), all vertices have degree n.

The only such graphs:

m n v e r corresponding polyhedron

3 5 12 30 20 icosahedron (dual to the dodecahedron)

3 4 6 12 8 octahedron (dual to the hexahedron)

3 3 4 6 4 tetrahedron (self-dual)

4 3 8 12 6 hexahedron (cube) (dual to the octahedron)

5 3 20 30 12 dodecahedron (dual to the icosahedron)


